1
|
Vacario BGL, da Silva IM, Machado MG, Orrutéa JFG, Campos AGH, Matos RO, Federige ACL, Koizumi BY, Leite MB, Komori IMS, Dos Santos Jaques H, Rech D, Guembarovski RL, Amarante MK, Serpeloni JM, Panis C. Pesticide exposure and oxidative stress generation are linked to poor prognosis outcomes in breast cancer women carrying the allelic variant rs7438135 in the UGT2B7 gene. J Biochem Mol Toxicol 2024; 38:e70013. [PMID: 39392214 DOI: 10.1002/jbt.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Pesticide exposure is a risk factor for the development of several diseases, including breast cancer (BC). The enzyme UGT2B7 participate in detoxification of pesticides and the presence rs7438135 (G > A) variant in your gene increases its glucuronidation potential, contributing to oxidative stress metabolites neutralization. Here we investigated the impact of occupational pesticide exposure on the systemic oxidative stress generation from 228 women with BC depending on their UGT2B7 rs7438135 (G > A) status. q-PCR investigated the presence of the rs7438135 variant, and oxidative stress markers (lipid peroxidation levels, total antioxidant capacity-TRAP, and nitric oxide metabolites-NOx) were measured in plasma. Pesticide exposure induced significant augment in the systemic lipid peroxidation in the presence of the variant for several clinicopathological conditions, including tumors with high proliferation index (ki67) and with high aggressiveness. NOx was augmented in high ki67, positive progesterone receptors, high-grade and triple-negative/Luminal B tumors, and low-risk stratified patients. TRAP was depleted in young patients at menopause and those with triple-negative/Luminal B tumors, as well as those stratified as at low risk for death and recurrence. These findings showed that the presence of the variant was not able to protect from pesticide-induced oxidative stress generation in BC patients.
Collapse
Affiliation(s)
- Beatriz Geovana Leite Vacario
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
- Laboratory of Tumor Biology, State University of West Paraná (UNIOESTE), Francisco Beltrão, Paraná, Brazil
| | - Isabely Mayara da Silva
- Laboratory of Mutagenesis and Oncogenetics, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Murilo Galvani Machado
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | | | | | - Rafaela Oliveira Matos
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Ana Carolina Lopes Federige
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Bruna Yukie Koizumi
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Maikely Bruna Leite
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Isabela Mitsu Suo Komori
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Hellen Dos Santos Jaques
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Daniel Rech
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Roberta Losi Guembarovski
- Laboratory of Mutagenesis and Oncogenetics, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Marla Karine Amarante
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Juliana Mara Serpeloni
- Laboratory of Mutagenesis and Oncogenetics, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Carolina Panis
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
- Laboratory of Tumor Biology, State University of West Paraná (UNIOESTE), Francisco Beltrão, Paraná, Brazil
| |
Collapse
|
2
|
Acevedo-Huergo T, Sánchez-Yépez J, Mendoza-Trejo MS, Hernández-Plata I, Giordano M, Rodríguez VM. Hypoactivity and neurochemical alterations in the basal ganglia of female Sprague-Dawley rats after repeated exposure to atrazine. FRONTIERS IN TOXICOLOGY 2024; 6:1416708. [PMID: 39161789 PMCID: PMC11330890 DOI: 10.3389/ftox.2024.1416708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
The herbicide atrazine (ATR) has been one of the most widely used herbicides worldwide. However, due to its indiscriminate use, it has been considered an environmental contaminant. Several studies have classified ATR as an endocrine disruptor, and it has been found to have neurotoxic effects on behavior, along with alterations in the dopaminergic, GABAergic, and glutamatergic systems in the basal ganglia of male rodents. These findings suggest that these neurotransmitter systems are targets of this herbicide. However, there are no studies evaluating the neurotoxicity of ATR in female rodents. Our study aimed to assess the effects of repeated IP injections of 100 mg ATR/kg or a vehicle every other day for 2 weeks (six injections) on the locomotor activity, content of monoamines, GABA, glutamate, and glutamine in the striatum, nucleus accumbens, ventral midbrain, and prefrontal cortex, and tyrosine hydroxylase (TH) protein levels in striatum and nucleus accumbens of female rats. Repeated 100 mg ATR/kg injections immediately decreased all the locomotor activity parameters evaluated, and such hypoactivity persisted for at least 48 h after the last ATR administration. The ATR administration increased dopamine and DOPAC content in the nucleus accumbens and the dopamine and DOPAC and serotonin and 5-HIAA content in the ventral midbrain. In contrast, the TH protein levels in the striatum and nucleus accumbens were similar between groups. Meanwhile, GABA, glutamine, and glutamate levels remained unaltered in all brain regions evaluated. The observed behavioral alterations could be associated with the monoamine changes presented by the rats. These data reveal that the nucleus accumbens and ventral midbrain are susceptible to repeated ATR exposure in female rats.
Collapse
Affiliation(s)
| | | | | | | | | | - Verónica Mireya Rodríguez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
3
|
Deng S, Chen C, Wang Y, Liu S, Zhao J, Cao B, Jiang D, Jiang Z, Zhang Y. Advances in understanding and mitigating Atrazine's environmental and health impact: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121530. [PMID: 38905799 DOI: 10.1016/j.jenvman.2024.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Atrazine is a widely used herbicide in agriculture, and it has garnered significant attention because of its potential risks to the environment and human health. The extensive utilization of atrazine, alongside its persistence in water and soil, underscores the critical need to develop safe and efficient removal strategies. This comprehensive review aims to spotlight atrazine's potential impact on ecosystems and public health, particularly its enduring presence in soil, water, and plants. As a known toxic endocrine disruptor, atrazine poses environmental and health risks. The review navigates through innovative removal techniques across soil and water environments, elucidating microbial degradation, phytoremediation, and advanced methodologies such as electrokinetic-assisted phytoremediation (EKPR) and photocatalysis. The review notably emphasizes the complex process of atrazine degradation and ongoing scientific efforts to address this, recognizing its potential risks to both the environment and human health.
Collapse
Affiliation(s)
- Shijie Deng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cairu Chen
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuhang Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shanqi Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiaying Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Duo Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, PR China.
| |
Collapse
|
4
|
Mutunga T, Sinanovic S, Harrison C. A Wireless Network for Monitoring Pesticides in Groundwater: An Inclusive Approach for a Vulnerable Kenyan Population. SENSORS (BASEL, SWITZERLAND) 2024; 24:4665. [PMID: 39066061 PMCID: PMC11280913 DOI: 10.3390/s24144665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
Safe drinking water is essential to a healthy lifestyle and has been recognised as a human right by numerous countries. However, the realisation of this right remains largely aspirational, particularly in impoverished nations that lack adequate resources for water quality testing. Kenya, a Sub-Saharan country, bears the brunt of this challenge. Pesticide imports in Kenya increased by 144% from 2015 to 2018, with sales data indicating that 76% of these pesticides are classified as highly hazardous. This trend continues to rise. Over 70% of Kenya's population resides in rural areas, with 75% of the rural population engaged in agriculture and using pesticides. Agriculture is the country's main economic activity, contributing over 30% of its gross domestic product (GDP). The situation is further exacerbated by the lack of monitoring for pesticide residues in surface water and groundwater, coupled with the absence of piped water infrastructure in rural areas. Consequently, contamination levels are high, as agricultural runoff is a major contaminant of surface water and groundwater. The increased use of pesticides to enhance agricultural productivity exacerbates environmental degradation and harms water ecosystems, adversely affecting public health. This study proposes the development of a wireless sensor system that utilizes radio-frequency identification (RFID), Long-range (LoRa) protocol and a global system for mobile communications (GSM) for monitoring pesticide prevalence in groundwater sources. From the system design, individuals with limited literacy skills, advanced age, or non-expert users can utilize it with ease. The reliability of the LoRa protocol in transmitting data packets is thoroughly investigated to ensure effective communication. The system features a user-friendly interface for straightforward data input and facilitates broader access to information by employing various remote wireless sensing methods.
Collapse
Affiliation(s)
- Titus Mutunga
- School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK; (S.S.); (C.H.)
| | | | | |
Collapse
|
5
|
Panis C, Lemos B. Pesticide exposure and increased breast cancer risk in women population studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172988. [PMID: 38710391 DOI: 10.1016/j.scitotenv.2024.172988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Pesticide exposure is emerging as a risk factor for various human diseases. Breast cancer (BC) is a multifactorial disease with known genetic and non-genetic risk factors. Most BC cases are attibutable to non-genetic risk factors, with a history of adverse environmental exposures playing a significant role. Pesticide exposure can occur at higher levels in female populations participating in rural activities such as spraying of pesticides in the field, unprotected handling of pesticides at home, and washing of contaminated clothes. Exposure can also be significant in the drinking water of certain populations. Here, we reviewed the literature on women's exposure to pesticides and the risk of BC. We summarize the main links between pesticide exposure and BC and discuss the role of dose and exposure context, as well as potential mechanisms of toxicity. Overall, reports reviewed here have documented stronger associations between higher levels of exposure and BC risk, including documenting direct and acute pesticide exposure in certain female populations. However, discrepancies among studies regarding dose and mode of exposure may result in misunderstandings about the risks posed by pesticide exposure. Plausible mechanisms linking pesticides to breast cancer risk include their impacts as endocrine disruptors, as well as their roles as genotoxic agents, and modulators of the epigenome. Besides establishing links between pesticide exposure and breast cancer, the literature also highlights the critical need to understand the routes and doses of women's exposure to pesticides and the specific associations and mechanisms that are determinants of disease etiology and prognosis.
Collapse
Affiliation(s)
- Carolina Panis
- R Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States; Laboratory of Tumor Biology, State University of Western Paraná, UNIOESTE, Francisco Beltrão, Paraná, Brazil.
| | - Bernardo Lemos
- R Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States; Coit Center for Longevity and Neurotherapeutics, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
6
|
Mutunga T, Sinanovic S, Harrison CS. Integrating Wireless Remote Sensing and Sensors for Monitoring Pesticide Pollution in Surface and Groundwater. SENSORS (BASEL, SWITZERLAND) 2024; 24:3191. [PMID: 38794044 PMCID: PMC11125874 DOI: 10.3390/s24103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Water constitutes an indispensable resource crucial for the sustenance of humanity, as it plays an integral role in various sectors such as agriculture, industrial processes, and domestic consumption. Even though water covers 71% of the global land surface, governments have been grappling with the challenge of ensuring the provision of safe water for domestic use. A contributing factor to this situation is the persistent contamination of available water sources rendering them unfit for human consumption. A common contaminant, pesticides are not frequently tested for despite their serious effects on biodiversity. Pesticide determination in water quality assessment is a challenging task because the procedures involved in the extraction and detection are complex. This reduces their popularity in many monitoring campaigns despite their harmful effects. If the existing methods of pesticide analysis are adapted by leveraging new technologies, then information concerning their presence in water ecosystems can be exposed. Furthermore, beyond the advantages conferred by the integration of wireless sensor networks (WSNs), the Internet of Things (IoT), Machine Learning (ML), and big data analytics, a notable outcome is the attainment of a heightened degree of granularity in the information of water ecosystems. This paper discusses methods of pesticide detection in water, emphasizing the possible use of electrochemical sensors, biosensors, and paper-based sensors in wireless sensing. It also explores the application of WSNs in water, the IoT, computing models, ML, and big data analytics, and their potential for integration as technologies useful for pesticide monitoring in water.
Collapse
Affiliation(s)
- Titus Mutunga
- School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK; (S.S.); (C.S.H.)
| | | | | |
Collapse
|
7
|
Eremici I, Borlea A, Dumitru C, Stoian D. Breast Cancer Risk Factors among Women with Solid Breast Lesions. Clin Pract 2024; 14:473-485. [PMID: 38525715 PMCID: PMC10961805 DOI: 10.3390/clinpract14020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Breast cancer is the most frequent malignancy in women worldwide and one of the most curable cancers if diagnosed at an early stage. Female patients presenting solid breast lesions are greatly predisposed to breast cancer development, and as such, effective screening of high-risk patients is valuable in early-stage breast cancer detection. OBJECTIVES The aim of our study was to identify the most relevant demographic, reproductive and lifestyle risk factors for breast cancer among women with solid breast lesions living in western Romania, namely the urban region consisting of Timisoara and the rural surrounding regions. METHODS From January 2017 to December 2021, 1161 patients with solid breast lesions, as detected by sonoelastography, were divided into two groups: patients with benign lesions (1019, 87.77%) and patients with malignant nodules (142, 12.23%). The malignancy group was confirmed by a histopathological result. Variables including age, BMI, menarche, menopause, years of exposure to estrogen, number of births, breastfeeding period, use of oral combined contraceptives, smoker status, family medical history and living area (rural-urban) were recorded. RESULTS It was evidenced by our study that the main risk factors for malignancy were elevated age (OR = 1.07, 95% CI 1.05-1.08), BMI (OR = 1.06, 95% CI 1.02-1.10), living area (rural) (OR = 1.86, 95% CI 1.13-2.85) and family medical history (negative) (OR 3.13, 95% CI 1.43-8.29). The other proposed risk factors were not found to be statistically significant. CONCLUSIONS Age and BMI were observed to be the most significant factors for breast cancer risk increase, followed by living in a rural area. A family history of breast cancer was shown to be inversely correlated with cancer risk increase.
Collapse
Affiliation(s)
- Ivana Eremici
- PhD School, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Andreea Borlea
- Department of Internal Medicine II, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Catalin Dumitru
- Obstetrics and Gynecology Department, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Dana Stoian
- Department of Internal Medicine II, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
8
|
Pereira V, Figueira O, Castilho PC. Flavonoids as Insecticides in Crop Protection-A Review of Current Research and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2024; 13:776. [PMID: 38592833 PMCID: PMC10975847 DOI: 10.3390/plants13060776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
Pesticide overuse in agricultural systems has resulted in the development of pest resistance, the impoverishment of soil microbiota, water pollution, and several human health issues. Nonetheless, farmers still depend heavily on these agrochemicals for economically viable production, given the high frequency at which crops are affected by pests. Phytopathogenic insects are considered the most destructive pests on crops. Botanical pesticides have gained attention as potential biopesticides and complements to traditional pesticides, owing to their biodegradability and low toxicity. Plant-based extracts are abundant in a wide variety of bioactive compounds, such as flavonoids, a class of polyphenols that have been extensively studied for this purpose because of their involvement in plant defense responses. The present review offers a comprehensive review of current research on the potential of flavonoids as insecticides for crop protection, addressing the modes and possible mechanisms of action underlying their bioactivity. The structure-activity relationship is also discussed. It also addresses challenges associated with their application in pest and disease management and suggests alternatives to overcome these issues.
Collapse
Affiliation(s)
| | | | - Paula C. Castilho
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9200-105 Funchal, Portugal
| |
Collapse
|
9
|
Basini G, Bussolati S, Grolli S, Berni P, Grasselli F. Are the new phthalates safe? Evaluation of Diisononilphtalate (DINP) effects in porcine ovarian cell cultures. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104384. [PMID: 38331371 DOI: 10.1016/j.etap.2024.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Phthalates are plasticizing chemicals, widely used in packaging materials and consumer products for several decades. These molecules have raised concerns because of their toxicity and their use have been restricted in several countries. Therefore, novel phthalates have been introduced. Among these, diisononilphtalate (DINP) is widely employed. However, its safety has not been properly addressed. Therefore, using a well validated granulosa cell model, collected from swine ovaries with a translational value, we studied potential DINP effects on important cellular functional parameters. In particular, we studied cell growth, steroidogenesis and redox status. Collected data showed that DINP stimulates (p < 0.05) cell growth, increases estrogen and inhibits progesterone production (p < 0.05), disrupts redox balance stimulating free radicals (p < 0.05) while reducing scavenger activities (p< 0.05). Taken together, DINP's impact on cultured swine granulosa cells provides cause for concern regarding its potential adverse effects on reproductive and endocrine functions.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - P Berni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| |
Collapse
|
10
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
11
|
Nilsson EE, McBirney M, De Santos S, King SE, Beck D, Greeley C, Holder LB, Skinner MK. Multiple generation distinct toxicant exposures induce epigenetic transgenerational inheritance of enhanced pathology and obesity. ENVIRONMENTAL EPIGENETICS 2023; 9:dvad006. [PMID: 38162685 PMCID: PMC10756336 DOI: 10.1093/eep/dvad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Three successive multiple generations of rats were exposed to different toxicants and then bred to the transgenerational F5 generation to assess the impacts of multiple generation different exposures. The current study examines the actions of the agricultural fungicide vinclozolin on the F0 generation, followed by jet fuel hydrocarbon mixture exposure of the F1 generation, and then pesticide dichlorodiphenyltrichloroethane on the F2 generation gestating females. The subsequent F3 and F4 generations and F5 transgenerational generation were obtained and F1-F5 generations examined for male sperm epigenetic alterations and pathology in males and females. Significant impacts on the male sperm differential DNA methylation regions were observed. The F3-F5 generations were similar in ∼50% of the DNA methylation regions. The pathology of each generation was assessed in the testis, ovary, kidney, and prostate, as well as the presence of obesity and tumors. The pathology used a newly developed Deep Learning, artificial intelligence-based histopathology analysis. Observations demonstrated compounded disease impacts in obesity and metabolic parameters, but other pathologies plateaued with smaller increases at the F5 transgenerational generation. Observations demonstrate that multiple generational exposures, which occur in human populations, appear to increase epigenetic impacts and disease susceptibility.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Margaux McBirney
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Sarah De Santos
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Stephanie E King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Colin Greeley
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164, USA
| | - Lawrence B Holder
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
12
|
Tejeda-Benítez L, Noguera K, Aga D, Olivero-Verbel J. Pesticides in sediments from Magdalena River, Colombia, are linked to reproductive toxicity on Caenorhabditis elegans. CHEMOSPHERE 2023; 339:139602. [PMID: 37480944 DOI: 10.1016/j.chemosphere.2023.139602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Pesticides are prevalent pollutants found in river sediments in agricultural regions worldwide, leading to environmental pollution and toxic effects on biota. In this study, twenty sediment samples were collected from the Magdalena River in Colombia and analyzed for forty pesticides. Methanolic extracts of the sediments were used to expose Caenorhabditis elegans for 24 h, evaluating the effects on its reproduction. The most abundant pesticides found in Magdalena River sediments were atrazine, bromacil, DDE, and chlorpyrifos. The concentrations of DDE and the sum of DDD, DDE, and DDT were above the Threshold Effect Concentration (TEC) values for freshwater sediments, indicating potential effects on aquatic organisms. The ratios of DDT/(DDE + DDD) and DDD/DDE suggest historical contributions of DDT and degradation under aerobic conditions. Several sampling sites displayed a moderate toxicity risk to biota, as calculated by the sediment quality guideline quotient (SQGQ). Nematode brood size was reduced by up to 37% after sediment extract exposure. The presence of chlordane, DDT-related compounds, and chlorpyrifos in Magdalena River sediments was associated with reproductive toxicity among C. elegans.
Collapse
Affiliation(s)
- Lesly Tejeda-Benítez
- Biomedical, Toxicological and Environmental Sciences (Biotoxam), Campus Piedra de Bolivar, University of Cartagena, Cartagena, Colombia
| | - Katia Noguera
- Department of Chemistry, University at Buffalo, Buffalo, NY, USA
| | - Diana Aga
- Department of Chemistry, University at Buffalo, Buffalo, NY, USA
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
13
|
Lacouture A, Breton Y, Weidmann C, Goulet SM, Germain L, Pelletier M, Audet-Walsh É. Estrogens and endocrine-disrupting chemicals differentially impact the bioenergetic fluxes of mammary epithelial cells in two- and three-dimensional models. ENVIRONMENT INTERNATIONAL 2023; 179:108132. [PMID: 37657410 DOI: 10.1016/j.envint.2023.108132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023]
Abstract
Due to its sensitivity to hormonal signaling, the mammary gland is often referred to as a sentinel organ for the study of endocrine-disrupting chemicals (EDCs), environmental pollutants that can interfere with the estrogen signaling pathway and induce mammary developmental defects. If and how EDCs impact mammary epithelial cell metabolism has not yet been documented. Herein, to study how estrogens and EDCs modulate mammary gland metabolism, we performed bioenergetic flux analyses using mouse mammary epithelial organoids compared to cells grown in monolayer culture. Several EDCs were tested, including bisphenol A (BPA), its close derivative BPS, a new BPA replacement copolyester called TritanTM, and the herbicide glyphosate. We report that estrogens reprogrammed mammary epithelial cell metabolism differently when grown in two- and three-dimensional models. Specific EDCs were also demonstrated to alter bioenergetic fluxes, thus identifying a new potential adverse effect of these molecules. Notably, organoids were more sensitive to low EDC concentrations, highlighting them as a key model for screening the impact of various environmental pollutants. Mechanistically, transcriptomic analyses revealed that EDCs interfered with the regulation of estrogen target genes and the expression of metabolic genes in organoids. Furthermore, co-treatment with the anti-estrogen fulvestrant blocked these metabolic impacts of EDCs, suggesting that, at least partially, they act through modulation of the estrogen receptor activity. Finally, we demonstrate that mammary organoids can be used for long-term studies on EDC exposure to study alterations in organogenesis/morphogenesis and that past pregnancies can modulate the sensitivity of mammary epithelial organoids to specific EDCs. Overall, this study demonstrates that estrogens and EDCs modulate mammary epithelial cell metabolism in monolayer and organoid cultures. A better understanding of the metabolic impacts of EDCs will allow a better appreciation of their adverse effects on mammary gland development and function.
Collapse
Affiliation(s)
- Aurélie Lacouture
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada; Intersectoral Centre for Endocrine Disruptor Analysis (CIAPE-ICEDA), Québec City, Canada
| | - Yann Breton
- Infectious and Immune Diseases Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; ARThrite Research Center, Université Laval, Québec City, Canada
| | - Cindy Weidmann
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Sarah-Maude Goulet
- Infectious and Immune Diseases Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; ARThrite Research Center, Université Laval, Québec City, Canada
| | - Lucas Germain
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Martin Pelletier
- Intersectoral Centre for Endocrine Disruptor Analysis (CIAPE-ICEDA), Québec City, Canada; Infectious and Immune Diseases Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; ARThrite Research Center, Université Laval, Québec City, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Québec City, Canada.
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada; Intersectoral Centre for Endocrine Disruptor Analysis (CIAPE-ICEDA), Québec City, Canada.
| |
Collapse
|
14
|
Caisso L. [Proof of life, proof of death: An anthropology of cancer among rural teachers exposed to agrochemicals in southeastern Cordoba (Argentina)]. Salud Colect 2023; 19:e4442. [PMID: 37988571 PMCID: PMC11930318 DOI: 10.18294/sc.2023.4442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 11/23/2023] Open
Abstract
This article presents the results of anthropological research on cancer among rural teachers occupationally exposed to agrochemicals. The study was carried out in the southeastern region of the province of Cordoba (Argentina), an area characterized by the large-scale production of transgenic crops intensively treated with agricultural pesticides. Regarding the methodology, fieldwork was conducted between 2019 and 2020 and included in-depth interviews with ten teachers, as well as observations of everyday situations in the towns where they live and work. Among the main findings, it was possible to identify a hegemonic narrative that naturalizes the existence of cancer and renders it invisible; despite this, it was possible to document the social suffering it caused among rural teachers. The article concludes that there is a need to bring visibility to these conditions in order to protect the health and wellbeing of this sector of Argentine teaching professionals.
Collapse
Affiliation(s)
- Lucía Caisso
- Doctora en Ciencias de la Educación. Investigadora Asistente, Consejo Nacional de Investigaciones Científicas y Técnicas con sede en Centro de Investigaciones y Transferencia Rafaela, Universidad Nacional de Rafaela, Santa Fe, Argentina. Consejo Nacional de Investigaciones Científicas y TécnicasUniversidad Nacional de RafaelaCentro de Investigaciones y Transferencia RafaelaConsejo Nacional de Investigaciones Científicas y TécnicasSanta FeArgentina
| |
Collapse
|
15
|
De Caroli Vizioli B, Silva da Silva G, Ferreira de Medeiros J, Montagner CC. Atrazine and its degradation products in drinking water source and supply: Risk assessment for environmental and human health in Campinas, Brazil. CHEMOSPHERE 2023:139289. [PMID: 37348619 DOI: 10.1016/j.chemosphere.2023.139289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Atrazine is a broad-spectrum herbicide widely used worldwide to control grassy and broadleaf weeds. Atrazine's popularity is attributable to its cost-effectiveness and reliable performance. Relatedly, it is also an important micropollutant with a potential negative impact on biodiversity and human health. Atrazine has long been regularly detected in several environmental compartments, and its widespread use has resulted in ubiquitous and unpreventable contamination. Among pesticides sold in Brazil, atrazine has remained among the top-ranked active ingredients for the last several years. Thus, this study aimed to evaluate the occurrence of atrazine and three degradation products (hydroxyatrazine, desisopropylatrazine, and desethylatrazine) in surface water (Capivari and Atibaia rivers) and treated water, monthly sampling from two drinking water treatment plants in Campinas (São Paulo, Brazil). An analytical method using solid-phase extraction (SPE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed to determine target compounds simultaneously. The method presented instrument quantification limits from 0.5 to 4.0 ng mL-1 and recovery values from 80 to 112%, with a maximum relative standard deviation of 6%. All analytes had a detection frequency of 100% from 2 to 2744 ng L-1. Statistical analysis showed no analyte removal after conventional water treatment. Also, the Capivari River showed greater analyte concentration than the Atibaia River. Performed risk assessments according to current Brazilian standards showed no human and environmental health risks. However, other risk assessment approaches may indicate potential risks, advocating for further research and ongoing surveillance.
Collapse
Affiliation(s)
- Beatriz De Caroli Vizioli
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Giulia Silva da Silva
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Jéssyca Ferreira de Medeiros
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Cassiana Carolina Montagner
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
16
|
Baldassarre F, Schiavi D, Ciarroni S, Tagliavento V, De Stradis A, Vergaro V, Suranna GP, Balestra GM, Ciccarella G. Thymol-Nanoparticles as Effective Biocides against the Quarantine Pathogen Xylella fastidiosa. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1285. [PMID: 37049378 PMCID: PMC10096886 DOI: 10.3390/nano13071285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Quarantine pathogens require the investigation of new tools for effective plant protection. In particular, research on sustainable agrochemicals is the actual challenge. Plant extracts, essential oils, and gels are natural sources of efficient biocides, such as aromatic secondary metabolites. Thymol is the major phenolic constituent of thyme and oregano essential oils, and it can inhibit many pathogenic microbes. Thymol nanoparticles were obtained through adsorption on CaCO3 nanocrystals, exploiting their carrier action. High loading efficiency and capability were reached as verified through UV and TGA measurements. We report the first study of thymol effect on Xylella fastidiosa, conducing both fluorometric assay and in vitro inhibition assay. The first test confirmed the great antibacterial effect of this compound. Finally, an in vitro test revealed an interesting synergistic action of thymol and nanocarriers, suggesting the potential application of thymol-nanoparticles as effective biocides to control Xylella fastidiosa infection.
Collapse
Affiliation(s)
- Francesca Baldassarre
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale Delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Daniele Schiavi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
| | - Serena Ciarroni
- Phytoparasites Diagnostics (PhyDia) s.r.l., Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
| | - Vincenzo Tagliavento
- Phytoparasites Diagnostics (PhyDia) s.r.l., Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
| | - Angelo De Stradis
- Institute for Sustainable Plant Protection, CNR—IPSP, Consiglio Nazionale delle Ricerche, Via Amendola 165/A, 70126 Bari, Italy
| | - Viviana Vergaro
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale Delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Gian Paolo Suranna
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale Delle Ricerche, Via Monteroni, 73100 Lecce, Italy
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
- Phytoparasites Diagnostics (PhyDia) s.r.l., Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale Delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
17
|
Wang M, Chen J, Zhao S, Zheng J, He K, Liu W, Zhao W, Li J, Wang K, Wang Y, Liu J, Zhao L. Atrazine promotes breast cancer development by suppressing immune function and upregulating MMP expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114691. [PMID: 36868036 DOI: 10.1016/j.ecoenv.2023.114691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
There is evidence that the triazine herbicide atrazine, which is used extensively, is present in both surface water and groundwater, and its interfering effect on immune systems, endocrine systems, and tumours has been reported by laboratory and epidemiological studies. This study explored how atrazine affected 4T1 breast cancer cell development in vitro and in vivo. The obtained results showed that after exposure to atrazine, the cell proliferation and tumour volume were significantly increased and the expression of MMP2, MMP7, and MMP9 was upregulated. The thymus and spleen indices, the CD4 + and CD3 + lymphocyte percentages which from the spleen and inguinal lymph nodes, and the CD4 + /CD8 + ratio were noticeably lower than they were in the control group. Importantly, tumour-infiltrating lymphocytes such as CD4 + , CD8 + , and NK cells were decreased while Treg cells were increased. Moreover, IL-4 was increased and IFN-γ and TNF-α were decreased in the serum and tumour microenvironment. These results suggested that atrazine can suppress systemic as well as local tumour immune function and upregulate MMPs to promote breast tumour development.
Collapse
Affiliation(s)
- Mengqi Wang
- Department of Gynecology, Second Hospital, Jilin University, Changchun 130041, China
| | - Junyu Chen
- Department of Gynecology, Second Hospital, Jilin University, Changchun 130041, China
| | - Shuhua Zhao
- Department of Gynecology, Second Hospital, Jilin University, Changchun 130041, China
| | - Jingying Zheng
- Department of Gynecology, Second Hospital, Jilin University, Changchun 130041, China
| | - Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Wei Liu
- Jilin Academy of Environmental Science, Changchun 130021, China
| | - Weixin Zhao
- Department of Gynecology, Second Hospital, Jilin University, Changchun 130041, China
| | - Jingze Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Kai Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Yuru Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Jian Liu
- Department of Gynecology, Second Hospital, Jilin University, Changchun 130041, China.
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China.
| |
Collapse
|
18
|
Siddiqui R, Ghimire A, Muhammad JS, Khan NA. Increasing importance of breast cancer in Nepal. Hosp Pract (1995) 2022; 50:347-355. [PMID: 36106506 DOI: 10.1080/21548331.2022.2125724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Recently, breast cancer cases in Nepal are on the rise, accounting for approximately 16% of all cancer cases, making it the second most common malignancy. Given the dependence of the Nepalese on agriculture, the rampant use of pesticides as well as the presence of arsenic in water supplies might be contributing to this huge rise in cancer cases. Herein, we provide a brief overview of the status of breast cancer, its burden, risk factors, screening and modes of treatment in Nepal.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, UAE
| | - Ajnish Ghimire
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, UAE
| | | | | |
Collapse
|
19
|
Chang J, Fang W, Chen L, Zhang P, Zhang G, Zhang H, Liang J, Wang Q, Ma W. Toxicological effects, environmental behaviors and remediation technologies of herbicide atrazine in soil and sediment: A comprehensive review. CHEMOSPHERE 2022; 307:136006. [PMID: 35973488 DOI: 10.1016/j.chemosphere.2022.136006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Atrazine has become one of the most popular applied triazine herbicides in the world due to its high herbicidal efficiency and low price. With its large-dosage and long-term use on a global scale, atrazine can cause widespread and persistent contamination of soil and sediment. This review systematically evaluates the toxicological effects, environmental risks, environmental behaviors (adsorption, transport and transformation, and bioaccumulation) of atrazine, and the remediation technologies of atrazine-contaminated soil and sediment. For the adsorption behavior of atrazine on soil and sediment, the organic matter content plays an extremely important role in the adsorption process. Various models and equations such as the multi-media fugacity model and solute transport model are used to analyze the migration and transformation process of atrazine in soil and sediment. It is worth noting that certain transformation products of atrazine in the environment even have stronger toxicity and mobility than its parent. Among various remediation technologies, the combination of microbial remediation and phytoremediation for atrazine-contaminated soil and sediment has wide application prospects. Although other remediation technologies such as advanced oxidation processes (AOPs) can also efficiently remove atrazine from soil, some potential problems still need to be further clarified. Finally, some related challenges and prospects are proposed.
Collapse
Affiliation(s)
- Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
20
|
Qi SY, Xu XL, Ma WZ, Deng SL, Lian ZX, Yu K. Effects of Organochlorine Pesticide Residues in Maternal Body on Infants. Front Endocrinol (Lausanne) 2022; 13:890307. [PMID: 35757428 PMCID: PMC9218079 DOI: 10.3389/fendo.2022.890307] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
There are many organochlorine pollutants in the environment, which can be directly or indirectly exposed to by mothers, and as estrogen endocrine disruptors can cause damage to the lactation capacity of the mammary gland. In addition, because breast milk contains a lot of nutrients, it is the most important food source for new-born babies. If mothers are exposed to organochlorine pesticides (OCPs), the lipophilic organochlorine contaminants can accumulate in breast milk fat and be passed to the infant through breast milk. Therefore, it is necessary to investigate organochlorine contaminants in human milk to estimate the health risks of these contaminants to breastfed infants. In addition, toxic substances in the mother can also be passed to the fetus through the placenta, which is also something we need to pay attention to. This article introduces several types of OCPs, such as dichlorodiphenyltrichloroethane (DDT), methoxychlor (MXC), hexachlorocyclohexane (HCH), endosulfan, chlordane, heptachlorand and hexachlorobenzene (HCB), mainly expounds their effects on women's lactation ability and infant health, and provides reference for maternal and infant health. In addition, some measures and methods for the control of organochlorine pollutants are also described here.
Collapse
Affiliation(s)
- Shi-Yu Qi
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue-Ling Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wen-Zhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
- *Correspondence: Wen-Zhi Ma, ; Kun Yu, ; Zheng-Xing Lian,
| | - Shou-Long Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Wen-Zhi Ma, ; Kun Yu, ; Zheng-Xing Lian,
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Wen-Zhi Ma, ; Kun Yu, ; Zheng-Xing Lian,
| |
Collapse
|
21
|
Serra L, Estienne A, Vasseur C, Froment P, Dupont J. Review: Mechanisms of Glyphosate and Glyphosate-Based Herbicides Action in Female and Male Fertility in Humans and Animal Models. Cells 2021; 10:3079. [PMID: 34831302 PMCID: PMC8622223 DOI: 10.3390/cells10113079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Glyphosate (G), also known as N-(phosphonomethyl)glycine is the declared active ingredient of glyphosate-based herbicides (GBHs) such as Roundup largely used in conventional agriculture. It is always used mixed with formulants. G acts in particular on the shikimate pathway, which exists in bacteria, for aromatic amino acids synthesis, but this pathway does not exist in vertebrates. In recent decades, researchers have shown by using various animal models that GBHs are endocrine disruptors that might alter reproductive functions. Our review describes the effects of exposure to G or GBHs on the hypothalamic-pituitary-gonadal (HPG) axis in males and females in terms of endocrine disruption, cell viability, and proliferation. Most of the main regulators of the reproductive axis (GPR54, GnRH, LH, FSH, estradiol, testosterone) are altered at all levels of the HPG axis (hypothalamus, pituitary, ovaries, testis, placenta, uterus) by exposure to GBHs which are considered more toxic than G alone due to the presence of formulants such as polyoxyethylene tallow amine (POEA)." In addition, we report intergenerational impacts of exposure to G or GBHs and, finally, we discuss different strategies to reduce the negative effects of GBHs on fertility.
Collapse
Affiliation(s)
- Loïse Serra
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| | - Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| | - Claudine Vasseur
- Assisted Medical Procreation, Pôle Santé Léonard de Vinci, F-37380 Chambray-lès-Tours, France;
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| |
Collapse
|
22
|
Luo S, Zhen Z, Zhu X, Ren L, Wu W, Zhang W, Chen Y, Zhang D, Song Z, Lin Z, Liang YQ. Accelerated atrazine degradation and altered metabolic pathways in goat manure assisted soil bioremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112432. [PMID: 34166937 DOI: 10.1016/j.ecoenv.2021.112432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The intensive and long-term use of atrazine in agriculture has resulted in serious environmental pollution and consequently endangered ecosystem and human health. Soil microorganisms play an important role in atrazine degradation. However, their degradation efficiencies are relatively low due to their slow growth and low abundance, and manure amendment as a practice to improve soil nutrients and microbial activities can solve these problems. This study investigated the roles of goat manure in atrazine degradation performance, metabolites and bacterial community structure. Our results showed that atrazine degradation efficiencies in un-amended soils were 26.9-35.7% and increased to 60.9-84.3% in goat manure amended treatments. Hydroxyatrazine pathway was not significantly altered, whereas deethylatrazine and deisopropylatrazine pathways were remarkably enhanced in treatments amended with manure by encouraging the N-dealkylation of atrazine side chains. In addition, goat manure significantly increased soil pH and contents of organic matters and humus, explaining the change of atrazine metabolic pathway. Nocardioides, Sphingomonas and Massilia were positively correlated with atrazine degradation efficiency and three metabolites, suggesting their preference in atrazine contaminated soils and potential roles in atrazine degradation. Our findings suggested that goat manure acts as both bacterial inoculum and nutrients to improve soil microenvironment, and its amendment is a potential practice in accelerating atrazine degradation at contaminated sites, offering an efficient, cheap, and eco-friendly strategy for herbicide polluted soil remediation.
Collapse
Affiliation(s)
- Shuwen Luo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiaoping Zhu
- The Pearl River Hydraulic Research Institute, Guangzhou 510000, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhiguang Song
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
23
|
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. Int J Mol Sci 2021; 22:ijms22168977. [PMID: 34445682 PMCID: PMC8396440 DOI: 10.3390/ijms22168977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.
Collapse
|
24
|
Dou L, Mou F, Li J, Wang S. The endocrine disruptor hexachlorobenzene can cause oxidative damage in the testis of mice. Andrologia 2021; 53:e14195. [PMID: 34374107 DOI: 10.1111/and.14195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022] Open
Abstract
Hexachlorobenzene is a widespread endocrine disruptor. However, the effect of hexachlorobenzene on the reproductive toxicity of male animals is not described in detail. To investigate the toxic effects of hexachlorobenzene in mouse testes, hexachlorobenzene (100, 400 and 1,600 mg/kg) is fed to mice. The morphology of the testes was analysed by haematoxylin and eosin staining. We also investigated the expression of biomarkers for oxidative stress. Database screening identified proteins that interact with hexachlorobenzene and the aryl hydrocarbon receptor, a weak ligand of hexachlorobenzene. Gene enrichment analysis and protein-protein interaction analyses were also performed. Real-time PCR detected the expression levels of the aryl hydrocarbon receptor in four different stages of testicular cells. We identified significantly increased activity levels of superoxide dismutase (p < 0.05) and catalase (p < 0.05) in mouse testes that had been subjected to oxidative damage. The cell thickness and the number of cell layers in the seminiferous tubules had decreased by varying degrees after the hexachlorobenzene treatment. Particularly, cytokines and proteins involved in transcriptional regulation showed enrichment. The highest levels of aryl hydrocarbon receptor expression were detected in the spermatocytic cell line. Hexachlorobenzene exposure caused testicular damage in mice. The toxicity characteristics of hexachlorobenzene were not dose-dependent.
Collapse
Affiliation(s)
- Lu Dou
- Central Laboratory, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Fangzheng Mou
- Internal Medicine of Traditional Chinese Medicine, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Jing Li
- Central Laboratory, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China.,College of Life Sciences, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Shuhong Wang
- Department of Andrology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| |
Collapse
|
25
|
Adverse Health Effects in Women Farmers Indirectly Exposed to Pesticides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115909. [PMID: 34072924 PMCID: PMC8198255 DOI: 10.3390/ijerph18115909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022]
Abstract
Farmers are among the most vulnerable populations because of the exposure to low levels of pesticides. Acetylcholinesterase and butyrylcholinesterase activities are considered as biomarkers of pesticides poisoning. However, biomarkers of oxidative stress are also playing an important role in toxicity of these contaminants. Further, increased activities of gamma-glutamyltransferase, alanine aminotransferase, urea and creatinine have been linked with hepatic and nephrotoxic cell damage, respectively. The aim of this study was to ascertain if the indirect exposure to pesticides leads to some biochemical parameter changes. Thus, cholinesterase activities, oxidative stress status (lipid and protein oxidation), hepatic function (AST and ALT levels), hormonal function (TSH, T4, FSH, LH and AMH), renal function (serum creatinine and urea), as well as possible subclinical kidney damage (urinary proteins and biomarkers of early kidney damage) were evaluated in farmer women who collect fruits and vegetables comparing with a group of women non-occupational exposed to pesticides but living in the same rural environment. Samples were taken periodically along one year to relate the observed effects to a chronic exposure. Our main results showed for the first time a subclinical kidney damage in a rural setting with indirect chronic exposure to pesticides.
Collapse
|
26
|
Wang G, Li R, Parseh B, Du G. Prospects and challenges of anticancer agents' delivery via chitosan-based drug carriers to combat breast cancer: a review. Carbohydr Polym 2021; 268:118192. [PMID: 34127212 DOI: 10.1016/j.carbpol.2021.118192] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is considered as one the most prevalent cancers worldwide. Due to its high resistance to chemotherapy and high probability of metastasis, BC is one of the leading causes of cancer-related deaths. The controlled release of chemotherapy drugs to the precise site of the tumor tissue will increase the therapeutic efficacy and decrease side effects of systemic administration. Among various drug delivery systems, natural polymers-based drug carriers have gained significant attention for cancer therapy. Chitosan, a natural polymer obtained by de-acetylation of chitin, holds huge potential for drug delivery applications because chitosan is non-toxic, non-immunogenic, biocompatible, chemically modifiable, and can be processed to form various formulations. In the current review, we will discuss the prospects and challenges of chitosan-based drug delivery systems in treating BC.
Collapse
Affiliation(s)
- Guiqiu Wang
- Guangxi Medical College, Nanning, Guangxi 530023, China
| | - Rilun Li
- Guangxi Medical College, Nanning, Guangxi 530023, China
| | - Benyamin Parseh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gang Du
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
27
|
Davico CE, Pereira AG, Nezzi L, Jaramillo ML, de Melo MS, Müller YMR, Nazari EM. Reproductive toxicity of Roundup WG® herbicide: impairments in ovarian follicles of model organism Danio rerio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15147-15159. [PMID: 33226558 DOI: 10.1007/s11356-020-11527-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Glyphosate-based herbicides are widely used in global agriculture, and their effects on different non-target animal organisms have been the focus of many toxicological studies. Regarding the potential role of glyphosate-based herbicides as an endocrine disruptor, the present study aims to investigate the effects of the herbicide Roundup WG® (RWG) on female reproduction, specifically on the ovarian maturation of Danio rerio. Adult females were exposed to low concentrations of RWG (0.065, 0.65, and 6.5 mg L-1) for 15 days, and then the ovaries were submitted to structural and morphometric procedures, accompanied by analysis of the vitellin protein content. Our results showed an increase of initial ovarian follicle numbers, decrease of late ovarian follicles, and smaller diameter of ovarian follicles in fish exposed to 0.065 and 6.5 mg L-1. The thickness of vitelline envelope was reduced, and the vitellin protein content was increased in the ovarian follicle in the two highest concentrations. Ultrastructural changes in the ovarian follicular component were evident and expressed by the cell index; vacuolization in follicular cells, increase of perivitelline space, and impaired mitochondria in oocytes were observed. Therefore, RWG adversely affects the ovarian maturation in D. rerio, and these changes can lead to reproductive toxicity, compromising population dynamics.
Collapse
Affiliation(s)
- Carla Eliana Davico
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Aline Guimarães Pereira
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Luciane Nezzi
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Michael Lorenz Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Madson Silveira de Melo
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Yara Maria Rauh Müller
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Evelise Maria Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil.
| |
Collapse
|
28
|
Horak I, Horn S, Pieters R. Agrochemicals in freshwater systems and their potential as endocrine disrupting chemicals: A South African context. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115718. [PMID: 33035912 PMCID: PMC7513804 DOI: 10.1016/j.envpol.2020.115718] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 05/28/2023]
Abstract
South Africa is the largest agrochemical user in sub-Saharan Africa, with over 3000 registered pesticide products. Although they reduce crop losses, these chemicals reach non-target aquatic environments via leaching, spray drift or run-off. In this review, attention is paid to legacy and current-use pesticides reported in literature for the freshwater environment of South Africa and to the extent these are linked to endocrine disruption. Although banned, residues of many legacy organochlorine pesticides (endosulfan and dichlorodiphenyltrichloroethane (DDT)) are still detected in South African watercourses and wildlife. Several current-use pesticides (triazine herbicides, glyphosate-based herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and chlorpyrifos) have also been reported. Agrochemicals can interfere with normal hormone function of non-target organism leading to various endocrine disrupting (ED) effects: intersex, reduced spermatogenesis, asymmetric urogenital papillae, testicular lesions and infertile eggs. Although studies investigating the occurrence of agrochemicals and/or ED effects in freshwater aquatic environments in South Africa have increased, few studies determined both the levels of agricultural pesticides present and associated ED effects. The majority of studies conducted are either laboratory-based employing in vitro or in vivo bioassays to determine ED effects of agrochemicals or studies that investigate environmental concentrations of pesticides. However, a combined approach of bioassays and chemical screening will provide a more comprehensive overview of agrochemical pollution of water systems in South Africa and the risks associated with long-term chronic exposure.
Collapse
Affiliation(s)
- Ilzé Horak
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Suranie Horn
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Rialet Pieters
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
29
|
Criswell R, Crawford KA, Bucinca H, Romano ME. Endocrine-disrupting chemicals and breastfeeding duration: a review. Curr Opin Endocrinol Diabetes Obes 2020; 27:388-395. [PMID: 33027070 PMCID: PMC7968861 DOI: 10.1097/med.0000000000000577] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe epidemiologic and toxicological literature investigating how endocrine-disrupting chemicals (EDCs) affect mammary gland development and function, thereby impacting lactation duration. RECENT FINDINGS Perfluoroalkyl and polyfluoroalkyl substances appear to reduce breastfeeding duration through impaired mammary gland development, lactogenesis, and suppressed endocrine signaling. Halogenated aromatic hydrocarbons have differing associations with lactation duration, likely because of the variety of signaling pathways that they affect, pointing to the importance of complex mixtures in epidemiologic studies. Although epidemiologic literature suggests that pesticides and fungicides decrease or have no effect on lactation duration, toxicology literature suggests enhanced mammary gland development through estrogenic and/or antiandrogenic pathways. Toxicological studies suggest that phthalates may affect mammary gland development via estrogenic pathways but no association with lactation duration has been observed. Bisphenol A was associated with decreased duration of breastfeeding, likely through direct and indirect action on estrogenic pathways. SUMMARY EDCs play a role in mammary gland development, function, and lactogenesis, which can affect breastfeeding duration. Further research should explore direct mechanisms of EDCs on lactation, the significance of toxicant mixtures, and transgenerational effects of EDCs on lactation.
Collapse
Affiliation(s)
| | - Kathryn A. Crawford
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH
- Environmental Studies Program, Middlebury College, Middlebury, VT
| | - Hana Bucinca
- Research and Quality Improvement Program, Action for Mothers and Children, Prishtina, Kosovo
- Department of Pharmacy, Rezonanca College of Medical Sciences, Prishtina, Kosovo
| | - Megan E. Romano
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH
| |
Collapse
|
30
|
Nova P, Calheiros CSC, Silva M. Glyphosate in Portuguese Adults - A Pilot Study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103462. [PMID: 32755638 DOI: 10.1016/j.etap.2020.103462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Glyphosate is a broad-spectrum biocide and the active ingredient in the most widely used herbicides worldwide. Since 2015, when the International Agency for Research on Cancer classified it as a Class 2A carcinogen, global interest in this chemical spiked particularly as regards exposure of the general population. OBJECTIVE An exploratory glyphosate exposure assessment was conducted among Portuguese adults. METHODS Self-selected participants provided first morning urine which was tested for glyphosate and its metabolite aminomethylphosphonic acid (AMPA) at two distinct periods of time, by two different laboratories using gas chromatography with tandem mass spectrometry (GC-MS-MS) and high performance liquid chromatography linked to triple quadrupole mass spectrometry (HPLC-MS/MS), respectively. RESULTS In the first round of testing 28% and 50% presented detectable levels of glyphosate and AMPA respectively, with median values of 0.25 and 0.16 μg/L. Systematically available internal dose values were 8.20E-06 mg/Kg (glyphosate) and 5.04-05 mg/Kg (AMPA). In the second round 73% and 97% presented detectable levels of glyphosate and AMPA respectively with median values of 0.13 and 0.10 μg/L. Systematically available internal dose values were 4.00E-06 mg/Kg (glyphosate) and 3.00E-06 mg/Kg (AMPA). CONCLUSIONS Glyphosate exposure was detected among Portuguese adults, with percentages of glyphosate and AMPA contaminated urine in both rounds of testing and above values from previous studies in other European countries. Systematically available internal doses values were below EFSA's risk assessment values (ADI or AOEL), and as such, the concentration values measured in this study are not per se a human health problem. Even though there were study limitations, it is the first assessment in Portugal and contributes to the overall knowledge map of glyphosate exposure in Europe.
Collapse
Affiliation(s)
- Paulo Nova
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Cristina S C Calheiros
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Margarida Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
31
|
de Almeida Sampaio Guido Y, Fonseca G, de Farias Soares A, da Silva ECN, Gonçalves Ostanik PA, Perobelli JE. Food-triad: An index for sustainable consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140027. [PMID: 32563875 DOI: 10.1016/j.scitotenv.2020.140027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/16/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
This study proposes an index for food labeling in order to promote sustainable consumption. The index is calculated by ranking multiple features from the environmental, health and nutritional dimensions of the target product in relation to a pre-set reference value; the obtained scores from each dimension are plotted in a radar chart resulting in a triangular area. An increase in area represents a greater impact. As examples, tuna and the potato-based foods at three different processing levels (in natura or minimally processed, processed and ultra-processed) were analyzed. For both cases, the index increases according to the processing grades and has proved to be capable of expressing in numbers and graphically a wide range of environmental, nutritional and health issues.
Collapse
Affiliation(s)
- Yasmin de Almeida Sampaio Guido
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil
| | - Gustavo Fonseca
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil.
| | - Alvaro de Farias Soares
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil
| | - Esther Cecília Nunes da Silva
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil
| | - Pedro Augusto Gonçalves Ostanik
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil
| | - Juliana Elaine Perobelli
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil
| |
Collapse
|
32
|
Wang Y, Guo Y, Hu Y, Sun Y, Xu D. Endosulfan triggers epithelial-mesenchymal transition via PTP4A3-mediated TGF-β signaling pathway in prostate cancer cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139234. [PMID: 32413665 DOI: 10.1016/j.scitotenv.2020.139234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Endosulfan is a persistent organochlorine pesticide that bioaccumulates in human body through the food chain and thus represents a potential risk to public health. Despite epidemiological studies, the molecular mechanisms underlying the carcinogenic effects of endosulfan in the prostate remain poorly understood. In this study, we investigated the effect of endosulfan on epithelial-mesenchymal transition (EMT) in human prostate cancer PC3 and DU145 cells. Endosulfan induced alterations of EMT biomarkers, reflecting repression of E-cadherin expression and induction of fibronectin, snail2, ZEB2, Twist1 and Vimentin. The expression of Protein-tyrosine Phosphatase 4A3 (PTP4A3) at mRNA and protein levels was upregulated by endosulfan. PTP4A3 inhibitor reversed the changes of EMT biomarkers, PTP4A3 and p-Smad2/Smad2, but did not affect the upregulation of Cleaved-Notch1 and Jagged1 in endosulfan-exposed cells. Endosulfan promoted cell migration and invasion, which were rescued by specific inhibitors for PTP4A3, TGF-β signaling and Notch signaling, respectively. These findings suggest that endosulfan promoted cell migration and invasion with the induction of EMT through PTP4A3-mediated TGF-β signaling pathway in prostate cancer cells.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Yubing Guo
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Yumeng Hu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China.
| |
Collapse
|