1
|
Pérez AR, Bottasso OA, Santucci NE. Immune-endocrine crossroads: the impact of nuclear receptors in Tuberculosis and Chagas disease. Front Endocrinol (Lausanne) 2025; 16:1538376. [PMID: 39991733 PMCID: PMC11842248 DOI: 10.3389/fendo.2025.1538376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
Nuclear Receptors (NRs) comprise a superfamily of proteins with essential roles in cell signaling, survival, proliferation, and metabolism. They act as transcription factors and are subclassified into families based on their ligands, DNA-binding sequences, tissue specificity, and functions. Evidence indicates that in infectious diseases, cancer, and autoimmunity, NRs modulate immune and endocrine responses, altering the transcriptional profile of cells and organs and influencing disease progression. Chronic infectious diseases, characterized by pathogen persistence, are particularly notable for an exaggerated inflammatory process. Unlike acute inflammation, which helps the host respond to pathogens, chronic inflammation leads to metabolic disorders and a dysregulated neuro-immuno-endocrine response. Over time, disturbances in cytokine, hormone, and other compound production foster an unbalanced, detrimental defensive response. This complexity underscores the significant role of ligand-dependent NRs. Tuberculosis and Chagas Disease are two critical chronic infections. The causative agents, Mycobacterium tuberculosis and Trypanosoma cruzi, have developed evasion strategies to establish chronic infections. Their clinical manifestations are associated with disrupted immuno-endocrine responses, pointing to a potential involvement of NRs. This review explores the current understanding of NRs in regulating immune-endocrine interactions within the context Tuberculosis and Chagas Disease. These diseases remain significant global health concerns, particularly in developing countries, highlighting the importance of understanding the molecular mechanisms underlying host-pathogen interactions mediated by NRs.
Collapse
Affiliation(s)
- Ana R. Pérez
- Laboratorio de Estudios en Enfermedad de Chagas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Rosario (UNR), Rosario, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Oscar A. Bottasso
- Laboratorio de Estudios en Enfermedad de Chagas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Rosario (UNR), Rosario, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- Laboratorio de Estudios en Tuberculosis, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Natalia E. Santucci
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- Laboratorio de Estudios en Tuberculosis, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
2
|
Ibe K, Nakada H, Ohgami M, Yamada T, Okamoto S. Design, synthesis, and properties of des-D-ring interphenylene derivatives of 1α,25-Dihydroxyvitamin D3. Eur J Med Chem 2022; 243:114795. [DOI: 10.1016/j.ejmech.2022.114795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
|
3
|
Belorusova AY, Bourguet M, Hessmann S, Chalhoub S, Kieffer B, Cianférani S, Rochel N. Molecular determinants of MED1 interaction with the DNA bound VDR-RXR heterodimer. Nucleic Acids Res 2020; 48:11199-11213. [PMID: 32990725 PMCID: PMC7641746 DOI: 10.1093/nar/gkaa775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
The MED1 subunit of the Mediator complex is an essential coactivator of nuclear receptor-mediated transcriptional activation. While structural requirements for ligand-dependent binding of classical coactivator motifs of MED1 to numerous nuclear receptor ligand-binding domains have been fully elucidated, the recognition of the full-length or truncated coactivator by full nuclear receptor complexes remain unknown. Here we present structural details of the interaction between a large part of MED1 comprising its structured N-terminal and the flexible receptor-interacting domains and the mutual heterodimer of the vitamin D receptor (VDR) and the retinoid X receptor (RXR) bound to their cognate DNA response element. Using a combination of structural and biophysical methods we show that the ligand-dependent interaction between VDR and the second coactivator motif of MED1 is crucial for complex formation and we identify additional, previously unseen, interaction details. In particular, we identified RXR regions involved in the interaction with the structured N-terminal domain of MED1, as well as VDR regions outside the classical coactivator binding cleft affected by coactivator recruitment. These findings highlight important roles of each receptor within the heterodimer in selective recognition of MED1 and contribute to our understanding of the nuclear receptor-coregulator complexes.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maxime Bourguet
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Sandra Chalhoub
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bruno Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
4
|
Brzeminski P, Fabisiak A, Berkowska K, Rárová L, Marcinkowska E, Sicinski RR. Synthesis of Gemini analogs of 19-norcalcitriol and their platinum(II) complexes. Bioorg Chem 2020; 100:103883. [PMID: 32361296 DOI: 10.1016/j.bioorg.2020.103883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023]
Abstract
Hormonally active vitamin D3 metabolite, calcitriol, plays an important role in calcium-phosphate homeostasis, immune system actions and cell differentiation. Although anticancer activity of calcitriol is well documented and thousands of its analogs have been synthesized, none has been approved as a potential drug against cancer. Therefore, we attempted to introduce the cytotoxic effect to the calcitriol molecule by its linking to cisplatin. Herein, we present the synthesis of vitamin D compounds, designed on the basis of molecular modeling and docking experiments to the vitamin D receptor, and characterized by the presence of significantly different two side chains attached to C-20. In this study, a new synthetic approach to Gemini analogs was developed. Preparation of the target 19-norcalcitriol compounds involved separate syntheses of several building blocks (the A-ring, C/D-rings and side-chain fragments). The convergent synthetic strategy was used to combine these components by the different coupling processes, the crucial one being Wittig-Horner reaction of the Grundmann ketone analog with the known 2-methylene A-ring phosphine oxide. Due to the nature of the constructed steroidal side chains (bidentate ligands), which allowed coordination of metal ions, the first conjugate-type platinum(II) complexes of the vitamin D analogs were also successfully prepared and characterized. The target vitamin D compounds, displaying significant affinity for a vitamin D receptor, were assessed in vitro for their anti-proliferative activities towards several cell lines.
Collapse
Affiliation(s)
- Pawel Brzeminski
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Adrian Fabisiak
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Klaudia Berkowska
- Department of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Lucie Rárová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Ewa Marcinkowska
- Department of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Rafal R Sicinski
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
5
|
Rifaioglu AS, Nalbat E, Atalay V, Martin MJ, Cetin-Atalay R, Doğan T. DEEPScreen: high performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem Sci 2020; 11:2531-2557. [PMID: 33209251 PMCID: PMC7643205 DOI: 10.1039/c9sc03414e] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of physical interactions between drug candidate compounds and target biomolecules is an important process in drug discovery. Since conventional screening procedures are expensive and time consuming, computational approaches are employed to provide aid by automatically predicting novel drug-target interactions (DTIs). In this study, we propose a large-scale DTI prediction system, DEEPScreen, for early stage drug discovery, using deep convolutional neural networks. One of the main advantages of DEEPScreen is employing readily available 2-D structural representations of compounds at the input level instead of conventional descriptors that display limited performance. DEEPScreen learns complex features inherently from the 2-D representations, thus producing highly accurate predictions. The DEEPScreen system was trained for 704 target proteins (using curated bioactivity data) and finalized with rigorous hyper-parameter optimization tests. We compared the performance of DEEPScreen against the state-of-the-art on multiple benchmark datasets to indicate the effectiveness of the proposed approach and verified selected novel predictions through molecular docking analysis and literature-based validation. Finally, JAK proteins that were predicted by DEEPScreen as new targets of a well-known drug cladribine were experimentally demonstrated in vitro on cancer cells through STAT3 phosphorylation, which is the downstream effector protein. The DEEPScreen system can be exploited in the fields of drug discovery and repurposing for in silico screening of the chemogenomic space, to provide novel DTIs which can be experimentally pursued. The source code, trained "ready-to-use" prediction models, all datasets and the results of this study are available at ; https://github.com/cansyl/DEEPscreen.
Collapse
Affiliation(s)
- Ahmet Sureyya Rifaioglu
- Department of Computer Engineering , METU , Ankara , 06800 , Turkey . ; Tel: +903122105576
- Department of Computer Engineering , İskenderun Technical University , Hatay , 31200 , Turkey
- KanSiL , Department of Health Informatics , Graduate School of Informatics , METU , Ankara , 06800 , Turkey
| | - Esra Nalbat
- KanSiL , Department of Health Informatics , Graduate School of Informatics , METU , Ankara , 06800 , Turkey
| | - Volkan Atalay
- Department of Computer Engineering , METU , Ankara , 06800 , Turkey . ; Tel: +903122105576
- KanSiL , Department of Health Informatics , Graduate School of Informatics , METU , Ankara , 06800 , Turkey
| | - Maria Jesus Martin
- European Molecular Biology Laboratory , European Bioinformatics Institute (EMBL-EBI) , Hinxton , Cambridge , CB10 1SD , UK
| | - Rengul Cetin-Atalay
- KanSiL , Department of Health Informatics , Graduate School of Informatics , METU , Ankara , 06800 , Turkey
- Section of Pulmonary and Critical Care Medicine , The University of Chicago , Chicago , IL 60637 , USA
| | - Tunca Doğan
- Department of Computer Engineering , Hacettepe University , Ankara , 06800 , Turkey . ; Tel: +903122977193/117
- Institute of Informatics , Hacettepe University , Ankara , 06800 , Turkey
| |
Collapse
|
6
|
Tomlinson CW, Whiting A. The development of methodologies for high-throughput retinoic acid binding assays in drug discovery and beyond. Methods Enzymol 2020; 637:539-560. [DOI: 10.1016/bs.mie.2020.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Ibe K, Yamada T, Okamoto S. Synthesis and vitamin D receptor affinity of 16-oxa vitamin D 3 analogues. Org Biomol Chem 2019; 17:10188-10200. [PMID: 31769776 DOI: 10.1039/c9ob02339a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel 16-oxa-vitamin D3 analogues were synthesized using a tandem Ti(ii)-mediated enyne cyclization/Cu-catalyzed allylation, Ru-catalyzed ring-closing metathesis reaction, and a low-valent titanium (LVT)-mediated stereoselective radical reduction of 8α,14α-epoxide as the key steps for the synthesis of the 16-oxa-C,D ring unit. The vitamin D receptor-binding affinity of the synthesized analogues, 16-oxa-1α,25-(OH)2VD3 and 16-oxa-19-nor-1α,25-(OH)2VD3, was evaluated by fluorescence polarization vitamin D receptor competitor assay and time-resolved fluorescence energy transfer vitamin D receptor co-activator assay.
Collapse
Affiliation(s)
- Kouta Ibe
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Takeshi Yamada
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Sentaro Okamoto
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| |
Collapse
|
8
|
Yamada S, Kawasaki M, Fujihara M, Watanabe M, Takamura Y, Takioku M, Nishioka H, Takeuchi Y, Makishima M, Motoyama T, Ito S, Tokiwa H, Nakano S, Kakuta H. Competitive Binding Assay with an Umbelliferone-Based Fluorescent Rexinoid for Retinoid X Receptor Ligand Screening. J Med Chem 2019; 62:8809-8818. [PMID: 31483660 DOI: 10.1021/acs.jmedchem.9b00995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ligands for retinoid X receptors (RXRs), "rexinoids", are attracting interest as candidates for therapy of type 2 diabetes and Alzheimer's and Parkinson's diseases. However, current screening methods for rexinoids are slow and require special apparatus or facilities. Here, we created 7-hydroxy-2-oxo-6-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-2H-chromene-3-carboxylic acid (10, CU-6PMN) as a new fluorescent RXR agonist and developed a screening system of rexinoids using 10. Compound 10 was designed based on the fact that umbelliferone emits strong fluorescence in a hydrophilic environment, but the fluorescence intensity decreases in hydrophobic environments such as the interior of proteins. The developed assay using 10 enabled screening of rexinoids to be performed easily within a few hours by monitoring changes of fluorescence intensity with widely available fluorescence microplate readers, without the need for processes such as filtration.
Collapse
Affiliation(s)
- Shoya Yamada
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan.,Research Fellowship Division , Japan Society for the Promotion of Science , Sumitomo-Ichibancho FS Bldg., 8 Ichibancho , Chiyoda-ku, Tokyo 102-8472 , Japan
| | - Mayu Kawasaki
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan.,AIBIOS Co. Ltd. , Tri-Seven Roppongi 8F 7-7-7 Roppongi , Minato-ku, Tokyo 106-0032 Japan
| | - Masaki Watanabe
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Yuta Takamura
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Maho Takioku
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Hiromi Nishioka
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Yasuo Takeuchi
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences , Nihon University School of Medicine , 30-1 Oyaguchi-kamicho , Itabashi-ku, Tokyo 173-8610 , Japan
| | - Tomoharu Motoyama
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | | | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| |
Collapse
|
9
|
Edwards L, Watt J, Webster TF, Schlezinger JJ. Assessment of total, ligand-induced peroxisome proliferator activated receptor γ ligand activity in serum. Environ Health 2019; 18:45. [PMID: 31072366 PMCID: PMC6506953 DOI: 10.1186/s12940-019-0486-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Humans are exposed to a complex mixture of environmental chemicals that impact bone and metabolic health, and traditional exposure assessments struggle to capture these exposure scenarios. Peroxisome proliferator activated receptor-gamma (PPARγ) is an essential regulator of metabolic and bone homeostasis, and its inappropriate activation by environmental chemicals can set the stage for adverse health effects. Here, we present the development of the Serum PPARγ Activity Assay (SPAA), a simple and cost-effective method to measure total ligand activity in small volumes of serum. METHODS First, we determined essential components of the bioassay. Cos-7 cells were transfected with combinations of expression vectors for human PPARγ and RXRα, the obligate DNA-binding partner of PPARγ, along with PPRE (DR1)-driven luciferase and control eGFP reporter constructs. Transfected cells were treated with rosiglitazone, a synthetic PPARγ ligand and/or LG100268, a synthetic RXR ligand, to characterize the dose response and determine the simplest and most efficacious format. Following optimization of the bioassay, we assessed the cumulative activation of PPARγ by ligands in serum from mice treated with a PPARγ ligand and commercial human serum samples. RESULTS Cos-7 cells endogenously express sufficient RXR to support efficacious activation of transfected PPARγ. Co-transfection of an RXR expression vector with the PPARγ expression vector did not increase PPRE transcriptional activity induced by rosiglitazone. Treatment with an RXR ligand marginally increased PPRE transcriptional activity in the presence of transfected PPARγ, and co-treatment with an RXR ligand reduced rosiglitazone-induced PPRE transcriptional activity. Therefore, the final bioassay protocol consists of transfecting Cos-7 cells with a PPARγ expression vector along with the reporter vectors, applying rosiglitazone standards and/or 10 μL of serum, and measuring luminescence and fluorescence after a 24 h incubation. Sera from mice dosed with rosiglitazone induced PPRE transcriptional activity in the SPAA in a dose-dependent and PPARγ-dependent manner. Additionally, human serum from commercial sources induced a range of PPRE transcriptional activities in a PPARγ-dependent manner, demonstrating the ability of the bioassay to detect potentially low levels of ligands. CONCLUSIONS The SPAA can reliably measure total PPRE transcriptional activity in small volumes of serum. This system provides a sensitive, straightforward assay that can be reproduced in any cell culture laboratory.
Collapse
Affiliation(s)
- Lariah Edwards
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, R-405, Boston, MA, 02118, USA
| | - James Watt
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, R-405, Boston, MA, 02118, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, R-405, Boston, MA, 02118, USA
| | - Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, R-405, Boston, MA, 02118, USA.
| |
Collapse
|
10
|
Fang F, Li D, Zhao L, Li Y, Zhang T, Cui B. Expression of NR1H3 in endometrial carcinoma and its effect on the proliferation of Ishikawa cells in vitro. Onco Targets Ther 2019; 12:685-697. [PMID: 30705597 PMCID: PMC6343513 DOI: 10.2147/ott.s180534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Our study aimed to investigate the expression of NR1H3 in endometrial carcinoma, its effect on the proliferation of endometrial carcinoma cells in vitro, and the underlying mechanism of this effect. Materials and methods Immunohistochemistry of paraffin-embedded, sectioned specimens and of a tissue microarray was conducted to estimate the expression of NR1H3 (liver X receptors α: LXRα) and NR1H2 (liver X receptors β: LXRβ) in endometrial carcinoma tissues. The subcellular localization of NR1H3 in the endometrial carcinoma cell line Ishikawa was determined by immunofluorescence. An agonist of NR1H3, TO901317, was then administered to activate the expression of NR1H3, and cell viability and cell-cycle progression were investigated through MTT and flow cytometric assays, respectively. The gene and protein expression levels of NR1H3, cyclin D1 (CCND1), and cyclin E (CCNE) in cells pretreated with different concentrations of TO901317 for different periods of time were also detected by real-time RT-PCR and Western blot, respectively. Results The results showed that, in contrast to NR1H2, which was expressed at low levels in endometrial tissues, NR1H3 was upregulated in endometrial adenocarcinoma tissues compared to levels in normal endometrial tissues and endometrial polyps. Moreover, NR1H3 was mainly expressed in the cytoplasm of Ishikawa cells. TO901317 significantly decreased cell viability and arrested the cell cycle in Ishikawa cells in a dose- and time-dependent manner. Furthermore, the administration of TO901317 not only promoted the expression of NR1H3 but also inhibited the expression of CCND1 and CCNE in Ishikawa cells. Conclusion We demonstrated that NR1H3 is upregulated in endometrial adenocarcinoma and that it inhibits cell viability by inhibiting the expression of CCND1 and CCNE in endometrial carcinoma cells. Our study indicates that NR1H3 may play a role in the development of endometrial cancer and may emerge as a promising therapeutic target.
Collapse
Affiliation(s)
- Fang Fang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China, .,Department of Obstetrics and Gynecology, Weihai Municipal Hospital, Weihai, Shandong, People's Republic of China
| | - Dawei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China, .,Department of Obstetrics and Gynecology, Weihai Municipal Hospital, Weihai, Shandong, People's Republic of China
| | - Lu Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China,
| | - Yue Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China, .,Department of Obstetrics and Gynecology, Weihai Municipal Hospital, Weihai, Shandong, People's Republic of China
| | - Teng Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China,
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China,
| |
Collapse
|
11
|
Broekema MF, Hollman DAA, Koppen A, van den Ham HJ, Melchers D, Pijnenburg D, Ruijtenbeek R, van Mil SWC, Houtman R, Kalkhoven E. Profiling of 3696 Nuclear Receptor-Coregulator Interactions: A Resource for Biological and Clinical Discovery. Endocrinology 2018; 159:2397-2407. [PMID: 29718163 DOI: 10.1210/en.2018-00149] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
Abstract
Nuclear receptors (NRs) are ligand-inducible transcription factors that play critical roles in metazoan development, reproduction, and physiology and therefore are implicated in a broad range of pathologies. The transcriptional activity of NRs critically depends on their interaction(s) with transcriptional coregulator proteins, including coactivators and corepressors. Short leucine-rich peptide motifs in these proteins (LxxLL in coactivators and LxxxIxxxL in corepressors) are essential and sufficient for NR binding. With 350 different coregulator proteins identified to date and with many coregulators containing multiple interaction motifs, an enormous combinatorial potential is present for selective NR-mediated gene regulation. However, NR-coregulator interactions have often been determined experimentally on a one-to-one basis across diverse experimental conditions. In addition, NR-coregulator interactions are difficult to predict because the molecular determinants that govern specificity are not well established. Therefore, many biologically and clinically relevant NR-coregulator interactions may remain to be discovered. Here, we present a comprehensive overview of 3696 NR-coregulator interactions by systematically characterizing the binding of 24 nuclear receptors with 154 coregulator peptides. We identified unique ligand-dependent NR-coregulator interaction profiles for each NR, confirming many well-established NR-coregulator interactions. Hierarchical clustering based on the NR-coregulator interaction profiles largely recapitulates the classification of NR subfamilies based on the primary amino acid sequences of the ligand-binding domains, indicating that amino acid sequence is an important, although not the only, molecular determinant in directing and fine-tuning NR-coregulator interactions. This NR-coregulator peptide interactome provides an open data resource for future biological and clinical discovery as well as NR-based drug design.
Collapse
Affiliation(s)
- Marjoleine F Broekema
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | - Danielle A A Hollman
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | - Arjen Koppen
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | | | - Diana Melchers
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Dirk Pijnenburg
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Rob Ruijtenbeek
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Saskia W C van Mil
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | - René Houtman
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Eric Kalkhoven
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| |
Collapse
|
12
|
2-Formyl-komarovicine promotes adiponectin production in human mesenchymal stem cells through PPARγ partial agonism. Bioorg Med Chem 2018; 26:1069-1075. [DOI: 10.1016/j.bmc.2018.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
|
13
|
Yu J, Ahn S, Kim HJ, Lee M, Ahn S, Kim J, Jin SH, Lee E, Kim G, Cheong JH, Jacobson KA, Jeong LS, Noh M. Polypharmacology of N 6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and Related A 3 Adenosine Receptor Ligands: Peroxisome Proliferator Activated Receptor (PPAR) γ Partial Agonist and PPARδ Antagonist Activity Suggests Their Antidiabetic Potential. J Med Chem 2017; 60:7459-7475. [PMID: 28799755 PMCID: PMC5956890 DOI: 10.1021/acs.jmedchem.7b00805] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A3 adenosine receptor (AR) ligands including A3 AR agonist, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (1a, IB-MECA) were examined for adiponectin production in human bone marrow mesenchymal stem cells (hBM-MSCs). In this model, 1a significantly increased adiponectin production, which is associated with improved insulin sensitivity. However, A3 AR antagonists also promoted adiponectin production in hBM-MSCs, indicating that the A3 AR pathway may not be directly involved in the adiponectin promoting activity. In a target deconvolution study, their adiponectin-promoting activity was significantly correlated to their binding activity to both peroxisome proliferator activated receptor (PPAR) γ and PPARδ. They functioned as both PPARγ partial agonists and PPARδ antagonists. In the diabetic mouse model, 1a and its structural analogues A3 AR antagonists significantly decreased the serum levels of glucose and triglyceride, supporting their antidiabetic potential. These findings indicate that the polypharmacophore of these compounds may provide therapeutic insight into their multipotent efficacy against various human diseases.
Collapse
Affiliation(s)
- Jinha Yu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seyeon Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Moonyoung Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sungjin Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jungmin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sun Hee Jin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Eunyoung Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Minsoo Noh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
14
|
Using TR-FRET to Investigate Protein-Protein Interactions: A Case Study of PXR-Coregulator Interaction. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:31-63. [PMID: 29412999 DOI: 10.1016/bs.apcsb.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Time-resolved fluorescence resonance energy transfer (TR-FRET) protein-protein interaction assays, especially in the format of receptor coregulator (coactivator and corepressor) recruitment/repression assays, have been widely used in nuclear receptor research to characterize the modes of action, efficacies, and binding affinities of ligands (including their properties as agonists, antagonists, and inverse agonists). However, there has been only limited progress in using this assay format for pregnane X receptor (PXR). In this chapter, we discuss TR-FRET protein-protein interaction assays and focus on a novel PXR TR-FRET coactivator interaction assay that we have developed based on a PXR coactivator cocrystal study. This new PXR TR-FRET coactivator interaction assay can characterize the binding affinities of PXR ligands and also differentiate antagonists from agonists. This assay is very robust, with the signal remaining stable over a long incubation time (up to 300min has been tested). It can tolerate high concentrations of DMSO (up to 5%) and has a high signal-to-noise ratio (six under typical assay conditions). This newly developed PXR TR-FRET coactivator interaction assay has potential application in high-throughput screening to identify and characterize novel PXR agonists and antagonists.
Collapse
|
15
|
Scheepstra M, Andrei SA, Unver MY, Hirsch AKH, Leysen S, Ottmann C, Brunsveld L, Milroy LG. Designed Spiroketal Protein Modulation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Marcel Scheepstra
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Sebastian A. Andrei
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - M. Yagiz Unver
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 9747AG Groningen The Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 9747AG Groningen The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
- Department of Chemistry; University of Duisburg-Essen; Universitätstr. 7 45141 Essen Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| |
Collapse
|
16
|
Scheepstra M, Andrei SA, Unver MY, Hirsch AKH, Leysen S, Ottmann C, Brunsveld L, Milroy LG. Designed Spiroketal Protein Modulation. Angew Chem Int Ed Engl 2017; 56:5480-5484. [PMID: 28407400 PMCID: PMC5435924 DOI: 10.1002/anie.201612504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/17/2017] [Indexed: 02/03/2023]
Abstract
Spiroketals are structural motifs found in many biologically active natural products, which has stimulated considerable efforts toward their synthesis and interest in their use as drug lead compounds. Despite this, the use of spiroketals, and especially bisbenzanulated spiroketals, in a structure-based drug discovery setting has not been convincingly demonstrated. Herein, we report the rational design of a bisbenzannulated spiroketal that potently binds to the retinoid X receptor (RXR) thereby inducing partial co-activator recruitment. We solved the crystal structure of the spiroketal-hRXRα-TIF2 ternary complex, and identified a canonical allosteric mechanism as a possible explanation for the partial agonist behavior of our spiroketal. Our co-crystal structure, the first of a designed spiroketal-protein complex, suggests that spiroketals can be designed to selectively target other nuclear receptor subtypes.
Collapse
Affiliation(s)
- Marcel Scheepstra
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Sebastian A Andrei
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - M Yagiz Unver
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Anna K H Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands.,Department of Chemistry, University of Duisburg-Essen, Universitätstr. 7, 45141, Essen, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| |
Collapse
|
17
|
Haffez H, Chisholm DR, Valentine R, Pohl E, Redfern C, Whiting A. The molecular basis of the interactions between synthetic retinoic acid analogues and the retinoic acid receptors. MEDCHEMCOMM 2017; 8:578-592. [PMID: 30108774 PMCID: PMC6072416 DOI: 10.1039/c6md00680a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/17/2017] [Indexed: 01/17/2023]
Abstract
All-trans-retinoic acid (ATRA) and its synthetic analogues EC23 and EC19 direct cellular differentiation by interacting as ligands for the retinoic acid receptor (RARα, β and γ) family of nuclear receptor proteins. To date, a number of crystal structures of natural and synthetic ligands complexed to their target proteins have been solved, providing molecular level snap-shots of ligand binding. However, a deeper understanding of receptor and ligand flexibility and conformational freedom is required to develop stable and effective ATRA analogues for clinical use. Therefore, we have used molecular modelling techniques to define RAR interactions with ATRA and two synthetic analogues, EC19 and EC23, and compared their predicted biochemical activities to experimental measurements of relative ligand affinity and recruitment of coactivator proteins. A comprehensive molecular docking approach that explored the conformational space of the ligands indicated that ATRA is able to bind the three RAR proteins in a number of conformations with one extended structure being favoured. In contrast the biologically-distinct isomer, 9-cis-retinoic acid (; 9CRA), showed significantly less conformational flexibility in the RAR binding pockets. These findings were used to inform docking studies of the synthetic retinoids EC23 and EC19, and their respective methyl esters. EC23 was found to be an excellent mimic for ATRA, and occupied similar binding modes to ATRA in all three target RAR proteins. In comparison, EC19 exhibited an alternative binding mode which reduces the strength of key polar interactions in RARα/γ but is well-suited to the larger RARβ binding pocket. In contrast, docking of the corresponding esters revealed the loss of key polar interactions which may explain the much reduced biological activity. Our computational results were complemented using an in vitro binding assay based on FRET measurements, which showed that EC23 was a strongly binding, pan-agonist of the RARs, while EC19 exhibited specificity for RARβ, as predicted by the docking studies. These findings can account for the distinct behaviour of EC23 and EC19 in cellular differentiation assays, and additionally, the methods described herein can be further applied to the understanding of the molecular basis for the selectivity of different retinoids to RARα, β and γ.
Collapse
Affiliation(s)
- Hesham Haffez
- Department of Chemistry Durham University , South Road , Durham , DH1 3LE , UK .
- Department of Biosciences & Biophysical Sciences , Institute Durham University , South Road , Durham DH1 3LE , UK
- Northern Institute for Cancer Research , Medical School , Newcastle University , Newcastle upon Tyne , NE2 4HH , UK
- Department of Biochemistry and Molecular Biology , Pharmacy College , Helwan University , Cairo , Egypt
| | - David R Chisholm
- Department of Chemistry Durham University , South Road , Durham , DH1 3LE , UK .
| | - Roy Valentine
- High Force Research Ltd. , Bowburn North Industrial Estate , Bowburn , Durham , DH6 5PF , UK
| | - Ehmke Pohl
- Department of Biosciences & Biophysical Sciences , Institute Durham University , South Road , Durham DH1 3LE , UK
| | - Christopher Redfern
- Northern Institute for Cancer Research , Medical School , Newcastle University , Newcastle upon Tyne , NE2 4HH , UK
| | - Andrew Whiting
- Department of Chemistry Durham University , South Road , Durham , DH1 3LE , UK .
| |
Collapse
|
18
|
Klingler C, Zhao X, Adhikary T, Li J, Xu G, Häring HU, Schleicher E, Lehmann R, Weigert C. Lysophosphatidylcholines activate PPARδ and protect human skeletal muscle cells from lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1980-1992. [PMID: 27697477 DOI: 10.1016/j.bbalip.2016.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/19/2016] [Accepted: 09/29/2016] [Indexed: 12/30/2022]
Abstract
Metabolomics studies of human plasma demonstrate a correlation of lower plasma lysophosphatidylcholines (LPC) concentrations with insulin resistance, obesity, and inflammation. This relationship is not unraveled on a molecular level. Here we investigated the effects of the abundant LPC(16:0) and LPC(18:1) on human skeletal muscle cells differentiated to myotubes. Transcriptome analysis of human myotubes treated with 10μM LPC for 24h revealed enrichment of up-regulated peroxisome proliferator-activated receptor (PPAR) target transcripts, including ANGPTL4, PDK4, PLIN2, and CPT1A. The increase in both PDK4 and ANGPTL4 RNA expression was abolished in the presence of either PPARδ antagonist GSK0660 or GSK3787. The induction of PDK4 by LPCs was blocked with siRNA against PPARD. The activation of PPARδ transcriptional activity by LPC was shown as PPARδ-dependent luciferase reporter gene expression and enhanced DNA binding of the PPARδ/RXR dimer. On a functional level, further results show that the LPC-mediated activation of PPARδ can reduce fatty acid-induced inflammation and ER stress in human skeletal muscle cells. The protective effect of LPC was prevented in the presence of the PPARδ antagonist GSK0660. Taking together, LPCs can activate PPARδ, which is consistent with the association of high plasma LPC levels and PPARδ-dependent anti-diabetic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Christian Klingler
- Division of Pathobiochemistry and Clinical Chemistry, University Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Till Adhikary
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Hans-Meerwein-Strasse 3, Philipps University, 35043 Marburg, Germany
| | - Jia Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hans-Ulrich Häring
- Division of Pathobiochemistry and Clinical Chemistry, University Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
| | - Erwin Schleicher
- Division of Pathobiochemistry and Clinical Chemistry, University Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Rainer Lehmann
- Division of Pathobiochemistry and Clinical Chemistry, University Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
| | - Cora Weigert
- Division of Pathobiochemistry and Clinical Chemistry, University Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany.
| |
Collapse
|
19
|
Synthesis of 5-trifluoromethyl-2-sulfonylpyridine PPARβ/δ antagonists: Effects on the affinity and selectivity towards PPARβ/δ. Bioorg Med Chem 2015; 24:247-60. [PMID: 26707845 DOI: 10.1016/j.bmc.2015.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/05/2015] [Accepted: 12/06/2015] [Indexed: 12/23/2022]
Abstract
The covalent modification of peroxisome-proliferator activated receptor β/δ (PPARβ/δ) is part of the mode of action of 5-trifluoromethyl-2-sulfonylpyridine PPARβ/δ antagonists such as GSK3787 and CC618. Herein, the synthesis and in vitro biological evaluation of a range of structural analogues of the two antagonists are reported. The new ligands demonstrate that an improvement in the selectivity of 5-trifluoromethyl-2-sulfonylpyridine antagonists towards PPARβ/δ is achievable at the expense of their immediate affinity for PPARβ/δ. However, their putatively covalent and irreversible mode of action may ensure their efficacy over time, as observed in time-resolved fluorescence resonance energy transfer (TR-FRET)-based ligand displacement assays.
Collapse
|
20
|
Essential role of docosahexaenoic acid towards development of a smarter brain. Neurochem Int 2015; 89:51-62. [DOI: 10.1016/j.neuint.2015.08.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 01/25/2023]
|
21
|
Kaupang Å, Hildonen S, Halvorsen TG, Mortén M, Vik A, Hansen TV. Involvement of covalent interactions in the mode of action of PPARβ/δ antagonists. RSC Adv 2015. [DOI: 10.1039/c5ra15707b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Investigations on the mode of action of several different chemical modulators of the peroxisome proliferator-activated receptor β/δ (PPARβ/δ) have been reported using MS and NMR experiments.
Collapse
Affiliation(s)
- Åsmund Kaupang
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- University of Oslo
- 0316 Oslo
- Norway
| | - Siri Hildonen
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- University of Oslo
- 0316 Oslo
- Norway
| | - Trine G. Halvorsen
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- University of Oslo
- 0316 Oslo
- Norway
| | - Magnus Mortén
- Department of Chemistry
- University of Oslo
- 0315 Oslo
- Norway
| | - Anders Vik
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- University of Oslo
- 0316 Oslo
- Norway
| | - Trond Vidar Hansen
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- University of Oslo
- 0316 Oslo
- Norway
| |
Collapse
|
22
|
Svärd J, Blanco F, Nevin D, Fayne D, Mulcahy F, Hennessy M, Spiers JP. Differential interactions of antiretroviral agents with LXR, ER and GR nuclear receptors: potential contributing factors to adverse events. Br J Pharmacol 2014; 171:480-97. [PMID: 24372550 DOI: 10.1111/bph.12480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Antiretroviral (ARV) drugs activate pregnane X receptors and constitutive androstane receptors, increasing the risk of drug interactions due to altered drug metabolism and disposition. The closely related liver X receptors (LXRα/β), oestrogen receptors (ERα/β) and glucocorticoid receptor (GR) regulate many endogenous processes such as lipid/cholesterol homeostasis, cellular differentiation and inflammation. However, ARV drug activation of these nuclear receptors has not been thoroughly investigated. EXPERIMENTAL APPROACH The ability of an ARV drug library to activate LXRα/β, ERα/β and GR was assessed using a combined in silico and in vitro approach encompassing computational docking and molecular descriptor filtering, cell-free time-resolved fluorescence resonance energy transfer co-activator assays to assess direct binding to ligand-binding domains (LBDs), cell-based reporter assays and target gene expression. KEY RESULTS Direct LBD interactions with LXRα and/or LXRβ were predicted in silico and confirmed in vitro for darunavir, efavirenz, flavopiridol, maraviroc and tipranavir. Likewise, efavirenz was also predicted and confirmed as a ligand of ERα-LBD. Interestingly, atazanavir and ritonavir also activated LXRα/β in reporter assays, while tipranavir enhanced transcriptional activity of ERα. Effects on ER and LXR target gene expression were confirmed for efavirenz and tipranavir. CONCLUSIONS AND IMPLICATIONS There was good agreement between in silico predictions and in vitro results. However, some nuclear receptor interactions identified in vitro were probably due to allosteric effects or nuclear receptor cross-talk, rather than direct LBD binding. This study indicates that some of the adverse effects associated with ARV use may be mediated through 'off-target' effects involving nuclear receptor activation.
Collapse
Affiliation(s)
- J Svärd
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
23
|
Gamo K, Miyachi H, Nakamura K, Matsuura N. Hesperetin glucuronides induce adipocyte differentiation via activation and expression of peroxisome proliferator-activated receptor-γ. Biosci Biotechnol Biochem 2014; 78:1052-9. [PMID: 25036134 DOI: 10.1080/09168451.2014.910097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In previous reports, hesperidin, a flavonoid glucoside from citrus fruit, is hydrolyzed to hesperetin, an aglycone of hesperidin, and converted to the hesperetin glucuronides (H7-OG and H3'-OG) in vivo and depresses blood glucose levels. But there are no reports on the activity of hesperetin glucuronides. To determine the activity of hesperetin glucuronides, H7-OG and H3'-OG were synthesized and peroxisome proliferator-activated receptor-γ (PPARγ) agonist activity was observed at 250 μM. These glucuronides accelerated the differentiation of 3T3-L1 cells into adipocytes at 10 μM. Furthermore, H7-OG showed additive effects in reporter gene assays and caused noncompetitive reactions in time-resolved fluorescence resonance energy transfer assays with a thiazolidinedione derivative. Our results indicated that hesperetin glucuronides activated PPARγ, accelerated adipocyte differentiation.
Collapse
Affiliation(s)
- Kanae Gamo
- a Faculty of Science, Department of Life Science , Okayama University of Science , Okayama , Japan
| | | | | | | |
Collapse
|
24
|
Ohsawa F, Yamada S, Yakushiji N, Shinozaki R, Nakayama M, Kawata K, Hagaya M, Kobayashi T, Kohara K, Furusawa Y, Fujiwara C, Ohta Y, Makishima M, Naitou H, Tai A, Yoshikawa Y, Yasui H, Kakuta H. Mechanism of Retinoid X Receptor Partial Agonistic Action of 1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-1H-benzotriazole-5-carboxylic Acid and Structural Development To Increase Potency. J Med Chem 2013; 56:1865-77. [DOI: 10.1021/jm400033f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fuminori Ohsawa
- Division of
Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530,
Japan
| | - Shoya Yamada
- Division of
Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530,
Japan
- Research Fellowship
Division, Japan Society for the Promotion of Science, Sumitomo-Ichibancho
FS Bldg., 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Nobumasa Yakushiji
- Division of
Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530,
Japan
| | - Ryosuke Shinozaki
- Division of
Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530,
Japan
| | - Mariko Nakayama
- Division of
Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530,
Japan
| | - Kohei Kawata
- Division of
Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530,
Japan
| | - Manabu Hagaya
- Division of
Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530,
Japan
| | - Toshiki Kobayashi
- Division of
Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530,
Japan
| | - Kazutaka Kohara
- Division of
Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530,
Japan
| | - Yuuki Furusawa
- Division of
Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530,
Japan
| | - Chisa Fujiwara
- Division of
Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530,
Japan
| | - Yui Ohta
- Division of
Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530,
Japan
| | - Makoto Makishima
- Division of Biochemistry, Department
of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hirotaka Naitou
- Graduate School of Nutritional
and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Akihiro Tai
- Faculty of Life and Environmental
Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho, Shobara, Hiroshima 727-0023, Japan
| | - Yutaka Yoshikawa
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroki Kakuta
- Division of
Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530,
Japan
| |
Collapse
|
25
|
Hurtado O, Ballesteros I, Cuartero M, Moraga A, Pradillo J, Ramírez-Franco J, Bartolomé-Martín D, Pascual D, Torres M, Sánchez-Prieto J, Salom J, Lizasoain I, Moro M. Daidzein has neuroprotective effects through ligand-binding-independent PPARγ activation. Neurochem Int 2012; 61:119-27. [DOI: 10.1016/j.neuint.2012.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/27/2012] [Accepted: 04/06/2012] [Indexed: 12/20/2022]
|
26
|
Hoang MH, Jia Y, Jun HJ, Lee JH, Lee DH, Hwang BY, Kim WJ, Lee HJ, Lee SJ. Ethyl 2,4,6-trihydroxybenzoate is an agonistic ligand for liver X receptor that induces cholesterol efflux from macrophages without affecting lipid accumulation in HepG2 cells. Bioorg Med Chem Lett 2012; 22:4094-9. [PMID: 22579484 DOI: 10.1016/j.bmcl.2012.04.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/03/2012] [Accepted: 04/16/2012] [Indexed: 11/15/2022]
Abstract
The present study reports a novel liver X receptor (LXR) activator, ethyl 2,4,6-trihydroxybenzoate (ETB), isolated from Celtis biondii. Using a reporter gene assay, time-resolved fluorescence resonance energy transfer (TR-FRET), and surface plasmon resonance (SPR) analysis, we showed that ETB directly bound to and stimulated the transcriptional activity of LXR-α and LXR-β. In macrophages, hepatocytes, and intestinal cells, ETB suppressed cellular cholesterol accumulation in a dose-dependent manner and induced the transcriptional activation of LXR-α/-β-responsive genes. Notably, ETB did not induce lipogenic gene expression or cellular triglyceride accumulation in hepatocytes. These results suggest that ETB is a dual-LXR modulator that regulates the expression of key genes in cholesterol homeostasis in multiple cells without inducing lipid accumulation in HepG2 cells.
Collapse
Affiliation(s)
- Minh-Hien Hoang
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lieber S, Scheer F, Meissner W, Naruhn S, Adhikary T, Müller-Brüsselbach S, Diederich WE, Müller R. (Z)-2-(2-Bromophenyl)-3-{[4-(1-methyl-piperazine)amino]phenyl}acrylonitrile (DG172): An Orally Bioavailable PPARβ/δ-Selective Ligand with Inverse Agonistic Properties. J Med Chem 2012; 55:2858-68. [DOI: 10.1021/jm2017122] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sonja Lieber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps
University, Emil-Mannkopff-Strasse 2, 35033 Marburg, Germany
| | - Frithjof Scheer
- Institute of Pharmaceutical Chemistry,
Philipps-University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Wolfgang Meissner
- Institute of Molecular Biology and Tumor Research (IMT), Philipps
University, Emil-Mannkopff-Strasse 2, 35033 Marburg, Germany
| | - Simone Naruhn
- Institute of Molecular Biology and Tumor Research (IMT), Philipps
University, Emil-Mannkopff-Strasse 2, 35033 Marburg, Germany
| | - Till Adhikary
- Institute of Molecular Biology and Tumor Research (IMT), Philipps
University, Emil-Mannkopff-Strasse 2, 35033 Marburg, Germany
| | - Sabine Müller-Brüsselbach
- Institute of Molecular Biology and Tumor Research (IMT), Philipps
University, Emil-Mannkopff-Strasse 2, 35033 Marburg, Germany
| | - Wibke E. Diederich
- Institute of Pharmaceutical Chemistry,
Philipps-University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Philipps
University, Emil-Mannkopff-Strasse 2, 35033 Marburg, Germany
| |
Collapse
|
28
|
Abstract
Consumption of specific dietary fatty acids has been shown to influence risk and progression of several chronic diseases, such as cardiovascular disease, obesity, cancer, and arthritis. In recent years, insights into the mechanisms underlying the biological effects of fatty acids have improved considerably and have provided the foundation for the emerging concept of fatty acid sensing, which can be interpreted as the property of fatty acids to influence biological processes by serving as signaling molecules. An important mechanism of fatty acid sensing is via stimulation or inhibition of DNA transcription. Here, we focus on fatty acid sensing via regulation of gene transcription and address the role of peroxisome proliferator-activated receptors, sterol regulatory element binding protein 1, Toll-like receptor 4, G protein-coupled receptors, and other putative mediators.
Collapse
Affiliation(s)
- Anastasia Georgiadi
- Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
29
|
Naruhn S, Toth PM, Adhikary T, Kaddatz K, Pape V, Dörr S, Klebe G, Müller-Brüsselbach S, Diederich WE, Müller R. High-affinity peroxisome proliferator-activated receptor β/δ-specific ligands with pure antagonistic or inverse agonistic properties. Mol Pharmacol 2011; 80:828-38. [PMID: 21862691 DOI: 10.1124/mol.111.074039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a ligand-regulated nuclear receptor with essential functions in metabolism and inflammation. We have synthesized a new derivative [methyl 3-(N-(4-(hexylamino)-2-methoxyphenyl)sulfamoyl)thiophene-2-carboxylate (ST247) structurally related to the published PPARβ/δ inhibitory ligand methyl 3-(N-(2-methoxy-4-(phenylamino)phenyl)sulfamoyl)thiophene-2-carboxylate (GSK0660). ST247 has a higher affinity to PPARβ/δ than GSK0660, and at equimolar concentrations, it more efficiently 1) induces the interaction with corepressors both in vitro and in vivo, 2) inhibits the agonist-induced transcriptional activity of PPARβ/δ, and 3) down-regulates basal level expression of the peroxisome proliferator responsive element-driven PPARβ/δ target gene ANGPTL4. Methyl 3-(N-(4-(tert-butylamino)-2-methoxyphenyl)sulfamoyl)thiophene-2-carboxylate (PT-S58), another high-affinity derivative from our series, also efficiently inhibits agonist-induced transcriptional activation, but in contrast to ST247, it does not enhance the interaction of PPARβ/δ with corepressors. PT-S58 rather prevents corepressor recruitment triggered by the inverse agonist ST247. These findings classify ST247 as an inverse agonist, whereas PT-S58 is the first pure PPARβ/δ antagonist described to date. It is noteworthy that ST247 and PT-S58 are also effective on PPRE-independent functions of PPARβ/δ: in monocytic cells, both ligands modulate expression of the activation marker CCL2 in the opposite direction as an established PPARβ/δ agonist. The possibility to differentially modulate specific functions of PPARβ/δ makes these novel compounds invaluable tools to advance our understanding of PPARβ/δ biology.
Collapse
Affiliation(s)
- Simone Naruhn
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Palkar PS, Borland MG, Naruhn S, Ferry CH, Lee C, Sk UH, Sharma AK, Amin S, Murray IA, Anderson CR, Perdew GH, Gonzalez FJ, Müller R, Peters JM. Cellular and pharmacological selectivity of the peroxisome proliferator-activated receptor-beta/delta antagonist GSK3787. Mol Pharmacol 2010; 78:419-30. [PMID: 20516370 PMCID: PMC2939490 DOI: 10.1124/mol.110.065508] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 06/01/2010] [Indexed: 12/14/2022] Open
Abstract
The availability of high-affinity agonists for peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) has led to significant advances in our understanding of the functional role of PPARbeta/delta. In this study, a new PPARbeta/delta antagonist, 4-chloro-N-(2-{[5-trifluoromethyl)-2-pyridyl]sulfonyl}ethyl)benzamide (GSK3787), was characterized using in vivo and in vitro models. Orally administered GSK3787 caused antagonism of 4-[2-(3-fluoro-4-trifluoromethyl-phenyl)-4-methyl-thiazol-5-ylmethylsulfanyl]-2-methyl-phenoxy}-acetic acid (GW0742)-induced up-regulation of Angptl4 and Adrp mRNA expression in wild-type mouse colon but not in Pparbeta/delta-null mouse colon. Chromatin immunoprecipitation (ChIP) analysis indicates that this correlated with reduced promoter occupancy of PPARbeta/delta on the Angptl4 and Adrp genes. Reporter assays demonstrated antagonism of PPARbeta/delta activity and weak antagonism and agonism of PPARgamma activity but no effect on PPARalpha activity. Time-resolved fluorescence resonance energy transfer assays confirmed the ability of GSK3787 to modulate the association of both PPARbeta/delta and PPARgamma coregulator peptides in response to ligand activation, consistent with reporter assays. In vivo and in vitro analysis indicates that the efficacy of GSK3787 to modulate PPARgamma activity is markedly lower than the efficacy of GSK3787 to act as a PPARbeta/delta antagonist. GSK3787 antagonized GW0742-induced expression of Angptl4 in mouse fibroblasts, mouse keratinocytes, and human cancer cell lines. Cell proliferation was unchanged in response to either GW0742 or GSK3787 in human cancer cell lines. Results from these studies demonstrate that GSK3787 can antagonize PPARbeta/delta in vivo, thus providing a new strategy to delineate the functional role of a receptor with great potential as a therapeutic target for the treatment and prevention of disease.
Collapse
Affiliation(s)
- Prajakta S Palkar
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, the Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Naruhn S, Meissner W, Adhikary T, Kaddatz K, Klein T, Watzer B, Müller-Brüsselbach S, Müller R. 15-hydroxyeicosatetraenoic acid is a preferential peroxisome proliferator-activated receptor beta/delta agonist. Mol Pharmacol 2010; 77:171-84. [PMID: 19903832 DOI: 10.1124/mol.109.060541] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Peroxisome proliferator-activated receptor (PPARs) modulate target gene expression in response to unsaturated fatty acid ligands, such as arachidonic acid (AA). Here, we report that the AA metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) activates the ligand-dependent activation domain (AF2) of PPARbeta/delta in vivo, competes with synthetic agonists in a PPARbeta/delta ligand binding assay in vitro, and triggers the interaction of PPARbeta/delta with coactivator peptides. These agonistic effects were also seen with PPARalpha and PPARgamma, but to a significantly weaker extent. We further show that 15-HETE strongly induces the expression of the bona fide PPAR target gene Angptl4 in a PPARbeta/delta-dependent manner and, conversely, that inhibition of 15-HETE synthesis reduces PPARbeta/delta transcriptional activity. Consistent with its function as an agonistic ligand, 15-HETE triggers profound changes in chromatin-associated PPARbeta/delta complexes in vivo, including the recruitment of the coactivator cAMP response element-binding protein binding protein. Both 15R-HETE and 15S-HETE are similarly potent at inducing PPARbeta/delta coactivator binding and transcriptional activation, indicating that 15-HETE enantiomers generated by different pathways function as PPARbeta/delta agonists.
Collapse
Affiliation(s)
- Simone Naruhn
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Koppen A, Houtman R, Pijnenburg D, Jeninga EH, Ruijtenbeek R, Kalkhoven E. Nuclear receptor-coregulator interaction profiling identifies TRIP3 as a novel peroxisome proliferator-activated receptor gamma cofactor. Mol Cell Proteomics 2009; 8:2212-26. [PMID: 19596656 DOI: 10.1074/mcp.m900209-mcp200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nuclear receptors (NRs) are major targets for drug discovery and have key roles in development and homeostasis as well as in many diseases such as obesity, diabetes, and cancer. NRs are ligand-dependent transcription factors that need to work in concert with so-called transcriptional coregulators, including corepressors and coactivators, to regulate transcription. Upon ligand binding, NRs undergo a conformational change, which alters their binding preference for coregulators. Short alpha-helical sequences in the coregulator proteins, LXXLL (in coactivators) or LXXXIXXXL (in corepressors), are essential for the NR-coregulator interactions. However, little is known on how specificity is dictated. To obtain a comprehensive overview of NR-coregulator interactions, we used a microarray approach based on interactions between NRs and peptides derived from known coregulators. Using the peroxisome proliferator-activated receptor gamma (PPARgamma) as a model NR, we were able to generate ligand-specific interaction profiles (agonist rosiglitazone versus antagonist GW9662 versus selective PPARgamma modulator telmisartan) and characterize NR mutants and isotypes (PPARalpha, -beta/delta, and -gamma). Importantly, based on the NR-coregulator interaction profile, we were able to identify TRIP3 as a novel regulator of PPARgamma-mediated adipocyte differentiation. These findings indicate that NR-coregulator interaction profiling may be a useful tool for drug development and biological discovery.
Collapse
Affiliation(s)
- Arjen Koppen
- Department of Metabolic and Endocrine Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Jeyakumar M, Katzenellenbogen JA. A dual-acceptor time-resolved Föster resonance energy transfer assay for simultaneous determination of thyroid hormone regulation of corepressor and coactivator binding to the thyroid hormone receptor: Mimicking the cellular context of thyroid hormone action. Anal Biochem 2009; 386:73-8. [PMID: 19111515 PMCID: PMC2701686 DOI: 10.1016/j.ab.2008.11.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 11/18/2022]
Abstract
Previously, we reported the development of two in vitro time-resolved Föster resonance energy transfer (tr-FRET)-based assays for evaluating the potency and efficacy of different ligands of thyroid hormone receptor (TR) for regulating the recruitment of coregulators. We could measure independently, in separate assays, both the recruitment of SRC3 (steroid receptor coactivator 3, a transcriptional coactivator) and the dissociation of NCoR (nuclear receptor corepressor, a transcriptional corepressor) from a TR*retinoid X receptor (RXR) heterodimer bound to a DR+4 thyroid hormone response element (TRE). Here, by using the distinct emission peaks of Tb(3+), the donor fluorophore used to label the TRE-bound TR*RXR heterodimers, and selecting two distinct acceptor fluorophores, fluorescein and cyanine 5, to label of NCoR and SRC3, respectively, we have integrated our previous two assay formats into a single assay. Thus, we can measure the potency of TR ligands simultaneously for NCoR dissociation and SRC3 recruitment activities in a system that mimics many features of the cellular context of TR action. The performance of this dual assay was tested with a known, highly potent physiological TR ligand, triiodothyronine (T(3)), and with a synthetic TR antagonist, NH-3. Measured potencies and efficacies of these two TR ligands from this dual assay are highly comparable to those obtained from the two independent assays. Thus, this dual-acceptor tr-FRET assay further simplifies the measurement of ligand-modulated TR-coregulator interactions and should improve the overall efficiency of the screening process of TR drug discovery programs.
Collapse
Affiliation(s)
- M Jeyakumar
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
34
|
Rieck M, Meissner W, Ries S, Müller-Brüsselbach S, Müller R. Ligand-mediated regulation of peroxisome proliferator-activated receptor (PPAR) beta/delta: a comparative analysis of PPAR-selective agonists and all-trans retinoic acid. Mol Pharmacol 2008; 74:1269-77. [PMID: 18701617 DOI: 10.1124/mol.108.050625] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that modulate target gene expression in response to natural fatty acid ligands and synthetic agonists. It is noteworthy that all trans-retinoic acid (atRA) has recently been reported to act as a ligand for PPARbeta/delta, to activate its transcriptional activity, and, in contrast to the "classic" function of atRA, to stimulate cell proliferation (Schug et al., 2007). Here, we report that in contrast to synthetic PPARbeta/delta agonists, atRA failed to induce the transcriptional activity of PPARbeta/delta using different types of reporter gene assays. Likewise, atRA did not affect the expression of the bona fide PPARbeta/delta target genes ADRP and ANGPTL4 but strongly increased expression of the retinoic acid target gene CYP26A under the identical experimental conditions. Consistent with these observations, atRA did not compete with established PPARbeta/delta agonists in a ligand binding assay, and atRA did not enable the interaction of PPARbeta/delta with a coactivator peptide in a time-resolved fluorescence resonance energy transfer assay in vitro. These results are in sharp contrast to the effect of established PPARbeta/delta agonists in both in vitro assays. Taken as a whole, these data strongly suggest that atRA does not function as a ligand of PPARbeta/delta in any of the experimental systems tested and that the previously reported atRA effects are more likely to reflect an uncharacterized and less direct mechanism.
Collapse
Affiliation(s)
- Markus Rieck
- Institute of Molecular Biology and Tumor Research , Philipps University, 35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
35
|
Jeyakumar M, Webb P, Baxter JD, Scanlan TS, Katzenellenbogen JA. Quantification of ligand-regulated nuclear receptor corepressor and coactivator binding, key interactions determining ligand potency and efficacy for the thyroid hormone receptor. Biochemistry 2008; 47:7465-76. [PMID: 18558711 PMCID: PMC2574600 DOI: 10.1021/bi800393u] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The potency and efficacy of ligands for nuclear receptors (NR) result both from the affinity of the ligand for the receptor and from the affinity that various coregulatory proteins have for ligand-receptor complexes; the latter interaction, however, is rarely quantified. To understand the molecular basis for ligand potency and efficacy, we developed dual time-resolved fluorescence resonance energy transfer (tr-FRET) assays and quantified binding of both ligand and coactivator or corepressor to the thyroid hormone receptor (TR). Promoter-bound TR exerts dual transcriptional regulatory functions, recruiting corepressor proteins and repressing transcription in the absence of thyroid hormones (THs) and shedding corepressors in favor of coactivators upon binding agonists, activating transcription. Our tr-FRET assays involve a TRE sequence labeled with terbium (fluorescence donor), TRbeta.RXRalpha heterodimer, and fluorescein-labeled NR interaction domains of coactivator SRC3 or corepressor NCoR (fluorescence acceptors). Through coregulator titrations, we could determine the affinity of SRC3 or NCoR for TRE-bound TR.RXR heterodimers, unliganded or saturated with different THs. Alternatively, through ligand titrations, we could determine the relative potencies of different THs. The order of TR agonist potencies is as follows: GC-1 approximately T 3 approximately TRIAC approximately T 4 >> rT 3 (for both coactivator recruitment and corepressor dissociation); the affinities of SRC3 binding to TR-ligand complexes followed a similar trend. This highlights the fact that the low activity of rT 3 is derived both from its low affinity for TR and from the low affinity of SRC for the TR-rT 3 complex. The TR antagonist NH-3 failed to induce SRC3 recruitment but did effect NCoR dissociation. These assays provide quantitative information about the affinity of two key interactions that are determinants of NR ligand potency and efficacy.
Collapse
Affiliation(s)
- M. Jeyakumar
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| | - Paul Webb
- Diabetes Center and Metabolic Research Unit, University of California, San Francisco, CA 94143
| | - John D. Baxter
- Diabetes Center and Metabolic Research Unit, University of California, San Francisco, CA 94143
| | - Thomas S. Scanlan
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | | |
Collapse
|
36
|
Sanderson LM, de Groot PJ, Hooiveld GJEJ, Koppen A, Kalkhoven E, Müller M, Kersten S. Effect of synthetic dietary triglycerides: a novel research paradigm for nutrigenomics. PLoS One 2008; 3:e1681. [PMID: 18301758 PMCID: PMC2244803 DOI: 10.1371/journal.pone.0001681] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/24/2008] [Indexed: 11/18/2022] Open
Abstract
Background The effect of dietary fats on human health and disease are likely mediated by changes in gene expression. Several transcription factors have been shown to respond to fatty acids, including SREBP-1c, NF-κB, RXRs, LXRs, FXR, HNF4α, and PPARs. However, it is unclear to what extent these transcription factors play a role in gene regulation by dietary fatty acids in vivo. Methodology/Principal Findings Here, we take advantage of a unique experimental design using synthetic triglycerides composed of one single fatty acid in combination with gene expression profiling to examine the effects of various individual dietary fatty acids on hepatic gene expression in mice. We observed that the number of significantly changed genes and the fold-induction of genes increased with increasing fatty acid chain length and degree of unsaturation. Importantly, almost every single gene regulated by dietary unsaturated fatty acids remained unaltered in mice lacking PPARα. In addition, the majority of genes regulated by unsaturated fatty acids, especially docosahexaenoic acid, were also regulated by the specific PPARα agonist WY14643. Excellent agreement was found between the effects of unsaturated fatty acids on mouse liver versus cultured rat hepatoma cells. Interestingly, using Nuclear Receptor PamChip® Arrays, fatty acid- and WY14643-induced interactions between PPARα and coregulators were found to be highly similar, although several PPARα-coactivator interactions specific for WY14643 were identified. Conclusions/Significance We conclude that the effects of dietary unsaturated fatty acids on hepatic gene expression are almost entirely mediated by PPARα and mimic those of synthetic PPARα agonists in terms of regulation of target genes and molecular mechanism. Use of synthetic dietary triglycerides may provide a novel paradigm for nutrigenomics research.
Collapse
Affiliation(s)
- Linda M. Sanderson
- Nutrigenomics Consortium, Top Institute (TI) Food and Nutrition, Wageningen, The Netherlands
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Philip J. de Groot
- Nutrigenomics Consortium, Top Institute (TI) Food and Nutrition, Wageningen, The Netherlands
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Guido J. E. J. Hooiveld
- Nutrigenomics Consortium, Top Institute (TI) Food and Nutrition, Wageningen, The Netherlands
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Arjen Koppen
- Department of Metabolic and Endocrine Diseases, Universitair Medisch Centrum (UMC) Utrecht, Utrecht, The Netherlands
| | - Eric Kalkhoven
- Department of Metabolic and Endocrine Diseases, Universitair Medisch Centrum (UMC) Utrecht, Utrecht, The Netherlands
| | - Michael Müller
- Nutrigenomics Consortium, Top Institute (TI) Food and Nutrition, Wageningen, The Netherlands
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrigenomics Consortium, Top Institute (TI) Food and Nutrition, Wageningen, The Netherlands
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Noy N. Ligand specificity of nuclear hormone receptors: sifting through promiscuity. Biochemistry 2007; 46:13461-7. [PMID: 17983246 DOI: 10.1021/bi7018699] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The superfamily of nuclear hormone receptors includes transcription factors that play key roles in regulating multiple biological functions during embryonic development and in adult tissues, as well as in many disease states. The quintessential characteristic of nuclear receptors, and the basis for the name of the family, is that their transcriptional activities can be regulated by small molecules, usually comprised of hydrophobic compounds. However, the endogenous ligands for approximately half of the members of the nuclear receptor family are unknown, and these receptors are thus designated as "orphan receptors". One class of orphan receptors encompasses receptors that display a broad ligand selectivity; i.e., they can promiscuously bind to and may be activated by multiple ligands. This characteristic complicates the identification of physiologically meaningful ligands that activate these receptors in vivo. Here, we discuss a few examples of promiscuous receptors and outline strategies that may be employed in shedding light on the nature of bona fide ligands for such receptors.
Collapse
Affiliation(s)
- Noa Noy
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4965, USA.
| |
Collapse
|
38
|
Abstract
Peroxisomes are involved in the synthesis and degradation of complex fatty acids. They contain enzymes involved in the α-, β- and ω-oxidation pathways for fatty acids. Investigation of these pathways and the diseases associated with mutations in enzymes involved in the degradation of phytanic acid have led to the clarification of the pathophysiology of Refsum's disease, rhizomelic chondrodysplasia and AMACR (α-methylacyl-CoA racemase) deficiency. This has highlighted the role of an Fe(II)- and 2-oxoglutarate-dependent oxygenases [PhyH (phytanoyl-CoA 2-hydroxylase), also known as PAHX], thiamin-dependent lyases (phytanoyl-CoA lyase) and CYP (cytochrome P450) family 4A in fatty acid metabolism. The differential regulation and biology of these pathways is suggesting novel ways to treat the neuro-ophthalmological sequelae of Refsum's disease. More recently, the discovery that AMACR and other peroxisomal β-oxidation pathway enzymes are highly expressed in prostate and renal cell cancers has prompted active investigation into the role of these oxidation pathways and the peroxisome in the progression of obesity- and insulin resistance-related cancers.
Collapse
|