1
|
Zhang M, Wang Q, Wang Y. Brain endocannabinoid control of metabolic and non-metabolic feeding behaviors. Neurochem Int 2025; 183:105921. [PMID: 39708909 DOI: 10.1016/j.neuint.2024.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
The central endocannabinoid (eCB) system in brain shows a crucial role in the regulation of feeding behaviors, influencing both metabolic and non-metabolic mechanisms of appetite control, which has been paid much attention. Although there are already many review articles discussing eCB modulation of feeding behaviors, our paper attempts to summarize the recent advancements through synapses, circuits, and network in brain. Our focus is on the dual role of eCB signalling in regulating metabolic energy balance and hedonic reward-related feeding. In the context of metabolic regulation of feeding behaviors, eCBs affect the hypothalamic circuits that balance hunger and satiety through signal integration related to energy status and nutrient availability. Dysregulation of this system can contribute to metabolic disorders such as obesity and anorexia. In non-metabolic feeding, the eCB system influences the hedonic aspects of eating by modulating reward pathways, including the mesolimbic system and the olfactory bulb, critical for motivating food intake and processing sensory cues. This review also explores therapeutic strategies targeting the eCB system, including cannabinoid receptor antagonists and eCB hydrolase enzyme inhibitors, which hold promise for treating conditions associated with appetite dysregulation and eating disorders. By synthesizing recent findings, we aim to highlight the intricate mechanisms through which the eCB system affects feeding behavior and to propose future directions for research and therapeutic intervention in the realm of appetite control and eating disorders.
Collapse
Affiliation(s)
- Maoxing Zhang
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 260071, China
| | - Qingyu Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ying Wang
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 260071, China.
| |
Collapse
|
2
|
Jiang W, Mooney MH, Shirali M. Unveiling the Genetic Landscape of Feed Efficiency in Holstein Dairy Cows: Insights into Heritability, Genetic Markers, and Pathways via Meta-Analysis. J Anim Sci 2024; 102:skae040. [PMID: 38354297 PMCID: PMC10957122 DOI: 10.1093/jas/skae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Improving the feeding efficiency of dairy cows is a key component to improve the utilization of land resources and meet the demand for high-quality protein. Advances in genomic methods and omics techniques have made it possible to breed more efficient dairy cows through genomic selection. The aim of this review is to obtain a comprehensive understanding of the biological background of feed efficiency (FE) complex traits in purebred Holstein dairy cows including heritability estimate, and genetic markers, genes, and pathways participating in FE regulation mechanism. Through a literature search, we systematically reviewed the heritability estimation, molecular genetic markers, genes, biomarkers, and pathways of traits related to feeding efficiency in Holstein dairy cows. A meta-analysis based on a random-effects model was performed to combine reported heritability estimates of FE complex. The heritability of residual feed intake, dry matter intake, and energy balance was 0.20, 0.34, and 0.22, respectively, which proved that it was reasonable to include the related traits in the selection breeding program. For molecular genetic markers, a total of 13 single-nucleotide polymorphisms and copy number variance loci, associated genes, and functions were reported to be significant across populations. A total of 169 reported candidate genes were summarized on a large scale, using a higher threshold (adjusted P value < 0.05). Then, the subsequent pathway enrichment of these genes was performed. The important genes reported in the articles were included in a gene list and the gene list was enriched by gene ontology (GO):biological process (BP), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis. Three GO:BP terms and four KEGG terms were statistically significant, which mainly focused on adenosine triphosphate (ATP) synthesis, electron transport chain, and OXPHOS pathway. Among these pathways, involved genes such as ATP5MC2, NDUFA, COX7A2, UQCR, and MMP are particularly important as they were previously reported. Twenty-nine reported biological mechanisms along with involved genes were explained mainly by four biological pathways (insulin-like growth factor axis, lipid metabolism, oxidative phosphorylation pathways, tryptophan metabolism). The information from this study will be useful for future studies of genomic selection breeding and genetic structures influencing animal FE. A better understanding of the underlying biological mechanisms would be beneficial, particularly as it might address genetic antagonism.
Collapse
Affiliation(s)
- Wentao Jiang
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
- Agri-Food and Biosciences Institute, Large Park, Hillsborough, BT26 6DR, UK
| | - Mark H Mooney
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
| | - Masoud Shirali
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
- Agri-Food and Biosciences Institute, Large Park, Hillsborough, BT26 6DR, UK
| |
Collapse
|
3
|
Vasincu A, Rusu RN, Ababei DC, Neamțu M, Arcan OD, Macadan I, Beșchea Chiriac S, Bild W, Bild V. Exploring the Therapeutic Potential of Cannabinoid Receptor Antagonists in Inflammation, Diabetes Mellitus, and Obesity. Biomedicines 2023; 11:1667. [PMID: 37371762 DOI: 10.3390/biomedicines11061667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Recently, research has greatly expanded the knowledge of the endocannabinoid system (ECS) and its involvement in several therapeutic applications. Cannabinoid receptors (CBRs) are present in nearly every mammalian tissue, performing a vital role in different physiological processes (neuronal development, immune modulation, energy homeostasis). The ECS has an essential role in metabolic control and lipid signaling, making it a potential target for managing conditions such as obesity and diabetes. Its malfunction is closely linked to these pathological conditions. Additionally, the immunomodulatory function of the ECS presents a promising avenue for developing new treatments for various types of acute and chronic inflammatory conditions. Preclinical investigations using peripherally restricted CBR antagonists that do not cross the BBB have shown promise for the treatment of obesity and metabolic diseases, highlighting the importance of continuing efforts to discover novel molecules with superior safety profiles. The purpose of this review is to examine the roles of CB1R and CB2Rs, as well as their antagonists, in relation to the above-mentioned disorders.
Collapse
Affiliation(s)
- Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Sorin Beșchea Chiriac
- Department of Toxicology, "Ion Ionescu de la Brad" University of Life Sciences, 8 M. Sadoveanu Alley, 700489 Iasi, Romania
| | - Walther Bild
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
4
|
Murray SB, Rokicki J, Sartorius AM, Winterton A, Andreassen OA, Westlye LT, Nagata JM, Quintana DS. Brain-based gene expression of putative risk genes for anorexia nervosa. Mol Psychiatry 2023; 28:2612-2619. [PMID: 37221367 DOI: 10.1038/s41380-023-02110-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023]
Abstract
The etiology of anorexia nervosa (AN) remains elusive. Recent genome-wide association studies identified the first genes liked to AN which reached genome-wide significance, although our understanding of how these genes confer risk remains preliminary. Here, we leverage the Allen Human Brain Atlas to characterize the spatially distributed gene expression patterns of genes linked to AN in the non-disordered human brain, developing whole-brain maps of AN gene expression. We found that genes associated with AN are most expressed in the brain, relative to all other body tissue types, and demonstrate gene-specific expression patterns which extend to cerebellar, temporal and basal ganglia structures in particular. fMRI meta-analyses reveal that AN gene expression maps correspond with functional brain activity involved in processing and anticipating appetitive and aversive cues. Findings offer novel insights around putative mechanisms through which genes associated with AN may confer risk.
Collapse
Affiliation(s)
- Stuart B Murray
- Department of Psychiatry & Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jaroslav Rokicki
- Norwegian Centre for Mental Disorders Research (NORMENT), Division for Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Alina M Sartorius
- Norwegian Centre for Mental Disorders Research (NORMENT), Division for Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Adriano Winterton
- Norwegian Centre for Mental Disorders Research (NORMENT), Division for Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division for Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division for Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Jason M Nagata
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel S Quintana
- Norwegian Centre for Mental Disorders Research (NORMENT), Division for Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.
- Department of Psychology, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
- NevSom, Department of Rare Disorders and Disabilities, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
5
|
Huang T, Chen X, Chen D, Yu B, He J, Yan H, Luo Y, Zheng P, Chen H, Huang Z. Eugenol promotes appetite through TRP channels mediated-CaMKK2/AMPK signaling pathway. Phytother Res 2023. [PMID: 36762415 DOI: 10.1002/ptr.7768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/22/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
Eugenol is a major component of clove oil. A recent study found that inhalation of eugenol promoted the appetite of mice. However, whether oral ingestion of eugenol promoted appetite is unclear and its mechanism await study. Here, mice were divided into four treatments (n = 20) and fed a basal diet supplemented with 0%, 0.005%, 0.01% and 0.02% eugenol for 4 weeks. In addition, mice (n = 7) were injected intraperitoneally with 3 mg/kg body weight eugenol. Our data showed that feeding mice with 0.01% and 0.02% eugenol promoted their appetite. In addition, the short-term intraperitoneal injection of eugenol enhanced the feed intake in mice within 1 h. Further studies found that dietary eugenol increased orexigenic factors expression and decreased anorexigenic factors expression in mice. We then carried out N38 cell experiments to explore the transient receptor potential (TRP) channels-dependent mechanism of eugenol in promoting appetite. We found that eugenol activated the TRP channels mediated-CaMKK2/AMPK signaling pathway in the hypothalamus and N38 cells. Besides, the inhibition of TRPV1 and AMPK eliminated the upregulation of eugenol on the agouti-related protein level in N38 cells. In conclusion, the study suggested that eugenol promotes appetite through TRPV1 mediated-CaMKK2/AMPK signaling pathway.
Collapse
Affiliation(s)
- Tengteng Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, People's Republic of China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
6
|
Odell SR, Clark D, Zito N, Jain R, Gong H, Warnock K, Carrion-Lopez R, Maixner C, Prieto-Godino L, Mathew D. Internal state affects local neuron function in an early sensory processing center to shape olfactory behavior in Drosophila larvae. Sci Rep 2022; 12:15767. [PMID: 36131078 PMCID: PMC9492728 DOI: 10.1038/s41598-022-20147-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/09/2022] [Indexed: 02/03/2023] Open
Abstract
Crawling insects, when starved, tend to have fewer head wavings and travel in straighter tracks in search of food. We used the Drosophila melanogaster larva to investigate whether this flexibility in the insect's navigation strategy arises during early olfactory processing and, if so, how. We demonstrate a critical role for Keystone-LN, an inhibitory local neuron in the antennal lobe, in implementing head-sweep behavior. Keystone-LN responds to odor stimuli, and its inhibitory output is required for a larva to successfully navigate attractive and aversive odor gradients. We show that insulin signaling in Keystone-LN likely mediates the starvation-dependent changes in head-sweep magnitude, shaping the larva's odor-guided movement. Our findings demonstrate how flexibility in an insect's navigation strategy can arise from context-dependent modulation of inhibitory neurons in an early sensory processing center. They raise new questions about modulating a circuit's inhibitory output to implement changes in a goal-directed movement.
Collapse
Affiliation(s)
- Seth R Odell
- Integrative Neuroscience Program, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA
| | - David Clark
- Integrative Neuroscience Program, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA
| | - Nicholas Zito
- Integrative Neuroscience Program, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA
| | - Roshni Jain
- Molecular Biosciences Program, University of Nevada, Reno, NV, 89557, USA
| | - Hui Gong
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Kendall Warnock
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | | | - Coral Maixner
- NSF-REU (BioSoRo) Program, University of Nevada, Reno, NV, 89557, USA
| | | | - Dennis Mathew
- Integrative Neuroscience Program, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA.
- Molecular Biosciences Program, University of Nevada, Reno, NV, 89557, USA.
- Department of Biology, University of Nevada, Reno, NV, 89557, USA.
- NSF-REU (BioSoRo) Program, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
7
|
Guzmán-Ruiz MA, Jiménez A, Cárdenas-Rivera A, Guerrero-Vargas NN, Organista-Juárez D, Guevara-Guzmán R. Regulation of Metabolic Health by an "Olfactory-Hypothalamic Axis" and Its Possible Implications for the Development of Therapeutic Approaches for Obesity and T2D. Cell Mol Neurobiol 2022; 42:1727-1743. [PMID: 33813677 PMCID: PMC11421737 DOI: 10.1007/s10571-021-01080-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
The olfactory system is responsible for the reception, integration and interpretation of odors. However, in the last years, it has been discovered that the olfactory perception of food can rapidly modulate the activity of hypothalamic neurons involved in the regulation of energy balance. Conversely, the hormonal signals derived from changes in the metabolic status of the body can also change the sensitivity of the olfactory system, suggesting that the bidirectional relationship established between the olfactory and the hypothalamic systems is key for the maintenance of metabolic homeostasis. In the first part of this review, we describe the possible mechanisms and anatomical pathways involved in the modulation of energy balance regulated by the olfactory system. Hence, we propose a model to explain its implication in the maintenance of the metabolic homeostasis of the organism. In the second part, we discuss how the olfactory system could be involved in the development of metabolic diseases such as obesity and type two diabetes and, finally, we propose the use of intranasal therapies aimed to regulate and improve the activity of the olfactory system that in turn will be able to control the neuronal activity of hypothalamic centers to prevent or ameliorate metabolic diseases.
Collapse
Affiliation(s)
- Mara Alaide Guzmán-Ruiz
- Laboratorio Sensorial, Departamento de Fisiología, Facultad de Medicina, Edificio A, 4º piso, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México.
| | - Adriana Jiménez
- Laboratorio Sensorial, Departamento de Fisiología, Facultad de Medicina, Edificio A, 4º piso, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Alfredo Cárdenas-Rivera
- Centro de Investigación en Bioingeniería, Universidad de Ingeniería y Tecnología, Lima, Perú
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, México
| | - Diana Organista-Juárez
- Laboratorio Sensorial, Departamento de Fisiología, Facultad de Medicina, Edificio A, 4º piso, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Rosalinda Guevara-Guzmán
- Laboratorio Sensorial, Departamento de Fisiología, Facultad de Medicina, Edificio A, 4º piso, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México.
| |
Collapse
|
8
|
Ramadan B, Cabeza L, Cramoisy S, Houdayer C, Andrieu P, Millot JL, Haffen E, Risold PY, Peterschmitt Y. Beneficial effects of prolonged 2-phenylethyl alcohol inhalation on chronic distress-induced anxio-depressive-like phenotype in female mice. Biomed Pharmacother 2022; 151:113100. [PMID: 35597115 DOI: 10.1016/j.biopha.2022.113100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022] Open
Abstract
Chronic distress-induced hypothalamic-pituitary-adrenal axis deregulations have been associated with the development of neuropsychiatric disorders such as anxiety and depression. Currently available drugs treating such pathological conditions have limited efficacy and diverse side effects, revealing the need of new safer strategies. Aromatic plant-based compounds are largely used in herbal medicine due to their therapeutic properties on mood, physiology, and general well-being. The purpose of this study was to investigate the effects of 2-phenylethyl alcohol (PEA), one of the pharmacologically active constituents of rose essential oil, on chronic corticosterone (CORT)-induced behavioral and neurobiological changes in female mice. Animals followed a prolonged PEA inhalation exposure (30 min per day) for 15 consecutive days prior to behavioral evaluation with open-field, forced swim and novelty-suppressed feeding tests. CORT treatment induced an anxio-depressive-like phenotype, evidenced by a reduced locomotor activity in the open-field, and an increased latency to feed in the novelty-suppressed feeding paradigms. To elucidate the neural correlates of our behavioral results, immunohistochemistry was further performed to provide a global map of neural activity based on cerebral cFos expression. The altered feeding behavior was accompanied by a significant decrease in the number of cFos-positive cells in the olfactory bulb, and altered functional brain connectivity as shown by cross-correlation-based network analysis. CORT-induced behavioral and neurobiological alterations were reversed by prolonged PEA inhalation, suggesting a therapeutic action that allows regulating the activity of neural circuits involved in sensory, emotional and feeding behaviors. These findings might contribute to better understand the therapeutic potential of PEA on anxio-depressive symptoms.
Collapse
Affiliation(s)
- Bahrie Ramadan
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France.
| | - Lidia Cabeza
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France
| | - Stéphanie Cramoisy
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France
| | - Christophe Houdayer
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France
| | - Patrice Andrieu
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France
| | - Jean-Louis Millot
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France
| | - Emmanuel Haffen
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France; Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon CHU, Besançon, France; Centre d'Investigation Clinique, CIC-INSERM-1431, Centre Hospitalier Universitaire de Besançon CHU, Besançon, France
| | - Pierre-Yves Risold
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France
| | - Yvan Peterschmitt
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France.
| |
Collapse
|
9
|
Faour M, Magnan C, Gurden H, Martin C. Olfaction in the context of obesity and diabetes: Insights from animal models to humans. Neuropharmacology 2021; 206:108923. [PMID: 34919903 DOI: 10.1016/j.neuropharm.2021.108923] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022]
Abstract
The olfactory system is at the crossroad between sensory processing and metabolic sensing. In addition to being the center of detection and identification of food odors, it is a sensor for most of the hormones and nutrients responsible for feeding behavior regulation. The consequences of modifications in body homeostasis, nutrient overload and alteration of this brain network in the pathological condition of food-induced obesity and type 2 diabetes are still not elucidated. The aim of this review was first to use both humans and animal studies to report on the current knowledge of the consequences of obesity and type 2 diabetes on odorant threshold and olfactory perception including identification discrimination and memory. We then discuss how olfactory processing can be modified by an alteration of the metabolic homeostasis of the organism and available elements on pharmacological treatments that regulate olfaction. We focus on data within the olfactory system but also on the interactions between the olfactory system and other brain networks impacted by metabolic diseases.
Collapse
Affiliation(s)
- Maya Faour
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | | | - Hirac Gurden
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Claire Martin
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France.
| |
Collapse
|
10
|
Ioannidou C, Busquets-Garcia A, Ferreira G, Marsicano G. Neural Substrates of Incidental Associations and Mediated Learning: The Role of Cannabinoid Receptors. Front Behav Neurosci 2021; 15:722796. [PMID: 34421557 PMCID: PMC8378742 DOI: 10.3389/fnbeh.2021.722796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
The ability to form associations between different stimuli in the environment to guide adaptive behavior is a central element of learning processes, from perceptual learning in humans to Pavlovian conditioning in animals. Like so, classical conditioning paradigms that test direct associations between low salience sensory stimuli and high salience motivational reinforcers are extremely informative. However, a large part of everyday learning cannot be solely explained by direct conditioning mechanisms - this includes to a great extent associations between individual sensory stimuli, carrying low or null immediate motivational value. This type of associative learning is often described as incidental learning and can be captured in animal models through sensory preconditioning procedures. Here we summarize the evolution of research on incidental and mediated learning, overview the brain systems involved and describe evidence for the role of cannabinoid receptors in such higher-order learning tasks. This evidence favors a number of contemporary hypotheses concerning the participation of the endocannabinoid system in psychosis and psychotic experiences and provides a conceptual framework for understanding how the use of cannabinoid drugs can lead to altered perceptive states.
Collapse
Affiliation(s)
- Christina Ioannidou
- INSERM, U1215 Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Arnau Busquets-Garcia
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Guillaume Ferreira
- University of Bordeaux, Bordeaux, France
- INRAE, Nutrition and Integrative Neurobiology, Bordeaux, France
| | - Giovanni Marsicano
- INSERM, U1215 Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| |
Collapse
|
11
|
Cai XT, Li H, Jensen MB, Maksoud E, Borneo J, Liang Y, Quake SR, Luo L, Haghighi P, Jasper H. Gut cytokines modulate olfaction through metabolic reprogramming of glia. Nature 2021; 596:97-102. [PMID: 34290404 PMCID: PMC8911385 DOI: 10.1038/s41586-021-03756-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Infection-induced aversion against enteropathogens is a conserved sickness behaviour that can promote host survival1,2. The aetiology of this behaviour remains poorly understood, but studies in Drosophila have linked olfactory and gustatory perception to avoidance behaviours against toxic microorganisms3-5. Whether and how enteric infections directly influence sensory perception to induce or modulate such behaviours remains unknown. Here we show that enteropathogen infection in Drosophila can modulate olfaction through metabolic reprogramming of ensheathing glia of the antennal lobe. Infection-induced unpaired cytokine expression in the intestine activates JAK-STAT signalling in ensheathing glia, inducing the expression of glial monocarboxylate transporters and the apolipoprotein glial lazarillo (GLaz), and affecting metabolic coupling of glia and neurons at the antennal lobe. This modulates olfactory discrimination, promotes the avoidance of bacteria-laced food and increases fly survival. Although transient in young flies, gut-induced metabolic reprogramming of ensheathing glia becomes constitutive in old flies owing to age-related intestinal inflammation, which contributes to an age-related decline in olfactory discrimination. Our findings identify adaptive glial metabolic reprogramming by gut-derived cytokines as a mechanism that causes lasting changes in a sensory system in ageing flies.
Collapse
Affiliation(s)
- Xiaoyu Tracy Cai
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.,Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.,University of Southern California, Los Angeles, CA 90007, USA
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA,Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin Borch Jensen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.,Gordian Biotechnology, 953 Indiana St., San Francisco, CA 94107, USA
| | - Elie Maksoud
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Jovencio Borneo
- FACS lab, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yuxin Liang
- NGS lab, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stephen R. Quake
- Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA,Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Pejmun Haghighi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Heinrich Jasper
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.,Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.,Corresponding author: Heinrich Jasper, Genentech, 1 DNA Way, South San Francisco, California 94080, USA.
| |
Collapse
|
12
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
13
|
Boitard S, Paris C, Sevane N, Servin B, Bazi-Kabbaj K, Dunner S. Gene Banks as Reservoirs to Detect Recent Selection: The Example of the Asturiana de los Valles Bovine Breed. Front Genet 2021; 12:575405. [PMID: 33633776 PMCID: PMC7901938 DOI: 10.3389/fgene.2021.575405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Gene banks, framed within the efforts for conserving animal genetic resources to ensure the adaptability of livestock production systems to population growth, income, and climate change challenges, have emerged as invaluable resources for biodiversity and scientific research. Allele frequency trajectories over the few last generations contain rich information about the selection history of populations, which cannot be obtained from classical selection scan approaches based on present time data only. Here we apply a new statistical approach taking advantage of genomic time series and a state of the art statistic (nSL) based on present time data to disentangle both old and recent signatures of selection in the Asturiana de los Valles cattle breed. This local Spanish originally multipurpose breed native to Asturias has been selected for beef production over the last few generations. With the use of SNP chip and whole-genome sequencing (WGS) data, we detect candidate regions under selection reflecting the effort of breeders to produce economically valuable beef individuals, e.g., by improving carcass and meat traits with genes such as MSTN, FLRT2, CRABP2, ZNF215, RBPMS2, OAZ2, or ZNF609, while maintaining the ability to thrive under a semi-intensive production system, with the selection of immune (GIMAP7, GIMAP4, GIMAP8, and TICAM1) or olfactory receptor (OR2D2, OR2D3, OR10A4, and 0R6A2) genes. This kind of information will allow us to take advantage of the invaluable resources provided by gene bank collections from local less competitive breeds, enabling the livestock industry to exploit the different mechanisms fine-tuned by natural and human-driven selection on different populations to improve productivity.
Collapse
Affiliation(s)
- Simon Boitard
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet-Tolosan, France
| | - Cyriel Paris
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet-Tolosan, France
| | - Natalia Sevane
- Dpto. Animal Production, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet-Tolosan, France
| | - Kenza Bazi-Kabbaj
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,SIGENAE, INRA, Jouy-en-Josas, France
| | - Susana Dunner
- Dpto. Animal Production, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Brito LF, Oliveira HR, Houlahan K, Fonseca PA, Lam S, Butty AM, Seymour DJ, Vargas G, Chud TC, Silva FF, Baes CF, Cánovas A, Miglior F, Schenkel FS. Genetic mechanisms underlying feed utilization and implementation of genomic selection for improved feed efficiency in dairy cattle. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The economic importance of genetically improving feed efficiency has been recognized by cattle producers worldwide. It has the potential to considerably reduce costs, minimize environmental impact, optimize land and resource use efficiency, and improve the overall cattle industry’s profitability. Feed efficiency is a genetically complex trait that can be described as units of product output (e.g., milk yield) per unit of feed input. The main objective of this review paper is to present an overview of the main genetic and physiological mechanisms underlying feed utilization in ruminants and the process towards implementation of genomic selection for feed efficiency in dairy cattle. In summary, feed efficiency can be improved via numerous metabolic pathways and biological mechanisms through genetic selection. Various studies have indicated that feed efficiency is heritable, and genomic selection can be successfully implemented in dairy cattle with a large enough training population. In this context, some organizations have worked collaboratively to do research and develop training populations for successful implementation of joint international genomic evaluations. The integration of “-omics” technologies, further investments in high-throughput phenotyping, and identification of novel indicator traits will also be paramount in maximizing the rates of genetic progress for feed efficiency in dairy cattle worldwide.
Collapse
Affiliation(s)
- Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kerry Houlahan
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Pablo A.S. Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stephanie Lam
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Adrien M. Butty
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dave J. Seymour
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Giovana Vargas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Tatiane C.S. Chud
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Fabyano F. Silva
- Department of Animal Sciences, Federal University of Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Christine F. Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern 3001, Switzerland
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Flavio S. Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
15
|
Terral G, Marsicano G, Grandes P, Soria-Gómez E. Cannabinoid Control of Olfactory Processes: The Where Matters. Genes (Basel) 2020; 11:E431. [PMID: 32316252 PMCID: PMC7230191 DOI: 10.3390/genes11040431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022] Open
Abstract
Olfaction has a direct influence on behavior and cognitive processes. There are different neuromodulatory systems in olfactory circuits that control the sensory information flowing through the rest of the brain. The presence of the cannabinoid type-1 (CB1) receptor, (the main cannabinoid receptor in the brain), has been shown for more than 20 years in different brain olfactory areas. However, only over the last decade have we started to know the specific cellular mechanisms that link cannabinoid signaling to olfactory processing and the control of behavior. In this review, we aim to summarize and discuss our current knowledge about the presence of CB1 receptors, and the function of the endocannabinoid system in the regulation of different olfactory brain circuits and related behaviors.
Collapse
Affiliation(s)
- Geoffrey Terral
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, CEDEX, 33077 Bordeaux, France; (G.T.); (G.M.)
- University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, 33000 Bordeaux, France
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, CEDEX, 33077 Bordeaux, France; (G.T.); (G.M.)
- University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Pedro Grandes
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain;
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Edgar Soria-Gómez
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain;
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
16
|
Tarragon E, Moreno JJ. Cannabinoids, Chemical Senses, and Regulation of Feeding Behavior. Chem Senses 2020; 44:73-89. [PMID: 30481264 DOI: 10.1093/chemse/bjy068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The herb Cannabis sativa has been traditionally used in many cultures and all over the world for thousands of years as medicine and recreation. However, because it was brought to the Western world in the late 19th century, its use has been a source of controversy with respect to its physiological effects as well as the generation of specific behaviors. In this regard, the CB1 receptor represents the most relevant target molecule of cannabinoid components on nervous system and whole-body energy homeostasis. Thus, the promotion of CB1 signaling can increase appetite and stimulate feeding, whereas blockade of CB1 suppresses hunger and induces hypophagia. Taste and flavor are sensory experiences involving the oral perception of food-derived chemicals and drive a primal sense of acceptable or unacceptable for what is sampled. Therefore, research within the last decades focused on deciphering the effect of cannabinoids on the chemical senses involved in food perception and consequently in the pattern of feeding. In this review, we summarize the data on the effect of cannabinoids on chemical senses and their influences on food intake control and feeding behavior.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Department of Psychobiology, Faculty of Health Sciences, University Jaume I of Castellon, Castellon, Spain.,Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Universidad Complutense de Madrid, Campus de Somosaguas, Ctra. de Húmera, Madrid, Spain
| | - Juan José Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain.,IBEROBN Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Kuhla B, Kaever V, Tuchscherer A, Kuhla A. Involvement of Plasma Endocannabinoids and the Hypothalamic Endocannabinoid System in Increasing Feed Intake after Parturition of Dairy Cows. Neuroendocrinology 2020; 110:246-257. [PMID: 31141804 DOI: 10.1159/000501208] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/27/2019] [Indexed: 11/19/2022]
Abstract
The endocannabinoids (ECs) N-arachidonylethanolamide (anandamide; AEA) and 2-arachidonoylglycerol (2-AG) participate in the control of feed intake and energy metabolism. Most mammals increase their feed intake after parturition to cope with the increased energy and nutrient requirements for milk synthesis, thereby increasing their metabolic rate. Here we investigated in experiment 1 the regulation of plasma AEA and 2-AG concentrations during the transition from late pregnancy to early lactation in dairy cows, and analyzed in experiment 2 the expression of the EC system in the paraventricular nucleus (PVN) and the arcuate nucleus (ARC) of the hypothalamus of late and early lactating cows using immunohistochemistry. Cows in experiment 1 were retrospectively grouped based on peak plasma fatty acid concentrations to a high (H) or low (L) group. Feed intake was not different between groups before parturition, but was lower in H than L cows during early lactation. Plasma AEA and 2-AG concentrations increased 2.2- to 2.4-fold during early lactation, in which time plasma AEA concentrations rose faster in H cows than in L cows postpartum. Upregulation of N-acyl phosphatidylethanolamine-specific phospholipase D together with tending increased cannabinoid receptor 1 (CB1) expression, and downregulation of fatty acid amide hydrolase in early lactating cows suggested an increased PVN AEA tone. The abundance of CB1 in the ARC and diacylglycerol lipase-alpha was not different between late and early lactating cows, but PVN monoacylglycerol lipase expression was 30% higher in early lactating cows, indicating diminished PVN 2-AG concentrations. The results show a potential involvement of AEA in stimulating feed intake and of 2-AG in regulating energy metabolism of early lactating cows.
Collapse
Affiliation(s)
- Björn Kuhla
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany,
| | - Volkhard Kaever
- Hannover Medical School, Research Core Unit Metabolomics, Institute of Pharmacology, Hannover, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
18
|
Purfield DC, Evans RD, Berry DP. Reaffirmation of known major genes and the identification of novel candidate genes associated with carcass-related metrics based on whole genome sequence within a large multi-breed cattle population. BMC Genomics 2019; 20:720. [PMID: 31533623 PMCID: PMC6751660 DOI: 10.1186/s12864-019-6071-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
Background The high narrow sense heritability of carcass traits suggests that the underlying additive genetic potential of an individual should be strongly correlated with both animal carcass quality and quantity, and therefore, by extension, carcass value. Therefore, the objective of the present study was to detect genomic regions associated with three carcass traits, namely carcass weight, conformation and fat cover, using imputed whole genome sequence in 28,470 dairy and beef sires from six breeds with a total of 2,199,926 phenotyped progeny. Results Major genes previously associated with carcass performance were identified, as well as several putative novel candidate genes that likely operate both within and across breeds. The role of MSTN in carcass performance was re-affirmed with the segregating Q204X mutation explaining 1.21, 1.11 and 5.95% of the genetic variance in carcass weight, fat and conformation, respectively in the Charolais population. In addition, a genomic region on BTA6 encompassing the NCAPG/LCORL locus, which is a known candidate locus associated with body size, was associated with carcass weight in Angus, Charolais and Limousin. Novel candidate genes identified included ZFAT in Angus, and SLC40A1 and the olfactory gene cluster on BTA15 in Charolais. Although the majority of associations were breed specific, associations that operated across breeds included SORCS1 on BTA26, MCTP2 on BTA21 and ARL15 on BTA20; these are of particular interest due to their potential informativeness in across-breed genomic evaluations. Genomic regions affecting all three carcass traits were identified in each of the breeds, although these were mainly concentrated on BTA2 and BTA6, surrounding MSTN and NCAPG/LCORL, respectively. This suggests that although major genes may be associated with all three carcass traits, the majority of genes containing significant variants (unadjusted p-value < 10− 4) may be trait specific associations of small effect. Conclusions Although plausible novel candidate genes were identified, the proportion of variance explained by these candidates was minimal thus reaffirming that while carcass performance may be affected by major genes in the form of MSTN and NCAPG/LCORL, the majority of variance is attributed to the additive (and possibly multiplicative) effect of many polymorphisms of small effect. Electronic supplementary material The online version of this article (10.1186/s12864-019-6071-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D C Purfield
- Animal & Grassland Research and Innovation Center, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland.
| | - R D Evans
- Irish Cattle Breeding Federation, Bandon, Co. Cork, Ireland
| | - D P Berry
- Animal & Grassland Research and Innovation Center, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
19
|
Mortreux M, Foppen E, Denis RG, Montaner M, Kassis N, Denom J, Vincent M, Fumeron F, Kujawski-Lafourcade M, Andréelli F, Balkau B, Marre M, Roussel R, Magnan C, Gurden H, Migrenne-Li S. New roles for prokineticin 2 in feeding behavior, insulin resistance and type 2 diabetes: Studies in mice and humans. Mol Metab 2019; 29:182-196. [PMID: 31668389 PMCID: PMC6812023 DOI: 10.1016/j.molmet.2019.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/11/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Objective Prokineticin 2 (PROK2) is a hypothalamic neuropeptide that plays a critical role in the rhythmicity of physiological functions and inhibits food intake. PROK2 is also expressed in the main olfactory bulb (MOB) as an essential factor for neuro-and morphogenesis. Since the MOB was shown to be strongly involved in eating behavior, we hypothesized that PROK2 could be a new target in the regulation of food intake and energy homeostasis, through its effects in the MOB. We also asked whether PROK2 could be associated with the pathophysiology of obesity, the metabolic syndrome (MetS), and type 2 diabetes (T2D) in humans. Methods We assessed in wild type mice whether the expression of Prok2 in the MOB is dependent on the nutritional status. We measured the effect of human recombinant PROK2 (rPROK2) acute injection in the MOB on food intake and olfactory behavior. Then, using a lentivirus expressing Prok2-shRNA, we studied the effects of Prok2 underexpression in the MOB on feeding behavior and glucose metabolism. Metabolic parameters and meal pattern were determined using calorimetric cages. In vivo 2-deoxyglucose uptake measurements were performed in mice after intraperitoneally insulin injection. Plasmatic PROK2 dosages and genetic associations studies were carried out respectively on 148 and more than 4000 participants from the D.E.S.I.R. (Data from an Epidemiologic Study on the Insulin Resistance Syndrome) cohort. Results Our findings showed that fasting in mice reduced Prok2 expression in the MOB. Acute injection of rPROK2 in the MOB significantly decreased food intake whereas Prok2-shRNA injection resulted in a higher dietary consumption characterized by increased feeding frequency and decreased meal size. Additionally, Prok2 underexpression in the MOB induced insulin resistance compared to scrambled shRNA-injected mice. In the human D.E.S.I.R. cohort, we found a significantly lower mean concentration of plasma PROK2 in people with T2D than in those with normoglycemia. Interestingly, this decrease was no longer significant when adjusted for Body Mass Index (BMI) or calorie intake, suggesting that the association between plasma PROK2 and diabetes is mediated, at least partly, by BMI and feeding behavior in humans. Moreover, common Single Nucleotide Polymorphisms (SNPs) in PROK2 gene were genotyped and associated with incident T2D or impaired fasting glycemia (IFG), MetS, and obesity. Conclusions Our data highlight PROK2 as a new target in the MOB that links olfaction with eating behavior and energy homeostasis. In humans, plasma PROK2 is negatively correlated with T2D, BMI, and energy intake, and PROK2 genetic variants are associated with incident hyperglycemia (T2D/IFG), the MetS and obesity. Fasting alters prokineticin 2 (Prok2) expression in the main olfactory bulb (MOB). Acute injection of PROK2 into the MOB diminishes food intake. Partial deletion of MOB-Prok2 affects meal pattern and induces insulin resistance. Type 2 diabetes (T2D) in humans is correlated with lower plasma PROK2 level. Polymorphisms of PROK2 gene associate with incident T2D and the metabolic syndrome.
Collapse
Affiliation(s)
- Marie Mortreux
- Université de Paris, Paris, France; Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR8251, Paris, France
| | - Ewout Foppen
- Université de Paris, Paris, France; Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR8251, Paris, France
| | - Raphaël G Denis
- Université de Paris, Paris, France; Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR8251, Paris, France
| | - Mireia Montaner
- Université de Paris, Paris, France; Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR8251, Paris, France
| | - Nadim Kassis
- Université de Paris, Paris, France; Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR8251, Paris, France
| | - Jessica Denom
- Université de Paris, Paris, France; Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR8251, Paris, France
| | - Mylène Vincent
- Université de Paris, Paris, France; Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR8251, Paris, France
| | - Frédéric Fumeron
- Université de Paris, Paris, France; Centre de Recherche des Cordeliers, INSERM UMR-S 1138, Paris, France
| | | | - Fabrizio Andréelli
- Department of Diabetology, Assistance publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, UMR_S 1269, Inserm, Paris, France
| | - Beverley Balkau
- Centre for research in Epidemiology and Population Health (CESP), INSERM, UMR-S 1018, University Paris-Sud, University Versailles Saint-Quentin, Villejuif, France
| | - Michel Marre
- Université de Paris, Paris, France; Centre de Recherche des Cordeliers, INSERM UMR-S 1138, Paris, France; Diabetology, Endocrinology, Nutrition, APHP - Bichat Hospital, Paris, France
| | - Ronan Roussel
- Université de Paris, Paris, France; Centre de Recherche des Cordeliers, INSERM UMR-S 1138, Paris, France; Diabetology, Endocrinology, Nutrition, APHP - Bichat Hospital, Paris, France
| | - Christophe Magnan
- Université de Paris, Paris, France; Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR8251, Paris, France
| | - Hirac Gurden
- Université de Paris, Paris, France; Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR8251, Paris, France
| | - Stéphanie Migrenne-Li
- Université de Paris, Paris, France; Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR8251, Paris, France.
| |
Collapse
|
20
|
Terral G, Busquets-Garcia A, Varilh M, Achicallende S, Cannich A, Bellocchio L, Bonilla-Del Río I, Massa F, Puente N, Soria-Gomez E, Grandes P, Ferreira G, Marsicano G. CB1 Receptors in the Anterior Piriform Cortex Control Odor Preference Memory. Curr Biol 2019; 29:2455-2464.e5. [PMID: 31327715 DOI: 10.1016/j.cub.2019.06.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 01/26/2023]
Abstract
The retrieval of odor-related memories shapes animal behavior. The anterior piriform cortex (aPC) is the largest part of the olfactory cortex, and it plays important roles in olfactory processing and memory. However, it is still unclear whether specific cellular mechanisms in the aPC control olfactory memory, depending on the appetitive or aversive nature of the stimuli involved. Cannabinoid-type 1 (CB1) receptors are present in the aPC (aPC-CB1), but their potential impact on olfactory memory was never explored. Here, we used a combination of behavioral, genetic, anatomical, and electrophysiological approaches to characterize the functions of aPC-CB1 receptors in the regulation of appetitive and aversive olfactory memory. Pharmacological blockade or genetic deletion of aPC-CB1 receptors specifically impaired the retrieval of conditioned odor preference (COP). Interestingly, expression of conditioned odor aversion (COA) was unaffected by local CB1 receptor blockade, indicating that the role of aPC endocannabinoid signaling is selective for retrieval of appetitive memory. Anatomical investigations revealed that CB1 receptors are highly expressed on aPC GABAergic interneurons, and ex vivo electrophysiological recordings showed that their pharmacological activation reduces miniature inhibitory post-synaptic currents (mIPSCs) onto aPC semilunar (SL), but not pyramidal principal neurons. COP retrieval, but not COA, was associated with a specific CB1-receptor-dependent decrease of mIPSCs in SL cells. Altogether, these data indicate that aPC-CB1 receptor-dependent mechanisms physiologically control the retrieval of olfactory memory, depending on odor valence and engaging modulation of local inhibitory transmission.
Collapse
Affiliation(s)
- Geoffrey Terral
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Arnau Busquets-Garcia
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Marjorie Varilh
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Svein Achicallende
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Astrid Cannich
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Federico Massa
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Nagore Puente
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Edgar Soria-Gomez
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France; Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Pedro Grandes
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Guillaume Ferreira
- University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France; INRA, Bordeaux INP, Nutrition and Integrative Neurobiology, UMR 1286, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France.
| |
Collapse
|
21
|
Peng M, Coutts D, Wang T, Cakmak YO. Systematic review of olfactory shifts related to obesity. Obes Rev 2019; 20:325-338. [PMID: 30450791 DOI: 10.1111/obr.12800] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/07/2018] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The modern food environment is a key driver of rising levels of obesity. While olfaction is known to play a major role in food choice; however, its relationship to obesity is yet to be understood. This review assesses current knowledge of the interaction between obesity and olfaction. METHODS This review is based on observational studies comparing olfactory abilities across weight groups (N = 10) and clinical studies evaluating olfactory changes following bariatric surgery (N = 9). Meta-analyses were performed on data collected by a standard olfactory assessment tool (Sniffin΄ Sticks), to test whether olfaction has any association with body weight or bariatric surgery. RESULTS This review synthesizes findings derived from 38 datasets, with a total of 1432 individual olfactory assessments. The meta-analyses suggest that olfactory function is negatively correlated with body weight. In addition, Roux-en-Y gastric bypass patients frequently report olfactory changes, yet more pronounced and immediate shifts have been observed among sleeve gastrectomy recipients. CONCLUSIONS Our review finds strong evidence for the link between olfaction and obesity and indicates that bariatric surgery (particularly the sleeve gastrectomy) is effective in reversing olfactory decline associated with obesity. In conclusion, we present mechanistic models to underpin the observed relationship between olfaction and obesity.
Collapse
Affiliation(s)
- Mei Peng
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Duncan Coutts
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Ting Wang
- Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
| | - Yusuf O Cakmak
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Dunedin, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland, New Zealand
| |
Collapse
|
22
|
Zhou Y, Connor EE, Wiggans GR, Lu Y, Tempelman RJ, Schroeder SG, Chen H, Liu GE. Genome-wide copy number variant analysis reveals variants associated with 10 diverse production traits in Holstein cattle. BMC Genomics 2018; 19:314. [PMID: 29716533 PMCID: PMC5930521 DOI: 10.1186/s12864-018-4699-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 04/18/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Copy number variation (CNV) is an important type of genetic variation contributing to phenotypic differences among mammals and may serve as an alternative molecular marker to single nucleotide polymorphism (SNP) for genome-wide association study (GWAS). Recently, GWAS analysis using CNV has been applied in livestock, although few studies have focused on Holstein cattle. RESULTS We describe 191 CNV detected using intensity data from over 700,000 SNP genotypes generated with the BovineHD Genotyping BeadChip (Illumina, San Diego, CA) in 528 Holstein cows. The CNV were used for GWAS analysis of 10 important production traits of 473 cattle related to feed intake, milk quality, and female fertility, as well as 2 composite traits of net merit and productive life. In total, we detected 57 CNV associated (P < 0.05 after false discovery rate correction) with at least one of the 10 phenotypes. Focusing on feed efficiency and intake-related phenotypes of residual feed intake and dry matter intake, we detected a single CNV associated with both traits which overlaps a predicted olfactory receptor gene OR2A2 (LOC787786). Additionally, 2 CNV within the RXFP4 (relaxin/insulin like family peptide receptor 4) and 2 additional olfactory receptor gene regions, respectively, were associated with residual feed intake. The RXFP4 gene encodes a receptor for an orexigenic peptide, insulin-like peptide 5 produced by intestinal L cells, which is expressed by enteric neurons. Olfactory receptors are critical for transmitting the effects of odorants, contributing to the sense of smell, and have been implicated in participating in appetite regulation. CONCLUSIONS Our results identify CNV for genomic evaluation in Holstein cattle, and provide candidate genes, such as RXFP4, contributing to variation in feed efficiency and feed intake-related traits. These results indicate potential novel targets for manipulating feed intake-related traits of livestock.
Collapse
Affiliation(s)
- Yang Zhou
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, 10300 Baltimore Avenue, Bldg. 306, BARC-East, Beltsville, MD, 20705, USA.,Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Erin E Connor
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, 10300 Baltimore Avenue, Bldg. 306, BARC-East, Beltsville, MD, 20705, USA
| | - George R Wiggans
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, 10300 Baltimore Avenue, Bldg. 306, BARC-East, Beltsville, MD, 20705, USA
| | - Yongfang Lu
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Robert J Tempelman
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Steven G Schroeder
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, 10300 Baltimore Avenue, Bldg. 306, BARC-East, Beltsville, MD, 20705, USA
| | - Hong Chen
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, 10300 Baltimore Avenue, Bldg. 306, BARC-East, Beltsville, MD, 20705, USA.
| |
Collapse
|
23
|
Cuesto G, Everaerts C, León LG, Acebes A. Molecular bases of anorexia nervosa, bulimia nervosa and binge eating disorder: shedding light on the darkness. J Neurogenet 2017; 31:266-287. [PMID: 28762842 DOI: 10.1080/01677063.2017.1353092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eating-disorders (EDs) consequences to human health are devastating, involving social, mental, emotional, physical and life-threatening aspects, concluding on impairment and death in cases of extreme anorexia nervosa. It also implies that people suffering an ED need to find psychiatric and psychological help as soon as possible to achieve a fully physical and emotional recovery. Unfortunately, to date, there is a crucial lack of efficient clinical treatment to these disorders. In this review, we present an overview concerning the actual pharmacological and psychological treatments, the knowledge of cells, circuits, neuropeptides, neuromodulators and hormones in the human brain- and other organs- underlying these disorders, the studies in animal models and, finally, the genetic approaches devoted to face this challenge. We will also discuss the need for new perspectives, avenues and strategies to be developed in order to pave the way to novel and more efficient therapeutics.
Collapse
Affiliation(s)
- Germán Cuesto
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| | - Claude Everaerts
- b Centre des Sciences du Goût et de l'Alimentation , UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne Franche-Comté , Dijon , France
| | - Leticia G León
- c Cancer Pharmacology Lab , AIRC Start Up Unit, University of Pisa , Pisa , Italy
| | - Angel Acebes
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| |
Collapse
|
24
|
Badal S, Smith KN, Rajnarayanan R. Analysis of natural product regulation of cannabinoid receptors in the treatment of human disease. Pharmacol Ther 2017; 180:24-48. [PMID: 28583800 DOI: 10.1016/j.pharmthera.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The organized, tightly regulated signaling relays engaged by the cannabinoid receptors (CBs) and their ligands, G proteins and other effectors, together constitute the endocannabinoid system (ECS). This system governs many biological functions including cell proliferation, regulation of ion transport and neuronal messaging. This review will firstly examine the physiology of the ECS, briefly discussing some anomalies in the relay of the ECS signaling as these are consequently linked to maladies of global concern including neurological disorders, cardiovascular disease and cancer. While endogenous ligands are crucial for dispatching messages through the ECS, there are also commonalities in binding affinities with copious exogenous ligands, both natural and synthetic. Therefore, this review provides a comparative analysis of both types of exogenous ligands with emphasis on natural products given their putative safer efficacy and the role of Δ9-tetrahydrocannabinol (Δ9-THC) in uncovering the ECS. Efficacy is congruent to both types of compounds but noteworthy is the effect of a combination therapy to achieve efficacy without unideal side-effects. An example is Sativex that displayed promise in treating Huntington's disease (HD) in preclinical models allowing for its transition to current clinical investigation. Despite the in vitro and preclinical efficacy of Δ9-THC to treat neurodegenerative ailments, its psychotropic effects limit its clinical applicability to treating feeding disorders. We therefore propose further investigation of other compounds and their combinations such as the triterpene, α,β-amyrin that exhibited greater binding affinity to CB1 than CB2 and was more potent than Δ9-THC and the N-alkylamides that exhibited CB2 selective affinity; the latter can be explored towards peripherally exclusive ECS modulation. The synthetic CB1 antagonist, Rimonabant was pulled from commercial markets for the treatment of diabetes, however its analogue SR144528 maybe an ideal lead molecule towards this end and HU-210 and Org27569 are also promising synthetic small molecules.
Collapse
Affiliation(s)
- S Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Mona, Jamaica.
| | - K N Smith
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Rajnarayanan
- Jacobs School of Medicine and Biomedical Sciences, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14228, USA
| |
Collapse
|
25
|
Lau BK, Cota D, Cristino L, Borgland SL. Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits. Neuropharmacology 2017; 124:38-51. [PMID: 28579186 DOI: 10.1016/j.neuropharm.2017.05.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 02/03/2023]
Abstract
The endocannabinoid system has emerged as a key player in the control of eating. Endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide (AEA), modulate neuronal activity via cannabinoid 1 receptors (CB1Rs) in multiple nuclei of the hypothalamus to induce or inhibit food intake depending on nutritional and hormonal status, suggesting that endocannabinoids may act in the hypothalamus to integrate different types of signals informing about the animal's energy needs. In the mesocorticolimbic system, (endo)cannabinoids modulate synaptic transmission to promote dopamine release in response to palatable food. In addition, (endo)cannabinoids act within the nucleus accumbens to increase food's hedonic impact; although this effect depends on activation of CB1Rs at excitatory, but not inhibitory inputs in the nucleus accumbens. While hyperactivation of the endocannabinoid system is typically associated with overeating and obesity, much evidence has emerged in recent years suggesting a more complicated system than first thought - endocannabinoids promote or suppress feeding depending on cell and input type, or modulation by various neuronal or hormonal signals. This review presents our latest knowledge of the endocannabinoid system in non-homeostatic and homeostatic feeding circuits. In particular, we discuss the functional role and cellular mechanism of action by endocannabinoids within the hypothalamus and mesocorticolimbic system, and how these are modulated by neuropeptide signals related to feeding. In light of recent advances and complexity in the field, we review cannabinoid-based therapeutic strategies for the treatment of obesity and how peripheral restriction of CB1R antagonists may provide a different mechanism of weight loss without the central adverse effects. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Benjamin K Lau
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | - Daniela Cota
- INSERM U1215, Université de Bordeaux, NeuroCentre Magendie, 146, rue Léo Saignat, 33077 Bordeaux, France
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry of CNR, Viale Campi Flegrei, 34, 80078 Pozzuoli, Napoli, Italy
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
26
|
Cristino L, Imperatore R, Di Marzo V. Techniques for the Cellular and Subcellular Localization of Endocannabinoid Receptors and Enzymes in the Mammalian Brain. Methods Enzymol 2017; 593:61-98. [PMID: 28750816 DOI: 10.1016/bs.mie.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
27
|
Kovach CP, Al Koborssy D, Huang Z, Chelette BM, Fadool JM, Fadool DA. Mitochondrial Ultrastructure and Glucose Signaling Pathways Attributed to the Kv1.3 Ion Channel. Front Physiol 2016; 7:178. [PMID: 27242550 PMCID: PMC4871887 DOI: 10.3389/fphys.2016.00178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
Gene-targeted deletion of the potassium channel Kv1.3 (Kv1.3−∕−) results in “Super-smeller” mice with a sensory phenotype that includes an increased olfactory ability linked to changes in olfactory circuitry, increased abundance of olfactory cilia, and increased expression of odorant receptors and the G-protein, Golf. Kv1.3−∕− mice also have a metabolic phenotype including lower body weight and decreased adiposity, increased total energy expenditure (TEE), increased locomotor activity, and resistance to both diet- and genetic-induced obesity. We explored two cellular aspects to elucidate the mechanism by which loss of Kv1.3 channel in the olfactory bulb (OB) may enhance glucose utilization and metabolic rate. First, using in situ hybridization we find that Kv1.3 and the insulin-dependent glucose transporter type 4 (GLUT4) are co-localized to the mitral cell layer of the OB. Disruption of Kv1.3 conduction via construction of a pore mutation (W386F Kv1.3) was sufficient to independently translocate GLUT4 to the plasma membrane in HEK 293 cells. Because olfactory sensory perception and the maintenance of action potential (AP) firing frequency by mitral cells of the OB is highly energy demanding and Kv1.3 is also expressed in mitochondria, we next explored the structure of this organelle in mitral cells. We challenged wildtype (WT) and Kv1.3−∕− male mice with a moderately high-fat diet (MHF, 31.8 % kcal fat) for 4 months and then examined OB ultrastructure using transmission electron microscopy. In WT mice, mitochondria were significantly enlarged following diet-induced obesity (DIO) and there were fewer mitochondria, likely due to mitophagy. Interestingly, mitochondria were significantly smaller in Kv1.3−∕− mice compared with that of WT mice. Similar to their metabolic resistance to DIO, the Kv1.3−∕− mice had unchanged mitochondria in terms of cross sectional area and abundance following a challenge with modified diet. We are very interested to understand how targeted disruption of the Kv1.3 channel in the OB can modify TEE. Our study demonstrates that Kv1.3 regulates mitochondrial structure and alters glucose utilization; two important metabolic changes that could drive whole system changes in metabolism initiated at the OB.
Collapse
Affiliation(s)
- Christopher P Kovach
- Program in Neuroscience, Florida State UniversityTallahassee, FL, USA; Department of Biological Science, Florida State UniversityTallahassee, FL, USA
| | - Dolly Al Koborssy
- Program in Neuroscience, Florida State University Tallahassee, FL, USA
| | - Zhenbo Huang
- Program in Neuroscience, Florida State University Tallahassee, FL, USA
| | | | - James M Fadool
- Program in Neuroscience, Florida State UniversityTallahassee, FL, USA; Department of Biological Science, Florida State UniversityTallahassee, FL, USA
| | - Debra A Fadool
- Program in Neuroscience, Florida State UniversityTallahassee, FL, USA; Department of Biological Science, Florida State UniversityTallahassee, FL, USA; Institute of Molecular Biophysics, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
28
|
Thiebaud N, Llewellyn-Smith IJ, Gribble F, Reimann F, Trapp S, Fadool DA. The incretin hormone glucagon-like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage-dependent potassium channel. J Physiol 2016; 594:2607-28. [PMID: 26931093 PMCID: PMC4865572 DOI: 10.1113/jp272322] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023] Open
Abstract
Key points The gut hormone called glucagon‐like peptide 1 (GLP‐1) is a strong moderator of energy homeostasis and communication between the peripheral organs and the brain. GLP‐1 signalling occurs in the brain; using a newly developed genetic reporter line of mice, we have discovered GLP‐synthesizing cells in the olfactory bulb. GLP‐1 increases the firing frequency of neurons (mitral cells) that encode olfactory information by decreasing activity of voltage‐dependent K channels (Kv1.3). Modifying GLP‐1 levels, either therapeutically or following the ingestion of food, could alter the excitability of neurons in the olfactory bulb in a nutrition or energy state‐dependent manner to influence olfactory detection or metabolic sensing. The results of the present study uncover a new function for an olfactory bulb neuron (deep short axon cells, Cajal cells) that could be capable of modifying mitral cell activity through the release of GLP‐1. This might be of relevance for the action of GLP‐1 mimetics now widely used in the treatment of diabetes.
Abstract The olfactory system is intricately linked with the endocrine system where it may serve as a detector of the internal metabolic state or energy homeostasis in addition to its classical function as a sensor of external olfactory information. The recent development of transgenic mGLU‐yellow fluorescent protein mice that express a genetic reporter under the control of the preproglucagon reporter suggested the presence of the gut hormone, glucagon‐like peptide (GLP‐1), in deep short axon cells (Cajal cells) of the olfactory bulb and its neuromodulatory effect on mitral cell (MC) first‐order neurons. A MC target for the peptide was determined using GLP‐1 receptor binding assays, immunocytochemistry for the receptor and injection of fluorescence‐labelled GLP‐1 analogue exendin‐4. Using patch clamp recording of olfactory bulb slices in the whole‐cell configuration, we report that GLP‐1 and its stable analogue exendin‐4 increase the action potential firing frequency of MCs by decreasing the interburst interval rather than modifying the action potential shape, train length or interspike interval. GLP‐1 decreases Kv1.3 channel contribution to outward currents in voltage clamp recordings as determined by pharmacological blockade of Kv1.3 or utilizing mice with Kv1.3 gene‐targeted deletion as a negative control. Because fluctuations in GLP‐1 concentrations monitored by the olfactory bulb can modify the firing frequency of MCs, olfactory coding could change depending upon nutritional or physiological state. As a regulator of neuronal activity, GLP‐1 or its analogue may comprise a new metabolic factor with a potential therapeutic target in the olfactory bulb (i.e. via intranasal delivery) for controlling an imbalance in energy homeostasis. The gut hormone called glucagon‐like peptide 1 (GLP‐1) is a strong moderator of energy homeostasis and communication between the peripheral organs and the brain. GLP‐1 signalling occurs in the brain; using a newly developed genetic reporter line of mice, we have discovered GLP‐synthesizing cells in the olfactory bulb. GLP‐1 increases the firing frequency of neurons (mitral cells) that encode olfactory information by decreasing activity of voltage‐dependent K channels (Kv1.3). Modifying GLP‐1 levels, either therapeutically or following the ingestion of food, could alter the excitability of neurons in the olfactory bulb in a nutrition or energy state‐dependent manner to influence olfactory detection or metabolic sensing. The results of the present study uncover a new function for an olfactory bulb neuron (deep short axon cells, Cajal cells) that could be capable of modifying mitral cell activity through the release of GLP‐1. This might be of relevance for the action of GLP‐1 mimetics now widely used in the treatment of diabetes.
Collapse
Affiliation(s)
- Nicolas Thiebaud
- The Florida State University, Department of Biological Science, Program in Neuroscience, Tallahassee, FL, USA
| | - Ida J Llewellyn-Smith
- Cardiovascular Medicine and Human Physiology, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - Fiona Gribble
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Reimann
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK.,Department of Surgery and Cancer, Imperial College London, London, UK
| | - Debra Ann Fadool
- The Florida State University, Department of Biological Science, Program in Neuroscience, Tallahassee, FL, USA.,The Florida State University, Institute of Molecular Biophysics, Tallahassee, FL, USA
| |
Collapse
|
29
|
Cameron JD, Goldfield GS, Riou MÈ, Finlayson GS, Blundell JE, Doucet É. Energy depletion by diet or aerobic exercise alone: impact of energy deficit modality on appetite parameters. Am J Clin Nutr 2016; 103:1008-16. [PMID: 26888712 DOI: 10.3945/ajcn.115.115584] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/15/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Millions of Americans attempt to lose weight each year, and it is unclear whether the modality of acute, tightly controlled energy depletions can differently affect appetite parameters and olfaction. OBJECTIVE The objectives were to examine how the modality of an acute 3-d isocaloric 25% energy depletion by dieting alone or by aerobic exercise alone differently affects appetite and appetite-related hormones, ad libitum feeding, food reward (snack points), and olfaction. DESIGN Ten male participants with a mean ± SD age of 23.7 ± 5.1 y and an initial mean ± SD body weight of 83.2 ± 11.5 kg participated in this randomized crossover design. Baseline measurement [day 1 of the control condition (CON1)] was performed and repeated 3 d later [day 4 of the control condition (CON4)], after which randomization was applied to the order of the 2 experimental conditions: 25% daily needs energy deficits induced by diet only (DIET) and by exercise only (EX) and tested before [day 1 of DIET (DIET1) and day 1 of EX (EX1)] and after 3 d [day 4 of DIET (DIET4) and day 4 of EX (EX4)] of the intervention. Body weight, leptin and ghrelin concentrations, relative-reinforcing value of food, and olfaction were measured at days 1 and 4. Body composition (dual-energy X-ray absorptiometry), ad libitum energy intake (EI; buffet), and palatability (visual analog scale) were measured only at day 4. RESULTS Relative to CON4, EI (P= 0.001), palatability (P= 0.01), and odor threshold (P= 0.05) were higher at DIET4; relative to CON4, palatability (P= 0.03) was higher at EX4. Compared with EX4, EI was higher for DIET4 (P= 0.006). Relative to CON4, snack points earned were higher at DIET4 (P= 0.03) and EX4 (P= 0.001); more snack points were earned at EX4 relative to DIET4 (P= 0.001). CONCLUSIONS Compared with the control condition, DIET represented a greater acute challenge to appetite regulation than EX, as demonstrated by greater appetite and ad libitum EI. This study confirms that compared with depletions by exercise alone, acute caloric restriction results in rapid changes in appetite that result in compensatory eating, which may initially dissuade potential success in weight-loss efforts. This trial was registered at clinicaltrials.gov as NCT02653378.
Collapse
Affiliation(s)
- Jameason D Cameron
- School of Human Kinetics, University of Ottawa, Ottawa, Canada; Children's Hospital of Eastern Ontario, Ottawa, Canada; and
| | - Gary S Goldfield
- School of Human Kinetics, University of Ottawa, Ottawa, Canada; Children's Hospital of Eastern Ontario, Ottawa, Canada; and
| | - Marie-Ève Riou
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Graham S Finlayson
- Appetite and Energy Balance Research, University of Leeds, Leeds, United Kingdom
| | - John E Blundell
- Appetite and Energy Balance Research, University of Leeds, Leeds, United Kingdom
| | - Éric Doucet
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
30
|
Busquets-Garcia A, Desprez T, Metna-Laurent M, Bellocchio L, Marsicano G, Soria-Gomez E. Dissecting the cannabinergic control of behavior: Thewherematters. Bioessays 2015; 37:1215-25. [DOI: 10.1002/bies.201500046] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arnau Busquets-Garcia
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Tifany Desprez
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Mathilde Metna-Laurent
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Luigi Bellocchio
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Giovanni Marsicano
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Edgar Soria-Gomez
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| |
Collapse
|