1
|
Bei Y, Zhu Y, Wei M, Yin M, Li L, Chen C, Huang Z, Liang X, Gao J, Yao J, van der Kraak PH, Vink A, Lei Z, Dai Y, Chen H, Liang Y, Sluijter JPG, Xiao J. HIPK1 Inhibition Protects against Pathological Cardiac Hypertrophy by Inhibiting the CREB-C/EBPβ Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300585. [PMID: 37098980 PMCID: PMC10288234 DOI: 10.1002/advs.202300585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Inhibition of pathological cardiac hypertrophy is recognized as an important therapeutic strategy for heart failure, although effective targets are still lacking in clinical practice. Homeodomain interacting protein kinase 1 (HIPK1) is a conserved serine/threonine kinase that can respond to different stress signals, however, whether and how HIPK1 regulates myocardial function is not reported. Here, it is observed that HIPK1 is increased during pathological cardiac hypertrophy. Both genetic ablation and gene therapy targeting HIPK1 are protective against pathological hypertrophy and heart failure in vivo. Hypertrophic stress-induced HIPK1 is present in the nucleus of cardiomyocytes, while HIPK1 inhibition prevents phenylephrine-induced cardiomyocyte hypertrophy through inhibiting cAMP-response element binding protein (CREB) phosphorylation at Ser271 and inactivating CCAAT/enhancer-binding protein β (C/EBPβ)-mediated transcription of pathological response genes. Inhibition of HIPK1 and CREB forms a synergistic pathway in preventing pathological cardiac hypertrophy. In conclusion, HIPK1 inhibition may serve as a promising novel therapeutic strategy to attenuate pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of Life ScienceShanghai UniversityShanghai200444China
| | - Yujiao Zhu
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of Life ScienceShanghai UniversityShanghai200444China
| | - Meng Wei
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of Life ScienceShanghai UniversityShanghai200444China
| | - Mingming Yin
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of Life ScienceShanghai UniversityShanghai200444China
| | - Lin Li
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of Life ScienceShanghai UniversityShanghai200444China
| | - Chen Chen
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of Life ScienceShanghai UniversityShanghai200444China
| | - Zhenzhen Huang
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of Life ScienceShanghai UniversityShanghai200444China
| | - Xuchun Liang
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of Life ScienceShanghai UniversityShanghai200444China
| | - Juan Gao
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of Life ScienceShanghai UniversityShanghai200444China
| | - Jianhua Yao
- Department of CardiologyShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072China
- Department of CardiologyShigatse People's HospitalTibet857000China
| | - Petra H. van der Kraak
- Department of PathologyUniversity Medical Center UtrechtUniversity UtrechtUtrecht3584 CXThe Netherlands
| | - Aryan Vink
- Department of PathologyUniversity Medical Center UtrechtUniversity UtrechtUtrecht3584 CXThe Netherlands
| | - Zhiyong Lei
- Department of CardiologyLaboratory of Experimental CardiologyUniversity Medical Center UtrechtUniversity UtrechtUtrecht3584 CXThe Netherlands
- Division LabCentral Diagnosis Laboratory ResearchUniversity Medical Center UtrechtUniversity UtrechtUtrecht3584 CXThe Netherlands
| | - Yuxiang Dai
- Shanghai Institute of Cardiovascular DiseasesZhongshan HospitalFudan UniversityShanghai200032China
| | - Huihua Chen
- School of Basic Medical ScienceShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Yueyang Liang
- School of Basic Medical ScienceShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Joost PG Sluijter
- Department of CardiologyLaboratory of Experimental CardiologyUniversity Medical Center UtrechtUniversity UtrechtUtrecht3584 CXThe Netherlands
- UMC Utrecht Regenerative Medicine CenterUniversity Medical Center UtrechtUtrecht3508 GAThe Netherlands
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of Life ScienceShanghai UniversityShanghai200444China
| |
Collapse
|
2
|
Hosseini S, Schmitt AO, Tetens J, Brenig B, Simianer H, Sharifi AR, Gültas M. In Silico Prediction of Transcription Factor Collaborations Underlying Phenotypic Sexual Dimorphism in Zebrafish ( Danio rerio). Genes (Basel) 2021; 12:873. [PMID: 34200177 PMCID: PMC8227731 DOI: 10.3390/genes12060873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 11/17/2022] Open
Abstract
The transcriptional regulation of gene expression in higher organisms is essential for different cellular and biological processes. These processes are controlled by transcription factors and their combinatorial interplay, which are crucial for complex genetic programs and transcriptional machinery. The regulation of sex-biased gene expression plays a major role in phenotypic sexual dimorphism in many species, causing dimorphic gene expression patterns between two different sexes. The role of transcription factor (TF) in gene regulatory mechanisms so far has not been studied for sex determination and sex-associated colour patterning in zebrafish with respect to phenotypic sexual dimorphism. To address this open biological issue, we applied bioinformatics approaches for identifying the predicted TF pairs based on their binding sites for sex and colour genes in zebrafish. In this study, we identified 25 (e.g., STAT6-GATA4; JUN-GATA4; SOX9-JUN) and 14 (e.g., IRF-STAT6; SOX9-JUN; STAT6-GATA4) potentially cooperating TFs based on their binding patterns in promoter regions for sex determination and colour pattern genes in zebrafish, respectively. The comparison between identified TFs for sex and colour genes revealed several predicted TF pairs (e.g., STAT6-GATA4; JUN-SOX9) are common for both phenotypes, which may play a pivotal role in phenotypic sexual dimorphism in zebrafish.
Collapse
Affiliation(s)
- Shahrbanou Hosseini
- Molecular Biology of Livestock and Molecular Diagnostics Group, Department of Animal Sciences, University of Göttingen, 37077 Göttingen, Germany;
- Functional Breeding Group, Department of Animal Sciences, University of Göttingen, 37077 Göttingen, Germany;
- Institute of Veterinary Medicine, University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
| | - Armin Otto Schmitt
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
| | - Jens Tetens
- Functional Breeding Group, Department of Animal Sciences, University of Göttingen, 37077 Göttingen, Germany;
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
| | - Bertram Brenig
- Molecular Biology of Livestock and Molecular Diagnostics Group, Department of Animal Sciences, University of Göttingen, 37077 Göttingen, Germany;
- Institute of Veterinary Medicine, University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
| | - Henner Simianer
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
| | - Ahmad Reza Sharifi
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
| | - Mehmet Gültas
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
- Faculty of Agriculture, South Westphalia University of Applied Sciences, 59494 Soest, Germany
| |
Collapse
|
3
|
The transcriptional factor GATA-4 negatively regulates Hsp70 transcription in Crassostrea hongkongensis. Mol Biol Rep 2020; 47:7107-7114. [PMID: 32880831 DOI: 10.1007/s11033-020-05778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
To better explore the application potential of heat shock protein Hsp70s in diverse areas including biomonitoring, a further investigation of the details of the regulatory mechanism governing Hsp70 transcription is required. A transcriptional factor ChGATA-4 that displayed affinity to the ChHsp70 promoter of Crassostrea hongkongensis was isolated and identified by DNA affinity purification as well as mass spectrometry analysis. The ChGATA-4 cDNA is 2162 bp in length and the open reading frame encodes a polypeptide containing 482 amino acids with a conserved zinc finger domain. The over-expression of ChGATA-4 significantly inhibited the expression of ChHsp70 promoter in heterologous HEK293T cells. However, the depletion of ChGATA-4 mRNA by RNAi technique resulted in significant increase of ChHsp70 transcription in oyster hemocytes. The RT-PCR results demonstrated that the transcription of both ChHsp70 and ChGATA-4 were induced by heat, Cd, or NP (Nonyl phenol) stress. This suggested a potential correlation between ChHsp70 and ChGATA-4 in the stress-mediated genetic regulatory cascade. This study demonstrated that ChGATA-4 acts in a negative manner in controlling ChHsp70 transcription in C. hongkongensis and promotes to further understand the mechanisms leading Hsp70 transcription.
Collapse
|
4
|
ROS-Induced GATA4 and GATA6 Downregulation Inhibits StAR Expression in LPS-Treated Porcine Granulosa-Lutein Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5432792. [PMID: 31178965 PMCID: PMC6501234 DOI: 10.1155/2019/5432792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/19/2019] [Accepted: 03/20/2019] [Indexed: 01/07/2023]
Abstract
LPS is a major endotoxin produced by gram-negative bacteria, and exposure to it commonly occurs in animal husbandry. Previous studies have shown that LPS infection disturbs steroidogenesis, including progesterone production, and subsequently decreases animal reproductive performance. However, little information about the underlying mechanisms is available thus far. In the present study, an in vitro-luteinized porcine granulosa cell model was used to study the underlying molecular mechanisms of LPS treatment. We found that LPS significantly inhibits progesterone production and downregulates the expressions of progesterone synthesis-associated genes (StAR, CYP11A1, and 3β-HSD). Furthermore, the levels of ROS were significantly increased in an LPS dose-dependent manner. Moreover, transcriptional factors GATA4 and GATA6, but not NR5A1, were significantly downregulated. Elimination of LPS-stimulated ROS by melatonin or vitamin C could restore the expressions of GATA4, GATA6, and StAR. In parallel, StAR expression was also inhibited by the knockdown of GATA4 and GATA6. Based on these data, we conclude that LPS impairs StAR expression via the ROS-induced downregulation of GATA4 and GATA6. Collectively, these findings provide new insights into the understanding of reproductive losses in animals suffering from bacterial infection and LPS exposure.
Collapse
|
5
|
Selvaraj V, Stocco DM, Clark BJ. Current knowledge on the acute regulation of steroidogenesis. Biol Reprod 2018; 99:13-26. [PMID: 29718098 PMCID: PMC6044331 DOI: 10.1093/biolre/ioy102] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/23/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
How rapid induction of steroid hormone biosynthesis occurs in response to trophic hormone stimulation of steroidogenic cells has been a subject of intensive investigation for approximately six decades. A key observation made very early was that acute regulation of steroid biosynthesis required swift and timely synthesis of a new protein whose role appeared to be involved in the delivery of the substrate for all steroid hormones, cholesterol, from the outer to the inner mitochondrial membrane where the process of steroidogenesis begins. It was quickly learned that this transfer of cholesterol to the inner mitochondrial membrane was the regulated and rate-limiting step in steroidogenesis. Following this observation, the quest for this putative regulator protein(s) began in earnest in the late 1950s. This review provides a history of this quest, the candidate proteins that arose over the years and facts surrounding their rise or decline. Only two have persisted-translocator protein (TSPO) and the steroidogenic acute regulatory protein (StAR). We present a detailed summary of the work that has been published for each of these two proteins, the specific data that has appeared in support of their role in cholesterol transport and steroidogenesis, and the ensuing observations that have arisen in recent years that have refuted the role of TSPO in this process. We believe that the only viable candidate that has been shown to be indispensable is the StAR protein. Lastly, we provide our view on what may be the most important questions concerning the acute regulation of steroidogenesis that need to be asked in future.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Douglas M Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
6
|
Liu X, Li Z, Wang B, Zhu H, Liu Y, Qi J, Zhang Q. GATA4 is a transcriptional regulator of R-spondin1 in Japanese flounder (Paralichthys olivaceus). Gene 2018; 648:68-75. [PMID: 29331483 DOI: 10.1016/j.gene.2018.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
GATA4 is a well-known transcription factor of the GATA family implicated in regulation of sex determination and gonadal development in mammals. In this study, we cloned the full-length cDNA of Paralichthys olivaceus gata4 (Po-gata4). Phylogenetic, gene structure, and synteny analysis showed that Po-GATA4 is homologous to GATA4 of teleost and tetrapod. Po-gata4 transcripts were detected in Sertoli cells, spermatogonia, oogonia and oocytes, with higher transcript levels overall in the testis than the ovary. The promoter region of P. olivaceus R-spondin1was found to contain a GATA4-binding motif. Results of CBA (cleaved amplified polymorphic sequence-based binding assay) indicated that GATA4 could indeed bind to the promoter sequence of R-spondin1. Moreover, human GATA4 recombinant protein could upregulate R-spondin1 in P. olivaceus ovary cells and FBCs (flounder brain cell line). In FBCs, overexpression of Po-gata4 resulted in elevated transcript levels of R-spondin1. Taken together, our results indicate that Po-GATA4 is involved in gonadal development by regulating R-spondin1 expression.
Collapse
Affiliation(s)
- Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China
| | - Zan Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China
| | - Bo Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China
| | - He Zhu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China
| | - Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, PR China
| |
Collapse
|
7
|
Ruggiero C, Lalli E. Impact of ACTH Signaling on Transcriptional Regulation of Steroidogenic Genes. Front Endocrinol (Lausanne) 2016; 7:24. [PMID: 27065945 PMCID: PMC4810002 DOI: 10.3389/fendo.2016.00024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 01/12/2023] Open
Abstract
The trophic peptide hormone adrenocorticotropic (ACTH) stimulates steroid hormone biosynthesis evoking both a rapid, acute response and a long-term, chronic response, via the activation of cAMP/protein kinase A (PKA) signaling. The acute response is initiated by the mobilization of cholesterol from lipid stores and its delivery to the inner mitochondrial membrane, a process that is mediated by the steroidogenic acute regulatory protein. The chronic response results in the increased coordinated transcription of genes encoding steroidogenic enzymes. ACTH binding to its cognate receptor, melanocortin 2 receptor (MC2R), stimulates adenylyl cyclase, thus inducing cAMP production, PKA activation, and phosphorylation of specific nuclear factors, which bind to target promoters and facilitate coactivator protein recruitment to direct steroidogenic gene transcription. This review provides a general view of the transcriptional control exerted by the ACTH/cAMP system on the expression of genes encoding for steroidogenic enzymes in the adrenal cortex. Special emphasis will be given to the transcription factors required to mediate ACTH-dependent transcription of steroidogenic genes.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Valbonne, France
- Laboratoire International Associé (LIA) CNRS NEOGENEX, Valbonne, France
- Université de Nice, Valbonne, France
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Valbonne, France
- Laboratoire International Associé (LIA) CNRS NEOGENEX, Valbonne, France
- Université de Nice, Valbonne, France
| |
Collapse
|
8
|
Liu J, Zhang W, Du X, Jiang J, Wang C, Wang X, Zhang Q, He Y. Molecular characterization and functional analysis of the GATA4 in tongue sole (Cynoglossus semilaevis). Comp Biochem Physiol B Biochem Mol Biol 2016; 193:1-8. [DOI: 10.1016/j.cbpb.2015.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/23/2015] [Accepted: 12/02/2015] [Indexed: 01/11/2023]
|
9
|
Zhang JY, Wu Y, Zhao S, Liu ZX, Zeng SM, Zhang GX. Lysosomes are involved in induction of steroidogenic acute regulatory protein (StAR) gene expression and progesterone synthesis through low-density lipoprotein in cultured bovine granulosa cells. Theriogenology 2015; 84:811-7. [DOI: 10.1016/j.theriogenology.2015.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 11/29/2022]
|
10
|
Qin F, Zhang J, Zan L, Guo W, Wang J, Chen L, Cao Y, Shen O, Tong J. Inhibitory effect of melatonin on testosterone synthesis is mediated via GATA-4/SF-1 transcription factors. Reprod Biomed Online 2015; 31:638-46. [PMID: 26386639 DOI: 10.1016/j.rbmo.2015.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 02/01/2023]
Abstract
The aim of the present study was to elucidate whether the GATA-4/SF-1 signalling pathway is involved in the inhibitory effects of melatonin on testosterone production in both the TM3 Leydig cell line and in C57BL/6J mice. In-vitro experiments demonstrated that melatonin treatment significantly reduced testosterone levels in cell culture medium (P < 0.05 or P < 0.01); and decreased intracellular cyclic adenosine monophospha accumulation (P < 0.05 or P < 0.01) and mRNA/protein expression of GATA-4, SF-1 (NR5A1), StAR, P450SCC (CYP11A1) and 3β-HSD (P < 0.05 or P < 0.01). These effects were blocked by N-acetyl-2-benzyltryptamin, a melatonin receptor antagonist. Similar effects of melatonin on testosterone production (P < 0.05 or P < 0.01) and down-regulation of transcription factors GATA-4 and SF-1 (P < 0.01) were also observed in mice treated with intratesticular injections of melatonin. Overall, the data suggest that the inhibitory effects of melatonin on testosterone production are mediated via down-regulation of GATA-4 and SF-1 expression.
Collapse
Affiliation(s)
- Fenju Qin
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China; Department of Biological Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jie Zhang
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xian, 712100, China
| | - Weiqiang Guo
- Department of Biological Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Wang
- Department of Biological Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lili Chen
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Yi Cao
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Ouxi Shen
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Jian Tong
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
11
|
Hu Y, Dong C, Chen M, Chen Y, Gu A, Xia Y, Sun H, Li Z, Wang Y. Effects of monobutyl phthalate on steroidogenesis through steroidogenic acute regulatory protein regulated by transcription factors in mouse Leydig tumor cells. J Endocrinol Invest 2015; 38:875-884. [PMID: 25903692 DOI: 10.1007/s40618-015-0279-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/17/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Dibutyl phthalate (DBP) is one of the most widely used phthalate esters, and it is ubiquitous in the environment. DBP and its major metabolite, monobutyl phthalate (MBP), change steroid biosynthesis and impair male reproductive function. However, the regulatory mechanism underlying the steroid biosynthesis disruption by MBP is still unclear. METHODS We analyzed the progesterone production, steroidogenic acute regulatory protein (StAR) mRNA, protein expression, and DNA-binding affinity of transcription factors (SF-1 and GATA-4). RESULTS Our results reveal that MBP inhibited progesterone production. At the same time, StAR mRNA and protein were decreased after MBP exposure. Furthermore, electrophoretic mobility shift assay showed that DNA-binding affinity of transcription factors (SF-1 and GATA-4) was decreased in a dose-dependent manner after MBP treatments. Western blot tests next confirmed that protein of SF-1 was decreased, but GATA-4 protein was unchanged. However, phosphorylated GATA-4 protein was decreased with 800 μM of MBP. CONCLUSIONS This study reveals an important and novel mechanism whereby SF-1 and GATA-4 may regulate StAR during MBP-induced steroidogenesis disruption.
Collapse
Affiliation(s)
- Y Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mizutani T, Kawabe S, Ishikane S, Imamichi Y, Umezawa A, Miyamoto K. Identification of novel steroidogenic factor 1 (SF-1)-target genes and components of the SF-1 nuclear complex. Mol Cell Endocrinol 2015; 408:133-7. [PMID: 25463758 DOI: 10.1016/j.mce.2014.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 12/20/2022]
Abstract
Steroidogenic factor 1 (SF-1) is a master regulator of adrenal and reproductive development and function. Although SF-1 was identified as a transcriptional regulator for steroid metabolic enzymes, it has been shown that SF-1 also regulates other genes that are involved in various cellular processes. Previously, we showed that introduction of SF-1 into mesenchymal stem cells resulted in the differentiation of these cells to the steroidogenic lineage. By using this method of differentiation, we performed comprehensive analyses to identify the novel SF-1-target genes and components of the SF-1 nuclear complex. Genome-wide analyses with promoter tiling array and DNA microarray identified 10 genes as novel SF-1-target genes including glutathione S-transferase A family, 5-aminolevulinic acid synthase 1 and ferredoxin reductase. Using SF-1 immuno-affinity chromatography of nuclear proteins followed by MS/MS analysis, we identified 24 proteins including CCAAT/enhancer-binding protein β as components of SF-1 nuclear complex. In this review, we will describe novel roles of the newly identified genes for steroidogenesis.
Collapse
Affiliation(s)
- Tetsuya Mizutani
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Translational Research Center, Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan.
| | - Shinya Kawabe
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Translational Research Center, Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan
| | - Shin Ishikane
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Yoshitaka Imamichi
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Translational Research Center, Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan
| | - Akihiro Umezawa
- National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kaoru Miyamoto
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Translational Research Center, Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
13
|
Liu Z, Ren YA, Pangas SA, Adams J, Zhou W, Castrillon DH, Wilhelm D, Richards JS. FOXO1/3 and PTEN Depletion in Granulosa Cells Promotes Ovarian Granulosa Cell Tumor Development. Mol Endocrinol 2015; 29:1006-24. [PMID: 26061565 DOI: 10.1210/me.2015-1103] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The forkhead box (FOX), FOXO1 and FOXO3, transcription factors regulate multiple functions in mammalian cells. Selective inactivation of the Foxo1 and Foxo3 genes in murine ovarian granulosa cells severely impairs follicular development and apoptosis causing infertility, and as shown here, granulosa cell tumor (GCT) formation. Coordinate depletion of the tumor suppressor Pten gene in the Foxo1/3 strain enhanced the penetrance and onset of GCT formation. Immunostaining and Western blot analyses confirmed FOXO1 and phosphatase and tensin homolog (PTEN) depletion, maintenance of globin transcription factor (GATA) 4 and nuclear localization of FOXL2 and phosphorylated small mothers against decapentaplegic (SMAD) 2/3 in the tumor cells, recapitulating results we observed in human adult GCTs. Microarray and quantitative PCR analyses of mouse GCTs further confirmed expression of specific genes (Foxl2, Gata4, and Wnt4) controlling granulosa cell fate specification and proliferation, whereas others (Emx2, Nr0b1, Rspo1, and Wt1) were suppressed. Key genes (Amh, Bmp2, and Fshr) controlling follicle growth, apoptosis, and differentiation were also suppressed. Inhbb and Grem1 were selectively elevated, whereas reduction of Inha provided additional evidence that activin signaling and small mothers against decapentaplegic (SMAD) 2/3 phosphorylation impact GCT formation. Unexpectedly, markers of Sertoli/epithelial cells (SRY [sex determining region Y]-box 9/keratin 8) and alternatively activated macrophages (chitinase 3-like 3) were elevated in discrete subpopulations within the mouse GCTs, indicating that Foxo1/3/Pten depletion not only leads to GCTs but also to altered granulosa cell fate decisions and immune responses. Thus, analyses of the Foxo1/3/Pten mouse GCTs and human adult GCTs provide strong evidence that impaired functions of the FOXO1/3/PTEN pathways lead to dramatic changes in the molecular program within granulosa cells, chronic activin signaling in the presence of FOXL2 and GATA4, and tumor formation.
Collapse
Affiliation(s)
- Zhilin Liu
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| | - Yi A Ren
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| | - Stephanie A Pangas
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| | - Jaye Adams
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| | - Wei Zhou
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| | - Diego H Castrillon
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| | - Dagmar Wilhelm
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| | - JoAnne S Richards
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
14
|
Mizutani T, Ishikane S, Kawabe S, Umezawa A, Miyamoto K. Transcriptional regulation of genes related to progesterone production. Endocr J 2015; 62:757-63. [PMID: 26135521 DOI: 10.1507/endocrj.ej15-0260] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Steroid hormones are synthesized from cholesterol in various tissues, mainly in the adrenal glands and gonads. Because these lipid-soluble steroid hormones immediately diffuse through the cells in which they are produced, their secretion directly reflects the activity of the genes related to their production. Progesterone is important not only for luteinization and maintenance of pregnancy, but also as a substrate for most other steroids. Steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3β-HSD) are well-known proteins essential for progesterone production. In addition to them, glutathione S-transferase A1-1 and A3-3 are shown to exert Δ(5)-Δ(4) isomerization activity to produce progesterone in a cooperative fashion with 3β-HSD. 5-Aminolevulinic acid synthase 1, ferredoxin 1, and ferredoxin reductase also play a role in steroidogenesis as accessory factors. Members of the nuclear receptor 5A (NR5A) family (steroidogenic factor 1 and liver receptor homolog 1) play a crucial role in the transcriptional regulation of these genes. The NR5A family activates these genes by binding to NR5A responsive elements present within their promoter regions, as well as to the elements far from their promoters. In addition, various NR5A-interacting proteins including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear receptor subfamily 0, group B, member 1 (DAX-1), and CCAAT/enhancer-binding proteins (C/EBP) are involved in the transcription of NR5A target genes and regulate the transcription either positively or negatively under both basal and tropic hormone-stimulated conditions. In this review, we describe the transcriptional regulation of genes related to progesterone production.
Collapse
Affiliation(s)
- Tetsuya Mizutani
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | | | | | | | | |
Collapse
|
15
|
Tevosian SG. Transgenic mouse models in the study of reproduction: insights into GATA protein function. Reproduction 2014; 148:R1-R14. [DOI: 10.1530/rep-14-0086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For the past 2 decades, transgenic technology in mice has allowed for an unprecedented insight into the transcriptional control of reproductive development and function. The key factor among the mouse genetic tools that made this rapid advance possible is a conditional transgenic approach, a particularly versatile method of creating gene deletions and substitutions in the mouse genome. A centerpiece of this strategy is an enzyme, Cre recombinase, which is expressed from defined DNA regulatory elements that are active in the tissue of choice. The regulatory DNA element (either genetically engineered or natural) assures Cre expression only in predetermined cell types, leading to the guided deletion of genetically modified (flanked by loxP or ‘floxed’ byloxP) gene loci. This review summarizes and compares the studies in which genes encoding GATA family transcription factors were targeted either globally or by Cre recombinases active in the somatic cells of ovaries and testes. The conditional gene loss experiments require detailed knowledge of the spatial and temporal expression of Cre activity, and the challenges in interpreting the outcomes are highlighted. These studies also expose the complexity of GATA-dependent regulation of gonadal gene expression and suggest that gene function is highly context dependent.
Collapse
|
16
|
Mendoza-Villarroel RE, Robert NM, Martin LJ, Brousseau C, Tremblay JJ. The nuclear receptor NR2F2 activates star expression and steroidogenesis in mouse MA-10 and MLTC-1 Leydig cells. Biol Reprod 2014; 91:26. [PMID: 24899578 DOI: 10.1095/biolreprod.113.115790] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Testosterone production is dependent on cholesterol transport within the mitochondrial matrix, an essential step mediated by a protein complex containing the steroidogenic acute regulatory (STAR) protein. In steroidogenic Leydig cells, Star expression is hormonally regulated and involves several transcription factors. NR2F2 (COUP-TFII) is an orphan nuclear receptor that plays critical roles in cell differentiation and lineage determination. Conditional NR2F2 knockout prior to puberty leads to male infertility due to insufficient testosterone production, suggesting that NR2F2 could positively regulate steroidogenesis and Star expression. In this study we found that NR2F2 is expressed in the nucleus of some peritubular myoid cells and in interstitial cells, mainly in steroidogenically active adult Leydig cells. In MA-10 and MLTC-1 Leydig cells, small interfering RNA (siRNA)-mediated NR2F2 knockdown reduces basal steroid production without affecting hormone responsiveness. Consistent with this, we found that STAR mRNA and protein levels were reduced in NR2F2-depleted MA-10 and MLTC-1 cells. Transient transfections of Leydig cells revealed that a -986 bp mouse Star promoter construct was activated 3-fold by NR2F2. Using 5' progressive deletion constructs, we mapped the NR2F2-responsive element between -131 and -95 bp. This proximal promoter region contains a previously uncharacterized direct repeat 1 (DR1)-like element to which NR2F2 is recruited and directly binds. Mutations in the DR1-like element that prevent NR2F2 binding severely blunted NR2F2-mediated Star promoter activation. These data identify an essential role for the nuclear receptor NR2F2 as a direct activator of Star gene expression in Leydig cells, and thus in the control of steroid hormone biosynthesis.
Collapse
Affiliation(s)
- Raifish E Mendoza-Villarroel
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Nicholas M Robert
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Luc J Martin
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Catherine Brousseau
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Jacques J Tremblay
- Centre de recherche en biologie de la reproduction, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
17
|
C/EBPβ (CCAAT/enhancer-binding protein β) mediates progesterone production through transcriptional regulation in co-operation with SF-1 (steroidogenic factor-1). Biochem J 2014; 460:459-71. [DOI: 10.1042/bj20131522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CCAAT/enhancer-binding protein β (C/EBPβ) was identified as a component of the SF-1 nuclear complex. C/EBPβ regulates expression of progesterone production-related genes (STAR, CYP11A1 and HSD3B2) by co-operation with SF-1. Our findings reveal a novel molecular mechanism of progesterone production.
Collapse
|
18
|
Yuan X, Xia L, Dong X, Hu S, Zhang Y, Ding F, Liu H, Li L, Wang J. Transcription factors GATA-4 and GATA-6: molecular characterization, expression patterns and possible functions during goose (Anser cygnoides) follicle development. J Reprod Dev 2014; 60:83-91. [PMID: 24531706 PMCID: PMC3999398 DOI: 10.1262/jrd.2013-080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factors GATA-4 and GATA-6, members of the GATA family, play an important role in ovarian cell proliferation, differentiation and apoptosis. In this study, the full-length coding sequences of goose GATA-4 and GATA-6 were cloned and characterized. GATA-4 and GATA-6 consist of 1236 and 1104 nucleotides encoding proteins with 411 and 367 amino acids, respectively. The deduced amino acid sequences of both proteins include two adjacent zinc finger domains with the distinctive form (CVNC-X17-CNAC)-X29-(CANC-X17-CNAC) and share 84.76% identity within this domain. In silico prediction together with matching of the high affinity RRXS(T)Y motif revealed that the GATA-4 protein might be phosphorylated predominantly at S(233), but no phosphorylation site was found in the GATA-6 protein. Real-time quantitative PCR analysis showed that GATA-4 and GATA-6 mRNAs were co-expressed in goose follicles, moderately expressed in granulosa cells and weakly expressed in theca cells. The expression level of GATA-4 mRNA in healthy follicles was significantly higher than in atretic follicles or postovulatory follicles (P<0.01), and the expression level of GATA-6 mRNA in healthy follicles was significantly lower than in atretic follicles or postovulatory follicles (P<0.01). The expression level of GATA-4 mRNA in granulosa cells was downregulated during follicle development; the peak of expression occurred in the 8-10 mm follicles, and the lowest expression was in the F1 follicles. GATA-6 was upregulated and reached its peak expression in the F1 follicles. These results indicate that the molecular structural differences in goose GATA-4 and GATA-6 may be related to their different roles during follicle development.
Collapse
Affiliation(s)
- Xin Yuan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan 625014, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sayasith K, Sirois J, Lussier JG. Expression, regulation, and promoter activation of vanin-2 (VNN2) in bovine follicles prior to ovulation. Biol Reprod 2013; 89:98. [PMID: 24006283 DOI: 10.1095/biolreprod.113.111849] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Vanin-2 (VNN2) is known to be involved in inflammation and leukocyte migration, but its regulation in follicles remains unknown. The objectives of this work were to study the regulation of VNN2 transcripts in bovine follicles prior to ovulation and to characterize the control of its expression in bovine granulosa cells. VNN2 expression was studied using total RNA extracted from granulosa cells of small follicles (2-4 mm in diameter), dominant follicles obtained on Day 5 of the estrous cycle, ovulatory follicles obtained 0-24 h after human chorionic gonadotropin (hCG), and corpora lutea on Day 5 of the cycle. The results from RT-PCR analyses showed that levels of VNN2 mRNA were high in ovulatory follicles 24 h post-hCG but low in the other tissues. In ovulatory follicles, levels of VNN2 mRNA were low at 0 h but significantly up-regulated 12-24 h post-hCG. To determine factors controlling VNN2 gene expression, established primary cultures of granulosa cells isolated from bovine dominant follicles were used. Treatment with forskolin elevated VNN2 mRNA expression as observed in vivo. Mutation studies identified the minimal region conferring basal and forskolin-stimulated VNN2 promoter activities, which were dependent on chicken ovalbumin upstream promoter-transcription factor (COUP-TF), GATA, and Ebox cis-elements. Electrophoretic mobility shift assays identified COUP-TF, GATA4, and upstream stimulating factor proteins as key factors interacting with these elements. Chromatin immunoprecipitation assays confirmed basal and forskolin-induced interactions between these proteins and the VNN2 promoter in bovine granulosa cell cultures. VNN2 promoter activity and mRNA expression were markedly stimulated by forskolin and overexpression of the catalytic subunit of PKA, but inhibited by PKA and ERK1/2 inhibitors. Collectively, the findings from this study describe for the first time the gonadotropin/forskolin-dependent up-regulation of VNN2 transcripts in granulosa cells of preovulatory follicles and provide insights into some of the molecular bases of VNN2 gene expression in follicular cells.
Collapse
Affiliation(s)
- Khampoun Sayasith
- Centre de recherche en reproduction animale and the département de biomedicine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | | | |
Collapse
|
20
|
Hu Y, Dong C, Chen M, Lu J, Han X, Qiu L, Chen Y, Qin J, Li X, Gu A, Xia Y, Sun H, Li Z, Wang Y. Low-dose monobutyl phthalate stimulates steroidogenesis through steroidogenic acute regulatory protein regulated by SF-1, GATA-4 and C/EBP-beta in mouse Leydig tumor cells. Reprod Biol Endocrinol 2013; 11:72. [PMID: 23889939 PMCID: PMC3734203 DOI: 10.1186/1477-7827-11-72] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/16/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The ubiquitous use of dibutyl phthalate (DBP), one of the most widely used plasticizers, results in extensive exposure to humans and the environment. DBP and its major metabolite, monobutyl phthalate (MBP), may alter steroid biosynthesis and their exposure may lead to damage to male reproductive function. Low-doses of DBP/MBP may result in increased steroidogenesis in vitro and in vivo. However, the mechanisms of possible effects of low-dose MBP on steroidogenesis remain unclear. The aim of present study was to elaborate the role of transcription factors and steroidogenic acute regulatory protein in low-dose MBP-induced distruption of steroidogenesis in mouse Leydig tumor cells (MLTC-1 cells). METHODS In the present study, MLTC-1 cells were cultured in RPMI 1640 medium supplemented with 2 g/L sodium bicarbonate. Progesterone level was examined by I125-pregesterone Coat-A-Count radioimmunoassay (RIA) kits. mRNA and protein levels were assessed by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. DNA-binding of several transcription factors was examined by electrophoretic mobility shift assay (EMSA). RESULTS In this study, various doses of MBP (0, 10(-9), 10(-8), 10(-7), or 10(-6) M) were added to the medium followed by stimulation of MLTC-1 cells with human chorionic gonadotrophin (hCG). The results showed that MBP increased progesterone production and steroidogenic acute regulatory protein (StAR) mRNA and protein levels. However, the protein levels of cytochrome P450scc and 3 beta-hydroxy-steroid dehydrogenase (3 beta-HSD) were unchanged after MBP treatment. EMSA assay showed that DNA-binding of steroidogenic factors 1(SF-1), GATA-4 and CCAAT/enhancer binding protein-beta (C/EBP-beta) was increased in a dose-dependent manner after MBP exposure. Western blot tests were next employed and confirmed that the protein levels of SF-1, GATA-4 and C/EBP-beta were also increased. Additionally, western blot tests confirmed the expression of DAX-1, negative factor of SF-1, was dose-dependently down regulated after MBP exposure, which further confirmed the role of SF-1 in MBP-stimulated steroid biosynthesis. CONCLUSIONS In conclusion, we firstly delineated the regulation of StAR by transcription factors including SF-1, GATA-4 and C/EBP-beta maybe critical mechanism involved in low-dose MBP-stimulated steroidogenesis.
Collapse
Affiliation(s)
- Yanhui Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Congcong Dong
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lianglin Qiu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yansu Chen
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jingjing Qin
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaocheng Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hong Sun
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 211166, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yubang Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
21
|
Meier RK, Clark BJ. Angiotensin II-dependent transcriptional activation of human steroidogenic acute regulatory protein gene by a 25-kDa cAMP-responsive element modulator protein isoform and Yin Yang 1. Endocrinology 2012; 153:1256-68. [PMID: 22253417 PMCID: PMC3281547 DOI: 10.1210/en.2011-1744] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transcriptional activation of the steroidogenic acute regulatory protein (STAR) gene is a critical component in the angiotensin II (Ang II)-dependent increase in aldosterone biosynthesis in the adrenal gland. The purpose of this study was to define the molecular mechanisms that mediate the Ang II-dependent increase in STARD1 gene (STAR) expression in H295R human adrenocortical cells. Mutational analysis of the STAR proximal promoter revealed that a nonconsensus cAMP-responsive element located at -78 bp relative to the transcription start site (-78CRE) is required for the Ang II-stimulated STAR reporter gene activity. DNA immunoaffinity chromatography identified a 25-kDa cAMP-responsive element modulator isoform and Yin Yang 1 (YY1) as -78CRE DNA-binding proteins, and Ang II treatment of H295R cells increased expression of that 25-kDa CREM isoform. Small interfering RNA silencing of CREM and YY1 attenuated the Ang II-dependent increases in STAR reporter gene activity and STAR mRNA levels. Conversely, overexpression of CREM and YY1 in COS-1 cells resulted in transactivation of STAR reporter gene activity. Chromatin immunoprecipitation analysis demonstrated recruitment of CREM and YY1 to the STAR promoter along with increased association of the coactivator cAMP response element-binding protein-binding protein (CBP) and increased phosphorylated RNA polymerase II after Ang II treatment. Together our data reveal that the Ang II-stimulated increase in STAR expression in H295R cells requires 25 kDa CREM and YY1. The recruitment of these transcription factors to the STAR proximal promoter results in association of CBP and activation of RNA polymerase II leading to increased STAR transcription.
Collapse
Affiliation(s)
- Renate K Meier
- Department of Biochemistry and Molecular Biology, University of Louisville, School of Medicine, Louisville, Kentucky 40292, USA
| | | |
Collapse
|
22
|
Ping J, Lei YY, Liu L, Wang TT, Feng YH, Wang H. Inheritable stimulatory effects of caffeine on steroidogenic acute regulatory protein expression and cortisol production in human adrenocortical cells. Chem Biol Interact 2012; 195:68-75. [DOI: 10.1016/j.cbi.2011.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/29/2011] [Accepted: 11/03/2011] [Indexed: 01/30/2023]
|
23
|
Li J, Chen W, Wang D, Zhou L, Sakai F, Guan G, Nagahama Y. GATA4 is involved in the gonadal development and maturation of the teleost fish tilapia, Oreochromis niloticus. J Reprod Dev 2011; 58:237-42. [PMID: 22186677 DOI: 10.1262/jrd.11-131s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GATA4, a member of the GATA family, is a well-known transcription factor implicated in the regulation of sex determination and sexual differentiation in mammals. However, little is known about the possible role of GATA4 in fish reproduction. In the present study, a full-length GATA4 cDNA from the tilapia was cloned and characterized. The tilapia GATA4 gene contained an open reading frame (ORF) of 1179 nucleotides encoding a protein of 392 amino acids. Sequence alignment revealed that the tilapia GATA4 protein shared higher homology (ranging from 63.1 to 74.6%) with other vertebrates. RT-PCR analysis indicated that the GATA4 gene is expressed in the ovary, testis, liver, intestine and heart in adult tilapia. In situ hybridization was performed to examine the temporal and spatial expression patterns of GATA4 during tilapia gonadal differentiation and development. In the undifferentiated gonad, GATA4 was expressed in the somatic cells of both sexes. Subsequently, GATA4 expression persisted in the differentiated, juvenile and adult ovary and testis in tilapia. Our data indicate for the first time that GATA4 is not only necessary for the onset of gonadal differentiation, but also important for gonadal development and maturation.
Collapse
Affiliation(s)
- Jianzhong Li
- Key Lab of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Son GH, Chung S, Kim K. The adrenal peripheral clock: glucocorticoid and the circadian timing system. Front Neuroendocrinol 2011; 32:451-65. [PMID: 21802440 DOI: 10.1016/j.yfrne.2011.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/25/2011] [Accepted: 07/06/2011] [Indexed: 12/27/2022]
Abstract
The mammalian circadian timing system is organized in a hierarchy, with the master clock residing in the suprachiasmatic nucleus (SCN) of the hypothalamus and subsidiary peripheral clocks in other brain regions as well as peripheral tissues. Since the local oscillators in most cells contain a similar molecular makeup to that in the central pacemaker, determining the role of the peripheral clocks in the regulation of rhythmic physiology and behavior is an important issue. Glucocorticoids (GCs) are a class of multi-functional adrenal steroid hormones, which exhibit a robust circadian rhythm, with a peak linked with the onset of the daily activity phase. It has long been believed that the production and secretion of GC is primarily governed through the hypothalamus-pituitary-adrenal (HPA) neuroendocrine axis in mammals. Growing evidence, however, strongly supports the notion that the periodicity of GC involves the integrated activity of multiple regulatory mechanisms related to circadian timing system along with the classical HPA neuroendocrine regulation. The adrenal-intrinsic oscillator as well as the central pacemaker plays a pivotal role in its rhythmicity. GC influences numerous biological processes, such as metabolic, cardiovascular, immune and even higher brain functions, and also acts as a resetting signal for the ubiquitous peripheral clocks, suggesting its importance in harmonizing circadian physiology and behavior. In this review, we will therefore focus on the recent advances in our understanding of the circadian regulation of adrenal GC and its functional relevance.
Collapse
Affiliation(s)
- Gi Hoon Son
- Department of Biological Sciences, Seoul National University, Brain Research Center for the 21st Century Frontier Program in Neuroscience, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
25
|
Mazilu JK, McCabe ERB. Moving toward personalized cell-based interventions for adrenal cortical disorders: part 1--Adrenal development and function, and roles of transcription factors and signaling proteins. Mol Genet Metab 2011; 104:72-9. [PMID: 21764344 DOI: 10.1016/j.ymgme.2011.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 11/19/2022]
Abstract
Transdifferentiation of an individual's own cells into functional differentiated cells to replace an organ's lost function would be a personalized approach to therapeutics. In this two part series, we will describe the progress toward establishing functional transdifferentiated adrenal cortical cells. In this article (Part 1), we describe adrenal development and function, and discuss genes involved in these processess and selected for use in our pilot studies of transdifferentiation that are presented in the second article (Part 2).
Collapse
Affiliation(s)
- Jaime K Mazilu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
26
|
Zatara G, Hertz R, Shaked M, Mayorek N, Morad E, Grad E, Cahan A, Danenberg HD, Unterman TG, Bar-Tana J. Suppression of FoxO1 activity by long-chain fatty acyl analogs. Diabetes 2011; 60:1872-81. [PMID: 21602511 PMCID: PMC3121436 DOI: 10.2337/db11-0248] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Overactivity of the Forkhead transcription factor FoxO1 promotes diabetic hyperglycemia, dyslipidemia, and acute-phase response, whereas suppression of FoxO1 activity by insulin may alleviate diabetes. The reported efficacy of long-chain fatty acyl (LCFA) analogs of the MEDICA series in activating AMP-activated protein kinase (AMPK) and in treating animal models of diabesity may indicate suppression of FoxO1 activity. RESEARCH DESIGN AND METHODS The insulin-sensitizing and anti-inflammatory efficacy of a MEDICA analog has been verified in guinea pig and in human C-reactive protein (hCRP) transgenic mice, respectively. Suppression of FoxO1 transcriptional activity has been verified in the context of FoxO1- and STAT3-responsive genes and compared with suppression of FoxO1 activity by insulin and metformin. RESULTS Treatment with MEDICA analog resulted in total body sensitization to insulin, suppression of lipopolysaccharide-induced hCRP and interleukin-6-induced acute phase reactants and robust decrease in FoxO1 transcriptional activity and in coactivation of STAT3. Suppression of FoxO1 activity was accounted for by its nuclear export by MEDICA-activated AMPK, complemented by inhibition of nuclear FoxO1 transcriptional activity by MEDICA-induced C/EBPβ isoforms. Similarly, insulin treatment resulted in nuclear exclusion of FoxO1 and further suppression of its nuclear activity by insulin-induced C/EBPβ isoforms. In contrast, FoxO1 suppression by metformin was essentially accounted for by its nuclear export by metformin-activated AMPK. CONCLUSIONS Suppression of FoxO1 activity by MEDICA analogs may partly account for their antidiabetic anti-inflammatory efficacy. FoxO1 suppression by LCFA analogs may provide a molecular rational for the beneficial efficacy of carbohydrate-restricted ketogenic diets in treating diabetes.
Collapse
Affiliation(s)
- Ghadeer Zatara
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, Israel
| | - Rachel Hertz
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, Israel
| | - Maayan Shaked
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, Israel
| | - Nina Mayorek
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, Israel
| | - Etedal Morad
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, Israel
| | - Etty Grad
- Cardiovascular Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amos Cahan
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, Israel
| | - Haim D. Danenberg
- Cardiovascular Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Terry G. Unterman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob Bar-Tana
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, Israel
- Corresponding author: Jacob Bar-Tana,
| |
Collapse
|
27
|
Jefcoate CR, Lee J, Cherradi N, Takemori H, Duan H. cAMP stimulation of StAR expression and cholesterol metabolism is modulated by co-expression of labile suppressors of transcription and mRNA turnover. Mol Cell Endocrinol 2011; 336:53-62. [PMID: 21147196 PMCID: PMC3404512 DOI: 10.1016/j.mce.2010.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/03/2010] [Accepted: 12/05/2010] [Indexed: 10/18/2022]
Abstract
The steroidogenic acute regulatory (StAR) protein is generated in rodents from 1.6 kb and 3.5 kb mRNA formed by alternative polyadenylation. The zinc finger protein, TIS11B (also Znf36L1), is elevated by cAMP in adrenal cells in parallel with StAR mRNA. TIS11b selectively destabilizes the 3.5 kb mRNA through AU-rich sequences at the end of the 3'UTR. siRNA suppression shows that TIS11b surprisingly increases StAR protein and cholesterol metabolism. StAR transcription is directly activated by PKA phosphorylation. cAMP responsive element binding (CREB) protein 1 phosphorylation is a key step leading to recruitment of the co-activator, CREB binding protein (CBP). A second protein, CREB regulated transcription coactivator (TORC/CRTC), enhances this recruitment, but is inhibited by salt inducible kinase (SIK). Basal StAR transcription is constrained through this phosphorylation of TORC. PKA provides an alternative stimulation by phosphorylating SIK, which prevents TORC inactivation. PKA stimulation of StAR nuclear transcripts substantially precedes TORC recruitment to the StAR promoter, which may, therefore, mediate a later step in mRNA production. Inhibition of SIK by staurosporine elevates StAR transcription and TORC recruitment to maximum levels, but without CREB phosphorylation. TORC suppression by SIK evidently limits basal StAR transcription. Staurosporine and cAMP stimulate synergistically. SIK targets the phosphatase, PP2a (activation), and Type 2 histone de-acetylases (inhibition), which may each contribute to suppression. Staurosporine stimulation through SIK inhibition is repeated in cAMP stimulation of many steroidogenic genes regulated by steroidogenic factor 1 (SF-1) and CREB. TIS11b and SIK may combine to attenuate StAR expression when hormonal stimuli decline.
Collapse
Affiliation(s)
- Colin R Jefcoate
- University of Wisconsin Medical School, Madison, WI, United States.
| | | | | | | | | |
Collapse
|
28
|
Conditional ablation of Gata4 and Fog2 genes in mice reveals their distinct roles in mammalian sexual differentiation. Dev Biol 2011; 353:229-41. [PMID: 21385577 DOI: 10.1016/j.ydbio.2011.02.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 02/26/2011] [Accepted: 02/28/2011] [Indexed: 12/19/2022]
Abstract
Assembly of functioning testis and ovary requires a GATA4-FOG2 transcriptional complex. To define the separate roles for GATA4 and FOG2 proteins in sexual development of the testis we have ablated the corresponding genes in somatic gonadal cells. We have established that GATA4 is required for testis differentiation, for the expression of Dmrt1 gene, and for testis cord morphogenesis. While Sf1Cre-mediated excision of Gata4 permitted normal expression of most genes associated with embryonic testis development, gonadal loss of Fog2 resulted in an early partial block in male pathway and sex reversal. We have also determined that testis sexual differentiation is sensitive to the timing of GATA4 loss during embryogenesis. Our results now demonstrate that these two genes also have non-overlapping essential functions in testis development.
Collapse
|
29
|
Manna PR, Soh JW, Stocco DM. The involvement of specific PKC isoenzymes in phorbol ester-mediated regulation of steroidogenic acute regulatory protein expression and steroid synthesis in mouse Leydig cells. Endocrinology 2011; 152:313-25. [PMID: 21047949 PMCID: PMC3033061 DOI: 10.1210/en.2010-0874] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein kinase C (PKC) is a multigene family of serine/threonine kinases. PKC is involved in regulating adrenal and gonadal steroidogenesis; however, the functional relevance of the different PKC isoenzymes remains obscure. In this study, we demonstrate that MA-10 mouse Leydig tumor cells express several PKC isoforms to varying levels and that the activation of PKC signaling, by phorbol 12-myristate 13-acetate (PMA) elevated the expression and phosphorylation of PKCα, -δ, -ε, and -μ/protein kinase D (PKD). These responses coincided with the expression of the steroidogenic acute regulatory (StAR) protein and progesterone synthesis. Targeted silencing of PKCα, δ, and ε and PKD, using small interfering RNAs, resulted in deceases in basal and PMA-mediated StAR and steroid levels and demonstrated the importance of PKD in steroidogenesis. PKD was capable of controlling PMA and cAMP/PKA-mediated synergism involved in the steroidogenic response. Further studies pointed out that the regulatory events effected by PKD are associated with cAMP response element-binding protein (CREB) and c-Jun/c-Fos-mediated transcription of the StAR gene. Chromatin immunoprecipitation studies revealed that the activation of phosphorylated CREB, c-Jun, and c-Fos by PMA was correlated with in vivo protein-DNA interactions and the recruitment of CREB-binding protein, whereas knockdown of PKD suppressed the association of these factors with the StAR promoter. Ectopic expression of CREB-binding protein enhanced the trans-activation potential of CREB and c-Jun/c-Fos in StAR gene expression. Using EMSA, a -83/-67-bp region of the StAR promoter was shown to bind PKD-transfected MA-10 nuclear extract in a PMA-responsive manner, targeting CREB and c-Jun/c-Fos proteins. These findings provide evidence for the presence of multiple PKC isoforms and demonstrate the molecular events by which selective isozymes, especially PKD, influence PMA/PKC signaling involved in the regulation of the steroidogenic machinery in mouse Leydig cells.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | |
Collapse
|
30
|
Zaytouni T, Efimenko EE, Tevosian SG. GATA transcription factors in the developing reproductive system. ADVANCES IN GENETICS 2011; 76:93-134. [PMID: 22099693 DOI: 10.1016/b978-0-12-386481-9.00004-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previous work has firmly established the role for both GATA4 and FOG2 in the initial global commitment to sexual fate, but their (joint or individual) function in subsequent steps remained unknown. Hence, gonad-specific deletions of these genes in mice were required to reveal their roles in sexual development and gene regulation. The development of tissue-specific Cre lines allowed for substantial advances in the understanding of the function of GATA proteins in sex determination, gonadal differentiation and reproductive development in mice. Here we summarize the recent work that examined the requirement of GATA4 and FOG2 proteins at several critical stages in testis and ovarian differentiation. We also discuss the molecular mechanisms involved in this regulation through the control of Dmrt1 gene expression in the testis and the canonical Wnt/ß-catenin pathway in the ovary.
Collapse
Affiliation(s)
- Tamara Zaytouni
- Department of Genetics, Dartmouth Medical School, Hanover, NH, USA
| | | | | |
Collapse
|
31
|
Fan HY, Liu Z, Johnson PF, Richards JS. CCAAT/enhancer-binding proteins (C/EBP)-α and -β are essential for ovulation, luteinization, and the expression of key target genes. Mol Endocrinol 2010; 25:253-68. [PMID: 21177758 DOI: 10.1210/me.2010-0318] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
LH activation of the epidermal growth factor receptor/RAS/ERK1/2 pathway is essential for ovulation and luteinization because granulosa cell (GC) depletion of ERK1/2 (ERK1/2(gc)(-/-) mice) renders mice infertile. As mediators of ERK1/2-dependent GC differentiation, the CCAAT/enhancer-binding proteins, (C/EBP)α and C/EBPβ, were also disrupted. Female Cebpb(gc)(-/-) mutant mice, but not Cebpa(gc)(-/-) mice, were subfertile whereas Cebpa/b(gc)(-/-) double-mutant females were sterile. Follicles failed to ovulate, ovaries were devoid of corpora lutea, luteal cell marker genes (Lhcgr, Prlr, Ptgfr, Cyp11a1, and Star) were absent, and serum progesterone levels were low. Microarray analyses identified numerous C/EBPα/β target genes in equine chorionic gonadotropin (eCG)-human (h)CG-treated mice. At 4 h post-hCG, a subset (19%) of genes altered in the Cebpa/b-depleted cells was also altered in ERK1/2-depleted cells; hence they are common effectors of ERK1/2. Additional genes down-regulated in the Cebpa/b-depleted cells at 8 and 24 h post-hCG include known (Akr1b7, Runx2, Star, Saa3) and novel (Abcb1b, Apln, Igfbp4, Prlr, Ptgfr Timp4) C/EBP targets and effectors of luteal and vascular cell development. Bhmt, a gene controlling methionine metabolism and thought to be expressed exclusively in liver and kidney, was high in wild-type luteal cells but totally absent in Cebpa/b mutant cells. Because numerous genes potentially associated with vascular development were suppressed in the mutant cells, C/EBPα/β appear to dictate the luteinization process by also controlling genes that regulate the formation of the extensive vascular network required to sustain luteal cells. Thus, C/EBPα/β mediate the terminal differentiation of GCs during the complex process of luteinization.
Collapse
Affiliation(s)
- Heng-Yu Fan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
32
|
LaVoie HA, Kordus RJ, Nguyen JB, Barth JL, Hui YY. GATA depletion impacts insulin-like growth factor 1 mRNA and protein levels in luteinizing porcine granulosa cells. Biol Reprod 2010; 83:1015-26. [PMID: 20739664 DOI: 10.1095/biolreprod.110.085969] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
GATA4 and GATA6 are zinc-finger transcription factors that regulate specific genes involved in steroidogenesis. Using RNA interference (RNAi)-mediated reduction of GATA4 and/or GATA6 with microarray analysis, we aimed to identify novel GATA target genes in luteinizing porcine granulosa cells under vehicle- and cAMP-treated conditions. Microarray analysis identified IGF1 mRNA to be cAMP- and GATA-responsive, and real-time PCR demonstrated that the cAMP-induced increase in IGF1 mRNA was reduced under conditions of GATA6 depletion and GATA4 plus GATA6 depletion, but not GATA4 depletion. Insulin-like growth factor 1 protein levels in media were also decreased by GATA6 or GATA4 plus GATA6 reduction. IGFBP2 and IGFBP4 mRNAs were increased and IGFBP5 mRNA decreased with vehicle and cAMP treatment under GATA4 plus GATA6 RNAi conditions. GATA6 reduction alone increased basal IGFBP4 and decreased IGFBP5 with both vehicle and cAMP, and GATA4 reduction alone lowered cAMP IGFBP5 levels with cAMP. No changes in IGFBP3 mRNA were observed with GATA reduction relative to the control RNAi condition. Levels of insulin-like growth factor binding proteins 2-5 in media as assessed by Western ligand blotting were not altered by GATA reduction. Electromobility gel shift assays with two GATA-containing oligonucleotides of the IGF1 5'-regulatory region showed GATA4 and GATA6 could bind the more proximal GATA-B site. These studies indicate that although GATA4 and GATA6 can bind the porcine IGF1 5'-region, GATA6 is functionally most important for cAMP-stimulated mRNA levels. Using microarray analysis, we identified other mRNAs that were altered by GATA-reduced conditions, including ALDH1, DIO2, and EDNRB. Our findings further support GATA as a coordinator of endocrine/paracrine/autocrine signals in the ovary.
Collapse
Affiliation(s)
- Holly A LaVoie
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA.
| | | | | | | | | |
Collapse
|
33
|
Kocerha J, Prucha MS, Kroll KJ, Steinhilber D, Denslow N. Regulation of steroidogenic acute regulatory protein transcription in largemouth bass by orphan nuclear receptor signaling pathways. Endocrinology 2010; 151:341-9. [PMID: 19906818 PMCID: PMC2803149 DOI: 10.1210/en.2009-0551] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The steroidogenic acute regulatory (StAR) protein mediates the rate-limiting step of mitochondrial transport of cholesterol for steroid biosynthesis. To investigate the regulation of this protein in lower vertebrates, we cloned the StAR coding region from large-mouth bass for analysis. Induction of the mRNA corresponded with increasing levels of plasma sex steroids in vivo. Cultures of largemouth bass ovarian follicles were exposed to dibutyryl cAMP (dbcAMP), a potent signaling molecule for steroidogenesis. StAR mRNA expression was significantly up-regulated by dbcAMP signaling, suggesting that the 5' regulatory region of the gene is functionally conserved. To further analyze its transcriptional regulation, a 2.9-kb portion of the promoter was cloned and transfected into Y-1 cells, a steroidogenic mouse adrenocortical cell line. The promoter activity was induced in a dose-responsive manner upon stimulation with dbcAMP; however, deletion of 1 kb from the 5' end of the promoter segment significantly diminished the transcriptional activation. A putative retinoic acid-related receptor-alpha/rev-erb alpha element was identified between the -1.86- and -2.9-kb region and mutated to assess its potential role in dbcAMP regulation of the promoter. Mutation of the rev-erb alpha element significantly impeded dbcAMP-induced activation. Chromatin immunoprecipitation and EMSA results revealed rev-erb alpha and retinoic acid-related receptor-alpha enrichment at the site under basal and dbcAMP-induced conditions, respectively. These results implicate important roles for these proteins previously uncharacterized for the StAR promoter. Altogether these data suggest novel regulatory mechanisms for dbcAMP up-regulation of StAR transcription in the distal part of the largemouth bass promoter.
Collapse
MESH Headings
- Animals
- Bass/genetics
- Bass/metabolism
- Cells, Cultured
- Cloning, Molecular
- Female
- Gene Expression Regulation
- Mice
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1/physiology
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1/physiology
- Orphan Nuclear Receptors/metabolism
- Orphan Nuclear Receptors/physiology
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Promoter Regions, Genetic
- Signal Transduction/genetics
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Jannet Kocerha
- Department of Biochemistry and Molecular Biology, University of Florida, P.O. Box 110885, Gainesville, Florida 32611, USA
| | | | | | | | | |
Collapse
|
34
|
Manna PR, Huhtaniemi IT, Stocco DM. Mechanisms of protein kinase C signaling in the modulation of 3',5'-cyclic adenosine monophosphate-mediated steroidogenesis in mouse gonadal cells. Endocrinology 2009; 150:3308-17. [PMID: 19282384 PMCID: PMC2703526 DOI: 10.1210/en.2008-1668] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The protein kinase C (PKC) signaling pathway plays integral roles in the expression of the steroidogenic acute regulatory (StAR) protein that regulates steroid biosynthesis in steroidogenic cells. PKC can modulate the activity of cAMP/protein kinase A signaling involved in steroidogenesis; however, its mechanism remains obscure. In the present study, we demonstrate that activation of the PKC pathway, by phorbol 12-myristate 13-acetate (PMA), was capable of potentiating dibutyryl cAMP [(Bu)(2)cAMP]-stimulated StAR expression, StAR phosphorylation, and progesterone synthesis in both mouse Leydig (MA-10) and granulosa (KK-1) tumor cells. The steroidogenic potential of PMA and (Bu)(2)cAMP was linked with phosphorylation of ERK 1/2; however, inhibition of the latter demonstrated varying effects on steroidogenesis. Transcriptional activation of the StAR gene by PMA and (Bu)(2)cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of the cAMP response element binding protein (CREB). An oligonucleotide probe containing a CREB/activating transcription factor binding region in the StAR promoter was found to bind nuclear proteins in PMA and (Bu)(2)cAMP-treated MA-10 and KK-1 cells. Chromatin immunoprecipitation studies revealed that the induction of phosphorylated CREB was tightly correlated with in vivo protein-DNA interactions and recruitment of CREB binding protein to the StAR promoter. Ectopic expression of CREB binding protein enhanced CREB-mediated transcription of the StAR gene, an event that was markedly repressed by the adenovirus E1A oncoprotein. Further studies demonstrated that the activation of StAR expression and steroid synthesis by PMA and (Bu)(2)cAMP was associated with expression of the nuclear receptor Nur77, indicating its essential role in hormone-regulated steroidogenesis. Collectively, these findings provide insight into the mechanisms by which PKC modulates cAMP/protein kinase A responsiveness involved in regulating the steroidogenic response in mouse gonadal cells.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | |
Collapse
|
35
|
Okazaki M, Maeda G, Chiba T, Doi T, Imai K. Identification of GATA3 binding sites in Jurkat cells. Gene 2009; 445:17-25. [PMID: 19559773 DOI: 10.1016/j.gene.2009.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 05/27/2009] [Accepted: 06/16/2009] [Indexed: 01/25/2023]
Abstract
Determining binding sites of transcription factors is important for understanding the transcriptional control of target genes. Although a transcription factor GATA3 plays a pivotal role in Th2 lymphocyte development, its physiological role is not clearly defined because the target genes remain largely unknown. In this study, we modified chromatin immunoprecipitation (ChIP), and isolated 121 GATA3 binding sites and 83 different annotated target genes. Re-ChIP analysis using anti-GATA3 and anti-RNA polymerase II mAbs and chromosome conformation capture assay demonstrate that GATA3-bound fragments interact with basal transcriptional units of target genes. GATA3 regulation of target genes under the control of binding fragments was confirmed by reporter assay and quantification of target gene mRNA expression in the presence of GATA inhibitor or short interfering RNA against GATA3. These data demonstrate that GATA3 binds to regulatory elements and controls target gene expression through physical interaction with core promoter regions.
Collapse
Affiliation(s)
- Masahiro Okazaki
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | | | | | | | | |
Collapse
|
36
|
Lavoie HA, King SR. Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Exp Biol Med (Maywood) 2009; 234:880-907. [PMID: 19491374 DOI: 10.3181/0903-mr-97] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Expression of the genes that mediate the first steps in steroidogenesis, the steroidogenic acute regulatory protein (STARD1), the cholesterol side-chain cleavage enzyme, cytochrome P450scc (CYP11A1) and 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase (HSD3B), is tightly controlled by a battery of transcription factors in the adrenal cortex, the gonads and the placenta. These genes generally respond to the same hormones that stimulate steroid production through common pathways such as cAMP signaling and common actions on their promoters by proteins such as NR5A and GATA family members. However, there are distinct temporal, tissue and species-specific differences in expression between the genes that are defined by combinatorial regulation and unique promoter elements. This review will provide an overview of the hormonal and transcriptional regulation of the STARD1, CYP11A1 and specific steroidogenic HSD3B genes in the adrenal, testis, ovary and placenta and discuss the current knowledge regarding the key transcriptional factors involved.
Collapse
Affiliation(s)
- Holly A Lavoie
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | |
Collapse
|
37
|
Manna PR, Dyson MT, Stocco DM. Role of basic leucine zipper proteins in transcriptional regulation of the steroidogenic acute regulatory protein gene. Mol Cell Endocrinol 2009; 302:1-11. [PMID: 19150388 PMCID: PMC5006949 DOI: 10.1016/j.mce.2008.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 01/23/2023]
Abstract
The regulation of steroidogenic acute regulatory protein (StAR) gene transcription by cAMP-dependent mechanisms occurs in the absence of a consensus cAMP response element (CRE, TGACGTGA). This regulation is coordinated by multiple transcription factors that bind to sequence-specific elements located approximately 150 bp upstream of the transcription start site. Among the proteins that bind within this region, the basic leucine zipper (bZIP) family of transcription factors, i.e. CRE binding protein (CREB)/CRE modulator (CREM)/activating transcription factor (ATF), activator protein 1 (AP-1; Fos/Jun), and CCAAT enhancer binding protein beta (C/EBPbeta), interact with an overlapping region (-81/-72 bp) in the StAR promoter, mediate stimulus-transcription coupling of cAMP signaling and play integral roles in regulating StAR gene expression. These bZIP proteins are structurally similar and bind to DNA sequences as dimers; however, they exhibit discrete transcriptional activities, interact with several transcription factors and other properties that contribute in their regulatory functions. The 5'-flanking -81/-72 bp region of the StAR gene appears to function as a key element within a complex cAMP response unit by binding to different bZIP members, and the StAR promoter displays variable states of cAMP responsivity contingent upon the occupancy of these cis-elements with these transcription factors. The expression and activities of CREB/CREM/ATF, Fos/Jun and C/EBPbeta have been demonstrated to be mediated by a plethora of extracellular signals, and the phosphorylation of these proteins at several Ser and Thr residues allows recruitment of the transcriptional coactivator CREB binding protein (CBP) or its functional homolog p300 to the StAR promoter. This review will focus on the current level of understanding of the roles of selective bZIP family proteins within the complex series of processes involved in regulating StAR gene transcription.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
38
|
Roth M, Black JL. An imbalance in C/EBPs and increased mitochondrial activity in asthmatic airway smooth muscle cells: novel targets in asthma therapy? Br J Pharmacol 2009; 157:334-41. [PMID: 19371343 DOI: 10.1111/j.1476-5381.2009.00188.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The asthma prevalence was increasing over the past two decades worldwide. Allergic asthma, caused by inhaled allergens of different origin or by food, is mediated by inflammatory mechanisms. The action of non-allergic asthma, induced by cold air, humidity, temperature or exercise, is not well understood. Asthma affects up to 15% of the population and is treated with anti-inflammatory and muscle relaxing drugs which allow symptom control. Asthma was first defined as a malfunction of the airway smooth muscle, later as an imbalanced immune response of the lung. Recent studies placed the airway smooth muscle again into the focus. Here we summarize the molecular biological basis of the deregulated function of the human airway smooth muscle cell as a cause or important contributor to the pathology of asthma. In the asthmatic human airway smooth muscle cells, there is: (i) a deregulation of cell differentiation due to low levels of maturation-regulating transcription factors such as CCAAT/enhancer binding proteins and peroxisome proliferator-activated receptors, thereby reducing the cells threshold to proliferate and to secrete pro-inflammatory cytokines under certain conditions; (ii) a higher basal energy turnover that is due to increased number and activity of mitochondria; and (iii) a modified feedback mechanism between cells and the extracellular matrix they are embedded in. All these cellular pathologies are linked to each other and to the innate immune response of the lung, but the sequence of events is unclear and needs further investigation. However, these findings may present the basis for the development of novel curative asthma drugs.
Collapse
Affiliation(s)
- Michael Roth
- Pulmonary Cell Research, Pneumology, University Hospital Basel, Biomedicine, Lab 305, Petersgraben 4, Basel CH-4031, Switzerland.
| | | |
Collapse
|
39
|
Manna PR, Dyson MT, Stocco DM. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod 2009; 15:321-33. [PMID: 19321517 DOI: 10.1093/molehr/gap025] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Steroid hormones are synthesized in the adrenal gland, gonads, placenta and brain and are critical for normal reproductive function and bodily homeostasis. The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroid biosynthesis, i.e. the delivery of cholesterol from the outer to the inner mitochondrial membrane. The expression of the StAR protein is predominantly regulated by cAMP-dependent mechanisms in the adrenal and gonads. Whereas StAR plays an indispensable role in the regulation of steroid biosynthesis, a complete understanding of the regulation of its expression and function in steroidogenesis is not available. It has become clear that the regulation of StAR gene expression is a complex process that involves the interaction of a diversity of hormones and multiple signaling pathways that coordinate the cooperation and interaction of transcriptional machinery, as well as a number of post-transcriptional mechanisms that govern mRNA and protein expression. However, information is lacking on how the StAR gene is regulated in vivo such that it is expressed at appropriate times during development and is confined to the steroidogenic cells. Thus, it is not surprising that the precise mechanism involved in the regulation of StAR gene has not yet been established, which is the key to understanding the regulation of steroidogenesis in the context of both male and female development and function.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
40
|
Yivgi-Ohana N, Sher N, Melamed-Book N, Eimerl S, Koler M, Manna PR, Stocco DM, Orly J. Transcription of steroidogenic acute regulatory protein in the rodent ovary and placenta: alternative modes of cyclic adenosine 3', 5'-monophosphate dependent and independent regulation. Endocrinology 2009; 150:977-89. [PMID: 18845640 PMCID: PMC2732291 DOI: 10.1210/en.2008-0541] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Steroid hormone synthesis is a vital function of the adrenal cortex, serves a critical role in gonadal function, and maintains pregnancy if normally executed in the placenta. The substrate for the synthesis of all steroid hormones is cholesterol, and its conversion to the first steroid, pregnenolone, by the cholesterol side-chain cleavage cytochrome P450 (CYP11A1) enzyme complex takes place in the inner mitochondrial membranes. Steroidogenic acute regulatory protein (STAR) facilitates the rate-limiting transfer of cholesterol from the outer mitochondrial membrane to CYP11A1 located in the inner organelle membranes. The current study explored the mechanisms controlling transcription of the Star gene in primary cell cultures of mouse placental trophoblast giant cells and rat ovarian granulosa cells examined throughout the course of their functional differentiation. Our findings show that the cis-elements required for Star transcription in the rodent placenta and the ovary are centered in a relatively small proximal region of the promoter. In placental trophoblast giant cells, cAMP is required for activation of the Star promoter, and the cis-elements mediating a maximal response were defined as cAMP response element 2 and GATA. EMSA studies show that placental cAMP-responsive element binding protein (CREB)-1 and activating transcription factor-2 (ATF2) bind to a -81/-78 sequence, whereas GATA-2 binds to a -66/-61 sequence. In comparison, patterns of Star regulation in the ovary suggested tissue-specific and developmental controlled modes of Star transcription. During the follicular phase, FSH/cAMP induced CREB-1 dependent activity, whereas upon luteinization STAR expression becomes cAMP and CREB independent, a functional shift conferred by FOS-related antigen-2 displacement of CREB-1 binding, and the appearance of a new requirement for CCAAT enhancer-binding protein beta and steroidogenic factor 1 that bind to upstream elements (-117/-95). These findings suggest that during evolution, the promoters of the Star gene acquired nonconsensus sequence elements enabling expression of a single gene in different organs, or allowing dynamic temporal changes corresponding to progressing phases of differentiation in a given cell type.
Collapse
Affiliation(s)
- Natalie Yivgi-Ohana
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Duan H, Cherradi N, Feige JJ, Jefcoate C. cAMP-dependent posttranscriptional regulation of steroidogenic acute regulatory (STAR) protein by the zinc finger protein ZFP36L1/TIS11b. Mol Endocrinol 2009; 23:497-509. [PMID: 19179481 DOI: 10.1210/me.2008-0296] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Star is expressed in steroidogenic cells as 3.5- and 1.6-kb transcripts that differ only in their 3'-untranslated regions (3'-UTR). In mouse MA10 testis and Y-1 adrenal lines, Br-cAMP preferentially stimulates 3.5-kb mRNA. ACTH is similarly selective in primary bovine adrenocortical cells. The 3.5-kb form harbors AU-rich elements (AURE) in the extended 3'-UTR, which enhance turnover. After peak stimulation of 3.5-kb mRNA, degradation is seen. Star mRNA turnover is enhanced by the zinc finger protein ZFP36L1/TIS11b, which binds to UAUUUAUU repeats in the extended 3'-UTR. TIS11b is rapidly stimulated in each cell type in parallel with Star mRNA. Cotransfection of TIS11b selectively decreases cytomegalovirus-promoted Star mRNA and luciferase-Star 3'-UTR reporters harboring the extended 3'-UTR. Direct complex formation was demonstrated between TIS11b and the extended 3'-UTR of the 3.5-kb Star. AURE mutations revealed that TIS11b-mediated destabilization required the first two UAUUUAUU motifs. HuR, which also binds AURE, did not affect Star expression. Targeted small interfering RNA knockdown of TIS11b specifically enhanced stimulation of 3.5-kb Star mRNA in bovine adrenocortical cells, MA-10, and Y-1 cells but did not affect the reversals seen after peak stimulation. Direct transfection of Star mRNA demonstrated that Br-cAMP stimulated a selective turnover of 3.5-kb mRNA independent of AURE, which may correspond to these reversal processes. Steroidogenic acute regulatory (STAR) protein induction was halved by TIS11b knockdown, concomitant with decreased cholesterol metabolism. TIS11b suppression of 3.5-kb mRNA is therefore surprisingly coupled to enhanced Star translation leading to increased cholesterol metabolism.
Collapse
Affiliation(s)
- Haichuan Duan
- Department of Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
42
|
Zurvarra FM, Salvetti NR, Mason JI, Velazquez MML, Alfaro NS, Ortega HH. Disruption in the expression and immunolocalisation of steroid receptors and steroidogenic enzymes in letrozole-induced polycystic ovaries in rat. Reprod Fertil Dev 2009; 21:827-39. [DOI: 10.1071/rd09026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 05/17/2009] [Indexed: 11/23/2022] Open
Abstract
The objective of the present study was to characterise the expression and tissue distribution of steroid receptors (oestrogen receptor-α and –β (ERα, ERβ), androgen receptor (AR) and progesterone receptor (PR)) and steroidogenic enzymes (P450 aromatase (P450arom), 3β-hydroxysteroid dehydrogenase (3β-HSD) and steroidogenic acute regulatory protein (StAR)) in letrozole-induced polycystic ovaries of rats. Changes in serum hormone levels, protein expression in whole ovaries by western blot analysis and protein localisation by immunohistochemistry were determined in female rats treated with the aromatase inhibitor letrozole and compared with controls in proestrous and diestrous rats. Increases in the serum LH, FSH and testosterone concentrations were observed in letrozole-treated rats whereas serum oestradiol and progesterone levels were reduced. Protein expression as analysed by western immunoblot was consistent with the immunohistochemical data. Letrozole treatment induced an increase in the expression of AR, StAR and 3β-HSD and a decrease in ERβ. ERα, PR and P450arom showed partial changes in relation to some cycle stages. These results indicate that cystogenesis in this experimental model is characterised by changes in steroid receptors and steroidogenic enzyme expression that may be essential to proper ovarian functioning and are in agreement with similar changes observed in women with PCOS.
Collapse
|
43
|
Manna PR, Dyson MT, Jo Y, Stocco DM. Role of dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the X chromosome, gene 1 in protein kinase A- and protein kinase C-mediated regulation of the steroidogenic acute regulatory protein expression in mouse Leydig tumor cells: mechanism of action. Endocrinology 2009; 150:187-99. [PMID: 18787026 PMCID: PMC2630909 DOI: 10.1210/en.2008-0368] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the X chromosome, gene 1 (DAX-1) is an orphan nuclear receptor that has been demonstrated to be instrumental to the expression of the steroidogenic acute regulatory (StAR) protein that regulates steroid biosynthesis in steroidogenic cells. However, its mechanism of action remains obscure. The present investigation was aimed at exploring the molecular involvement of DAX-1 in protein kinase A (PKA)- and protein kinase C (PKC)-mediated regulation of StAR expression and its concomitant impact on steroid synthesis using MA-10 mouse Leydig tumor cells. We demonstrate that activation of the PKA and PKC pathways, by a cAMP analog dibutyryl (Bu)2cAMP [(Bu)2cAMP] and phorbol 12-myristate 13-acetate (PMA), respectively, markedly decreased DAX-1 expression, an event that was inversely correlated with StAR protein, StAR mRNA, and progesterone levels. Notably, the suppression of DAX-1 requires de novo transcription and translation, suggesting that the effect of DAX-1 in regulating StAR expression is dynamic. Chromatin immunoprecipitation studies revealed the association of DAX-1 with the proximal but not the distal region of the StAR promoter, and both (Bu)2cAMP and PMA decreased in vivo DAX-1-DNA interactions. EMSA and reporter gene analyses demonstrated the functional integrity of this interaction by showing that DAX-1 binds to a DNA hairpin at position -44/-20 bp of the mouse StAR promoter and that the binding of DAX-1 to this region decreases progesterone synthesis by impairing transcription of the StAR gene. In support of this, targeted silencing of endogenous DAX-1 elevated basal, (Bu)2cAMP-, and PMA-stimulated StAR expression and progesterone synthesis. Transrepression of the StAR gene by DAX-1 was tightly associated with expression of the nuclear receptors Nur77 and steroidogenic factor-1, demonstrating these factors negatively modulate the steroidogenic response. These findings provide insight into the molecular events by which DAX-1 influences the PKA and PKC signaling pathways involved in the regulation of the StAR protein and steroidogenesis in mouse Leydig tumor cells.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | |
Collapse
|
44
|
Sayasith K, Bouchard N, Doré M, Sirois J. Regulation of bovine tumor necrosis factor-alpha-induced protein 6 in ovarian follicles during the ovulatory process and promoter activation in granulosa cells. Endocrinology 2008; 149:6213-25. [PMID: 18687781 DOI: 10.1210/en.2008-0459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To study the regulation of bovine TNFalpha-induced protein 6 (TNFAIP6) prior to ovulation, preovulatory follicles obtained after the treatment with human chorionic gonadotropin (hCG) were used. RT-PCR analyses showed that levels of TNFAIP6 mRNA were low before hCG but significantly increased after hCG treatment in follicles. Further analyses and immunohistochemistry indicated that this increase in transcript and protein levels occurred in theca and granulosa cells. To investigate molecular mechanisms involved in TNFAIP6 transactivation, the activity of bovine TNFAIP6 promoter was studied in granulosa cell cultures. Mutant studies identified the minimal region conferring full-length promoter activity, in which activator protein-1 (AP1) and cAMP response element (CRE) elements were required for promoter activity. Overexpression of dominant-negative AP1 and activating transcription factor/cAMP response element-binding protein (CREB) inhibited forskolin-inducible promoter activity. DNA binding assays demonstrated the importance of AP1 and CRE for activity and identified JunD, FosB, Fra2, CREB1, and CREB2 as being part of the AP1 complex, and FosB, Fra2, and CREB1 for the CRE complex. Chromatin immunoprecipitation assays confirmed binding of these proteins with endogenous TNFAIP6 promoter. Treatment with forskolin, prostaglandin E2, and catalytic subunit protein kinase (cPKA) stimulated, but H89, PKA inhibitor peptide, and indomethacin inhibited, TNFAIP6 promoter activity and gene expression in granulosa cells. Collectively, this study is the first to describe that the ovulatory process in cows is associated with a gonadotropin-dependent induction of TNFAIP6 in ovarian follicles and provide the molecular basis through which AP1 and CRE sites and PKA activation played important roles in the regulation of TNFAIP6 in granulosa cells.
Collapse
Affiliation(s)
- Khampoune Sayasith
- Centre de Recherche en Reproduction Animale and the Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada J2S 7C6.
| | | | | | | |
Collapse
|
45
|
Hui YY, Lavoie HA. GATA4 reduction enhances 3',5'-cyclic adenosine 5'-monophosphate-stimulated steroidogenic acute regulatory protein messenger ribonucleic acid and progesterone production in luteinized porcine granulosa cells. Endocrinology 2008; 149:5557-67. [PMID: 18653717 PMCID: PMC2584590 DOI: 10.1210/en.2008-0484] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Previous studies with cultured granulosa cells implicated GATA4 in gonadotropin regulation of the steroidogenic acute regulatory protein (STAR) gene. Caveats to these prior studies exist. First, GATA4 levels are reduced in granulosa-luteal cells after the LH surge when GATA6 expression is relatively high. Second, STAR mRNA expression is negligible in granulosa cells until after the LH surge. Both exogenous GATA4 and GATA6 can transactivate STAR gene promoter constructs. We used an RNA interference (RNAi) approach to determine the contributions of GATA4 and GATA6 to cAMP analog regulation of the endogenous STAR gene in luteinizing granulosa cells. STAR mRNA was stimulated by cAMP under control RNAi conditions. Surprisingly, GATA4 reduction by its respective RNAi approximately doubled the cAMP induction of STAR mRNA. At 24 h cAMP treatment, this augmentation was abolished by co-down-regulation of GATA4+GATA6. GATA6 down-regulation by itself did not alter STAR mRNA levels. GATA4+GATA6 co-down-regulation elevated basal CYP11A mRNA at 24 h treatment but did not affect its induction by cAMP. Basal levels of HSD3B mRNA were reduced by GATA4 RNAi conditions leading to a greater fold induction of its mRNA by cAMP. Fold cAMP-stimulated progesterone production was enhanced by GATA4 down-regulation but not by GATA4+GATA6 co-down-regulation. These data implicate GATA6 as the facilitator in cAMP-stimulated STAR mRNA and downstream progesterone accumulation under reduced GATA4 conditions. Data also demonstrate that basal levels of GATA4/6 are not required for cAMP induction of the STAR gene. The altered ratio of GATA4 to GATA6 after ovulation may allow GATA6 to enhance STAR mRNA accumulation.
Collapse
Affiliation(s)
- Yvonne Y Hui
- Department of Cell and Developmental Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
46
|
Komatsu T, Tabata M, Kubo-Irie M, Shimizu T, Suzuki KI, Nihei Y, Takeda K. The effects of nanoparticles on mouse testis Leydig cells in vitro. Toxicol In Vitro 2008; 22:1825-31. [PMID: 18805477 DOI: 10.1016/j.tiv.2008.08.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/08/2008] [Accepted: 08/19/2008] [Indexed: 11/25/2022]
Abstract
We have indicated the possibility that nanoparticles such as diesel exhaust particles (DEP) and titanium dioxide (TiO(2)) may impair the male mouse reproductive system. In this study, to evaluate the direct effect of nanoparticles on testis-constituent cells, we examined the effect of DEP, TiO(2) and carbon black (CB) on mouse Leydig TM3 cells, the testosterone-producing cells of the testis. The uptake of three nanoparticles into Leydig cells was detected using transmission electron microscopy (TEM) or field emission type scanning electron microscopy/energy-dispersive X-ray spectroscopy (FE-SEM/EDS). We examined the cytotoxicity and the effect on gene expression by treatment with nanoparticles. TiO(2) was more cytotoxic to Leydig cells than other nanoparticles. The proliferation of Leydig cells was suppressed transiently by treatment with TiO(2) or DEP. The expression of heme oxygenase-1 (HO-1), a sensitive marker for oxidative stress, was induced remarkably by treatment with DEP. Furthermore, CB and DEP slightly increased the gene expression of the steroidogenic acute regulatory (StAR) protein, the factor that controls mitochondrial cholesterol transfer. In this study, we found that DEPs, TiO(2) and CB nanoparticles were taken up by Leydig cells, and affected the viability, proliferation and gene expression. The patterns were unique for each nanoparticle.
Collapse
Affiliation(s)
- Tomoko Komatsu
- Department of Hygiene-Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki Noda-shi, Chiba 278-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Nishida H, Miyagawa S, Vieux-Rochas M, Morini M, Ogino Y, Suzuki K, Nakagata N, Choi HS, Levi G, Yamada G. Positive regulation of steroidogenic acute regulatory protein gene expression through the interaction between Dlx and GATA-4 for testicular steroidogenesis. Endocrinology 2008; 149:2090-7. [PMID: 18276760 DOI: 10.1210/en.2007-1265] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Split hand/foot malformation (SHFM) is syndromic ectrodactyly often associated with mental retardation and/or craniofacial defects. Several clinical reports previously described urogenital dysplasia such as micropenis, hypospadias, and small testis in SHFM patients. Genetic lesions in the Dlx5 and Dlx6 (Dlx5/6) locus are associated with the human genetic disorder SHFM type 1. Although Dlx5/6 are expressed in the testis, their possible function of Dlx5/6 during testis differentiation has not been described. In this study, we show that Dlx5/6 are expressed in the fetal Leydig cells during testis development. We examined the effect of Dlx5 expression on the promoter activation of the steroidogenic acute regulatory protein (StAR) gene, which is essential for gonadal and adrenal steroidogenesis, in a Leydig cell line. Dlx5 efficiently activates the StAR promoter when GATA-4, another transcription factor essential for testicular steroidogenesis, was coexpressed. The transcriptional activation required the GATA-4-recognition element in the StAR promoter region and Dlx5 can physically interact with GATA-4. Furthermore, we herein show that the double inactivation of Dlx5 and Dlx6 in the mouse leads to decreased testosterone level and abnormal masculinization phenotype. These results suggest that Dlx5 and Dlx6 participate in the control of steroidogenesis during testis development. The findings of this study may open the way to analyze human congenital birth defects.
Collapse
Affiliation(s)
- Hisayo Nishida
- Center for Animal Resources and Development, Graduate School of Medical and Pharmaceutical Sciences and the Global COE Research Program, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Viger RS, Guittot SM, Anttonen M, Wilson DB, Heikinheimo M. Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol Endocrinol 2008; 22:781-98. [PMID: 18174356 DOI: 10.1210/me.2007-0513] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The WGATAR motif is a common nucleotide sequence found in the transcriptional regulatory regions of numerous genes. In vertebrates, these motifs are bound by one of six factors (GATA1 to GATA6) that constitute the GATA family of transcriptional regulatory proteins. Although originally considered for their roles in hematopoietic cells and the heart, GATA factors are now known to be expressed in a wide variety of tissues where they act as critical regulators of cell-specific gene expression. This includes multiple endocrine organs such as the pituitary, pancreas, adrenals, and especially the gonads. Insights into the functional roles played by GATA factors in adult organ systems have been hampered by the early embryonic lethality associated with the different Gata-null mice. This is now being overcome with the generation of tissue-specific knockout models and other knockdown strategies. These approaches, together with the increasing number of human GATA-related pathologies have greatly broadened the scope of GATA-dependent genes and, importantly, have shown that GATA action is not necessarily limited to early development. This has been particularly evident in endocrine organs where GATA factors appear to contribute to the transcription of multiple hormone-encoding genes. This review provides an overview of the GATA family of transcription factors as they relate to endocrine function and disease.
Collapse
Affiliation(s)
- Robert S Viger
- Ontogeny-Reproduction Research Unit, Room T1-49, CHUQ Research Centre, 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2.
| | | | | | | | | |
Collapse
|
49
|
Clark BJ, Cochrum RK. The steroidogenic acute regulatory protein as a target of endocrine disruption in male reproduction. Drug Metab Rev 2007; 39:353-70. [PMID: 17786626 DOI: 10.1080/03602530701519151] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Development of the adult male reproductive tract requires proper spatial-temporal expression of the sex hormones testosterone and estrogen during fetal developmental stages and at puberty. Exogenous agents that disrupt the production and/or actions of the testosterone and estrogen and cause aberrant reproductive tract development can be thought of as endocrine disruptors (ED). This review will focus on the impact of ED on testosterone production by Leydig cells during fetal development and in the adult. In particular, the genes encoding the steroidogenic acute regulatory protein (StAR) and cytochrome P450 17 alpha hydroxylase/17,20 lyase (CYP17A1) within the steroid hormone biosynthetic pathway are highlighted as ED targets. We begin with an overview of steroidogenesis and regulation of StAR then summarize the published literature on the effects of diethylstibesterol, phthalate esters, and arsenite on male reproduction with a focus on the expression and function of StAR.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry & Molecular Biology, University of Louisville, Louisville, Kentucky 40202, USA.
| | | |
Collapse
|