1
|
Galigniana NM, Ruiz MC, Piwien-Pilipuk G. FK506 binding protein 51: Its role in the adipose organ and beyond. J Cell Biochem 2024; 125:e30351. [PMID: 36502528 DOI: 10.1002/jcb.30351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 02/17/2024]
Abstract
There is a great body of evidence that the adipose organ plays a central role in the control not only of energy balance, but importantly, in the maintenance of metabolic homeostasis. Interest in the study of different aspects of its physiology grew in the last decades due to the pandemic of obesity and the consequences of metabolic syndrome. It was not until recently that the first evidence for the role of the high molecular weight immunophilin FK506 binding protein (FKBP) 51 in the process of adipocyte differentiation have been described. Since then, many new facets have been discovered of this stress-responsive FKBP51 as a central node for precise coordination of many cell functions, as shown for nuclear steroid receptors, autophagy, signaling pathways as Akt, p38 MAPK, and GSK3, as well as for insulin signaling and the control of glucose homeostasis. Thus, the aim of this review is to integrate and discuss the recent advances in the understanding of the many roles of FKBP51 in the adipose organ.
Collapse
Affiliation(s)
- Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marina C Ruiz
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| |
Collapse
|
2
|
Zhu J, Li W. Role of metabolites in mediating the effect of triacylglycerol on aplastic anemia. Hematology 2024; 29:2379178. [PMID: 39017035 DOI: 10.1080/16078454.2024.2379178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Observational studies have found a link between lipid metabolism disorders and aplastic anemia (AA). However, due to confounding variables and reverse causation, it is difficult to conclude such a causal link. The precise mechanism and potential implications of lipid metabolism disorder in AA remain unclear, necessitating further studies in this area. METHOD This study aimed to examine the causal relationship between 38 different subtypes of triacylglycerols and AA using two-sample Mendelian randomization (MR). Additionally, two-step MR analyses were conducted to investigate the mediating effects of vitamin A to oleoyl-linoleoyl-glycerol (18:1-18:2) ratio. RESULTS MR analysis showed that triacylglycerol (53:3) levels were positively associated with the risk of AA [inverse variance weighting (IVW): odds ratio (OR) = 1.131,95% confidence interval (CI):1.029-1.243, P = 0.011; Bayesian weighted MR (BWMR): OR = 1.137,95% CI:1.031-1.254, P = 0.010]. Triacylglycerol (53:3) level showed no inverse causality with AA (IVW:P = 0.834; BWMR:P = 0.349). Mediation analyses showed that increasing the vitamin A to oleoyl-linoleoyl-glycerol (18:1-18:2) ratio can decrease the risk of AA. CONCLUSION This study revealed the association between vitamin A to oleoyl-linoleoyl-glycerol (18:1-18:2) ratio, triacylglycerol (53:3) levels and AA, and indicated that lowering triacylglycerol (53:3) levels can reduce the risk of AA.
Collapse
Affiliation(s)
- Jingkui Zhu
- Department of Hematology, Jiujiang University Affiliated Hospital, Jiujiang, Jiangxi, People's Republic of China
| | | |
Collapse
|
3
|
Huang MC, Chen PL, Hsu CL. Transcriptome Analysis of Mesenchymal Progenitor Cells Revealed Molecular Insights into Metabolic Dysfunction and Inflammation in Polycystic Ovary Syndrome. Int J Mol Sci 2024; 25:7948. [PMID: 39063189 PMCID: PMC11276887 DOI: 10.3390/ijms25147948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a female endocrine disorder with metabolic issues. Hyperandrogenism combined with hyperinsulinemia exacerbates the reproductive, metabolic, and inflammatory problems in PCOS patients. The etiology of PCOS is unclear. Patient-specific induced pluripotent stem cells (iPSCs) offer a promising model for studying disease mechanisms and conducting drug screening. Here, we aim to use mesenchymal progenitor cells (MPCs) derived from PCOS iPSCs to explore the mechanism of PCOS. We compared the transcriptome profiles of PCOS and healthy control (HC) iPSC-derived MPCs (iPSCMs). Moreover, we assess the impact of androgens on iPSCMs. In the comparison between PCOS and HC, the expression levels of 1026 genes were significantly different. A gene set enrichment analysis (GSEA) revealed that adipogenesis- and metabolism-related genes were downregulated, whereas inflammation-related genes were upregulated in the PCOS iPSCMs. Dysregulation of the TGF-β1 and Wnt signaling pathways was observed in the PCOS iPSCMs. Furthermore, there was impaired adipogenesis and decreased lipolysis in the PCOS iPSCMs-derived adipocytes. With testosterone treatment, genes related to metabolism were upregulated in the HC iPSCMs but downregulated in the PCOS iPSCMs. The impact of testosterone varied among HCs and PCOS iPSCMs, possibly because of a genetic predisposition toward PCOS. This study found specific signaling pathways that could serve as therapeutic targets for PCOS.
Collapse
Affiliation(s)
- Mei-Chi Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chia-Lang Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| |
Collapse
|
4
|
Chen K, Wong TH, Tan YG, Tay KJ, Tan WC, Chan J, Ho H, Cheng C, Teoh JYC, Chiu PKF, Wang HJ, Saad MB, Kanesvaran R, Li YQ, Ng CT, Tuan JKL, Yuen JSP. Cardio-oncology in advanced prostate cancer. Front Oncol 2024; 14:1386597. [PMID: 38947889 PMCID: PMC11211357 DOI: 10.3389/fonc.2024.1386597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Treatment intensification with androgen deprivation therapy (ADT) and androgen receptor pathway inhibitors (ARPi) have led to improved survival in advanced prostate cancer. However, ADT is linked to significant cardiovascular toxicity, and ARPi also negatively impacts cardiovascular health. Together with a higher prevalence of baseline cardiovascular risk factors reported among prostate cancer survivors at diagnosis, there is a pressing need to prioritise and optimise cardiovascular health in this population. Firstly, While no dedicated cardiovascular toxicity risk calculators are available, other tools such as SCORE2 can be used for baseline cardiovascular risk assessment. Next, selected patients on combination therapy may benefit from de-escalation of ADT to minimise its toxicities while maintaining cancer control. These patients can be characterised by an exceptional PSA response to hormonal treatment, favourable disease characteristics and competing comorbidities that warrant a less aggressive treatment regime. In addition, emerging molecular and genomic biomarkers hold the potential to identify patients who are suited for a de-escalated treatment approach either with ADT or with ARPi. One such biomarker is AR-V7 splice variant that predicts resistance to ARPi. Lastly, optimization of modifiable cardiovascular risk factors for patients through a coherent framework (ABCDE) and exercise therapy is equally important. This article aims to comprehensively review the cardiovascular impact of hormonal manipulation in metastatic hormone-sensitive prostate cancer, propose overarching strategies to mitigate cardiovascular toxicity associated with hormonal treatment, and, most importantly, raise awareness about the detrimental cardiovascular effects inherent in our current management strategies involving hormonal agents.
Collapse
Affiliation(s)
- Kenneth Chen
- Department of Urology, Singapore General Hospital, Singapore, Singapore
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Ting Hong Wong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Guang Tan
- Department of Urology, Singapore General Hospital, Singapore, Singapore
| | - Kae Jack Tay
- Department of Urology, Singapore General Hospital, Singapore, Singapore
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Wei Chong Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Johan Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Henry Ho
- Department of Urology, Singapore General Hospital, Singapore, Singapore
| | - Christopher Cheng
- Department of Urology, Singapore General Hospital, Singapore, Singapore
| | - Jeremy Yuen-Chun Teoh
- S. H. Ho Urology Centre, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Peter Ka-Fung Chiu
- S. H. Ho Urology Centre, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hung Jen Wang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University and College of Medicine, Kaohsiung, Taiwan
| | - Marniza Binti Saad
- Department of Clinical Oncology, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - You Quan Li
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Choon Ta Ng
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
| | | | - John Shyi Peng Yuen
- Department of Urology, Singapore General Hospital, Singapore, Singapore
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Popa MA, Mihai CM, Șuică VI, Antohe F, Dubey RK, Leeners B, Simionescu M. Dihydrotestosterone Augments the Angiogenic and Migratory Potential of Human Endothelial Progenitor Cells by an Androgen Receptor-Dependent Mechanism. Int J Mol Sci 2024; 25:4862. [PMID: 38732080 PMCID: PMC11084206 DOI: 10.3390/ijms25094862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Endothelial progenitor cells (EPCs) play a critical role in cardiovascular regeneration. Enhancement of their native properties would be highly beneficial to ensuring the proper functioning of the cardiovascular system. As androgens have a positive effect on the cardiovascular system, we hypothesized that dihydrotestosterone (DHT) could also influence EPC-mediated repair processes. To evaluate this hypothesis, we investigated the effects of DHT on cultured human EPCs' proliferation, viability, morphology, migration, angiogenesis, gene and protein expression, and ability to integrate into cardiac tissue. The results showed that DHT at different concentrations had no cytotoxic effect on EPCs, significantly enhanced the cell proliferation and viability and induces fast, androgen-receptor-dependent formation of capillary-like structures. DHT treatment of EPCs regulated gene expression of androgen receptors and the genes and proteins involved in cell migration and angiogenesis. Importantly, DHT stimulation promoted EPC migration and the cells' ability to adhere and integrate into murine cardiac slices, suggesting it has a role in promoting tissue regeneration. Mass spectrometry analysis further highlighted the impact of DHT on EPCs' functioning. In conclusion, DHT increases the proliferation, migration, and androgen-receptor-dependent angiogenesis of EPCs; enhances the cells' secretion of key factors involved in angiogenesis; and significantly potentiates cellular integration into heart tissue. The data offer support for potential therapeutic applications of DHT in cardiovascular regeneration and repair processes.
Collapse
Affiliation(s)
- Mirel Adrian Popa
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (M.A.P.); (C.M.M.); (V.I.Ș.); (F.A.)
| | - Cristina Maria Mihai
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (M.A.P.); (C.M.M.); (V.I.Ș.); (F.A.)
| | - Viorel Iulian Șuică
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (M.A.P.); (C.M.M.); (V.I.Ș.); (F.A.)
| | - Felicia Antohe
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (M.A.P.); (C.M.M.); (V.I.Ș.); (F.A.)
| | - Raghvendra K. Dubey
- Department for Reproductive Endocrinology, University Zurich, 8006 Zürich, Switzerland; (R.K.D.); (B.L.)
| | - Brigitte Leeners
- Department for Reproductive Endocrinology, University Zurich, 8006 Zürich, Switzerland; (R.K.D.); (B.L.)
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (M.A.P.); (C.M.M.); (V.I.Ș.); (F.A.)
| |
Collapse
|
6
|
Rizk J, Sahu R, Duteil D. An overview on androgen-mediated actions in skeletal muscle and adipose tissue. Steroids 2023; 199:109306. [PMID: 37634653 DOI: 10.1016/j.steroids.2023.109306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Androgens are a class of steroid hormones primarily associated with male sexual development and physiology, but exert pleiotropic effects in either sex. They have a crucial role in various physiological processes, including the regulation of skeletal muscle and adipose tissue homeostasis. The effects of androgens are mainly mediated through the androgen receptor (AR), a ligand-activated nuclear receptor expressed in both tissues. In skeletal muscle, androgens via AR exert a multitude of effects, ranging from increased muscle mass and strength, to the regulation of muscle fiber type composition, contraction and metabolic functions. In adipose tissue, androgens influence several processes including proliferation, fat distribution, and metabolism but they display depot-specific and organism-specific effects which differ in certain context. This review further explores the potential mechanisms underlying androgen-AR signaling in skeletal muscle and adipose tissue. Understanding the roles of androgens and their receptor in skeletal muscle and adipose tissue is essential for elucidating their contributions to physiological processes, disease conditions, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Joe Rizk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Rajesh Sahu
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Delphine Duteil
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France.
| |
Collapse
|
7
|
Ortega-Cuartiella A. Therapeutic Potential of Adipose-Derived Stem Cells and Their Secretome in Reversible Alopecias: A Systematic Review. Int J Trichology 2023; 15:173-182. [PMID: 39170092 PMCID: PMC11335044 DOI: 10.4103/ijt.ijt_3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/19/2021] [Indexed: 08/23/2024] Open
Abstract
Androgenic alopecia (AGA) and alopecia areata (AA) are two highly prevalent conditions, affecting both men and women of a wide range of ages, which strongly impact their quality of life and self-esteem. Both pathologies are deemed to be reversible, although conventional therapies have shown limited scope and efficacy. New therapeutic approaches, focusing on the degenerative changes that take place in the hair follicle, are needed to achieve better outcomes. For instance, adipose-derived stem cells (ADSC), abundant and easy to obtain, hold great potential in follicular regeneration. ADSCs can be isolated as stromal vascular fraction (SVF) by the enzymatic digestion of the lipoaspirate or as nanofat by the mechanical breakdown of adipocytes. In addition, commercial preparations of the conditioned medium of the ADSCs secretome (ADSC-conditionate medium [CM]) have entered the market as an appealing alternative because of their comparatively lower cost and accessibility. A search was conducted, crossing relevant terms, on PubMed Central and Google Scholar. Criteria for inclusion were studies in the past 10 years on humans with AGA or AA, where either SVF, nanofat, or ADSC-CM was tested as the main treatment. Eleven publications qualified: two studied nanofat, three, ADSC-CM, and six, SVF, either individually or in combination with other therapies. Only one randomized controlled trial (RCT) was found and classified as evidence 2b according to the Sackett scale. The rest were case-control studies or case series with small samples and no control, graded as evidence 3b and 4. A meta-analysis could not be conducted due to the heterogenicity of the study designs. Given the evidence obtained, Level D NICE recommendation was established. However, we consider that the positive findings are sufficiently consistent to support the elaboration of further RCTs that share criteria and methods.
Collapse
Affiliation(s)
- Alexis Ortega-Cuartiella
- Ad Astra Clinic® Medical Director and Founder, Cl. Doctor Roux 67, Bajo. Barcelona, Spain, International Society for Stem Cell Applications: Platinum Member, Real Instituto Alfonso XIII: Academician
| |
Collapse
|
8
|
Interaction between gut microbiota and sex hormones and their relation to sexual dimorphism in metabolic diseases. Biol Sex Differ 2023; 14:4. [PMID: 36750874 PMCID: PMC9903633 DOI: 10.1186/s13293-023-00490-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Metabolic diseases, such as obesity, metabolic syndrome (MetS) and type 2 diabetes (T2D), are now a widespread pandemic in the developed world. These pathologies show sex differences in their development and prevalence, and sex steroids, mainly estrogen and testosterone, are thought to play a prominent role in this sexual dimorphism. The influence of sex hormones on these pathologies is not only reflected in differences between men and women, but also between women themselves, depending on the hormonal changes associated with the menopause. The observed sex differences in gut microbiota composition have led to multiple studies highlighting the interaction between steroid hormones and the gut microbiota and its influence on metabolic diseases, ultimately pointing to a new therapy for these diseases based on the manipulation of the gut microbiota. This review aims to shed light on the role of sexual hormones in sex differences in the development and prevalence of metabolic diseases, focusing on obesity, MetS and T2D. We focus also the interaction between sex hormones and the gut microbiota, and in particular the role of microbiota in aspects such as gut barrier integrity, inflammatory status, and the gut-brain axis, given the relevance of these factors in the development of metabolic diseases.
Collapse
|
9
|
O'Bryan SM, Connor KR, Drummer DJ, Lavin KM, Bamman MM. Considerations for Sex-Cognizant Research in Exercise Biology and Medicine. Front Sports Act Living 2022; 4:903992. [PMID: 35721874 PMCID: PMC9204149 DOI: 10.3389/fspor.2022.903992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
As the fields of kinesiology, exercise science, and human movement developed, the majority of the research focused on male physiology and extrapolated findings to females. In the medical sphere, basing practice on data developed in only males resulted in the removal of drugs from the market in the late 1990s due to severe side effects (some life-threatening) in females that were not observed in males. In response to substantial evidence demonstrating exercise-induced health benefits, exercise is often promoted as a key modality in disease prevention, management, and rehabilitation. However, much like the early days of drug development, a historical literature knowledge base of predominantly male studies may leave the exercise field vulnerable to overlooking potentially key biological differences in males and females that may be important to consider in prescribing exercise (e.g., how exercise responses may differ between sexes and whether there are optimal approaches to consider for females that differ from conventional approaches that are based on male physiology). Thus, this review will discuss anatomical, physiological, and skeletal muscle molecular differences that may contribute to sex differences in exercise responses, as well as clinical considerations based on this knowledge in athletic and general populations over the continuum of age. Finally, this review summarizes the current gaps in knowledge, highlights the areas ripe for future research, and considerations for sex-cognizant research in exercise fields.
Collapse
Affiliation(s)
- Samia M. O'Bryan
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kathleen R. Connor
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Devin J. Drummer
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kaleen M. Lavin
- The Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
| | - Marcas M. Bamman
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- The Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
- *Correspondence: Marcas M. Bamman
| |
Collapse
|
10
|
Venkatesh VS, Grossmann M, Zajac JD, Davey RA. The role of the androgen receptor in the pathogenesis of obesity and its utility as a target for obesity treatments. Obes Rev 2022; 23:e13429. [PMID: 35083843 PMCID: PMC9286619 DOI: 10.1111/obr.13429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 11/27/2022]
Abstract
Obesity is associated with hypothalamic-pituitary-testicular axis dysregulation in males. Here, we summarize recent evidence derived from clinical trials and studies in preclinical animal models regarding the role of androgen receptor (AR) signaling in the pathophysiology of males with obesity. We also discuss therapeutic strategies targeting the AR for the treatment of obesity and their limitations and provide insight into the future research necessary to advance this field.
Collapse
Affiliation(s)
- Varun S Venkatesh
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria
| | - Mathis Grossmann
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria.,Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria.,Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Rachel A Davey
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria
| |
Collapse
|
11
|
Lustig RH, Collier D, Kassotis C, Roepke TA, Ji Kim M, Blanc E, Barouki R, Bansal A, Cave MC, Chatterjee S, Choudhury M, Gilbertson M, Lagadic-Gossmann D, Howard S, Lind L, Tomlinson CR, Vondracek J, Heindel JJ. Obesity I: Overview and molecular and biochemical mechanisms. Biochem Pharmacol 2022; 199:115012. [PMID: 35393120 PMCID: PMC9050949 DOI: 10.1016/j.bcp.2022.115012] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.
Collapse
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California, San Francisco, CA 94143, United States
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Christopher Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States
| | - Troy A Roepke
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Min Ji Kim
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Etienne Blanc
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Robert Barouki
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, United States
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, United States
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Dominique Lagadic-Gossmann
- Research Institute for Environmental and Occupational Health, University of Rennes, INSERM, EHESP, Rennes, France
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Lars Lind
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States.
| |
Collapse
|
12
|
Yarmohammadi R, Ghollasi M, Kheirollahzadeh F, Soltanyzadeh M, Heshmati M, Amirkhani MA. Osteogenic differentiation of human induced pluripotent stem cell in the presence of testosterone and 17 β-estradiol in vitro. In Vitro Cell Dev Biol Anim 2022; 58:179-188. [PMID: 35175493 DOI: 10.1007/s11626-022-00652-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
Recently, numerous scientific approaches have been explored to treat various diseases using stem cells. In 2006, induced pluripotent stem cell (iPSC) were introduced by Takahashi and Yamanaka and showed the potential of self-renewing and differentiation into all types of targeted cells in vitro. In this investigation, we studied the effect of testosterone (T) individually or in the presence of 17 β-estradiol (E2) on osteogenic differentiation of human iPSC (hiPSC) during 2 wk. The optimal concentrations of sex steroid hormones were examined by MTT assay and acridine orange (AO) staining. The impact of E2 and T either individually or together as a combination was examined by ALP activity; the content of total mineral calcium, by von Kossa and alizarin red staining. Additionally, the expression rate of osteogenic specific markers was studied via real-time RT-PCR and immunocytochemistry analyses at day 14 of differentiation. The obtained results illustrated that the differentiation medium supplemented with T-E2 increased not only the ALP enzyme activity and the content of calcium but also the osteogenic-related gene and protein expressions on the 14th day. Furthermore, the results were confirmed by mineralized matrix staining. In conclusion, these data suggest that T could be used as an effective factor for osteogenic induction of hiPSCs combined with the E2 in bone regeneration.
Collapse
Affiliation(s)
- Reyhaneh Yarmohammadi
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box, 15719-14911, Tehran, Iran.
| | | | - Maryam Soltanyzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box, 15719-14911, Tehran, Iran
| | - Masoumeh Heshmati
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Pereira AL, Brito DRB, Cutrim Júnior JAA, Castro LA, Silva ICS, Chaves DP, Silva Neto CND. Biochemical profile of castrated and uncastrated male goats supplemented with vitamin E or not. REVISTA BRASILEIRA DE SAÚDE E PRODUÇÃO ANIMAL 2022. [DOI: 10.1590/s1519-994021472022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT The objective of this study was to evaluate the biochemical parameters of goats submitted to castration or not and receiving supplementation with vitamin E or not. A total of 24 goats, uncastrated (12 experimental units) and castrated males (12 experimental units), with average body weight weighing 17.6 kg ± 2.67 kg, were distributed in a completely randomized design in a 2 x 2 factorial arrangement, with two animal conditions (castrated and uncastrated male) and vitamin E supplementation (with and without supplementation), with six replications. There was an effect of treatments (P<0.05) over time for all studied variables. There was an effect of vitamin supplementation (P<0.05) for phosphorus, iron, protein, glucose, aspartate aminotransferase (AST), alanine aminotransferase (ALP) and gamma-glutamyltransferase (GGT). Vitamin supplementation increased glucose, creatinine and GTT levels over time, and reduced levels of phosphorus, iron, protein, albumin, AST and ALP. We conclude that vitamin E influenced the biochemical parameters studied, but castration did not change the biochemical profile of goats, regardless of whether they were supplemented with vitamin E or not.
Collapse
|
14
|
The Effect of Testosterone on Cardiovascular Disease and Cardiovascular Risk Factors in Men: A Review of Clinical and Preclinical Data. CJC Open 2021; 3:1238-1248. [PMID: 34888506 PMCID: PMC8636244 DOI: 10.1016/j.cjco.2021.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 11/20/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. The effects of testosterone, the primary male sex hormone, on cardiovascular risk have been of special interest due to the increased risk of CVD in men. Although it is well established that testosterone levels decline and cardiovascular mortality increases with age, the association between testosterone and CVD remains unclear. Observational and randomized studies on the effects of endogenous and exogenous testosterone have produced conflicting data, and meta-analyses have been inconclusive, suggesting significant study heterogeneity. Despite a lack of adequately powered randomized controlled trials, large observational studies in the early 2010s led to advisories on the use of testosterone replacement therapy. Similar advisories have been mandated for certain types of androgen deprivation therapy. Additional research suggests that testosterone shortens the heart-rate-corrected QT interval, improves glycemic control, induces vasodilation, is prothrombotic, and has anti-obesity effects, whereas associations with atherosclerosis and inflammation are less clear. Despite inconclusive evidence on cardiovascular risk and inconsistencies among clinical practice guidelines, millions of men continue to use testosterone replacement and androgen deprivation therapy. In addition to summarizing clinical and preclinical data, this review provides insight on potential mechanisms of action of testosterone on CVD, applications of this knowledge to clinical settings, and avenues for future research.
Collapse
|
15
|
Kothmann KH, Jacobsen V, Laffitte E, Bromfield C, Grizzaffi M, Jarboe M, Braundmeier-Fleming AG, Bahr JM, Nowak RA, Newell-Fugate AE. Virilizing doses of testosterone decrease circulating insulin levels and differentially regulate insulin signaling in liver and adipose tissue of females. Am J Physiol Endocrinol Metab 2021; 320:E1107-E1118. [PMID: 33900852 PMCID: PMC8285596 DOI: 10.1152/ajpendo.00281.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transgender men undergoing hormone therapy are at risk for insulin resistance. However, how virilizing testosterone therapy affects serum insulin and peripheral insulin sensitivity in transgender men is unknown. This study assessed the effect of acute, virilizing testosterone on serum insulin concentrations and insulin signaling in liver, skeletal muscle, and white adipose tissue (WAT) of female pigs as a translational model for transgender men. Females received three doses of intramuscular testosterone cypionate (TEST females; 50 mg/day/pig) or corn oil (control) spaced 6 days apart starting on the day of estrus (D0). Fasting blood was collected on D0, D3, D5, D11, and D13, and females were euthanized on D13. On D13, TEST females had virilizing concentrations of serum testosterone with normal concentrations of serum estradiol. Virilizing serum testosterone concentrations (D13) were associated with decreased serum insulin and C-peptide concentrations. Blood glucose and serum glycerol concentrations were not altered by testosterone. Virilizing concentrations of testosterone downregulated AR and ESR1 in subcutaneous (sc) WAT and upregulated transcript levels of insulin-signaling pathway components in WAT and liver. At the protein level, virilizing testosterone concentrations were associated with increased PI3K 110α in liver and increased insulin receptor (INSR) and phospho(Ser256)-FOXO1 in visceral (v) WAT but decreased phospho(Ser473)-AKT in vWAT and scWAT. These results suggest that acute exposure to virilizing concentrations of testosterone suppresses circulating insulin levels and results in increased abundance of proteins in the insulin-signaling pathway in liver and altered phosphorylation of key proteins in control of insulin sensitivity in WAT.NEW & NOTEWORTHY Acute virilizing doses of testosterone administered to females suppress circulating insulin levels, upregulate components of the insulin-signaling pathway in liver, and suppress insulin signaling in white adipose tissue. These results suggest that insulin resistance in transgender men may be due to suppression of the insulin-signaling pathway and decreased insulin sensitivity in white adipose tissue.
Collapse
Affiliation(s)
- Kadden H Kothmann
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Victoria Jacobsen
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Emily Laffitte
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Corinne Bromfield
- Agricultural Animal Care and Use Program, Office of the Vice Chancellor for Research, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Matthew Grizzaffi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Monica Jarboe
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Andrea G Braundmeier-Fleming
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Janice M Bahr
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Annie E Newell-Fugate
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
16
|
Sergio LM, Martins YA, Amaral JL, França VLB, de Freitas CF, Neto AM, Hioka N, Ravanelli MI, Mareze-Costa C, Claudio da Costa S, Freire VN, Brunaldi K. Molecular insight on the binding of stevia glycosides to bovine serum albumin. Chem Biol Interact 2021; 344:109526. [PMID: 34023281 DOI: 10.1016/j.cbi.2021.109526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/09/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
The interaction of the steviol and its glycosides (SG), steviolbioside, and rebaudioside A, with bovine serum albumin (BSA) was studied by absorption and fluorescence spectroscopy techniques alongside molecular docking. The stevia derivatives quenched the fluorescence of BSA by a dynamic quenching mechanism, indicating the interaction between the stevia derivatives and BSA. The binding constant (Kb) of steviol was 100-1000-fold higher than those of SG. The stevia derivative/BSA binding reaction was spontaneous and involved the formation of hydrogen bonds and van der Waals interactions between steviol and steviolbioside with BSA, and water reorganization around the rebaudioside A/BSA complex. Molecular docking pointed out the FA1 and FA9 binding sites of BSA as the probable binding sites of steviol and SG, respectively. In conclusion, steviol enhanced hydrophobicity and small size compared to SG may favor its binding to BSA. As steviol and its glycosides share binding sites on BSA with free fatty acids and drugs, they may be competitively displaced from plasma albumin under various physiological states or disease conditions. These findings are clinically relevant and provide an insight into the pharmacokinetics and pharmacodynamics of the stevia glycosides.
Collapse
Affiliation(s)
- Luciana M Sergio
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil
| | - Yandara A Martins
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil
| | - Jackson L Amaral
- Departamento de Física, Universidade Federal Do Ceará, Fortaleza, 60440-900, Brazil
| | - Victor L B França
- Departamento de Física, Universidade Federal Do Ceará, Fortaleza, 60440-900, Brazil
| | - Camila F de Freitas
- Departamento de Química, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil
| | - Antônio Medina Neto
- Departamento de Física, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil
| | - Noboru Hioka
- Departamento de Química, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil
| | - Maria I Ravanelli
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil
| | - Cecília Mareze-Costa
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil
| | | | - Valder N Freire
- Departamento de Física, Universidade Federal Do Ceará, Fortaleza, 60440-900, Brazil
| | - Kellen Brunaldi
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil.
| |
Collapse
|
17
|
Wawrzkiewicz-Jałowiecka A, Lalik A, Soveral G. Recent Update on the Molecular Mechanisms of Gonadal Steroids Action in Adipose Tissue. Int J Mol Sci 2021; 22:5226. [PMID: 34069293 PMCID: PMC8157194 DOI: 10.3390/ijms22105226] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
The gonadal steroids, including androgens, estrogens and progestogens, are involved in the control of body fat distribution in humans. Nevertheless, not only the size and localization of the fat depots depend on the sex steroids levels, but they can also highly affect the functioning of adipose tissue. Namely, the gonadocorticoids can directly influence insulin signaling, lipid metabolism, fatty acid uptake and adipokine production. They may also alter energy balance and glucose homeostasis in adipocytes in an indirect way, e.g., by changing the expression level of aquaglyceroporins. This work presents the recent advances in understanding the molecular mechanism of how the gonadal steroids influence the functioning of adipose tissue leading to a set of detrimental metabolic consequences. Special attention is given here to highlighting the sexual dimorphism of adipocyte functioning in terms of health and disease. Particularly, we discuss the molecular background of metabolic disturbances occurring in consequence of hormonal imbalance which is characteristic of some common endocrinopathies such as the polycystic ovary syndrome. From this perspective, we highlight the potential drug targets and the active substances which can be used in personalized sex-specific management of metabolic diseases, in accord with the patient's hormonal status.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Anna Lalik
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
18
|
Fuhrman BJ, Moore SC, Byrne C, Makhoul I, Kitahara CM, Berrington de González A, Linet MS, Weiderpass E, Adami HO, Freedman ND, Liao LM, Matthews CE, Stolzenberg-Solomon RZ, Gaudet MM, Patel AV, Lee IM, Buring JE, Wolk A, Larsson SC, Prizment AE, Robien K, Spriggs M, Check DP, Murphy N, Gunter MJ, Van Dusen HL, Ziegler RG, Hoover RN. Association of the Age at Menarche with Site-Specific Cancer Risks in Pooled Data from Nine Cohorts. Cancer Res 2021; 81:2246-2255. [PMID: 33820799 PMCID: PMC8137527 DOI: 10.1158/0008-5472.can-19-3093] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/16/2020] [Accepted: 01/22/2021] [Indexed: 12/24/2022]
Abstract
The average age at menarche declined in European and U.S. populations during the 19th and 20th centuries. The timing of pubertal events may have broad implications for chronic disease risks in aging women. Here we tested for associations of recalled menarcheal age with risks of 19 cancers in 536,450 women [median age, 60 years (range, 31-39 years)] in nine prospective U.S. and European cohorts that enrolled participants from 1981 to 1998. Cox regression estimated multivariable-adjusted HRs and 95% confidence intervals (CI) for associations of the age at menarche with risk of each cancer in each cohort and random-effects meta-analysis was used to generate summary estimates for each cancer. Over a median 10 years of follow-up, 60,968 women were diagnosed with a first primary incident cancer. Inverse linear associations were observed for seven of 19 cancers studied. Each additional year in the age at menarche was associated with reduced risks of endometrial cancer (HR = 0.91; 95% CI, 0.89-0.94), liver cancer (HR = 0.92; 95% CI, 0.85-0.99), melanoma (HR = 0.95; 95% CI, 0.93-0.98), bladder cancer (HR = 0.96; 95% CI, 0.93-0.99), and cancers of the colon (HR = 0.97; 95% CI, 0.96-0.99), lung (HR = 0.98; 95% CI, 0.96-0.99), and breast (HR = 0.98; 95% CI, 0.93-0.99). All but one of these associations remained statistically significant following adjustment for baseline body mass index. Similarities in the observed associations between menarche and seven cancers suggest shared underlying causes rooted early in life. We propose as a testable hypothesis that early exposure to sex hormones increases mid-life cancer risks by altering functional capacities of stem cells with roles in systemic energy balance and tissue homeostasis. SIGNIFICANCE: Age at menarche is associated with risk for seven cancers in middle-aged women, and understanding the shared underlying causal pathways across these cancers may suggest new avenues for cancer prevention.
Collapse
Affiliation(s)
- Barbara J Fuhrman
- University of Pittsburgh, Pittsburgh, Pennsylvania.
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Celia Byrne
- Uniformed Health Services University, Bethesda, Maryland
| | - Issam Makhoul
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Cari M Kitahara
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | | | - Martha S Linet
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Hans-Olov Adami
- Harvard T. H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Charles E Matthews
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | | | - Mia M Gaudet
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Alpa V Patel
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - I-Min Lee
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie E Buring
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Anna E Prizment
- Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Kim Robien
- Exercise and Nutrition Sciences, Public Health, George Washington University, Washington, District of Columbia
| | | | - David P Check
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Robert N Hoover
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
19
|
Mali S, Irani K, Mohammadi SM, Sarebanhassanabadi M. Serum free testosterone level in coronary artery disease in candidates for coronary artery bypass graft surgery: A cross-sectional study. Int J Reprod Biomed 2021; 19:293-302. [PMID: 33842826 PMCID: PMC8023009 DOI: 10.18502/ijrm.v19i3.8577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 09/09/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background Due to the controversy over the effect of serum testosterone levels on coronary artery diseases, this survey explores the serum levels of free testosterone, luteinizing hormone, and follicle-stimulating hormone in candidates for coronary artery bypass graft compared with an age-matched control group and evaluates the associated factors in these participants.
Objective To determine the testosterone level in elective coronary artery bypass grafting participants. Materials and Methods In this cross-sectional study, all male patients aged > 40 yr as candidates for elective coronary artery bypass grafting, who were referred to the Afshar Hospital, Yazd, Iran, from March 2018 to March 2019, were included. In total, 100 men were enrolled (50 cases and 50 controls). Their serum levels of free and total testosterone, luteinizing hormone, and follicle-stimulating hormone were measured and the results were compared. Results The findings indicated a significant difference between the two groups in total and free testosterone (both p < 0.001); they were lower in the case group. There was also a significant difference in the total testosterone of the participants with diabetes mellitus compared with no-diabetic individuals (p = 0.007). Free testosterone of diabetic subjects taking insulin was lower compared with those taking no insulin (p = 0.04). There was also an association between the body mass index and free testosterone, left ventricular ejection fraction and total testosterone, and a significant and negative relation between the duration of hospital admissions and free testosterone (p < 0.05). Conclusion This study illustrates that participants with coronary artery disease bear a significantly low testosterone level in comparison with the healthy control group.
Collapse
Affiliation(s)
- Shahriar Mali
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kurosh Irani
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | |
Collapse
|
20
|
Rosenfield RL, Cooke DW, Radovick S. Puberty in the Female and Its Disorders. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:528-626. [DOI: 10.1016/b978-0-323-62520-3.00016-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Siemienowicz KJ, Coukan F, Franks S, Rae MT, Duncan WC. Aberrant subcutaneous adipogenesis precedes adult metabolic dysfunction in an ovine model of polycystic ovary syndrome (PCOS). Mol Cell Endocrinol 2021; 519:111042. [PMID: 33010309 DOI: 10.1016/j.mce.2020.111042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022]
Abstract
Polycystic ovary syndrome (PCOS) affects over 10% of women. Insulin resistance, elevated free fatty acids (FFAs) and increased adiposity are key factors contributing to metabolic dysfunction in PCOS. We hypothesised that aberrant adipogenesis during adolescence, and downstream metabolic perturbations, contributes to the metabolic phenotype of adult PCOS. We used prenatally androgenised (PA) sheep as a clinically realistic model of PCOS. During adolescence, but not during fetal or early life of PA sheep, adipogenesis was decreased in subcutaneous adipose tissue (SAT) accompanied by decreased leptin, adiponectin, and increased FFAs. In adulthood, PA sheep developed adipocyte hypertrophy in SAT paralleled by increased expression of inflammatory markers, elevated FFAs and increased expression of genes linked to fat accumulation in visceral adipose tissue. This study provides better understanding into the pathophysiology of PCOS from puberty to adulthood and identifies opportunity for early clinical intervention to normalise adipogenesis and ameliorate the metabolic phenotype.
Collapse
Affiliation(s)
- Katarzyna J Siemienowicz
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK; School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK.
| | - Flavien Coukan
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College, London, UK
| | - Mick T Rae
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - W Colin Duncan
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
22
|
Sebo ZL, Rodeheffer MS. Testosterone metabolites differentially regulate obesogenesis and fat distribution. Mol Metab 2020; 44:101141. [PMID: 33307216 PMCID: PMC7772371 DOI: 10.1016/j.molmet.2020.101141] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/20/2020] [Accepted: 12/03/2020] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE Low testosterone in men (hypogonadism) is associated with obesity and type II diabetes. Testosterone replacement therapy has been shown to reverse these effects. However, the mechanisms by which testosterone regulates total fat mass, fat distribution, and metabolic health are unclear. In this study, we clarify the impact of hypogonadism on these parameters, as well as parse the role of testosterone from its downstream metabolites, dihydrotestosterone (DHT), and estradiol, in the regulation of depot-specific adipose tissue mass. METHODS To achieve this objective, we utilized mouse models of male hypogonadism coupled with hormone replacement therapy, magnetic resonance imaging (MRI), glucose tolerance tests, flow cytometry, and immunohistochemical techniques. RESULTS We observed that castrated mice develop increased fat mass, reduced muscle mass, and impaired glucose metabolism compared with gonadally intact males. Interestingly, obesity is further accelerated in castrated mice fed a high-fat diet, suggesting hypogonadism increases susceptibility to obesogenesis when dietary consumption of fat is elevated. By performing hormone replacement therapy in castrated mice, we show that testosterone impedes visceral and subcutaneous fat mass expansion. Testosterone-derived estradiol selectively blocks visceral fat growth, and DHT selectively blocks the growth of subcutaneous fat. These effects are mediated by depot-specific alterations in adipocyte size. We also show that high-fat diet-induced adipogenesis is elevated in castrated mice and that this can be rescued by androgen treatment. Obesogenic adipogenesis is also elevated in mice where androgen receptor activity is inhibited. CONCLUSIONS These data indicate that hypogonadism impairs glucose metabolism and increases obesogenic fat mass expansion through adipocyte hypertrophy and adipogenesis. In addition, our findings highlight distinct roles for testosterone, DHT, and estradiol in the regulation of total fat mass and fat distribution and reveal that androgen signaling blocks obesogenic adipogenesis in vivo.
Collapse
Affiliation(s)
- Zachary L Sebo
- Yale University, Department of Molecular, Cellular and Developmental Biology, USA
| | - Matthew S Rodeheffer
- Yale University, Department of Molecular, Cellular and Developmental Biology, USA; Department of Comparative Medicine, Yale University, USA; Department of Physiology, Yale University, USA; Yale Stem Cell Center, USA; Yale Program in Integrative Cell Signaling and Neurobiology of Metabolism, USA.
| |
Collapse
|
23
|
Greither T, Wenzel C, Jansen J, Kraus M, Wabitsch M, Behre HM. MiR-130a in the adipogenesis of human SGBS preadipocytes and its susceptibility to androgen regulation. Adipocyte 2020; 9:197-205. [PMID: 32272867 PMCID: PMC7153545 DOI: 10.1080/21623945.2020.1750256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objectives: Adipogenesis is the differentiation process generating mature adipocytes from undifferentiated mesenchymal stem cells. The differentiation can be inhibited by androgens, although knowledge about intracellular effectors of this inhibition is scarce. Recently, androgen-regulated microRNAs were detected as interesting candidates in this context. In this study, we analyse the role of miR-130a and miR-301 in the adipogenesis of human SGBS preadipocytes and whether they are prone to androgen regulation. Materials and Methods: microRNA expression during adipogenic differentiation with or without androgen stimulation was measured by qPCR. Putative target genes of miR-130a and miR-301 were identified by target database search and validated in luciferase reporter assays. Results: miR-130a and miR-301 are both significantly downregulated on day 3 and day 5 of adipogenic differentiation in comparison to day 0. Under androgen stimulation, a significant upregulation of miR-130a was detected after 7 days of adipogenesis lasting to day 14, while miR-301 did not change significantly until day 14. Luciferase reporter assays revealed the androgen receptor (AR), adiponectin (ADIPOQ) and tumour necrosis factor alpha (TNFα) as miR-130a target genes. Conclusions: miR-130a is an androgen-regulated microRNA that is downregulated during the early phase of adipogenesis and exerts its functions by regulating AR and ADIPOQ translation. These data may help to identify new signalling pathways associated with the androgen-mediated inhibition of adipogenesis.
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carina Wenzel
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Julia Jansen
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Matthias Kraus
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Hermann M. Behre
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
24
|
Ernst J, Gert K, Kraus FB, Rolle-Kampczyk UE, Wabitsch M, Dehghani F, Schaedlich K. Androstenedione changes steroidogenic activity of SGBS cells. Endocr Connect 2020; 9:587-598. [PMID: 32580160 PMCID: PMC7354720 DOI: 10.1530/ec-19-0549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022]
Abstract
The rapid increase of obesity during the last decades and its future prospects are alarming. Besides the general discussed causes of obesity, the 'Developmental Origins of Health and Disease' (DOHaD) hypothesis received more attention in recent years. This hypothesis postulates an adverse influence during early development that programs the unborn child for metabolic dysfunctions later in life. Childhood obesity - an as much increasing problem - can be predisposed by maternal overweight and diabetes. Both, obesity and hyperinsulinemia are major causes of female hyperandrogenemia. As predicted by the DOHaD hypothesis and shown in animal models, developmental androgen excess can lead to metabolic abnormalities in offspring. In this study, we investigated, if androgen exposure adversely affects the adipogenic differentiation of preadipocytes and the endocrine function of adult adipocytes. The human SGBS preadipocyte model was used to affirm the de novo biosynthesis of steroid hormones under normal adipogenesis conditions. Normal adipogenesis was paralleled by an increase of corticosteroids and androgens, whereas estrogen remained at a steady level. Treatment with androstenedione had no effect on SGBS proliferation and differentiation, but adult adipocytes exhibited a significant higher accumulation of triglycerides. Progesterone (up to 2-fold), testosterone (up to 38-fold) and cortisone (up to 1.4-fold) - but not cortisol - were elevated by androstenedione administration in adult adipocytes. Estrogen was not altered. Data suggest that androgen does not negatively influence adipogenic differentiation, but steroidogenic function of SGBS adipocytes.
Collapse
Affiliation(s)
- Jana Ernst
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse, Halle (Saale), Germany
- Correspondence should be addressed to J Ernst:
| | - Katharina Gert
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse, Halle (Saale), Germany
| | - Frank Bernhard Kraus
- Central Laboratory, University Hospital Halle (Saale), Ernst-Grube-Strasse, Halle (Saale), Germany
| | | | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse, Halle (Saale), Germany
| | - Kristina Schaedlich
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse, Halle (Saale), Germany
| |
Collapse
|
25
|
Stefan N. Causes, consequences, and treatment of metabolically unhealthy fat distribution. Lancet Diabetes Endocrinol 2020; 8:616-627. [PMID: 32559477 DOI: 10.1016/s2213-8587(20)30110-8] [Citation(s) in RCA: 362] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/02/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
An increase in fat mass is considered to be an important risk factor for the worldwide increase in type 2 diabetes and cardiovascular disease. However, for a given fat mass, there is a large variability in the risk prediction of these cardiometabolic diseases. For example, some lean people unexpectedly have a risk of type 2 diabetes and cardiovascular disease that is similar to the increased risk that is observed in most people who have obesity. What both of these phenotypes have in common is a very characteristic fat distribution. As a result, much focus has been given on the strong predictive power of increased visceral fat mass. However, an analysis of the causes of type 2 diabetes and cardiovascular disease, as well as comparisons to rare diseases such as lipodystrophy and studying genetically determined fat distribution in the general population, suggest that an impaired ability to expand subcutaneous fat in the lower part of the body is also important for predicting the incidence of these cardiometabolic diseases. This Review, first, addresses the identification of distinct fat distribution phenotypes and their risk of cardiometabolic diseases by discussing findings from published studies that have applied precise quantification of different fat depots. Second, this Review provides support for the theory that a lower amount of lower-body fat mass is equally important to a high amount of visceral fat mass as a determinant of cardiometabolic diseases. Third, this Review discusses the genetic and lifestyle-related causes of metabolically healthy and unhealthy fat distribution. Finally, this Review summarises and appraises the effectiveness of lifestyle-related interventions and pharmacological interventions for reducing visceral adiposity and maintaining lower-body fat mass to prevent and treat cardiometabolic diseases.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany; Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Hu JR, Duncan MS, Morgans AK, Brown JD, Meijers WC, Freiberg MS, Salem JE, Beckman JA, Moslehi JJ. Cardiovascular Effects of Androgen Deprivation Therapy in Prostate Cancer: Contemporary Meta-Analyses. Arterioscler Thromb Vasc Biol 2020; 40:e55-e64. [PMID: 31969015 PMCID: PMC7047549 DOI: 10.1161/atvbaha.119.313046] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Androgen deprivation therapy is a cornerstone of prostate cancer treatment. Pharmacological androgen deprivation includes gonadotropin-releasing hormone agonism and antagonism, androgen receptor inhibition, and CYP17 (cytochrome P450 17A1) inhibition. Studies in the past decade have raised concerns about the potential for androgen deprivation therapy to increase the risk of adverse cardiovascular events such as myocardial infarction, stroke, and cardiovascular mortality, possibly by exacerbating cardiovascular risk factors. In this review, we summarize existing data on the cardiovascular effects of androgen deprivation therapy. Among the therapies, abiraterone stands out for increasing risk of cardiac events in meta-analyses of both randomized controlled trials and observational studies. We find a divergence between observational studies, which show consistent positive associations between androgen deprivation therapy use and cardiovascular disease, and randomized controlled trials, which do not show these associations reproducibly.
Collapse
Affiliation(s)
- Jiun-Ruey Hu
- From the Division of Cardiovascular Medicine (J.-R.H., M.S.D., J.D.B., W.C.M., M.S.F., J.-E.S., J.A.B., J.J.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Meredith S Duncan
- From the Division of Cardiovascular Medicine (J.-R.H., M.S.D., J.D.B., W.C.M., M.S.F., J.-E.S., J.A.B., J.J.M.), Vanderbilt University Medical Center, Nashville, TN.,Department of Epidemiology (M.S.D., M.S.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Alicia K Morgans
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL (A.K.M.)
| | - Jonathan D Brown
- From the Division of Cardiovascular Medicine (J.-R.H., M.S.D., J.D.B., W.C.M., M.S.F., J.-E.S., J.A.B., J.J.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Wouter C Meijers
- From the Division of Cardiovascular Medicine (J.-R.H., M.S.D., J.D.B., W.C.M., M.S.F., J.-E.S., J.A.B., J.J.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Matthew S Freiberg
- From the Division of Cardiovascular Medicine (J.-R.H., M.S.D., J.D.B., W.C.M., M.S.F., J.-E.S., J.A.B., J.J.M.), Vanderbilt University Medical Center, Nashville, TN.,Department of Epidemiology (M.S.D., M.S.F.), Vanderbilt University Medical Center, Nashville, TN.,Nashville Veteran Affairs (VA) Medical Center, TN (M.S.F.)
| | - Joe-Elie Salem
- From the Division of Cardiovascular Medicine (J.-R.H., M.S.D., J.D.B., W.C.M., M.S.F., J.-E.S., J.A.B., J.J.M.), Vanderbilt University Medical Center, Nashville, TN.,Department of Pharmacology, AP-HP, Pitié-Salpêtrière Hospital, CIC-1421, INSERM, Sorbonne Universités, UNICO-GRECO Cardio-Oncology Program, Paris, France (J.-E.S.)
| | - Joshua A Beckman
- From the Division of Cardiovascular Medicine (J.-R.H., M.S.D., J.D.B., W.C.M., M.S.F., J.-E.S., J.A.B., J.J.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Javid J Moslehi
- From the Division of Cardiovascular Medicine (J.-R.H., M.S.D., J.D.B., W.C.M., M.S.F., J.-E.S., J.A.B., J.J.M.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
27
|
Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab 2020; 35:100937. [PMID: 32244180 PMCID: PMC7115104 DOI: 10.1016/j.molmet.2020.01.001] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is the most common endocrinopathy among reproductive age women. Although its cardinal manifestations include hyperandrogenism, oligo/anovulation, and/or polycystic ovarian morphology, PCOS women often display also notable metabolic comorbidities. An array of pathogenic mechanisms have been implicated in the etiology of this heterogeneous endocrine disorder; hyperandrogenism at various developmental periods is proposed as a major driver of the metabolic and reproductive perturbations associated with PCOS. However, the current understanding of the pathophysiology of PCOS-associated metabolic disease is incomplete, and therapeutic strategies used to manage this syndrome's metabolic complications remain limited. Scope of review This study is a systematic review of the potential etiopathogenic mechanisms of metabolic dysfunction frequently associated with PCOS, with special emphasis on the metabolic impact of androgen excess on different metabolic tissues and the brain. We also briefly summarize the therapeutic approaches currently available to manage metabolic perturbations linked to PCOS, highlighting current weaknesses and future directions. Major conclusions Androgen excess plays a prominent role in the development of metabolic disturbances associated with PCOS, with a discernible impact on key peripheral metabolic tissues, including the adipose, liver, pancreas, and muscle, and very prominently the brain, contributing to the constellation of metabolic complications of PCOS, from obesity to insulin resistance. However, the current understanding of the pathogenic roles of hyperandrogenism in metabolic dysfunction of PCOS and the underlying mechanisms remain largely incomplete. In addition, the development of more efficient, even personalized therapeutic strategies for the metabolic management of PCOS patients persists as an unmet need that will certainly benefit from a better comprehension of the molecular basis of this heterogeneous syndrome.
Collapse
|
28
|
Kempegowda P, Melson E, Manolopoulos KN, Arlt W, O’Reilly MW. Implicating androgen excess in propagating metabolic disease in polycystic ovary syndrome. Ther Adv Endocrinol Metab 2020; 11:2042018820934319. [PMID: 32637065 PMCID: PMC7315669 DOI: 10.1177/2042018820934319] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) has been traditionally perceived as a reproductive disorder due to its most common presentation with menstrual dysfunction and infertility. However, it is now clear that women with PCOS are at increased risk of metabolic dysfunction, from impaired glucose tolerance and type 2 diabetes mellitus to nonalcoholic fatty liver disease and cardiovascular disease. PCOS is characterised by androgen excess, with cross-sectional data showing that hyperandrogenism is directly complicit in the development of metabolic complications. Recent studies have also shown that C11-oxy C19 androgens are emerging to be clinically and biochemically significant in PCOS, thus emphasising the importance of understanding the impact of both classic and C11-oxy C19 androgens on women's health. Here we discuss androgen metabolism in the context of PCOS, and dissect the role played by androgens in the development of metabolic disease through their effects on metabolic target tissues in women.
Collapse
Affiliation(s)
- Punith Kempegowda
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Eka Melson
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Konstantinos N. Manolopoulos
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | |
Collapse
|
29
|
Melloni C, Nelson A. Effect of Androgen Deprivation Therapy on Metabolic Complications and Cardiovascular Risk. J Cardiovasc Transl Res 2019; 13:451-462. [PMID: 31833002 DOI: 10.1007/s12265-019-09942-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Androgen deprivation therapy (ADT) has been the cornerstone of prostate cancer treatment. ADT delays cancer progression, alleviates cancer-related symptoms, and is associated with survival gains. Despite these established benefits, the extended duration of therapy comes with known side effects. Furthermore, research from the past decade has generated increased awareness for more potentially lethal cardiometabolic consequences of ADT. In this review, we explore the relationship between ADT and cardiometabolic effects. Current literature on this complex relationship remains conflicting, due to a variety of factors, including study design (randomized vs. observational), treatment decision-making, and patient factors. Looking to the future, a combination of well-designed, randomized controlled trials and high-quality, real-world evidence are needed to definitely establish any ADT cardiovascular safety signal and to evaluate the efficacy of potential screening and therapeutic interventions. Furthermore, a collaborative, integrated approach among all health care professionals is critical to accurately delineate patients' potential risk/benefit treatment options.
Collapse
Affiliation(s)
- Chiara Melloni
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA.
| | - Adam Nelson
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
30
|
Androgen-Regulated microRNAs (AndroMiRs) as Novel Players in Adipogenesis. Int J Mol Sci 2019; 20:ijms20225767. [PMID: 31744106 PMCID: PMC6888160 DOI: 10.3390/ijms20225767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
The development, homeostasis, or increase of the adipose tissue is driven by the induction of the adipogenic differentiation (adipogenesis) of undifferentiated mesenchymal stem cells (MSCs). Adipogenesis can be inhibited by androgen stimulation of these MSCs resulting in the transcription initiation or repression of androgen receptor (AR) regulated genes. AR not only regulates the transcription of protein-coding genes but also the transcription of several non-coding microRNAs involved in the posttranscriptional gene regulation (herein designated as AndroMiRs). As microRNAs are largely involved in differentiation processes such as adipogenesis, the involvement of AndroMiRs in the androgen-mediated inhibition of adipogenesis is likely, however, not yet intensively studied. In this review, existing knowledge about adipogenesis-related microRNAs and AndroMiRs is summarized, and putative cross-links are drawn, which are still prone to experimental validation.
Collapse
|
31
|
Murphy CS, Liaw L, Reagan MR. In vitro tissue-engineered adipose constructs for modeling disease. BMC Biomed Eng 2019; 1:27. [PMID: 32133436 PMCID: PMC7055683 DOI: 10.1186/s42490-019-0027-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Adipose tissue is a vital tissue in mammals that functions to insulate our bodies, regulate our internal thermostat, protect our organs, store energy (and burn energy, in the case of beige and brown fat), and provide endocrine signals to other organs in the body. Tissue engineering of adipose and other soft tissues may prove essential for people who have lost this tissue from trauma or disease. MAIN TEXT In this review, we discuss the applications of tissue-engineered adipose tissue specifically for disease modeling applications. We provide a basic background to adipose depots and describe three-dimensional (3D) in vitro adipose models for obesity, diabetes, and cancer research applications. CONCLUSIONS The approaches to engineering 3D adipose models are diverse in terms of scaffold type (hydrogel-based, silk-based and scaffold-free), species of origin (H. sapiens and M. musculus) and cell types used, which allows researchers to choose a model that best fits their application, whether it is optimization of adipocyte differentiation or studying the interaction of adipocytes and other cell types like endothelial cells. In vitro 3D adipose tissue models support discoveries into the mechanisms of adipose-related diseases and thus support the development of novel anti-cancer or anti-obesity/diabetes therapies.
Collapse
Affiliation(s)
- Connor S. Murphy
- Maine Medical Center Research Institute, Scarborough, ME USA
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME USA
- Center for Molecular Medicine and Center for Translational Research, 81 Research Drive, Scarborough, ME 04074 USA
| | - Lucy Liaw
- Maine Medical Center Research Institute, Scarborough, ME USA
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME USA
- School of Medicine, Tufts University, Boston, MA USA
- Center for Molecular Medicine and Center for Translational Research, 81 Research Drive, Scarborough, ME 04074 USA
| | - Michaela R. Reagan
- Maine Medical Center Research Institute, Scarborough, ME USA
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME USA
- School of Medicine, Tufts University, Boston, MA USA
- Center for Molecular Medicine and Center for Translational Research, 81 Research Drive, Scarborough, ME 04074 USA
| |
Collapse
|
32
|
Glenske K, Schuler G, Arnhold S, Elashry MI, Wagner AS, Barbeck M, Neumann E, Müller-Ladner U, Schnettler R, Wenisch S. Effects of testosterone and 17β-estradiol on osteogenic and adipogenic differentiation capacity of human bone-derived mesenchymal stromal cells of postmenopausal women. Bone Rep 2019; 11:100226. [PMID: 31709277 PMCID: PMC6833309 DOI: 10.1016/j.bonr.2019.100226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/11/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022] Open
Abstract
Progressive bone loss is a predominant symptom of aging and osteoporosis. Therefore, the effects of sex steroids (i.e. testosterone and 17β-estradiol) on the differentiation capacity of human bone-derived mesenchymal stromal cells (hMSCs), as progenitors of osteoblasts and adipocytes, are of particular interest. The objectives of the present study were, thus, to elucidate whether bone-derived hMSCs of postmenopausal women produce aromatase (CYP19A1) and, whether they modulate their differentiation behaviour in response to testosterone and 17β-estradiol (E2), in relation to their steroid receptor expression. Supplementation of testosterone resulted in a considerable formation of E2 under osteogenic and adipogenic culture conditions, whereas E2 synthesis remained minimal in the cells cultured in basal medium. Concomitant with high aromatase expression and 17β-estradiol formation of the cells cultured in osteogenic medium supplemented with testosterone, a distinct promotion of late-stage osteogenesis was found, as shown by significant matrix mineralization and a notable increase in osteogenic markers. These effects were abrogated by the aromatase inhibitor anastrozole. Under adipogenic conditions, testosterone reduced the occurrence of lipid droplets and led to a decrease in PPARγ and AR expression, independent of anastrozole. Regardless of the culture conditions, ERα was detectable whilst ERβ was not. In conclusion, aromatase activity is limited to differentiated hMSCs and the resulting 17β-estradiol enhances late osteogenic differentiation stages via ERα. Adipogenic differentiation, on the other hand, is reduced by both sex steroids: testosterone via AR and 17β-estradiol.
Collapse
Affiliation(s)
- Kristina Glenske
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, 35392, Germany
| | - Gerhard Schuler
- Veterinary Clinic of Obstetrics, Gynecology and Andrology, Justus-Liebig-University of Giessen, Giessen, 35392, Germany
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, 35392, Germany
| | - Mohamed I Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, 35392, Germany.,Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura, 35516, Egypt
| | - Alena-Svenja Wagner
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, 35392, Germany
| | - Mike Barbeck
- Department of Oral and Maxillofacial Surgery, Division for Regenerative Orofacial Medicine University Hospital Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Elena Neumann
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff-Klinik, Bad Nauheim, 61231, Germany
| | - Ulf Müller-Ladner
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff-Klinik, Bad Nauheim, 61231, Germany
| | - Reinhard Schnettler
- Department of Oral and Maxillofacial Surgery, Division for Regenerative Orofacial Medicine University Hospital Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, 35392, Germany
| |
Collapse
|
33
|
Baatar D, Hwang SG. Effect of testosterone on the differentiation control of stromal vascular cells isolated from longissimus muscle of Hanwoo beef cattle. Meat Sci 2019; 159:107916. [PMID: 31476680 DOI: 10.1016/j.meatsci.2019.107916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
Abstract
Testosterone, as an influential factor in marbling score, requires strict management for uniform development of adipocytes in-between muscle bundles. Present study investigated effect of castration timing and testosterone levels on adipocyte development using SVCs. Isolated SVCs exhibited classical MSC markers, CD31-, CD34-, CD45-, CD90+, and CD105+. ELISA analysis indicated that serum testosterone concentration was highest in non-castrated calves while no significant difference was observed between female, early and late castrated calves. CCK-8 assay showed that concentration of testosterone had no effect on cell proliferation. However, the real-time PCR demonstrated that 20 ng/ml of testosterone suppressed expression of preadipocyte markers, pref-1 and zfp423, but encouraged expression of myoblast markers, myf5 and myoD, via the AR. Consequently, expression of adipogenic markers C/EBPα and PPARγ, as well as accumulation of triglyceride, were decreased in 20 ng/ml testosterone treatment under adipogenic conditions. These findings suggest that by castrating calves before level of testosterone increases, may improve marbling development in the Hanwoo beef industry.
Collapse
Affiliation(s)
- Delgerzul Baatar
- Department of Animal Life and Environmental Science, Hankyong National University, Anseong City 456-749, Republic of Korea
| | - Seong Gu Hwang
- Department of Animal Life and Environmental Science, Hankyong National University, Anseong City 456-749, Republic of Korea.
| |
Collapse
|
34
|
Salzano A, D'Assante R, Lander M, Arcopinto M, Bossone E, Suzuki T, Cittadini A. Hormonal Replacement Therapy in Heart Failure: Focus on Growth Hormone and Testosterone. Heart Fail Clin 2019; 15:377-391. [PMID: 31079696 DOI: 10.1016/j.hfc.2019.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A growing body of evidence led to the hypothesis that heart failure (HF) could be considered a multiple hormone deficiency syndrome. Deficiencies in the main anabolic axes cannot be considered as mere epiphenomena, are very common in HF, and are clearly associated with poor cardiovascular performance and outcomes. Growth hormone deficiency and testosterone deficiency play a pivotal role and the replacement treatment is an innovative therapy that should be considered. This article appraises the current evidence regarding growth hormone and testosterone deficiencies in HF and reviews novel findings about the treatment of these conditions in HF.
Collapse
Affiliation(s)
- Andrea Salzano
- Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK; Department of Translational Medical Sciences, Federico II University, Via Pansini 5, Naples 80138, Italy
| | | | - Mark Lander
- Department of Acute Medicine, University College London Hospitals NHS Foundation Trust, 235 Euston Road, London NW1 2BU, UK
| | - Michele Arcopinto
- Department of Translational Medical Sciences, Federico II University, Via Pansini 5, Naples 80138, Italy; Emergency Department, A Cardarelli Hospital, Via Cardarelli 9, Naples 80131, Italy
| | - Eduardo Bossone
- Cardiology Division, A Cardarelli Hospital, Via Cardarelli 9, Naples 80131, Italy
| | - Toru Suzuki
- Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK
| | - Antonio Cittadini
- Department of Translational Medical Sciences, Federico II University, Via Pansini 5, Naples 80138, Italy; Interdisciplinary Research Centre in Biomedical Materials (CRIB), Piazzale Tecchio 80, Naples 80125, Italy.
| |
Collapse
|
35
|
Kassotis CD, Stapleton HM. Endocrine-Mediated Mechanisms of Metabolic Disruption and New Approaches to Examine the Public Health Threat. Front Endocrinol (Lausanne) 2019; 10:39. [PMID: 30792693 PMCID: PMC6374316 DOI: 10.3389/fendo.2019.00039] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/17/2019] [Indexed: 01/29/2023] Open
Abstract
Obesity and metabolic disorders are of great societal concern and generate substantial human health care costs globally. Interventions have resulted in only minimal impacts on disrupting this worsening health trend, increasing attention on putative environmental contributors. Exposure to numerous environmental contaminants have, over decades, been demonstrated to result in increased metabolic dysfunction and/or weight gain in cell and animal models, and in some cases, even in humans. There are numerous mechanisms through which environmental contaminants may contribute to metabolic dysfunction, though certain mechanisms, such as activation of the peroxisome proliferator activated receptor gamma or the retinoid x receptor, have received considerably more attention than less-studied mechanisms such as antagonism of the thyroid receptor, androgen receptor, or mitochondrial toxicity. As such, research on putative metabolic disruptors is growing rapidly, as is our understanding of molecular mechanisms underlying these effects. Concurrent with these advances, new research has evaluated current models of adipogenesis, and new models have been proposed. Only in the last several years have studies really begun to address complex mixtures of contaminants and how these mixtures may disrupt metabolic health in environmentally relevant exposure scenarios. Several studies have begun to assess environmental mixtures from various environments and study the mechanisms underlying their putative metabolic dysfunction; these studies hold real promise in highlighting crucial mechanisms driving observed organismal effects. In addition, high-throughput toxicity databases (ToxCast, etc.) may provide future benefits in prioritizing chemicals for in vivo testing, particularly once the causative molecular mechanisms promoting dysfunction are better understood and expert critiques are used to hone the databases. In this review, we will review the available literature linking metabolic disruption to endocrine-mediated molecular mechanisms, discuss the novel application of environmental mixtures and implications for in vivo metabolic health, and discuss the putative utility of applying high-throughput toxicity databases to answering complex organismal health outcome questions.
Collapse
|
36
|
Cryopreserved H2
O2
-preconditioned human adipose-derived stem cells exhibit fast post-thaw recovery and enhanced bioactivity against oxidative stress. J Tissue Eng Regen Med 2019; 13:328-341. [DOI: 10.1002/term.2797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/05/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
|
37
|
Mishra S, Nyomba BLG. Prohibitin: A hypothetical target for sex-based new therapeutics for metabolic and immune diseases. Exp Biol Med (Maywood) 2019; 244:157-170. [PMID: 30717609 PMCID: PMC6405819 DOI: 10.1177/1535370219828362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPACT STATEMENT Traditional sex-related biases in research are now obsolete, and it is important to identify the sex of humans, animals, and even cells in research protocols, due to the role of sex as a fundamental facet of biology, predisposition to disease, and response to therapy. Genetic sex, epigenetics and hormonal regulations, generate sex-dimorphisms. Recent investigations acknowledge sex differences in metabolic and immune health as well as chronic diseases. Prohibitin, an evolutionarily conserved molecule, has pleotropic functions in mitochondrial housekeeping, plasma membrane signaling, and nuclear genetic transcription. Studies in adipocytes, macrophages, and transgenic mice indicate that prohibitin interacts with sex steroids and plays a role in mediating sex differences in adipose tissues and immune cell types. Prohibitin may, depending on context, modulate predisposition to chronic metabolic diseases and malignancy and, because of these attributes, could be a target for sex-based therapies of metabolic and immune-related diseases as well as cancer.
Collapse
Affiliation(s)
- Suresh Mishra
- Department of Internal Medicine, University of Manitoba,
Manitoba R3A1R9, Canada
- Department of Physiology & Pathophysiology, University of
Manitoba, Manitoba R3E0J9, Canada
| | - BL Grégoire Nyomba
- Department of Internal Medicine, University of Manitoba,
Manitoba R3A1R9, Canada
| |
Collapse
|
38
|
Yu Y, Yang S, Mao L, Liu C, Chen J, Hu Y, Gan L, Jiang T. Identification of potential metabolic biomarkers in Yin deficiency syndrome using LC–MS. Anat Rec (Hoboken) 2018; 303:2121-2130. [DOI: 10.1002/ar.24025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/31/2018] [Accepted: 08/29/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Yi Yu
- Center for Analyses and Measurements Zhejiang University of Technology Hangzhou China
| | - Su Yang
- Institute of Cell Biology Zhejiang University Hangzhou China
| | - Lian‐Gen Mao
- Institute of Cell Biology Zhejiang University Hangzhou China
| | - Chang‐Ming Liu
- Institute of Cell Biology Zhejiang University Hangzhou China
| | - Jing Chen
- Institute of Cell Biology Zhejiang University Hangzhou China
| | - Yu‐Ting Hu
- South China University of Technology School of Medicine Guangzhou China
| | - Lin Gan
- South China University of Technology School of Medicine Guangzhou China
| | - Ting‐Ting Jiang
- South China University of Technology School of Medicine Guangzhou China
| |
Collapse
|
39
|
Abstract
Low plasma testosterone (T) levels correlated with metabolic syndrome, cardiovascular diseases, and increased mortality risk. T exerts a significant effect on the regulation of adipose tissue accumulation, and in the glucose and lipids metabolism. Adipocytes are the primary source of the most important adipokines responsible for inflammation and chronic diseases. This review aims to analyze the possible effect of T on the regulation of the proinflammatory cytokines secretion. A systematic literature search on MEDLINE, Google Scholar, and Cochrane using the combination of the following keywords: “testosterone” with “inflammation,” “cytokines,” “adiponectin, CRP, IL-1B, IL-6, TNFα, leptin” was conducted. Sixteen articles related to the effect of low T level and 18 to the effect of T therapy on proinflammatory cytokine were found. T exerts a significant inhibitory effect on adipose tissue formation and the expression of various adipocytokines, such as leptin, TNF-α, IL-6, IL-1, and is positively correlated with adiponectin level, whereas a low T level is correlated with increased expression of markers of inflammation. Further studies are necessary to investigate the role of T, integrated with weight loss and physical activity, on its action on the mechanisms of production and regulation of proinflammatory cytokines.
Collapse
|
40
|
Tchernof A, Brochu D, Maltais‐Payette I, Mansour MF, Marchand GB, Carreau A, Kapeluto J. Androgens and the Regulation of Adiposity and Body Fat Distribution in Humans. Compr Physiol 2018; 8:1253-1290. [DOI: 10.1002/cphy.c170009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Sadie-Van Gijsen H. Adipocyte biology: It is time to upgrade to a new model. J Cell Physiol 2018; 234:2399-2425. [PMID: 30192004 DOI: 10.1002/jcp.27266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
Globally, the obesity pandemic is profoundly affecting quality of life and economic productivity, but efforts to address this, especially on a pharmacological level, have generally proven unsuccessful to date, serving as a stark demonstration that our understanding of adipocyte biology and pathophysiology is incomplete. To deliver better insight into adipocyte function and obesity, we need improved adipocyte models with a high degree of fidelity in representing the in vivo state and with a diverse range of experimental applications. Adipocyte cell lines, especially 3T3-L1 cells, have been used extensively over many years, but these are limited in terms of relevance and versatility. In this review, I propose that primary adipose-derived stromal/stem cells (ASCs) present a superior model with which to study adipocyte biology ex vivo. In particular, ASCs afford us the opportunity to study adipocytes from different, functionally distinct, adipose depots and to investigate, by means of in vivo/ex vivo studies, the effects of many different physiological and pathophysiological factors, such as age, body weight, hormonal status, diet and nutraceuticals, as well as disease and pharmacological treatments, on the biology of adipocytes and their precursors. This study will give an overview of the characteristics of ASCs and published studies utilizing ASCs, to highlight the areas where our knowledge is lacking. More comprehensive studies in primary ASCs will contribute to an improved understanding of adipose tissue, in healthy and dysfunctional states, which will enhance our efforts to more successfully manage and treat obesity.
Collapse
Affiliation(s)
- Hanél Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.,Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| |
Collapse
|
42
|
Mathew H, Castracane VD, Mantzoros C. Adipose tissue and reproductive health. Metabolism 2018; 86:18-32. [PMID: 29155136 DOI: 10.1016/j.metabol.2017.11.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023]
Abstract
The understanding of adipose tissue role has evolved from that of a depot energy storage organ to a dynamic endocrine organ. While genetics, sexual phenotype and sex steroids can impact the mass and distribution of adipose tissue, there is a counter-influence of white adipocytes on reproduction. This primarily occurs via the secretion of adipokines, the most studied of which- leptin and adiponectin- are highlighted in this article. Leptin, the "satiety hormone" primarily acts on the hypothalamus via pro-opiomelanocortin (POMC), neuropeptide Y (NPY), and agouti-related peptide (AgRP) neurons to translate acute changes in nutrition and energy expenditure, as well as chronic adipose accumulation into changes in appetite and potentially mediate insulin resistance via shared pathway and notably impacting reproductive health via influence on GnRH secreting neurons. Meanwhile, adiponectin is notable for its action in mediating insulin sensitivity, with receptors found at every level of the reproductive axis. Both have been examined in the context of physiologic and pathologic reproductive conditions. Leptin has been shown to influence puberty, pregnancy, hypothalamic amenorrhea, and lipodystrophy, and with a potential therapeutic role for both metabolic and reproductive health. Adiponectin mediates the relative state of insulin resistance in pregnancy, and has been implicated in conditions such as polycystic ovary syndrome and reproductive malignancies. There are numerous other adipokines, including resistin, visfatin, chemerin and retinol binding protein-4, which may also play roles in reproductive health and disease states. The continued examination of these and other adipokines in both normal reproduction and reproductive pathologies represents an important avenue for continued study. Here, we seek to provide a broad, yet comprehensive overview of many facets of these relationships and highlight areas of consideration for clinicians and future study.
Collapse
Affiliation(s)
- Hannah Mathew
- Section of Endocrinology, Diabetes and Weight Management, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA.
| | - V Daniel Castracane
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center, Odessa, TX, USA
| | - Christos Mantzoros
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Brennen WN, Zhang B, Kulac I, Kisteman LN, Antony L, Wang H, Meeker AK, De Marzo AM, Garraway IP, Denmeade SR, Isaacs JT. Mesenchymal stem cell infiltration during neoplastic transformation of the human prostate. Oncotarget 2018; 8:46710-46727. [PMID: 28493842 PMCID: PMC5564518 DOI: 10.18632/oncotarget.17362] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/01/2017] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) have been identified in prostate cancer, raising the critical question of their physical and temporal source. Therefore, MSCs were quantified and characterized in benign and malignant prostate tissue representing different disease states and a wide range of age groups from fetal development through adult death using analytical and functional methodologies. In contrast to lineage-restricted Mesenchymal Progenitor Cells (MPCs) found in normal prostate tissue, MSCs with tri-lineage differentiation potential (adipogenesis, osteogenesis, and chondrogenesis) are identified in prostate tissue from a subset of men with prostate cancer, consistent with an influx of more stem-like progenitors (i.e. MSCs) from the bone marrow. Additionally, prostate tissue from a subset of these patients is highly enriched in MSCs, suggesting their enumeration may have prognostic value for identifying men with aggressive disease. This influx is an ongoing process continuing throughout disease progression as documented by the presence of MSCs in metastatic lesions from multiple organ sites harvested at the time of death in metastatic castration-resistant prostate cancer (mCRPC) patients. This infiltration of MSCs from systemic circulation provides the rationale for their use as a cell-based vector to deliver therapeutic agents.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Baohui Zhang
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ibrahim Kulac
- Department of Pathology at the SKCCC at Johns Hopkins, Baltimore, MD, USA
| | - L Nelleke Kisteman
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Lizamma Antony
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Hao Wang
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Alan K Meeker
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Department of Pathology at the SKCCC at Johns Hopkins, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Department of Pathology at the SKCCC at Johns Hopkins, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isla P Garraway
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Samuel R Denmeade
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John T Isaacs
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
44
|
Russell PK, Mangiafico S, Fam BC, Clarke MV, Marin ES, Andrikopoulos S, Wiren KM, Zajac JD, Davey RA. The androgen receptor in bone marrow progenitor cells negatively regulates fat mass. J Endocrinol 2018; 237:15-27. [PMID: 29386237 DOI: 10.1530/joe-17-0656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Abstract
It is well established that testosterone negatively regulates fat mass in humans and mice; however, the mechanism by which testosterone exerts these effects is poorly understood. We and others have shown that deletion of the androgen receptor (AR) in male mice results in a phenotype that mimics the three key clinical aspects of hypogonadism in human males; increased fat mass and decreased bone and muscle mass. We now show that replacement of the Ar gene specifically in mesenchymal progenitor cells (PCs) residing in the bone marrow of Global-ARKO mice, in the absence of the AR in all other tissues (PC-AR Gene Replacements), completely attenuates their increased fat accumulation. Inguinal subcutaneous white adipose tissue and intra-abdominal retroperitoneal visceral adipose tissue depots in PC-AR Gene Replacement mice were 50-80% lower than wild-type (WT) and 75-90% lower than Global-ARKO controls at 12 weeks of age. The marked decrease in subcutaneous and visceral fat mass in PC-AR Gene Replacements was associated with an increase in the number of small adipocytes and a healthier metabolic profile compared to WT controls, characterised by normal serum leptin and elevated serum adiponectin levels. Euglycaemic/hyperinsulinaemic clamp studies reveal that the PC-AR Gene Replacement mice have improved whole-body insulin sensitivity with higher glucose infusion rates compared to WT mice and increased glucose uptake into subcutaneous and intra-abdominal fat. In conclusion, these data provide the first evidence for an action of androgens via the AR in mesenchymal bone marrow PCs to negatively regulate fat mass and improve metabolic function.
Collapse
Affiliation(s)
- Patricia K Russell
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Salvatore Mangiafico
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Barbara C Fam
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Michele V Clarke
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Evelyn S Marin
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Sofianos Andrikopoulos
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Kristine M Wiren
- Research ServiceVeterans Affairs Medical Center, Portland, Oregon, USA
- Departments of Medicine and Behavioral NeuroscienceOregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey D Zajac
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Rachel A Davey
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
45
|
Popa MA, Mihai MC, Constantin A, Şuică V, Ţucureanu C, Costache R, Antohe F, Dubey RK, Simionescu M. Dihydrotestosterone induces pro-angiogenic factors and assists homing of MSC into the cardiac tissue. J Mol Endocrinol 2018; 60:1-15. [PMID: 29247133 DOI: 10.1530/jme-17-0185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023]
Abstract
The use of mesenchymal stem cells (MSC) as a therapeutic tool in cardiovascular diseases is promising. Since androgens exert some beneficial actions on the cardiovascular system, we tested our hypothesis that this hormone could promote MSC-mediated repair processes, also. Cultured MSCs isolated from Wharton's jelly were exposed to 30 nM dihydrotestosterone (DHT) for 1 or 4 days and the effects of the hormone on their growth/migration/adhesion and the underlying mechanisms were assessed. Results were obtained by real-time cell impedance measurements, and DNA quantification showed that DHT increased MSC proliferation by ~30%. As determined by xCELLigence system, DHT augmented (~2 folds) the migration of MSC toward cardiac tissue slices (at 12 h), and this effect was blocked by flutamide, an androgen receptor (AR) antagonist. Exposure of cells to DHT, upregulated the gene and protein expression of AR, EMMPRIN and MMP-9 and downregulated the expression of MMP-2 DHT significantly induced the release of nitric oxide by MSC (≥2-fold) and flutamide blocked this effect. When MSCs were co-cultured with cardiac slices, immunohistochemical analysis and qRT-PCR showed that the integration of DHT-stimulated MSC was significantly higher than that of in controls. In conclusion, our findings provide the first evidence that DHT promotes MSC growth, migration and integration into the cardiac slices. The modulating effects of DHT were associated with upregulation of ARs and of key molecules known to promote tissue remodeling and angiogenesis. Our findings suggest that priming of MSC with DHT may potentially increase their capability to regenerate cardiac tissue; in vivo studies are needed to confirm our in vitro findings.
Collapse
Affiliation(s)
- Mirel-Adrian Popa
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Maria-Cristina Mihai
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Viorel Şuică
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Cătălin Ţucureanu
- Infection and Immunity Laboratory, National Institute for Research and Development in Microbiology and Immunology 'I. Cantacuzino', Bucharest, Romania
| | - Raluca Costache
- Department of Obstetrics and Gynecology, Clinical Hospital 'Dr. Ioan Cantacuzino', Bucharest, Romania
| | - Felicia Antohe
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Raghvendra K Dubey
- Department for Reproductive Endocrinology, University Hospital Zurich, Schlieren, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
46
|
Puttabyatappa M, Lu C, Martin JD, Chazenbalk G, Dumesic D, Padmanabhan V. Developmental Programming: Impact of Prenatal Testosterone Excess on Steroidal Machinery and Cell Differentiation Markers in Visceral Adipocytes of Female Sheep. Reprod Sci 2017; 25:1010-1023. [PMID: 29237348 DOI: 10.1177/1933719117746767] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prenatal testosterone (T)-treated female sheep manifest reduced adipocyte size and peripheral insulin resistance. The small adipocyte phenotype may reflect defects in adipogenesis and its steroidal machinery. To test whether prenatal T treatment from gestational days 30 to 90 alters the visceral adipose tissue (VAT) steroidal machinery and reduces adipocyte differentiation, we examined expression of the steroidogenic enzymes, steroid receptors, and adipocyte differentiation markers at fetal day 90 and postnatal ages 10 and 21 months. Because gestational T treatment increases fetal T and maternal insulin, the contributions of these were assessed by androgen receptor antagonist or insulin sensitizer cotreatment, either separately (at fetal day 90 and 21 months of age time points) or together (10 months of age). The effects on adipogenesis were assessed in the VAT-derived mesenchymal stem cells (AT-MSCs) from pre- and postpubertal time points to evaluate the effects of pubertal steroidal changes on adipogenesis. Our results show that VAT manifests potentially a predominant estrogenic intracrine milieu (increased aromatase and estrogen receptor α) and reduced differentiation markers at fetal day 90 and postnatal 21 months of age. These changes appear to involve both androgenic and metabolic pathways. Preliminary findings suggest that prenatal T treatment reduces adipogenesis, decreases expression of differentiation, and increases expression of commitment markers at both pre- and postpubertal time points. Together, these findings suggest that (1) increased commitment of AT-MSCs to adipocyte lineage and decreased differentiation to adipocytes may underlie the small adipocyte phenotype of prenatal T-treated females and (2) excess T-induced changes in steroidal machinery in the VAT likely participate in the programming/maintenance of this defect.
Collapse
Affiliation(s)
| | - Chunxia Lu
- 1 Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Jacob D Martin
- 1 Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Gregorio Chazenbalk
- 2 Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Daniel Dumesic
- 2 Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
47
|
Lee MJ, Fried SK. Sex-dependent Depot Differences in Adipose Tissue Development and Function; Role of Sex Steroids. J Obes Metab Syndr 2017; 26:172-180. [PMID: 31089514 PMCID: PMC6484911 DOI: 10.7570/jomes.2017.26.3.172] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/20/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
Men and women are different in their fat mass and distribution pattern. The gynoid-type fat distribution, accumulation in lower-body, is considered to be protective while the android-type accumulation in upper-body, both in abdominal subcutaneous and visceral depots, is detrimental. Sex-dependent depot differences in adipose metabolic and endocrine functions are thought to contribute to the sexual disparity in fat distribution as well as its association with cardiometabolic risks. Although molecular details have not been completely elucidated, available evidence shows that sex steroid hormones are important factors governing sexual dimorphism in adipose tissue distribution and hence, risks for metabolic diseases. We will review sex-dependent heterogeneities in adipose tissue properties that can link their depot-specific biology to metabolic complications in men and women. In addition, we will also review how sex steroids regulate adipose tissue biology, both development and functional characteristics, with emphasis on their depot-dependent actions.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Diabetes Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Susan K Fried
- Diabetes Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
48
|
|
49
|
Pérez-Mendoza M, Luna-Moreno D, Carmona-Castro A, Rodríguez-Guadarrama HA, Montoya-Gómez LM, Díaz-Muñoz M, Miranda-Anaya M. Neotomodon alstoni mice present sex differences between lean and obese in daily hypothalamic leptin signaling. Chronobiol Int 2017; 34:956-966. [DOI: 10.1080/07420528.2017.1331354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Moisés Pérez-Mendoza
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Juriquilla, Qro México
| | - Dalia Luna-Moreno
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Juriquilla, Qro México
| | | | | | - Luis M. Montoya-Gómez
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Juriquilla, Qro México
| | - Mauricio Díaz-Muñoz
- Instituto de Neurobiología, Juriquilla, Qro México; Universidad Nacional Autónoma de México, México
| | - Manuel Miranda-Anaya
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Juriquilla, Qro México
| |
Collapse
|
50
|
Crisosto N, Flores C, Maliqueo M, Echiburú B, Vásquez J, Maluenda F, Sir-Petermann T. Testosterone increases CCL-2 expression in visceral adipose tissue from obese women of reproductive age. Mol Cell Endocrinol 2017; 444:59-66. [PMID: 28161330 DOI: 10.1016/j.mce.2017.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 11/26/2022]
Abstract
CONTEXT Hyperandrogenic states and obesity in women are associated with insulin-resistance. Androgens reduce glucose uptake in adipose cells and increase TNFα production in peripheral monocytes. Inflammatory cytokines have a known detrimental effect on insulin resistance. The aim of the present study was to explore the role of testosterone in local cytokine production in visceral adipose tissue from women of reproductive age. DESIGN Twenty-four women 18-40 years old, undergoing elective abdominal surgery for benign and non-inflammatory conditions, were recruited for the study. Women with clinical hyperandrogenism, diabetes, hepatic or renal dysfunction, hypothyroidism, BMI> 40 or drugs known to interfere with hormonal levels or fat metabolism were excluded. Women were classified into two groups according to BMI, non-obese (NO; BMI < 30) and obese (O; BMI 30-40). A basal blood sample was drawn at the time of surgery for the measurement of glucose, insulin, total testosterone, lipid profile and circulating CCL-2, IL-6 and total adiponectin. Omental fat tissue (10 g) was obtained in all women. Samples of 300 mg of minced adipose tissue were incubated with vehicle (CTL) or testosterone (T) 10-9 M to 10-6 M for 24, 48 or 72 h. CCL-2, IL-6, TNFα, androgen Receptor (AR) mRNA levels were measured by Real Time quantitative polymerase chain reaction (qPCR) and normalized to GAPDH expression. Secretion of CCL-2 and IL-6 was measured in conditioned media by ELISA. RESULTS Expression of CCL-2 and IL-6 at 24 h in CTLs was significantly higher in the obese group compared to the non-obese group (2.81 ± 0.43 fold for CCL-2; p = 0.005 and 3.26 ± 0.73 fold for IL-6; p = 0.03). At 48 and 72 h there were no differences between both groups in any of the markers. In the total group without T stimulation (CTL) there were significant correlations between: TNFα expression at 24 h and BMI (r = 0.708; p = 0.005), TGC levels (r = 0.904; p = 0.004), total Cholesterol (r = 0.904; p = 0.0046) and IL-6 expression at 24 h (r = 0.642; p = 0.015). CCL-2 expression at 24 h was correlated with BMI (r = 0.637; p = 0.007) and TGC levels (r = 0.700; p = 0.02). Stimulation with T 10-6 M for 72 h produced an increase in CCL-2 expression, which was significantly larger in the obese group compared to the non-obese group (2.04 ± 0.44 in obese vs 0.82 ± 0.11 in non-obese; p = 0.015). Moreover, in the whole group there was a positive correlation between CCL-2 expression in T-treated tissues (10-6 M 72 h) and BMI (r = 0.514; p = 0.017). Cytokine determinations followed the same pattern as mRNA but without significant differences. CONCLUSIONS Testosterone increases CCL-2 expression in visceral adipose tissue from obese women of reproductive age. This response is associated to BMI. These results show new possible mechanisms connecting androgens to insulin resistance and chronic inflammation.
Collapse
Affiliation(s)
- Nicolás Crisosto
- Laboratory of Endocrinology and Metabolism, West Division, Faculty of Medicine, University of Chile, Santiago, Chile; Endocrinology Unit, Clínica Las Condes, Santiago, Chile. /
| | - Cristián Flores
- Laboratory of Endocrinology and Metabolism, West Division, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Manuel Maliqueo
- Laboratory of Endocrinology and Metabolism, West Division, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Bárbara Echiburú
- Laboratory of Endocrinology and Metabolism, West Division, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jaime Vásquez
- Surgery Unit, Hospital San Juan de Dios, Santiago, Chile
| | | | - Teresa Sir-Petermann
- Laboratory of Endocrinology and Metabolism, West Division, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|