1
|
Xie L, Wang H, Hu J, Liu Z, Hu F. The role of novel adipokines and adipose-derived extracellular vesicles (ADEVs): Connections and interactions in liver diseases. Biochem Pharmacol 2024; 222:116104. [PMID: 38428826 DOI: 10.1016/j.bcp.2024.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Adipose tissues (AT) are an important endocrine organ that secretes various functional adipokines, peptides, non-coding RNAs, and acts on AT themselves or other distant tissues or organs through autocrine, paracrine, or endocrine manners. An accumulating body of evidence has suggested that many adipokines play an important role in liver metabolism. Besides the traditional adipokines such as adiponectin and leptin, many novel adipokines have recently been identified to have regulatory effects on the liver. Additionally, AT can produce extracellular vesicles (EVs) that act on peripheral tissues. However, under pathological conditions, such as obesity and diabetes, dysregulation of adipokines is associated with functional changes in AT, which may cause liver diseases. In this review, we focus on the newly discovered adipokines and EVs secreted by AT and highlight their actions on the liver under the context of obesity, nonalcoholic fatty liver diseases (NAFLD), and some other liver diseases. Clarifying the action of adipokines and adipose tissue-derived EVs on the liver would help to identify novel therapeutic targets or biomarkers for metabolic diseases.
Collapse
Affiliation(s)
- Lijun Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huiying Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinying Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhuoying Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Health Law Research Center, School of Law, Central South University, Changsha, China.
| | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
2
|
Zhang YM, Erdene K, Zhao YB, Li CQ, Wang L, Tian F, Ao CJ, Jin H. Role of white adipose tissue browning in cold seasonal acclimation in grazing Mongolian sheep (Ovis aries). J Therm Biol 2022; 109:103333. [DOI: 10.1016/j.jtherbio.2022.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
3
|
Machado SA, Pasquarelli-do-Nascimento G, da Silva DS, Farias GR, de Oliveira Santos I, Baptista LB, Magalhães KG. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond) 2022; 19:61. [PMID: 36068578 PMCID: PMC9446768 DOI: 10.1186/s12986-022-00694-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
Adipose tissues are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. Although white adipose tissue and brown adipose tissue are currently considered key endocrine organs, they differ functionally and morphologically. The existence of the beige or brite adipocytes, cells displaying intermediary characteristics between white and brown adipocytes, illustrates the plastic nature of the adipose tissue. These cells are generated through white adipose tissue browning, a process associated with augmented non-shivering thermogenesis and metabolic capacity. This process involves the upregulation of the uncoupling protein 1, a molecule that uncouples the respiratory chain from Adenosine triphosphate synthesis, producing heat. β-3 adrenergic receptor system is one important mediator of white adipose tissue browning, during cold exposure. Surprisingly, hyperthermia may also induce beige activation and white adipose tissue beiging. Physical exercising copes with increased levels of specific molecules, including Beta-Aminoisobutyric acid, irisin, and Fibroblast growth factor 21 (FGF21), which induce adipose tissue browning. FGF21 is a stress-responsive hormone that interacts with beta-klotho. The central roles played by hormones in the browning process highlight the relevance of the individual lifestyle, including circadian rhythm and diet. Circadian rhythm involves the sleep-wake cycle and is regulated by melatonin, a hormone associated with UCP1 level upregulation. In contrast to the pro-inflammatory and adipose tissue disrupting effects of the western diet, specific food items, including capsaicin and n-3 polyunsaturated fatty acids, and dietary interventions such as calorie restriction and intermittent fasting, favor white adipose tissue browning and metabolic efficiency. The intestinal microbiome has also been pictured as a key factor in regulating white tissue browning, as it modulates bile acid levels, important molecules for the thermogenic program activation. During embryogenesis, in which adipose tissue formation is affected by Bone morphogenetic proteins that regulate gene expression, the stimuli herein discussed influence an orchestra of gene expression regulators, including a plethora of transcription factors, and chromatin remodeling enzymes, and non-coding RNAs. Considering the detrimental effects of adipose tissue browning and the disparities between adipose tissue characteristics in mice and humans, further efforts will benefit a better understanding of adipose tissue plasticity biology and its applicability to managing the overwhelming burden of several chronic diseases.
Collapse
Affiliation(s)
- Sabrina Azevedo Machado
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | | | - Debora Santos da Silva
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Gabriel Ribeiro Farias
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Luana Borges Baptista
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
4
|
Ren Y, Zhao H, Yin C, Lan X, Wu L, Du X, Griffiths HR, Gao D. Adipokines, Hepatokines and Myokines: Focus on Their Role and Molecular Mechanisms in Adipose Tissue Inflammation. Front Endocrinol (Lausanne) 2022; 13:873699. [PMID: 35909571 PMCID: PMC9329830 DOI: 10.3389/fendo.2022.873699] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic low-grade inflammation in adipose tissue (AT) is a hallmark of obesity and contributes to various metabolic disorders, such as type 2 diabetes and cardiovascular diseases. Inflammation in ATs is characterized by macrophage infiltration and the activation of inflammatory pathways mediated by NF-κB, JNK, and NLRP3 inflammasomes. Adipokines, hepatokines and myokines - proteins secreted from AT, the liver and skeletal muscle play regulatory roles in AT inflammation via endocrine, paracrine, and autocrine pathways. For example, obesity is associated with elevated levels of pro-inflammatory adipokines (e.g., leptin, resistin, chemerin, progranulin, RBP4, WISP1, FABP4, PAI-1, Follistatin-like1, MCP-1, SPARC, SPARCL1, and SAA) and reduced levels of anti-inflammatory adipokines such as adiponectin, omentin, ZAG, SFRP5, CTRP3, vaspin, and IL-10. Moreover, some hepatokines (Fetuin A, DPP4, FGF21, GDF15, and MANF) and myokines (irisin, IL-6, and DEL-1) also play pro- or anti-inflammatory roles in AT inflammation. This review aims to provide an updated understanding of these organokines and their role in AT inflammation and related metabolic abnormalities. It serves to highlight the molecular mechanisms underlying the effects of these organokines and their clinical significance. Insights into the roles and mechanisms of these organokines could provide novel and potential therapeutic targets for obesity-induced inflammation.
Collapse
Affiliation(s)
- Yakun Ren
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
| | - Hao Zhao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xi Lan
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Litao Wu
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaojuan Du
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Helen R. Griffiths
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Dan Gao
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
- *Correspondence: Dan Gao,
| |
Collapse
|
5
|
Serum proteomic analysis of major depressive disorder patients and their remission status: Novel biomarker set of zinc-alpha-2-glycoprotein and keratin type II cytoskeletal 1. Int J Biol Macromol 2021; 183:2001-2008. [PMID: 34052271 DOI: 10.1016/j.ijbiomac.2021.05.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) is the most common mood disorder, and causes various mental, physical and cognitive symptoms. Clinicians diagnose MDD using multiple interviews and overall impression during the interviews, which makes MDD diagnosis highly subjective. To overcome this, we investigated novel protein biomarker for MDD. Serum from each subject were analyzed using nano liquid chromatography-triple time-of-flight mass spectrometry. We identified two proteins, zinc-alpha-2-glycoprotein (ZA2G) and keratin type II cytoskeletal 1 (K2C1), as final biomarkers. These biomarkers were downregulated during depression (p < 0.05, AUC of ROC >0.7). ZA2G is related to tryptophan metabolism, which is a main serotonin synthesis pathway. K2C1 is involved in the kinin-kallikrein system, which produces bradykinin, an anti-inflammatory mediator in the brain. Our results suggest that the two protein candidates are related to inflammation and that MDD is highly associated with inflammation. Finally, since all subjects in the two groups were taking antidepressants, our results suggest that the identified biomarkers could determine the presence or absence of illness and could be used to monitor therapeutic effects.
Collapse
|
6
|
Abstract
Since the discovery of manifest Zn deficiency in 1961, the increasing number of studies demonstrated the association between altered Zn status and multiple diseases. In this chapter, we provide a review of the most recent advances on the role of Zn in health and disease (2010-20), with a special focus on the role of Zn in neurodegenerative and neurodevelopmental disorders, diabetes and obesity, male and female reproduction, as well as COVID-19. In parallel with the revealed tight association between ASD risk and severity and Zn status, the particular mechanisms linking Zn2+ and ASD pathogenesis like modulation of synaptic plasticity through ProSAP/Shank scaffold, neurotransmitter metabolism, and gut microbiota, have been elucidated. The increasing body of data indicate the potential involvement of Zn2+ metabolism in neurodegeneration. Systemic Zn levels in Alzheimer's and Parkinson's disease were found to be reduced, whereas its sequestration in brain may result in modulation of amyloid β and α-synuclein processing with subsequent toxic effects. Zn2+ was shown to possess adipotropic effects through the role of zinc transporters, zinc finger proteins, and Zn-α2-glycoprotein in adipose tissue physiology, underlying its particular role in pathogenesis of obesity and diabetes mellitus type 2. Recent findings also contribute to further understanding of the role of Zn2+ in spermatogenesis and sperm functioning, as well as oocyte development and fertilization. Finally, Zn2+ was shown to be the potential adjuvant therapy in management of novel coronavirus infection (COVID-19), underlining the perspectives of zinc in management of old and new threats.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
7
|
Fan G, Li Y, Ma F, Zhao R, Yang X. Zinc-α2-glycoprotein promotes skeletal muscle lipid metabolism in cold-stressed mice. Endocr J 2021; 68:53-62. [PMID: 32863292 DOI: 10.1507/endocrj.ej20-0179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Skeletal muscle is the most abundant tissue in the adult body and plays an essential role in maintaining heat production for the entire body. Recently, muscle-derived non-shivering thermogenesis under cold conditions has received much attention. Zinc-α2-glycoprotein (ZAG) is an adipokine that was shown to influence energy metabolism in the adipose tissue. We used ZAG knock-out (ZAG KO) and wild-type (WT) mice to investigate the effect of ZAG on the lipid metabolism of skeletal muscle upon exposure to a low temperature (6°C) for one week. The results show that cold stress significantly increases the level of lipolysis, energy metabolism, and fat browning-related proteins in the gastrocnemius muscle of WT mice. In contrast, ZAG KO mice did not show any corresponding changes. Increased expression of β3-adrenoceptor (β3-AR) and protein kinase A (PKA) might be involved in the ZAG pathway in mice exposed cold stress. Furthermore, expression of lipolysis-related proteins (ATGL and p-HSL) and energy metabolism-related protein (PGC1α, UCP2, UCP3 and COX1) was significantly enhanced in ZAG KO mice after injection of ZAG-recombinant plasmids. These results indicate that ZAG promotes lipid-related metabolism in the skeletal muscle when the animals are exposed to low temperatures. This finding provides a promising target for the development of new therapeutic approaches to improve skeletal muscle energy metabolism.
Collapse
Affiliation(s)
- Guoqiang Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yanfei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Fuli Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiaojing Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
8
|
Does Proteomic Mirror Reflect Clinical Characteristics of Obesity? J Pers Med 2021; 11:jpm11020064. [PMID: 33494491 PMCID: PMC7912072 DOI: 10.3390/jpm11020064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a frightening chronic disease, which has tripled since 1975. It is not expected to slow down staying one of the leading cases of preventable death and resulting in an increased clinical and economic burden. Poor lifestyle choices and excessive intake of “cheap calories” are major contributors to obesity, triggering type 2 diabetes, cardiovascular diseases, and other comorbidities. Understanding the molecular mechanisms responsible for development of obesity is essential as it might result in the introducing of anti-obesity targets and early-stage obesity biomarkers, allowing the distinction between metabolic syndromes. The complex nature of this disease, coupled with the phenomenon of metabolically healthy obesity, inspired us to perform data-centric, hypothesis-generating pilot research, aimed to find correlations between parameters of classic clinical blood tests and proteomic profiles of 104 lean and obese subjects. As the result, we assembled patterns of proteins, which presence or absence allows predicting the weight of the patient fairly well. We believe that such proteomic patterns with high prediction power should facilitate the translation of potential candidates into biomarkers of clinical use for early-stage stratification of obesity therapy.
Collapse
|
9
|
Pearsey HM, Henson J, Sargeant JA, Davies MJ, Khunti K, Suzuki T, Bowden-Davies KA, Cuthbertson DJ, Yates TE. Zinc-alpha2-glycoprotein, dysglycaemia and insulin resistance: a systematic review and meta-analysis. Rev Endocr Metab Disord 2020; 21:569-575. [PMID: 32377863 PMCID: PMC7557496 DOI: 10.1007/s11154-020-09553-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To systematically review the current literature investigating associations between zinc-alpha2-glycoprotein (ZAG) and dysglycaemia (including type 2 diabetes (T2DM), poly-cystic-ovary syndrome (PCOS), pre-diabetes or insulin resistance). This included relationships between ZAG and continuous measures of insulin and glucose. Additionally, we performed a meta-analysis to estimate the extent that ZAG differs between individuals with or without dysglycaemia; whilst examining the potential influence of adiposity. A systematic search was performed on four databases for studies on circulating ZAG concentrations in adult human populations, comparing healthy controls to individuals with dysglycaemia. Key characteristics, including the mean ZAG concentrations (mg∙L-1), and any correlational statistics between ZAG and continuous measures of glucose, glycated haemoglobin (HbA1c) or insulin were extracted. Meta-analyses were performed to compare metabolically healthy controls to cases, and on studies that compared controls and cases considered overweight or obese (body mass index (BMI) ≥25 kg.m2). 1575 papers were identified and 14 studies (16 cohorts) were considered eligible for inclusion. Circulating ZAG was lower in individuals with dysglycaemia compared to metabolically healthy controls (-4.14 [-8.17, -0.11] mg.L-1; I2 = 98.5%; p < 0.001). When using data from only studies with overweight or obese groups with or without dysglycaemia (three studies (four cohorts); pooled n = 332), the difference in circulating ZAG was no longer significant (-0.30 [-3.67, 3.07] mg. L-1; I2 = 28.0%; p = 0.225). These data suggest that ZAG may be implicated in dysglycaemia, although there was significant heterogeneity across different studies and the mediating effect of adiposity cannot be excluded. Therefore, more research is needed before robust conclusions can be drawn.
Collapse
Affiliation(s)
- Harriet M Pearsey
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK.
- NIHR Leicester Biomedical Research Centre, Leicester, UK.
- Department of Health Science, University of Leicester, Leicester, UK.
| | - Joseph Henson
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Jack A Sargeant
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Melanie J Davies
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Kamlesh Khunti
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
- NIHR ARC East Midlands, Leicester, UK
| | - Toru Suzuki
- NIHR Leicester Biomedical Research Centre, Leicester, UK
- Cardiovascular Sciences Unit, Leicester Glenfeild Hospital, Leicester, UK
| | | | - Daniel J Cuthbertson
- Clinical Sciences Centre, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Thomas E Yates
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| |
Collapse
|
10
|
New insights into the zinc-α2-glycoprotein (ZAG) scaffold and its metal ions binding abilities using spectroscopic techniques. Life Sci 2020; 249:117462. [PMID: 32097664 DOI: 10.1016/j.lfs.2020.117462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 11/20/2022]
Abstract
AIMS Zinc-α2-glycoprotein (ZAG) is soluble lipid mobilizing protein and a noval adipokine associated with cancer cachexia. ZAG is an omnipresent protein and represent a fold of MHC class I proteins. Although ZAG's metal binding capacity has already been reported, no other metal has been mapped to date besides the complex formation with zinc. MAIN METHODOLOGY In this study, fluorescence emission spectroscopy and mass spectrometry (MALDI-TOF) were employed to define the putative interaction sites and their accessibility for the biologically important metals of Irving William Series. KEY FINDINGS Several hotspot residues in the ZAG scaffold involved in these interactions were mapped and their binding affinity score for each metal has been determined. Thebinding abilities of these sites and aggregation propensities of ZAG were monitored by fluorescence emission spectroscopy. SIGNIFICANCE The prediction of such binding affinity with metals on the active sites and its impact on the conformational states to accelerate aggregation was discussed as an important finding that may be involved in several other biochemical processes such as lipid binding, β-adrenergic receptors, cancer cachexia and association with plasma cholesterol and obesity.
Collapse
|
11
|
Abstract
During nearly 100 years of research on cancer cachexia (CC), science has been reciting the same mantra: it is a multifactorial syndrome. The aim of this paper is to show that the symptoms are many, but they have a single cause: anoxia. CC is a complex and devastating condition that affects a high proportion of advanced cancer patients. Unfortunately, it cannot be reversed by traditional nutritional support and it generally reduces survival time. It is characterized by significant weight loss, mainly from fat deposits and skeletal muscles. The occurrence of cachexia in cancer patients is usually a late phenomenon. The conundrum is why do similar patients with similar tumors, develop cachexia and others do not? Even if cachexia is mainly a metabolic dysfunction, there are other issues involved such as the activation of inflammatory responses and crosstalk between different cell types. The exact mechanism leading to a wasting syndrome is not known, however there are some factors that are surely involved, such as anorexia with lower calorie intake, increased glycolytic flux, gluconeogenesis, increased lipolysis and severe tumor hypoxia. Based on this incomplete knowledge we put together a scheme explaining the molecular mechanisms behind cancer cachexia, and surprisingly, there is one cause that explains all of its characteristics: anoxia. With this different view of CC we propose a treatment based on the physiopathology that leads from anoxia to the symptoms of CC. The fundamentals of this hypothesis are based on the idea that CC is the result of anoxia causing intracellular lactic acidosis. This is a dangerous situation for cell survival which can be solved by activating energy consuming gluconeogenesis. The process is conducted by the hypoxia inducible factor-1α. This hypothesis was built by putting together pieces of evidence produced by authors working on related topics.
Collapse
|