1
|
Mahajan A, Kumar A, Chen L, Dhillon NK. LncRNA-536 and RNA Binding Protein RBM25 Interactions in Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.610011. [PMID: 39253448 PMCID: PMC11383286 DOI: 10.1101/2024.08.27.610011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
OBJECTIVE Hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the essential features of the maladaptive inward remodeling of the pulmonary arteries in pulmonary arterial hypertension (PAH). In this study, we define the mechanistic association between long-noncoding RNA: ENST00000495536 (Lnc-536) and anti-proliferative HOXB13 in mediating smooth muscle hyperplasia. METHODS Antisense oligonucleotide-based GapmeRs or plasmid overexpressing lnc-536 were used to evaluate the role of lnc-536 in mediating hyperproliferation of PDGF-treated or idiopathic PAH (IPAH) PASMCs. Further, we pulled down lnc536 to identify the proteins directly interacting with lnc536. The in-vivo role of lnc-536 was determined in Sugen-hypoxia and HIV-transgenic pulmonary hypertensive rats. RESULTS Increased levels of lnc-536 in PDGF-treated or IPAH PASMCs promote hyperproliferative phenotype by downregulating the HOXB13 expression. Knockdown of lnc-536 in-vivo prevented increased RVSP, Fulton Index, and pulmonary vascular remodeling in Sugen-Hypoxia rats. The lncRNA-536 pull-down assay demonstrated the interactions of RNA binding protein: RBM25 with SFPQ, a transcriptional regulator that has a binding motif on HOXB13 exon Further, The RNA-IP experiment using the SFPQ antibody showed direct interaction of RBM25 with SFPQ and knockdown of RBM25 resulted in increased interactions of SFPQ and HOXB13 mRNA while attenuating PASMC proliferation. Finally, we examined the role of lnc-536 and HOXB13 axis in the PASMCs exposed to the dual hit of HIV and a stimulant: cocaine as well. CONCLUSION lnc-536 acts as a decoy for RBM25, which in turn sequesters SFPQ, leading to the decrease in HOXB13 expression and hyperproliferation of smooth muscle cells associated with PAH development.
Collapse
Affiliation(s)
- Aatish Mahajan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Ashok Kumar
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Ling Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
2
|
Bıyıkoğlu M, Tanrıverdi R, Bozlu M, Şenel S, Fidancı ŞB, Tamer L, Akbay E. Evaluation of homeobox protein B13 (HOXB13) gene G84E mutation in patients with prostate cancer. World J Urol 2024; 42:476. [PMID: 39115757 DOI: 10.1007/s00345-024-05186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/19/2024] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVES To comprehensively investigate the potential association between prostate cancer (PCa) and the G84E mutation within the Homeobox Protein B13 (HOXB13) gene among individuals of Turkish descent, our study aims to undertake a prospective examination. METHODS We evaluated 300 patients (150 diagnosed with prostate cancer, 150 controls) who presented in our clinic. Data collected were prospectively examined. DNA isolation was performed using an isolation kit. The HOXB13-G84E mutation (rs138213197) was analyzed in the obtained samples. Data encoding and statistical analysis were performed. RESULTS The pathological allele for the G84E mutation was T. According to the findings, no mutations were detected in the control group, while the G84E mutation was detected in 17 patients in the patient group, all of whom had the TC genotype. The analysis showed that having the CC genotype reduced the risk of prostate cancer by 0.47 times (OR=0.47, CI=0.415-0.532). Our results did not support a trend toward family history or earlier-onset disease in comparisons between carriers and non-carriers of HOXB13 G84E mutation. Individuals with a positive family history exhibited a higher frequency of the G84E mutation. CONCLUSIONS We concluded that HOXB13 gene mutation is indeed linked to PCa in Turkish men. However, we did not find a relationship between the HOXB13 gene G84E mutation carrier status and either early-onset PCa or familial PCa in Turkish men.
Collapse
Affiliation(s)
- Melih Bıyıkoğlu
- Department of Urology, University of Mersin Faculty of Medicine, Mersin, Türkiye.
| | - Rojda Tanrıverdi
- Department of Biochemistry, University of Mersin Faculty of Medicine, Mersin, Türkiye
| | - Murat Bozlu
- Department of Urology, University of Mersin Faculty of Medicine, Mersin, Türkiye
| | - Samet Şenel
- Department of Urology, Ankara State Hospital, Ankara, Türkiye
| | - Şenay Balcı Fidancı
- Department of Biochemistry, University of Mersin Faculty of Medicine, Mersin, Türkiye
| | - Lülüfer Tamer
- Department of Biochemistry, University of Mersin Faculty of Medicine, Mersin, Türkiye
| | - Erdem Akbay
- Department of Urology, University of Mersin Faculty of Medicine, Mersin, Türkiye
| |
Collapse
|
3
|
Liu T, Huang T, Shang M, Han G. CircRNA ITCH: Insight Into Its Role and Clinical Application Prospect in Tumor and Non-Tumor Diseases. Front Genet 2022; 13:927541. [PMID: 35910224 PMCID: PMC9335290 DOI: 10.3389/fgene.2022.927541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
CircRNA E3 ubiquitin protein ligase (ITCH) (circRNA ITCH, circ-ITCH), a stable closed-loop RNA derived from the 20q11.22 region of chromosome 20, is a new circRNA discovered in the cytoplasm in recent decades. Studies have shown that it does not encode proteins, but regulates proteins expression at different levels. It is down-regulated in tumor diseases and is involved in a number of biological activities, including inhibiting cell proliferation, migration, invasion, and promoting apoptosis. It can also alter disease progression in non-tumor disease by affecting the cell cycle, inflammatory response, and critical proteins. Circ-ITCH also holds a lot of promise in terms of tumor and non-tumor clinical diagnosis, prognosis, and targeted therapy. As a result, in order to aid clinical research in the hunt for a new strategy for diagnosing and treating human diseases, this study describes the mechanism of circ-ITCH as well as its clinical implications.
Collapse
Affiliation(s)
- Tong Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tao Huang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Mei Shang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Gang Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Morgan R, Hunter K, Pandha HS. Downstream of the HOX genes: explaining conflicting tumour suppressor and oncogenic functions in cancer. Int J Cancer 2022; 150:1919-1932. [PMID: 35080776 PMCID: PMC9304284 DOI: 10.1002/ijc.33949] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 01/07/2022] [Indexed: 11/07/2022]
Abstract
The HOX genes are a highly conserved group of transcription factors that have key roles in early development, but which are also highly expressed in most cancers. Many studies have found strong associative relationships between the expression of individual HOX genes in tumours and clinical parameters including survival. For the majority of HOX genes, high tumour expression levels seem to be associated with a worse outcome for patients, and in some cases this has been shown to result from the activation of pro-oncogenic genes and pathways. However, there are also many studies that indicate a tumour suppressor role for some HOX genes, sometimes with conclusions that contradict earlier work. In this review, we have attempted to clarify the role of HOX genes in cancer by focusing on their downstream targets as identified in studies that provide experimental evidence for their activation or repression. On this basis, the majority of HOX genes would appear to have a pro-oncogenic function, with the notable exception of HOXD10, which acts exclusively as a tumour suppressor. HOX proteins regulate a wide range of target genes involved in metastasis, cell death, proliferation, and angiogenesis, and activate key cell signalling pathways. Furthermore, for some functionally related targets, this regulation is achieved by a relatively small subgroup of HOX genes.
Collapse
Affiliation(s)
- Richard Morgan
- School of Biomedical SciencesUniversity of West LondonLondonUK
| | - Keith Hunter
- Unit of Oral and Maxillofacial Pathology, School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - Hardev S. Pandha
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| |
Collapse
|
5
|
Xue J, Zhang Z, Hu H. Prostate Cancer Growth Inhibition by 1-(3,5-Dimethylphenyl)-6-methyl-1H-pyrazolo[4,3-c]pyridin-4(5H)-one via Down-regulation of Phosphorylation PI3K/AKT and STA3/JAK2. DOKL BIOCHEM BIOPHYS 2020; 495:347-353. [PMID: 33368049 DOI: 10.1134/s160767292006006x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present study, 1-(3,5-dimethylphenyl)-6-methyl-1H-pyrazolo[4,3-c]pyridin-4 (5H)-one (DPMPP) was investigated as an antiproliferative agent for prostate cancer cells and the mechanism of its action was studied. Cell lines 22Rv1 and SGC‑7901 were used as in vitro models of prostate cancer. The DPMPP treatment inhibited proliferation of 22Rv1 and SGC‑7901 cells in dose-depended manner. The viability of 22Rv1 and SGC‑7901 cells was reduced to 21 and 19%, respectively after treatment with 32 µM DPMPP. In DPMPP treated (16 µM) 22Rv1 and SGC‑7901 cells apoptosis increased to 62.78 and 68.51%, respectively. Moreover, DPMPP treatment caused cell cycle arrest in S phase and inhibition of PI3K/AKT activation. In the same time ROS production showed elevation and MMP (Matrix MetalloProteinase) decreased in the cells. Apparently DPMPP induces cytotoxicity through induction of oxidative response and apoptosis in prostate cancer cells in vitro. The PI3K/Akt/ERK phosphorylation was inhibited, while p21 and p53, death receptor, expression was promoted by DPMPP treatment. Therefore, DPMPP has a potential to be used as a therapeutic agent for treatment of prostate cancer.
Collapse
Affiliation(s)
- Jingxin Xue
- Department of Urology, Affiliated Jinan Third Hospital of Jining Medical University, Jining Medical University, 250132, Jinan, Shandong Province, China.
| | - Zhenwei Zhang
- Department of Urology, Affiliated Jinan Third Hospital of Jining Medical University, Jining Medical University, 250132, Jinan, Shandong Province, China
| | - Heyi Hu
- Department of Urology, Affiliated Jinan Third Hospital of Jining Medical University, Jining Medical University, 250132, Jinan, Shandong Province, China
| |
Collapse
|
6
|
Endo N, Toyama T, Naganuma A, Saito Y, Hwang GW. Hydrogen Peroxide Causes Cell Death via Increased Transcription of HOXB13 in Human Lung Epithelial A549 Cells. TOXICS 2020; 8:78. [PMID: 32998228 PMCID: PMC7712356 DOI: 10.3390/toxics8040078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 02/05/2023]
Abstract
Although homeobox protein B13 (HOXB13) is an oncogenic transcription factor, its role in stress response has rarely been examined. We previously reported that knockdown of HOXB13 reduces the cytotoxicity caused by various oxidative stress inducers. Here, we studied the role of HOXB13 in cytotoxicity caused by hydrogen peroxide in human lung epithelial A549 cells. The knockdown of HOXB13 reduced hydrogen peroxide-induced cytotoxicity; however, this phenomenon was largely absent in the presence of antioxidants (Trolox or N-acetyl cysteine (NAC)). This suggests that HOXB13 may be involved in the cytotoxicity caused by hydrogen peroxide via the production of reactive oxygen species (ROS). Hydrogen peroxide also increased both the mRNA and protein levels of HOXB13. However, these increases were rarely observed in the presence of a transcriptional inhibitor, which suggests that hydrogen peroxide increases protein levels via increased transcription of HOXB13. Furthermore, cell death occurred in A549 cells that highly expressed HOXB13. However, this cell death was mostly inhibited by treatment with antioxidants. Taken together, our findings indicate that HOXB13 may be a novel factor involved in the induction of oxidative stress, which causes cell death via intracellular ROS production.
Collapse
Affiliation(s)
- Naoki Endo
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan; (N.E.); (T.T.); (A.N.)
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan;
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0014, Japan
| | - Takashi Toyama
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan; (N.E.); (T.T.); (A.N.)
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan;
| | - Akira Naganuma
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan; (N.E.); (T.T.); (A.N.)
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan;
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan; (N.E.); (T.T.); (A.N.)
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| |
Collapse
|
7
|
VanOpstall C, Perike S, Brechka H, Gillard M, Lamperis S, Zhu B, Brown R, Bhanvadia R, Vander Griend DJ. MEIS-mediated suppression of human prostate cancer growth and metastasis through HOXB13-dependent regulation of proteoglycans. eLife 2020; 9:e53600. [PMID: 32553107 PMCID: PMC7371429 DOI: 10.7554/elife.53600] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
The molecular roles of HOX transcriptional activity in human prostate epithelial cells remain unclear, impeding the implementation of new treatment strategies for cancer prevention and therapy. MEIS proteins are transcription factors that bind and direct HOX protein activity. MEIS proteins are putative tumor suppressors that are frequently silenced in aggressive forms of prostate cancer. Here we show that MEIS1 expression is sufficient to decrease proliferation and metastasis of prostate cancer cells in vitro and in vivo murine xenograft models. HOXB13 deletion demonstrates that the tumor-suppressive activity of MEIS1 is dependent on HOXB13. Integration of ChIP-seq and RNA-seq data revealed direct and HOXB13-dependent regulation of proteoglycans including decorin (DCN) as a mechanism of MEIS1-driven tumor suppression. These results define and underscore the importance of MEIS1-HOXB13 transcriptional regulation in suppressing prostate cancer progression and provide a mechanistic framework for the investigation of HOXB13 mutants and oncogenic cofactors when MEIS1/2 are silenced.
Collapse
Affiliation(s)
- Calvin VanOpstall
- The Committee on Cancer Biology, The University of ChicagoChicagoUnited States
| | - Srikanth Perike
- Department of Pathology, The University of Illinois at ChicagoChicagoUnited States
| | - Hannah Brechka
- The Committee on Cancer Biology, The University of ChicagoChicagoUnited States
| | - Marc Gillard
- Department of Surgery, Section of Urology, The University of ChicagoChicagoUnited States
| | - Sophia Lamperis
- Department of Pathology, The University of Illinois at ChicagoChicagoUnited States
| | - Baizhen Zhu
- Department of Surgery, Section of Urology, The University of ChicagoChicagoUnited States
| | - Ryan Brown
- Department of Pathology, The University of Illinois at ChicagoChicagoUnited States
| | - Raj Bhanvadia
- Department of Urology, UT SouthwesternDallasUnited States
| | | |
Collapse
|
8
|
Yu M, Zhan J, Zhang H. HOX family transcription factors: Related signaling pathways and post-translational modifications in cancer. Cell Signal 2019; 66:109469. [PMID: 31733300 DOI: 10.1016/j.cellsig.2019.109469] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
HOX family transcription factors belong to a highly conserved subgroup of the homeobox superfamily that determines cellular fates in embryonic morphogenesis and the maintenance of adult tissue architecture. HOX family transcription factors play key roles in numerous cellular processes including cell growth, differentiation, apoptosis, motility, and angiogenesis. As tumor promoters or suppressors HOX family members have been reported to be closely related with a variety of cancers. They closely regulate tumor initiation and growth, invasion and metastasis, angiogenesis, anti-cancer drug resistance and stem cell origin. Here, we firstly described the pivotal roles of HOX transcription factors in tumorigenesis. Then, we summarized the main signaling pathways regulated by HOX transcription factors, including Wnt/β-catenin, transforming growth factor β, mitogen-activated protein kinase, phosphoinositide 3-kinase/Akt, and nuclear factor-κB signalings. Finally, we outlined the important post-translational modifications of HOX transcription factors and their regulation in cancers. Future research directions on the HOX transcription factors are also discussed.
Collapse
Affiliation(s)
- Miao Yu
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Jun Zhan
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| | - Hongquan Zhang
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| |
Collapse
|
9
|
Association of homeobox B13 (HOXB13) gene variants with prostate cancer risk in an Iranian population. Med J Islam Repub Iran 2018; 32:97. [PMID: 31024864 PMCID: PMC6477883 DOI: 10.14196/mjiri.32.97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Prostate cancer is a complex condition in which both genetic and environmental factors concomitantly contribute to the tumor initiation and progression. Recently, HOXB13 has been proposed as a susceptibility gene for prostate cancer.
Objective: The present study was conducted to determine the existence of potential variations in HOXB13 gene in Iranian men with prostate cancer (PCa) compared to benign prostatic hyperplasia (BPH) cases.
Methods: HOXB13 genetic status was screened in 51 samples, including 21 blood and tissue of PCa cases, and compared to 30 cases affected by BPH using PCR/sequencing. Then, the existence of potential association was investigated between genomic DNA alterations in blood and tissue PCa specimens.
Results: Analysis of BPH tissues showed single nucleotide variations c.366C > T (rs) or c.513T > C (rs9900627) in exon 1, but not in exon 2. Evaluation of PCa tissues revealed 2 cases with both synonymous c.366C > T and c.513T > C variants and 2 cases with the synonymous c.366C > T variant in exon 1. The variants c.366C > T and c.513T > C, simultaneously or separately, were found in blood samples of PCa patients. The novel variant c.127A > G in exon 2 was detected in 1 PCa blood sample. Our analysis indicated a significant reciprocal correlation between HOXB13 mutation in the tissue and blood samples of PCa cases (p= 0.02).
Conclusion: The variants in exon 2 of HOXB13 may influence the risk of prostate cancer. Also, evaluation of HOXB13 mutation may be considered as a novel marker for screening PCa. Further investigations are warranted to evaluate the clinical significance of HOXB13 in Iranian population.
Collapse
|
10
|
Chang WCL, Jackson C, Riel S, Cooper HS, Devarajan K, Hensley HH, Zhou Y, Vanderveer LA, Nguyen MT, Clapper ML. Differential preventive activity of sulindac and atorvastatin in Apc +/Min-FCCCmice with or without colorectal adenomas. Gut 2018; 67:1290-1298. [PMID: 29122850 PMCID: PMC6031273 DOI: 10.1136/gutjnl-2017-313942] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The response of subjects to preventive intervention is heterogeneous. The goal of this study was to determine if the efficacy of a chemopreventive agent differs in non-tumour-bearing animals versus those with colorectal tumours. Sulindac and/or atorvastatin was administered to Apc+/Min-FCCC mice with known tumour-bearing status at treatment initiation. DESIGN Male mice (6-8 weeks old) underwent colonoscopy and received control chow or chow with sulindac (300 ppm), atorvastatin (100 ppm) or sulindac/atorvastatin. Tissues were collected from mice treated for 14 weeks (histopathology) or 7 days (gene expression). Cell cycle analyses were performed on SW480 colon carcinoma cells treated with sulindac, atorvastatin or both. RESULTS The multiplicity of colorectal adenomas in untreated mice bearing tumours at baseline was 3.6-fold higher than that of mice that were tumour free at baseline (P=0.002). Atorvastatin completely inhibited the formation of microadenomas in mice that were tumour free at baseline (P=0.018) and altered the expression of genes associated with stem/progenitor cells. Treatment of tumour-bearing mice with sulindac/atorvastatin led to a 43% reduction in the multiplicity of colorectal adenomas versus untreated tumour-bearing mice (P=0.049). Sulindac/atorvastatin increased the expression of Hoxb13 and Rprm significantly, suggesting the importance of cell cycle regulation in tumour inhibition. Treatment of SW480 cells with sulindac/atorvastatin led to cell cycle arrest (G0/G1). CONCLUSIONS The tumour status of animals at treatment initiation dictates response to therapeutic intervention. Atorvastatin eliminated microadenomas in tumour-free mice. The tumour inhibition observed with Sul/Atorva in tumour-bearing mice was greater than that achieved with each agent.
Collapse
Affiliation(s)
- Wen-Chi L Chang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Christina Jackson
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Stacy Riel
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Harry S Cooper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA,Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Karthik Devarajan
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Harvey H Hensley
- Biological Imaging Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Lisa A Vanderveer
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Minhhuyen T Nguyen
- Department of Medicine, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Margie L Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Zhen JT, Syed J, Nguyen KA, Leapman MS, Agarwal N, Brierley K, Llor X, Hofstatter E, Shuch B. Genetic testing for hereditary prostate cancer: Current status and limitations. Cancer 2018; 124:3105-3117. [PMID: 29669169 DOI: 10.1002/cncr.31316] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Abstract
A significant proportion of prostate cancer diagnoses may be associated with a strong hereditary component. Men who have multiple single-gene polymorphisms and a family history of prostate cancer have a significantly greater risk of developing prostate cancer. Numerous single-gene alterations have been confirmed to increase the risk of prostate cancer. These include breast cancer genes 1 and 2 (BRCA1 and BRCA2, respectively), mutL homolog 1 (MLH1), mutS homologs 2 and 6 (MSH2 and MSH6, respectively), postmeiotic segregation increased 2 (PMS2), homeobox B13 (HOXB13), checkpoint kinase 2 (CHEK2), nibrin (NBN), BRCA1-interacting protein C-terminal helicase 1 (BRIP1), and ataxia telangiectasia mutated (ATM). Currently, there are no uniform guidelines on the definition of hereditary prostate cancer and genetic testing. With the advent of next-generation sequencing, which is capable of testing multiple genes simultaneously, and the approval of olaparib for BRCA1/BRCA2 or ATM-mutated, metastatic, castrate-resistant prostate cancer, it is being recognized that the results of genetic testing have an impact on therapeutic strategies. In this review, the authors examine the role of genetic counseling and testing, the challenges of insurance coverage for testing, the available germline and somatic testing panels, and the complexity of each testing method and its implications. Cancer 2018. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Jun Tu Zhen
- Frank H. Netter School of Medicine at Quinnipiac University, North Haven, Connecticut.,Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | - Jamil Syed
- Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | - Kevin Anh Nguyen
- Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | - Michael S Leapman
- Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | - Neeraj Agarwal
- Huntsman Cancer Center, University of Utah School of Medicine, Salt Lake City, Utah
| | - Karina Brierley
- Cancer Genetics and Prevention Program, Smilow Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Xavier Llor
- Cancer Genetics and Prevention Program, Smilow Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Erin Hofstatter
- Cancer Genetics and Prevention Program, Smilow Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Brian Shuch
- Department of Urology, Yale School of Medicine, New Haven, Connecticut.,Cancer Genetics and Prevention Program, Smilow Cancer Center, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
Aloe-emodin (AE) nanoparticles suppresses proliferation and induces apoptosis in human lung squamous carcinoma via ROS generation in vitro and in vivo. Biochem Biophys Res Commun 2017. [PMID: 28629998 DOI: 10.1016/j.bbrc.2017.06.084] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human lung squamous cell carcinoma is a deadly cancer for which present therapeutic strategies are inadequate. And traditional chemotherapy results in severe systemic toxicity. Compounds from living organisms often exert a biological activity, triggering several targets, which may be useful for the improvement of novel pharmaceuticals. Aloe-emodin (AE), a well-known natural compound, is a primary component of anthraquinones in Aloe vera and exhibits anti-proliferative and apoptotic effects on various tumor cells. However, the translational and clinical use of AE has been limited owing to its rapid degradation and poor bioavailability. To improve its efficacy, a poly (lactic-co-glycolic acid) based AE nanoparticle formulation (NanoAE) was prepared. Our study indicated that compared to the free AE, nanoAE significantly suppressed cancer cell proliferation, induced cell cycle arrest and apoptosis, evidenced by high cleavage of Caspase-3, poly (ADP-ribose) polymerase (PARP), Caspase-8 and Caspase-9. NanoAE enhanced reactive oxygen species (ROS) production, along with Mitogen-activated protein kinases (MAPKs) activation and PI3K/AKT inactivation. Cell proliferation, apoptosis and MAPKs and PI3K/AKT were dependent on ROS production in nanoAE-treated groups. In vivo, nanoAE exhibited inhibitory effects on the tumor growth with little toxicity. Together, our results indicated that nanoAE might be an effective treatment for human lung squamous cell carcinoma.
Collapse
|
13
|
Brechka H, Bhanvadia RR, VanOpstall C, Vander Griend DJ. HOXB13 mutations and binding partners in prostate development and cancer: Function, clinical significance, and future directions. Genes Dis 2017; 4:75-87. [PMID: 28798948 PMCID: PMC5548135 DOI: 10.1016/j.gendis.2017.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The recent and exciting discovery of germline HOXB13 mutations in familial prostate cancer has brought HOX signaling to the forefront of prostate cancer research. An enhanced understanding of HOX signaling, and the co-factors regulating HOX protein specificity and transcriptional regulation, has the high potential to elucidate novel approaches to prevent, diagnose, stage, and treat prostate cancer. Toward our understanding of HOX biology in prostate development and prostate cancer, basic research in developmental model systems as well as other tumor sites provides a mechanistic framework to inform future studies in prostate biology. Here we describe our current understanding of HOX signaling in genitourinary development and cancer, current clinical data of HOXB13 mutations in multiple cancers including prostate cancer, and the role of HOX protein co-factors in development and cancer. These data highlight numerous gaps in our understanding of HOX function in the prostate, and present numerous potentially impactful mechanistic and clinical opportunities for future investigation.
Collapse
Affiliation(s)
- Hannah Brechka
- The Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | - Raj R Bhanvadia
- The Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
| | - Calvin VanOpstall
- The Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | - Donald J Vander Griend
- The Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA.,Department of Surgery, Section of Urology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Germline HOXB13 p.Gly84Glu mutation and cancer susceptibility: a pooled analysis of 25 epidemiological studies with 145,257 participates. Oncotarget 2016; 6:42312-21. [PMID: 26517352 PMCID: PMC4747227 DOI: 10.18632/oncotarget.5994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/05/2015] [Indexed: 01/31/2023] Open
Abstract
Numerous studies have investigated association between the germline HOXB13 p.Gly84Glu mutation and cancer risk. However, the results were inconsistent. Herein, we performed this meta-analysis to get a precise conclusion of the associations. A comprehensive literature search was conducted through Medline (mainly Pubmed), Embase, Cochrane Library databases. Crude odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated by STATA 12.1 software to evaluate the association of HOXB13 p.Gly84Glu mutation and cancer susceptibility. Then, 25 studies including 51,390 cases and 93,867 controls were included, and there was significant association between HOXB13 p.Gly84Glu mutation and overall cancer risk (OR = 2.872, 95% CI = 2.121-3.888, P < 0.001), particularly in prostate cancer (OR = 3.248, 95% CI = 2.313-4.560, P < 0.001), while no association was found in breast (OR = 1.424, 95% CI = 0.776-2.613, P = 0.253) and colorectal cancers (OR = 2.070, 95% CI = 0.485-8.841, P = 0.326). When we stratified analysis by ethnicity, significant association was found in Caucasians (OR = 2.673, 95%CI = 1.920-3.720, P < 0.001). Further well-designed with large samples and other various cancers should be performed to validate our results.
Collapse
|
15
|
Zabalza CV, Adam M, Burdelski C, Wilczak W, Wittmer C, Kraft S, Krech T, Steurer S, Koop C, Hube-Magg C, Graefen M, Heinzer H, Minner S, Simon R, Sauter G, Schlomm T, Tsourlakis MC. HOXB13 overexpression is an independent predictor of early PSA recurrence in prostate cancer treated by radical prostatectomy. Oncotarget 2016; 6:12822-34. [PMID: 25825985 PMCID: PMC4494977 DOI: 10.18632/oncotarget.3431] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/24/2015] [Indexed: 01/30/2023] Open
Abstract
HOXB13 is a prostate cancer susceptibility gene which shows a cancer predisposing (G84E) mutation in 0.1–0.6% of males. We analyzed the prognostic impact of HOXB13 expression by immunohistochemistry on a tissue microarray containing more than 12,400 prostate cancers. Results were compared to tumor phenotype, biochemical recurrence, androgen receptor (AR) and prostate specific antigen (PSA) as well as molecular subtypes defined by ERG status and genomic deletions of 3p, 5q, 6q, and PTEN. HOXB13 immunostaining was detectable in 51.7% of 10,216 interpretable cancers and considered strong in 9.6%, moderate in 19.7% and weak in 22.3% of cases. HOXB13 expression was linked to advanced pT stage, high Gleason grade, positive lymph node status (p < 0.0001 each), high pre-operative PSA levels (p = 0.01), TMPRSS2:ERG fusion, PTEN deletions, AR expression, cell proliferation, reduced PSA expression and early PSA recurrence (p < 0.0001 each). The prognostic value of HOXB13 was independent from established parameters including Gleason, stage, nodal stage and PSA. Co-expression analysis identified a subset of tumors with high HOXB13 and AR but low PSA expression that had a particularly poor prognosis. HOXB13 appears to be a promising candidate for clinical routine tests either alone or in combination with other markers, including AR and PSA.
Collapse
Affiliation(s)
| | - Meike Adam
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Christoph Burdelski
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Corina Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Kraft
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Christina Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany.,Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Germany
| | | |
Collapse
|
16
|
Rezsohazy R, Saurin AJ, Maurel-Zaffran C, Graba Y. Cellular and molecular insights into Hox protein action. Development 2016; 142:1212-27. [PMID: 25804734 DOI: 10.1242/dev.109785] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hox genes encode homeodomain transcription factors that control morphogenesis and have established functions in development and evolution. Hox proteins have remained enigmatic with regard to the molecular mechanisms that endow them with specific and diverse functions, and to the cellular functions that they control. Here, we review recent examples of Hox-controlled cellular functions that highlight their versatile and highly context-dependent activity. This provides the setting to discuss how Hox proteins control morphogenesis and organogenesis. We then summarise the molecular modalities underlying Hox protein function, in particular in light of current models of transcription factor function. Finally, we discuss how functional divergence between Hox proteins might be achieved to give rise to the many facets of their action.
Collapse
Affiliation(s)
- René Rezsohazy
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| | | | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| |
Collapse
|
17
|
Singh S, Colonna G, Di Bernardo G, Bergantino F, Cammarota M, Castello G, Costantini S. The gene expression profiling of hepatocellular carcinoma by a network analysis approach shows a dominance of intrinsically disordered proteins (IDPs) between hub nodes. MOLECULAR BIOSYSTEMS 2015; 11:2933-2945. [PMID: 26267014 DOI: 10.1039/c5mb00434a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have analyzed the transcriptomic data from patients with hepatocellular carcinoma (HCC) after viral HCV infection at the various stages of the disease by means of a networking analysis using the publicly available E-MTAB-950 dataset. The data was compared with those obtained in our group from HepG2 cells, a cancer cell line that lacks the viral infection. By sequential pruning of data, and also taking into account the data from cells of healthy patients as blanks, we were able to obtain a distribution of hub genes for the various stages that characterize the disease and finally, we isolated a metabolic sub-net specific to HCC alone. The general picture is that the basic organization to energetically and metabolically sustain the cells in both the normal and diseased conditions is the same, but a complex cluster of sub-networks controlled by hub genes drives the HCC progression with high metabolic flexibility and plasticity. In particular, we have extracted a sub-net of genes strictly correlated to other hub genes of the network from HepG2 cells, but specific for the HCC and mainly devoted to: (i) control at chromatin levels of cell division; (ii) control of ergastoplasmatic stress through protein degradation and misfolding; (iii) control of the immune response also through an increase of mature T-cells in the thymus. This sub-net is characterized by 26 hub genes coding for intrinsically disordered proteins with a high ability to interact with numerous molecular partners. Moreover, we have also noted that periphery molecules, that is, with one or very few interactions (e.g., cytokines or post-translational enzymes), which do not have a central role in the clusters that make up the global metabolic network, essentially have roles as information transporters. The results evidence a strong presence of intrinsically disordered proteins with key roles as hubs in the sub-networks that characterize the various stages of the disease, conferring a structural plasticity to the net nodes but an inherent functional versatility to the whole metabolic net. Thus, our present article provides a novel way of targeting the intrinsic disorder in HCC networks to dampen the cancer effects and provides new insight into the potential mechanisms of HCC. Taken together, the present findings suggest novel targets to design strategies for drug design and may support a rational intervention in the pharmacotherapy of HCC and other associated diseases.
Collapse
Affiliation(s)
- Sakshi Singh
- Dottorato in Biologia Computazionale, Dipartimento di Biochimica, Biofisica e Patologia generale, Seconda Università degli Studi di Napoli, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Kote-Jarai Z, Mikropoulos C, Leongamornlert DA, Dadaev T, Tymrakiewicz M, Saunders EJ, Jones M, Jugurnauth-Little S, Govindasami K, Guy M, Hamdy FC, Donovan JL, Neal DE, Lane JA, Dearnaley D, Wilkinson RA, Sawyer EJ, Morgan A, Antoniou AC, Eeles RA. Prevalence of the HOXB13 G84E germline mutation in British men and correlation with prostate cancer risk, tumour characteristics and clinical outcomes. Ann Oncol 2015; 26:756-761. [PMID: 25595936 DOI: 10.1093/annonc/mdv004] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND A rare recurrent missense variant in HOXB13 (rs138213197/G84E) was recently reported to be associated with hereditary prostate cancer. Population-based studies have established that, since the frequency of this single-nucleotide polymorphism (SNP) varies between geographic regions, the associated proportion of prostate cancer (PrCa) risk contribution is also highly variable by country. PATIENTS AND METHODS This is the largest comprehensive case-control study assessing the prevalence of the HOXB13 G84E variant to date and is the first in the UK population. We genotyped 8652 men diagnosed with PrCa within the UK Genetic Prostate Cancer Study (UKGPCS) and 5252 healthy men from the UK ProtecT study. RESULTS HOXB13 G84E was identified in 0.5% of the healthy controls and 1.5% of the PrCa cases, and it was associated with a 2.93-fold increased risk of PrCa [95% confidence interval (CI) 1.94-4.59; P = 6.27 × 10(-8)]. The risk was even higher among men with family history of PrCa [odds ratio (OR) = 4.53, 95% CI 2.86-7.34; P = 3.1 × 10(-8)] and in young-onset PrCa (diagnosed up to the age of 55 years; OR = 3.11, 95% CI 1.98-5.00; P = 6.1 × 10(-7)). There was no significant association between Gleason Score, presenting prostate specific antigen, tumour-node-metastasis (TNM) stage or NCCN risk group and carrier status. HOXB13 G84E was not associated with overall or cancer-specific survival. We found that the polygenic PrCa risk score (PR score), calculated using the 71 known single-nucleotide polymorphisms (SNPs) associated with PrCa and the HOXB13 G84E variant act multiplicatively on PrCa risk. Based on the estimated prevalence and risk, this rare variant explains ∼1% of the familial risk of PrCa in the UK population. CONCLUSIONS The clinical importance of HOXB13 G84E in PrCa management has not been established. This variant was found to have no effect on prognostic implications but could be used for stratifying screening, by identifying men at high risk. CLINICAL TRIALS NUMBERS Prostate Testing for Cancer and Treatment (ProtecT): NCT02044172. UK GENETIC PROSTATE CANCER STUDY Epidemiology and Molecular Genetics Studies (UKGPCS): NCT01737242.
Collapse
Affiliation(s)
| | | | | | - T Dadaev
- Institute of Cancer Research, London
| | | | | | - M Jones
- Institute of Cancer Research, London
| | | | | | - M Guy
- Institute of Cancer Research, London
| | - F C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford; Faculty of Medical Science, University of Oxford, John Radcliffe Hospital, Oxford
| | - J L Donovan
- School of Social and Community Medicine, University of Bristol, Bristol
| | - D E Neal
- Surgical Oncology (Uro-Oncology: S4), University of Cambridge, Addenbrooke's Hospital, Cambridge; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge
| | - J A Lane
- Surgical Oncology (Uro-Oncology: S4), University of Cambridge, Addenbrooke's Hospital, Cambridge; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge
| | | | | | | | - A Morgan
- Institute of Cancer Research, London
| | - A C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge
| | - R A Eeles
- Institute of Cancer Research, London; The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
19
|
TNFα-mediated loss of β-catenin/E-cadherin association and subsequent increase in cell migration is partially restored by NKX3.1 expression in prostate cells. PLoS One 2014; 9:e109868. [PMID: 25360740 PMCID: PMC4215977 DOI: 10.1371/journal.pone.0109868] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/03/2014] [Indexed: 12/29/2022] Open
Abstract
Inflammation-induced carcinogenesis is associated with increased proliferation and migration/invasion of various types of tumor cells. In this study, altered β-catenin signaling upon TNFα exposure, and relation to loss of function of the tumor suppressor NKX3.1 was examined in prostate cancer cells. We used an in vitro prostate inflammation model to demonstrate altered sub-cellular localization of β-catenin following increased phosphorylation of Akt(S473) and GSK3β(S9). Consistently, we observed that subsequent increase in β-catenin transactivation enhanced c-myc, cyclin D1 and MMP2 expressions. Consequently, it was also observed that the β-catenin-E-cadherin association at the plasma membrane was disrupted during acute cytokine exposure. Additionally, it was demonstrated that disrupting cell-cell interactions led to increased migration of LNCaP cells in real-time migration assay. Nevertheless, ectopic expression of NKX3.1, which is degraded upon proinflammatory cytokine exposure in inflammation, was found to induce the degradation of β-catenin by inhibiting Akt(S473) phosphorylation, therefore, partially rescued the disrupted β-catenin-E-cadherin interaction as well as the cell migration in LNCaP cells upon cytokine exposure. As, the disrupted localization of β-catenin at the cell membrane as well as increased Akt(S308) priming phosphorylation was observed in human prostate tissues with prostatic inflammatory atrophy (PIA), high-grade prostatic intraepithelial neoplasia (H-PIN) and carcinoma lesions correlated with loss of NKX3.1 expression. Thus, the data indicate that the β-catenin signaling; consequently sub-cellular localization is deregulated in inflammation, associates with prostatic atrophy and PIN pathology.
Collapse
|
20
|
Decker B, Ostrander EA. Dysregulation of the homeobox transcription factor gene HOXB13: role in prostate cancer. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:193-201. [PMID: 25206306 PMCID: PMC4157396 DOI: 10.2147/pgpm.s38117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prostate cancer (PC) is the most common noncutaneous cancer in men, and epidemiological studies suggest that about 40% of PC risk is heritable. Linkage analyses in hereditary PC families have identified multiple putative loci. However, until recently, identification of specific risk alleles has proven elusive. Cooney et al used linkage mapping and segregation analysis to identify a putative risk locus on chromosome 17q21-22. In search of causative variant(s) in genes from the candidate region, a novel, potentially deleterious G84E substitution in homeobox transcription factor gene HOXB13 was observed in multiple hereditary PC families. In follow-up testing, the G84E allele was enriched in cases, especially those with an early diagnosis or positive family history of disease. This finding was replicated by others, confirming HOXB13 as a PC risk gene. The HOXB13 protein plays diverse biological roles in embryonic development and terminally differentiated tissue. In tumor cell lines, HOXB13 participates in a number of biological functions, including coactivation and localization of the androgen receptor and FOXA1. However, no consensus role has emerged and many questions remain. All HOXB13 variants with a proposed role in PC risk are predicted to damage the protein and lie in domains that are highly conserved across species. The G84E variant has the strongest epidemiological support and lies in a highly conserved MEIS protein-binding domain, which binds cofactors required for activation. On the basis of epidemiological and biological data, the G84E variant likely modulates the interaction between the HOXB13 protein and the androgen receptor, as well as affecting FOXA1-mediated transcriptional programming. However, further studies of the mutated protein are required to clarify the mechanisms by which this translates into PC risk.
Collapse
Affiliation(s)
- Brennan Decker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA ; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|