1
|
Maddhesiya P, Lepko T, Steiner-Mezzardi A, Schneider J, Schwarz V, Merl-Pham J, Berger F, Hauck SM, Ronfani L, Bianchi M, Simon T, Krontira A, Masserdotti G, Götz M, Ninkovic J. Hmgb2 improves astrocyte to neuron conversion by increasing the chromatin accessibility of genes associated with neuronal maturation in a proneuronal factor-dependent manner. Genome Biol 2025; 26:100. [PMID: 40247387 PMCID: PMC12007351 DOI: 10.1186/s13059-025-03556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Direct conversion of reactive glial cells to neurons is a promising avenue for neuronal replacement therapies after brain injury or neurodegeneration. The overexpression of neurogenic fate determinants in glial cells results in conversion to neurons. For repair purposes, the conversion should ideally be induced in the pathology-induced neuroinflammatory environment. However, very little is known regarding the influence of the injury-induced neuroinflammatory environment and released growth factors on the direct conversion process. RESULTS We establish a new in vitro culture system of postnatal astrocytes without epidermal growth factor that reflects the direct conversion rate in the injured, neuroinflammatory environment in vivo. We demonstrate that the growth factor combination corresponding to the injured environment defines the ability of glia to be directly converted to neurons. Using this culture system, we show that chromatin structural protein high mobility group box 2 (HMGB2) regulates the direct conversion rate downstream of the growth factor combination. We further demonstrate that Hmgb2 cooperates with neurogenic fate determinants, such as Neurog2, in opening chromatin at the loci of genes regulating neuronal maturation and synapse formation. Consequently, early chromatin rearrangements occur during direct fate conversion and are necessary for full fate conversion. CONCLUSIONS Our data demonstrate novel growth factor-controlled regulation of gene expression during direct fate conversion. This regulation is crucial for proper maturation of induced neurons and could be targeted to improve the repair process.
Collapse
Affiliation(s)
- Priya Maddhesiya
- Department of Cell Biology and Anatomy, Biomedical Center Munich (BMC), Medical Faculty, LMU, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany
| | - Tjasa Lepko
- Department of Cell Biology and Anatomy, Biomedical Center Munich (BMC), Medical Faculty, LMU, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany
| | | | - Julia Schneider
- Department of Cell Biology and Anatomy, Biomedical Center Munich (BMC), Medical Faculty, LMU, Munich, Germany
- Research Unit Central Nervous System Regeneration, Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Veronika Schwarz
- Department of Cell Biology and Anatomy, Biomedical Center Munich (BMC), Medical Faculty, LMU, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Centre Munich, German Research Center for Environmental Health, , Neuherberg, Germany
| | - Finja Berger
- Department of Cell Biology and Anatomy, Biomedical Center Munich (BMC), Medical Faculty, LMU, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Centre Munich, German Research Center for Environmental Health, , Neuherberg, Germany
| | - Lorenza Ronfani
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Bianchi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Tatiana Simon
- Biomedical Center Munich (BMC), Institute of Physiological Genomics, LMU, Munich, Germany
| | - Anthodesmi Krontira
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany
- Biomedical Center Munich (BMC), Institute of Physiological Genomics, LMU, Munich, Germany
| | - Giacomo Masserdotti
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany
- Biomedical Center Munich (BMC), Institute of Physiological Genomics, LMU, Munich, Germany
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany
- Biomedical Center Munich (BMC), Institute of Physiological Genomics, LMU, Munich, Germany
- Munich Cluster for Systems Neurology SYNERGY, LMU, Munich, Germany
| | - Jovica Ninkovic
- Department of Cell Biology and Anatomy, Biomedical Center Munich (BMC), Medical Faculty, LMU, Munich, Germany.
- Graduate School of Systemic Neurosciences, LMU, Munich, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany.
- Research Unit Central Nervous System Regeneration, Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- Munich Cluster for Systems Neurology SYNERGY, LMU, Munich, Germany.
| |
Collapse
|
2
|
Zhang X, Du P, Bai B, Lian X, Xue G. Molecular mechanism of METTL14-mediated m6A modification regulating microglial function post ischemic stroke. Brain Res Bull 2025; 220:111156. [PMID: 39622391 DOI: 10.1016/j.brainresbull.2024.111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 12/08/2024]
Abstract
This study explores the molecular mechanism of METTL14 regulating microglial function post ischemic stroke. A murine model was established by tMCAO. The neurological function was evaluated by mNSS. The cerebral infarct size and pathological changes were observed by TTC and H&E staining. M1 and M2 microglia in brain tissues were detected by flow cytometry. BV2 cells were subjected to OGD/R to establish an in vitro model. qRT-PCR and Western blot were used for detecting METTL14, PAX6, YTHDF2, TREM2, iNOS, and Arg1 expressions. The m6A level was quantitatively analyzed, and the binding of YTHDF2 or m6A to PAX6 was analyzed by RIP. PAX6 mRNA stability was assessed after actinomycin D treatment. ChIP was utilized for determining the enrichment of PAX6 on TREM2 promoter. The binding relationship between TREM2 and PAX6 was verified by dual-luciferase reporter assay. METTL14 was highly expressed after tMCAO, and silence of METTL14 alleviated symptoms of tMCAO mice and promoted microglial M2 polarization. METTL14 enhanced PAX6 mRNA m6A modification to promote YTHDF2 binding to PAX6 mRNA and its degradation. PAX6 bound to TREM2 promoter and facilitated its transcription and expression. In conclusion, METTL14-mediated m6A modification aggravates ischemic stroke by promoting microglial M1 polarization via YTHDF2/PAX6/TREM2 axis.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Pengyang Du
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Bo Bai
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xia Lian
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Guofang Xue
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
3
|
González-Gil A, Sánchez-Maldonado B, Rojo C, Flor-García M, Queiroga FL, Ovalle S, Ramos-Ruiz R, Fuertes-Recuero M, Picazo RA. Proneurogenic actions of follicle-stimulating hormone on neurospheres derived from ovarian cortical cells in vitro. BMC Vet Res 2024; 20:372. [PMID: 39160565 PMCID: PMC11334536 DOI: 10.1186/s12917-024-04203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Neural stem and progenitor cells (NSPCs) from extra-neural origin represent a valuable tool for autologous cell therapy and research in neurogenesis. Identification of proneurogenic biomolecules on NSPCs would improve the success of cell therapies for neurodegenerative diseases. Preliminary data suggested that follicle-stimulating hormone (FSH) might act in this fashion. This study was aimed to elucidate whether FSH promotes development, self-renewal, and is proneurogenic on neurospheres (NS) derived from sheep ovarian cortical cells (OCCs). Two culture strategies were carried out: (a) long-term, 21-days NS culture (control vs. FSH group) with NS morphometric evaluation, gene expression analyses of stemness and lineage markers, and immunolocalization of NSPCs antigens; (b) NS assay to demonstrate FSH actions on self-renewal and differentiation capacity of NS cultured with one of three defined media: M1: positive control with EGF/FGF2; M2: control; and M3: M2 supplemented with FSH. RESULTS In long-term cultures, FSH increased NS diameters with respect to control group (302.90 ± 25.20 μm vs. 183.20 ± 7.63 on day 9, respectively), upregulated nestin (days 15/21), Sox2 (day 21) and Pax6 (days 15/21) and increased the percentages of cells immunolocalizing these proteins. During NS assays, FSH stimulated NSCPs proliferation, and self-renewal, increasing NS diameters during the two expansion periods and the expression of the neuron precursor transcript DCX during the second one. In the FSH-group there were more frequent cell-bridges among neighbouring NS. CONCLUSIONS FSH is a proneurogenic hormone that promotes OCC-NSPCs self-renewal and NS development. Future studies will be necessary to support the proneurogenic actions of FSH and its potential use in basic and applied research related to cell therapy.
Collapse
Affiliation(s)
- Alfredo González-Gil
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain.
| | - Belén Sánchez-Maldonado
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, 28040, Spain
| | - Concepción Rojo
- Department of Anatomy and Embriology, School of Veterinary Medicine, University Complutense of Madrid, Madrid, 28040, Spain
| | - Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Felisbina Luisa Queiroga
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal.
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Quinta dos Prados, Vila Real, 5000-801, Portugal.
| | - Susana Ovalle
- Genomic Unit Cantoblanco, Fundación Parque Científico de Madrid. C/ Faraday 7, Madrid, 28049, Spain
| | - Ricardo Ramos-Ruiz
- Genomic Unit Cantoblanco, Fundación Parque Científico de Madrid. C/ Faraday 7, Madrid, 28049, Spain
| | - Manuel Fuertes-Recuero
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain
| | - Rosa Ana Picazo
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain
| |
Collapse
|
4
|
Müller T, Reichlmeir M, Hau AC, Wittig I, Schulte D. The neuronal transcription factor MEIS2 is a calpain-2 protease target. J Cell Sci 2024; 137:jcs261482. [PMID: 38305737 PMCID: PMC10941658 DOI: 10.1242/jcs.261482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
Tight control over transcription factor activity is necessary for a sensible balance between cellular proliferation and differentiation in the embryo and during tissue homeostasis by adult stem cells, but mechanistic details have remained incomplete. The homeodomain transcription factor MEIS2 is an important regulator of neurogenesis in the ventricular-subventricular zone (V-SVZ) adult stem cell niche in mice. We here identify MEIS2 as direct target of the intracellular protease calpain-2 (composed of the catalytic subunit CAPN2 and the regulatory subunit CAPNS1). Phosphorylation at conserved serine and/or threonine residues, or dimerization with PBX1, reduced the sensitivity of MEIS2 towards cleavage by calpain-2. In the adult V-SVZ, calpain-2 activity is high in stem and progenitor cells, but rapidly declines during neuronal differentiation, which is accompanied by increased stability of MEIS2 full-length protein. In accordance with this, blocking calpain-2 activity in stem and progenitor cells, or overexpression of a cleavage-insensitive form of MEIS2, increased the production of neurons, whereas overexpression of a catalytically active CAPN2 reduced it. Collectively, our results support a key role for calpain-2 in controlling the output of adult V-SVZ neural stem and progenitor cells through cleavage of the neuronal fate determinant MEIS2.
Collapse
Affiliation(s)
- Tanja Müller
- Goethe University, Faculty of Medicine, University Hospital Frankfurt, Institute of Neurology (Edinger Institute), 60528 Frankfurt, Germany
- Goethe University, University Hospital Frankfurt, Dr. Senckenberg Institute of Neurooncology and Institute of Neurology (Edinger Institute), Frankfurt Cancer Institute (FCI), University Cancer Center Frankfurt (UCT), MSNZ Junior Group Translational Neurooncology, 60528 Frankfurt, Germany
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Luxembourg Centre of Neuropathology (LCNP), 1445 Luxembourg, Luxembourg
| | - Marina Reichlmeir
- Goethe University, Faculty of Medicine, University Hospital Frankfurt, Institute of Neurology (Edinger Institute), 60528 Frankfurt, Germany
| | - Ann-Christin Hau
- Goethe University, University Hospital Frankfurt, Dr. Senckenberg Institute of Neurooncology and Institute of Neurology (Edinger Institute), Frankfurt Cancer Institute (FCI), University Cancer Center Frankfurt (UCT), MSNZ Junior Group Translational Neurooncology, 60528 Frankfurt, Germany
| | - Ilka Wittig
- Goethe University, Faculty of Medicine, Institute for Cardiovascular Physiology, Functional Proteomics, 60590, Frankfurt, Germany
| | - Dorothea Schulte
- Goethe University, Faculty of Medicine, University Hospital Frankfurt, Institute of Neurology (Edinger Institute), 60528 Frankfurt, Germany
| |
Collapse
|
5
|
Hayashi S, Seki-Omura R, Yamada S, Kamata T, Sato Y, Oe S, Koike T, Nakano Y, Iwashita H, Hirahara Y, Tanaka S, Sekijima T, Ito T, Yasukochi Y, Higasa K, Kitada M. OLIG2 translocates to chromosomes during mitosis via a temperature downshift: A novel neural cold response of mitotic bookmarking. Gene 2024; 891:147829. [PMID: 37748631 DOI: 10.1016/j.gene.2023.147829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Affiliation(s)
- Shinichi Hayashi
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan.
| | - Ryohei Seki-Omura
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Shintaro Yamada
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Taito Kamata
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Niigata, Japan; Faculty of Agriculture, Niigata University, 8050 Ikarashi 2-nocho, Niigata, Japan
| | - Yuki Sato
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Souichi Oe
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Taro Koike
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Yousuke Nakano
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Hikaru Iwashita
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Yukie Hirahara
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan; Faculty of Nursing, Kansai Medical University, Shinmachi 2-2-2, Hirakata, Osaka, Japan
| | - Susumu Tanaka
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan; Department of Anatomy and Physiology, Faculty of Nursing and Nutrition, University of Nagasaki, Manabino 1-1-1, Nagasaki, Japan
| | - Tsuneo Sekijima
- Faculty of Agriculture, Niigata University, 8050 Ikarashi 2-nocho, Niigata, Japan
| | - Takeshi Ito
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Yoshiki Yasukochi
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Masaaki Kitada
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan.
| |
Collapse
|
6
|
Péron S, Miyakoshi LM, Brill MS, Manzano-Franco D, Serrano-López J, Fan W, Marichal N, Ghanem A, Conzelmann KK, Karow M, Ortega F, Gascón S, Berninger B. Programming of neural progenitors of the adult subependymal zone towards a glutamatergic neuron lineage by neurogenin 2. Stem Cell Reports 2023; 18:2418-2433. [PMID: 37995703 PMCID: PMC10724369 DOI: 10.1016/j.stemcr.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Although adult subependymal zone (SEZ) neural stem cells mostly generate GABAergic interneurons, a small progenitor population expresses the proneural gene Neurog2 and produces glutamatergic neurons. Here, we determined whether Neurog2 could respecify SEZ neural stem cells and their progeny toward a glutamatergic fate. Retrovirus-mediated expression of Neurog2 induced the glutamatergic lineage markers TBR2 and TBR1 in cultured SEZ progenitors, which differentiated into functional glutamatergic neurons. Likewise, Neurog2-transduced SEZ progenitors acquired glutamatergic neuron hallmarks in vivo. Intriguingly, they failed to migrate toward the olfactory bulb and instead differentiated within the SEZ or the adjacent striatum, where they received connections from local neurons, as indicated by rabies virus-mediated monosynaptic tracing. In contrast, lentivirus-mediated expression of Neurog2 failed to reprogram early SEZ neurons, which maintained GABAergic identity and migrated to the olfactory bulb. Our data show that NEUROG2 can program SEZ progenitors toward a glutamatergic identity but fails to reprogram their neuronal progeny.
Collapse
Affiliation(s)
- Sophie Péron
- Research Group "Adult Neurogenesis and Cellular Reprogramming", Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Leo M Miyakoshi
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Monika S Brill
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Diana Manzano-Franco
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute - CSIC, Madrid, Spain
| | - Julia Serrano-López
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Wenqiang Fan
- Research Group "Adult Neurogenesis and Cellular Reprogramming", Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Nicolás Marichal
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Alexander Ghanem
- Max von Pettenkofer Institute and Gene Center, Ludwig Maximilians-University Munich, Munich, Germany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer Institute and Gene Center, Ludwig Maximilians-University Munich, Munich, Germany
| | - Marisa Karow
- Institute of Biochemistry, Friedrich-Alexander Universität Nürnberg-Erlangen, Erlangen, Germany
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Sergio Gascón
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute - CSIC, Madrid, Spain.
| | - Benedikt Berninger
- Research Group "Adult Neurogenesis and Cellular Reprogramming", Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Focus Program Translational Neurosciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
7
|
Chen J, Huang L, Yang Y, Xu W, Qin Q, Qin R, Liang X, Lai X, Huang X, Xie M, Chen L. Somatic Cell Reprogramming for Nervous System Diseases: Techniques, Mechanisms, Potential Applications, and Challenges. Brain Sci 2023; 13:brainsci13030524. [PMID: 36979334 PMCID: PMC10046178 DOI: 10.3390/brainsci13030524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Nervous system diseases present significant challenges to the neuroscience community due to ethical and practical constraints that limit access to appropriate research materials. Somatic cell reprogramming has been proposed as a novel way to obtain neurons. Various emerging techniques have been used to reprogram mature and differentiated cells into neurons. This review provides an overview of somatic cell reprogramming for neurological research and therapy, focusing on neural reprogramming and generating different neural cell types. We examine the mechanisms involved in reprogramming and the challenges that arise. We herein summarize cell reprogramming strategies to generate neurons, including transcription factors, small molecules, and microRNAs, with a focus on different types of cells.. While reprogramming somatic cells into neurons holds the potential for understanding neurological diseases and developing therapeutic applications, its limitations and risks must be carefully considered. Here, we highlight the potential benefits of somatic cell reprogramming for neurological disease research and therapy. This review contributes to the field by providing a comprehensive overview of the various techniques used to generate neurons by cellular reprogramming and discussing their potential applications.
Collapse
Affiliation(s)
- Jiafeng Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Lijuan Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yue Yang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Rongxing Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinyu Lai
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Nanning 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Nanning 530021, China
| |
Collapse
|
8
|
Oria M, Pathak B, Li Z, Bakri K, Gouwens K, Varela MF, Lampe K, Murphy KP, Lin CY, Peiro JL. Premature Neural Progenitor Cell Differentiation Into Astrocytes in Retinoic Acid-Induced Spina Bifida Rat Model. Front Mol Neurosci 2022; 15:888351. [PMID: 35782393 PMCID: PMC9249056 DOI: 10.3389/fnmol.2022.888351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 01/25/2023] Open
Abstract
During embryonic spinal cord development, neural progenitor cells (NPCs) generate three major cell lines: neurons, oligodendrocytes, and astrocytes at precise times and locations within the spinal cord. Recent studies demonstrate early astrogenesis in animal models of spina bifida, which may play a role in neuronal dysfunction associated with this condition. However, to date, the pathophysiological mechanisms related to this early astrocytic response in spina bifida are poorly understood. This study aimed to characterize the development of early astrogliosis over time from Pax6+, Olig2+, or Nkx2.2+ NPCs using a retinoic acid-induced spina bifida rat model. At three gestational ages (E15, E17, and E20), spinal cords from fetuses with retinoic acid-induced spina bifida, their healthy sibling controls, or fetuses treated with the vehicle control were analyzed. Results indicated that premature astrogliosis and astrocytic activation were associated with an altered presence of Pax6+, Olig2+, and Nkx2.2+ NPCs in the lesion compared to the controls. Finally, this response correlated with an elevation in genes involved in the Notch-BMP signaling pathway. Taken together, changes in NPC patterning factor expression with Notch-BMP signaling upregulation may be responsible for the altered astrogenesis patterns observed in the spinal cord in a retinoic acid-induced spina bifida model.
Collapse
Affiliation(s)
- Marc Oria
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States,*Correspondence: Marc Oria,
| | - Bedika Pathak
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Zhen Li
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Kenan Bakri
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Kara Gouwens
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Maria Florencia Varela
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Kristin Lampe
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Kendall P. Murphy
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States,Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Chia-Ying Lin
- Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jose L. Peiro
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
9
|
Flitsch LJ, Börner K, Stüllein C, Ziegler S, Sonntag-Buck V, Wiedtke E, Semkova V, Au Yeung SWC, Schlee J, Hajo M, Mathews M, Ludwig BS, Kossatz S, Kessler H, Grimm D, Brüstle O. Identification of adeno-associated virus variants for gene transfer into human neural cell types by parallel capsid screening. Sci Rep 2022; 12:8356. [PMID: 35589936 PMCID: PMC9120183 DOI: 10.1038/s41598-022-12404-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
Human brain cells generated by in vitro cell programming provide exciting prospects for disease modeling, drug discovery and cell therapy. These applications frequently require efficient and clinically compliant tools for genetic modification of the cells. Recombinant adeno-associated viruses (AAVs) fulfill these prerequisites for a number of reasons, including the availability of a myriad of AAV capsid variants with distinct cell type specificity (also called tropism). Here, we harnessed a customizable parallel screening approach to assess a panel of natural or synthetic AAV capsid variants for their efficacy in lineage-related human neural cell types. We identified common lead candidates suited for the transduction of directly converted, early-stage induced neural stem cells (iNSCs), induced pluripotent stem cell (iPSC)-derived later-stage, radial glia-like neural progenitors, as well as differentiated astrocytic and mixed neuroglial cultures. We then selected a subset of these candidates for functional validation in iNSCs and iPSC-derived astrocytes, using shRNA-induced downregulation of the citrate transporter SLC25A1 and overexpression of the transcription factor NGN2 for proofs-of-concept. Our study provides a comparative overview of the susceptibility of different human cell programming-derived brain cell types to AAV transduction and a critical discussion of the assets and limitations of this specific AAV capsid screening approach.
Collapse
Affiliation(s)
- Lea Jessica Flitsch
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Kathleen Börner
- Center for Infectious Diseases, Virology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.,BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg, 69120, Heidelberg, Germany.,AskBio GmbH, Am Taubenfeld 21, 69123, Heidelberg, Germany
| | - Christian Stüllein
- CLADIAC GmbH, Kurfürsten-Anlage 52-58, 69115, Heidelberg, Germany.,Stüllein Software Engineering (SSE), Friedrich-Hartung-Str. 16, 64560, Riedstadt, Germany
| | - Simon Ziegler
- CLADIAC GmbH, Kurfürsten-Anlage 52-58, 69115, Heidelberg, Germany.,KINSYS GmbH, Holtzstr. 2, 76135, Karlsruhe, Germany
| | - Vera Sonntag-Buck
- Center for Infectious Diseases, Virology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.,BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg, 69120, Heidelberg, Germany
| | - Ellen Wiedtke
- Center for Infectious Diseases, Virology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.,BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Vesselina Semkova
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany.,LIFE and BRAIN GmbH, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Si Wah Christina Au Yeung
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Julia Schlee
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Mohamad Hajo
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany.,Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Mona Mathews
- LIFE and BRAIN GmbH, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Beatrice Stefanie Ludwig
- Department of Nuclear Medicine, School of Medicine, Technical University Munich (TUM), University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (Transla TUM, Einsteinstr. 25, 81675, Munich, Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, School of Medicine, Technical University Munich (TUM), University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (Transla TUM, Einsteinstr. 25, 81675, Munich, Germany
| | - Horst Kessler
- Institute for Advanced Study, Department Chemie, Technical University Munich (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Dirk Grimm
- Center for Infectious Diseases, Virology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany. .,BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany. .,German Center for Infection Research (DZIF), partner site Heidelberg, 69120, Heidelberg, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120, Heidelberg, Germany.
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany. .,LIFE and BRAIN GmbH, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany.
| |
Collapse
|
10
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Ghrelin Regulates Expression of the Transcription Factor Pax6 in Hypoxic Brain Progenitor Cells and Neurons. Cells 2022; 11:cells11050782. [PMID: 35269403 PMCID: PMC8909042 DOI: 10.3390/cells11050782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/04/2022] Open
Abstract
The nature of brain impairment after hypoxia is complex and recovery harnesses different mechanisms, including neuroprotection and neurogenesis. Experimental evidence suggests that hypoxia may trigger neurogenesis postnatally by influencing the expression of a variety of transcription factors. However, the existing data are controversial. As a proof-of-principle, we subjected cultured cerebral cortex neurons, cerebellar granule neurons and organotypic cerebral cortex slices from rat brains to hypoxia and treated these cultures with the hormone ghrelin, which is well-known for its neuroprotective functions. We found that hypoxia elevated the expression levels and stimulated nuclear translocation of ghrelin’s receptor GHSR1 in the cultured neurons and the acute organotypic slices, whereas ghrelin treatment reduced the receptor expression to normoxic levels. GHSR1 expression was also increased in cerebral cortex neurons of mice with induced experimental stroke. Additional quantitative analyses of immunostainings for neuronal proliferation and differentiation markers revealed that hypoxia stimulated the proliferation of neuronal progenitors, whereas ghrelin application during the phase of recovery from hypoxia counteracted these effects. At the mechanistic level, we provide a link between the described post-ischemic phenomena and the expression of the transcription factor Pax6, an important regulator of neural progenitor cell fate. In contrast to the neurogenic niches in the brain where hypoxia is known to increase Pax6 expression, the levels of the transcription factor in cultured hypoxic cerebral cortex cells were downregulated. Moreover, the application of ghrelin to hypoxic neurons normalised the expression levels of these factors. Our findings suggest that ghrelin stimulates neurogenic factors for the protection of neurons in a GHSR1-dependent manner in non-neurogenic brain areas such as the cerebral cortex after exposure to hypoxia.
Collapse
|
12
|
Hau AC, Mommaerts E, Laub V, Müller T, Dittmar G, Schulte D. Transcriptional cooperation of PBX1 and PAX6 in adult neural progenitor cells. Sci Rep 2021; 11:21013. [PMID: 34697387 PMCID: PMC8545929 DOI: 10.1038/s41598-021-99968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
PAX6 is a highly conserved transcription factor and key regulator of several neurogenic processes, including the continuous generation of dopaminergic/GABAergic interneurons in the adult ventricular-subventricular (V-SVZ) neurogenic system in mice. Here we report that PAX6 cooperates with the TALE-homeodomain transcription factor PBX1 in this context. Chromatin-immunoprecipitation showed that PBX1 and PAX6 co-occupy shared genomic binding sites in adult V-SVZ stem- and progenitor cell cultures and mouse embryonic stem cells, while depletion of Pbx1 revealed that association of PAX6 with these sites requires the presence of PBX1. Expression profiling together with viral overexpression or knockdown of Pax6 or Pbx1 identified novel PBX1-PAX6 co-regulated genes, including several transcription factors. Computational modeling of genome wide expression identified novel cross-regulatory networks among these very transcription factors. Taken together, the results presented here highlight the intimate link that exists between PAX6 and TALE-HD family proteins and contribute novel insights into how the orchestrated activity of transcription factors shapes adult V-SVZ neurogenesis.
Collapse
Affiliation(s)
- Ann-Christin Hau
- Neurological Institute, Edinger Institute, University Hospital, Goethe University, Heinrich-Hoffmann-Str. 7, 60528, Frankfurt, Germany. .,NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Strassen, Luxembourg. .,National Center of Pathology, Laboratoire National de Santé, 1 rue Louis Rech, 3555, Dudelange, Luxembourg.
| | - Elise Mommaerts
- Quantitative Biology Unit, LUXGEN, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Vera Laub
- Neurological Institute, Edinger Institute, University Hospital, Goethe University, Heinrich-Hoffmann-Str. 7, 60528, Frankfurt, Germany
| | - Tamara Müller
- Neurological Institute, Edinger Institute, University Hospital, Goethe University, Heinrich-Hoffmann-Str. 7, 60528, Frankfurt, Germany
| | - Gunnar Dittmar
- Quantitative Biology Unit, LUXGEN, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Dorothea Schulte
- Neurological Institute, Edinger Institute, University Hospital, Goethe University, Heinrich-Hoffmann-Str. 7, 60528, Frankfurt, Germany.
| |
Collapse
|
13
|
Cho K, Lee SM, Heo J, Kwon YM, Chung D, Yu WJ, Bae SS, Choi G, Lee DS, Kim Y. Retinaldehyde Dehydrogenase Inhibition-Related Adverse Outcome Pathway: Potential Risk of Retinoic Acid Synthesis Inhibition during Embryogenesis. Toxins (Basel) 2021; 13:toxins13110739. [PMID: 34822523 PMCID: PMC8623920 DOI: 10.3390/toxins13110739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Retinoic acid (RA) is one of the factors crucial for cell growth, differentiation, and embryogenesis; it interacts with the retinoic acid receptor and retinoic acid X receptor to eventually regulate target gene expression in chordates. RA is transformed from retinaldehyde via oxidization by retinaldehyde dehydrogenase (RALDH), which belongs to the family of oxidoreductases. Several chemicals, including disulphiram, diethylaminobenzaldehyde, and SB-210661, can effectively inhibit RALDH activity, potentially causing reproductive and developmental toxicity. The modes of action can be sequentially explained based on the molecular initiating event toward key events, and finally the adverse outcomes. Adverse outcome pathway (AOP) is a conceptual and theoretical framework that describes the sequential chain of casually liked events at different biological levels from molecular events to adverse effects. In the present review, we discussed a recently registered AOP (AOP297; inhibition of retinaldehyde dehydrogenase leads to population decline) to explain and support the weight of evidence for RALDH inhibition-related developmental toxicity using the existing knowledge.
Collapse
Affiliation(s)
- Kichul Cho
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Sang-Moo Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea;
| | - Jina Heo
- Department of Growth Engine Research, Chungbuk Research Institute (CRI), Chungju 28517, Korea;
| | - Yong Min Kwon
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Dawoon Chung
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Woon-Jong Yu
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Seung Seob Bae
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Grace Choi
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Dae-Sung Lee
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
- Correspondence: (D.-S.L.); (Y.K.)
| | - Youngjun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbrücken, Germany
- Correspondence: (D.-S.L.); (Y.K.)
| |
Collapse
|
14
|
Calinescu AA, Kauss MC, Sultan Z, Al-Holou WN, O'Shea SK. Stem cells for the treatment of glioblastoma: a 20-year perspective. CNS Oncol 2021; 10:CNS73. [PMID: 34006134 PMCID: PMC8162173 DOI: 10.2217/cns-2020-0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma, the deadliest form of primary brain tumor, remains a disease without cure. Treatment resistance is in large part attributed to limitations in the delivery and distribution of therapeutic agents. Over the last 20 years, numerous preclinical studies have demonstrated the feasibility and efficacy of stem cells as antiglioma agents, leading to the development of trials to test these therapies in the clinic. In this review we present and analyze these studies, discuss mechanisms underlying their beneficial effect and highlight experimental progress, limitations and the emergence of promising new therapeutic avenues. We hope to increase awareness of the advantages brought by stem cells for the treatment of glioblastoma and inspire further studies that will lead to accelerated implementation of effective therapies. Glioblastoma is the deadliest and most common form of brain tumor, for which there is no cure. It is very difficult to deliver medicine to the tumor cells, because they spread out widely into the normal brain, and local blood vessels represent a barrier that most medicines cannot cross. It was shown, in many studies over the last 20 years, that stem cells are attracted toward the tumor and that they can deliver many kinds of therapeutic agents directly to brain cancer cells and shrink the tumor. In this review we analyze these studies and present new discoveries that can be used to make stem cell therapies for glioblastoma more effective to prolong the life of patients with brain tumors.
Collapse
Affiliation(s)
| | - McKenzie C Kauss
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,College of Literature Science & Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zain Sultan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sue K O'Shea
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Oproescu AM, Han S, Schuurmans C. New Insights Into the Intricacies of Proneural Gene Regulation in the Embryonic and Adult Cerebral Cortex. Front Mol Neurosci 2021; 14:642016. [PMID: 33658912 PMCID: PMC7917194 DOI: 10.3389/fnmol.2021.642016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Historically, the mammalian brain was thought to lack stem cells as no new neurons were found to be made in adulthood. That dogma changed ∼25 years ago with the identification of neural stem cells (NSCs) in the adult rodent forebrain. However, unlike rapidly self-renewing mature tissues (e.g., blood, intestinal crypts, skin), the majority of adult NSCs are quiescent, and those that become 'activated' are restricted to a few neurogenic zones that repopulate specific brain regions. Conversely, embryonic NSCs are actively proliferating and neurogenic. Investigations into the molecular control of the quiescence-to-proliferation-to-differentiation continuum in the embryonic and adult brain have identified proneural genes encoding basic-helix-loop-helix (bHLH) transcription factors (TFs) as critical regulators. These bHLH TFs initiate genetic programs that remove NSCs from quiescence and drive daughter neural progenitor cells (NPCs) to differentiate into specific neural cell subtypes, thereby contributing to the enormous cellular diversity of the adult brain. However, new insights have revealed that proneural gene activities are context-dependent and tightly regulated. Here we review how proneural bHLH TFs are regulated, with a focus on the murine cerebral cortex, drawing parallels where appropriate to other organisms and neural tissues. We discuss upstream regulatory events, post-translational modifications (phosphorylation, ubiquitinylation), protein-protein interactions, epigenetic and metabolic mechanisms that govern bHLH TF expression, stability, localization, and consequent transactivation of downstream target genes. These tight regulatory controls help to explain paradoxical findings of changes to bHLH activity in different cellular contexts.
Collapse
Affiliation(s)
- Ana-Maria Oproescu
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sisu Han
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Soares R, Ribeiro FF, Lourenço DM, Rodrigues RS, Moreira JB, Sebastião AM, Morais VA, Xapelli S. The neurosphere assay: an effective in vitro technique to study neural stem cells. Neural Regen Res 2021; 16:2229-2231. [PMID: 33818505 PMCID: PMC8354118 DOI: 10.4103/1673-5374.310678] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Rita Soares
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina; Instituto de Farmacologia e Neurociências, Faculdade de Medicina; Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo M Lourenço
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João B Moreira
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Vanessa A Morais
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
17
|
Flitsch LJ, Laupman KE, Brüstle O. Transcription Factor-Based Fate Specification and Forward Programming for Neural Regeneration. Front Cell Neurosci 2020; 14:121. [PMID: 32508594 PMCID: PMC7251072 DOI: 10.3389/fncel.2020.00121] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Traditionally, in vitro generation of donor cells for brain repair has been dominated by the application of extrinsic growth factors and morphogens. Recent advances in cell engineering strategies such as reprogramming of somatic cells into induced pluripotent stem cells and direct cell fate conversion have impressively demonstrated the feasibility to manipulate cell identities by the overexpression of cell fate-determining transcription factors. These strategies are now increasingly implemented for transcription factor-guided differentiation of neural precursors and forward programming of pluripotent stem cells toward specific neural subtypes. This review covers major achievements, pros and cons, as well as future prospects of transcription factor-based cell fate specification and the applicability of these approaches for the generation of donor cells for brain repair.
Collapse
Affiliation(s)
- Lea J Flitsch
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Karen E Laupman
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
18
|
Morgun AV, Osipova ED, Boytsova EB, Shuvaev AN, Komleva YK, Trufanova LV, Vais EF, Salmina AB. [Astroglia-mediated regulation of cell development in the model of neurogenic niche in vitro treated with Aβ1-42]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:366-373. [PMID: 31666407 DOI: 10.18097/pbmc20196505366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neurogenesis is a complex process which governs embryonic brain development and is importants for brain plasticity throughout the whole life. Postnatal neurogenesis occurs in neurogenic niches that regulate the processes of proliferation and differentiation of stem and progenitor cells under the action of stimuli that trigger the mechanisms of neuroplasticity. Cells of glial and endothelial origin are the key regulators of neurogenesis. It is known that physiological neurogeneses is crucial for memory formation, whereas reparative neurogenesis provides partial repair of altered brain structure and compensation of neurological deficits caused by brain injury. Dysregulation of neurogenesis is a characteristics of various neurodevelopmental and neurodegenerative diseases, particularly, Alzheimer's disease which is very important medical and social problem. In the in vitro model of the neurogenic niche using hippocampal neurospheres as a source of stem/progenitor cells and astrocytes, we studied effects of astrocyte activation on the expression of markers of different stages of cell proliferation and differentiation. We found that aberrant mechanisms of development of stem and progenitor cells, caused by the beta-amyloid (Aβ1-42), can be partially restored by targeted activation of GFAP-expressing cells in the neurogenic niche.
Collapse
Affiliation(s)
- A V Morgun
- Prof. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E D Osipova
- Prof. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E B Boytsova
- Prof. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - A N Shuvaev
- Prof. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Yu K Komleva
- Prof. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - L V Trufanova
- Prof. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E F Vais
- Prof. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - A B Salmina
- Prof. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| |
Collapse
|
19
|
Khan J, Das G, Gupta V, Mohapatra S, Ghosh S, Ghosh S. Neurosphere Development from Hippocampal and Cortical Embryonic Mixed Primary Neuron Culture: A Potential Platform for Screening Neurochemical Modulator. ACS Chem Neurosci 2018; 9:2870-2878. [PMID: 30346714 DOI: 10.1021/acschemneuro.8b00414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Reconstitution of a complex biological structure or system following a simple and facile strategy using minimum physiochemical cues is challenging for an in-depth understanding of the system. In particular, the brain is a highly sophisticated and complex network of trillions of neurons and glial cells that controls function of our body. Understanding this complex machinery requires an innovative and simple bottom-up approach. In this venture, we report an easy and efficient strategy to culture cortical and hippocampal primary neurons from the E14-E16 embryo of Sprague-Dawley rat. This generates spontaneous neurospheres within 6-7 days of primary neuron culture of E14-E16 embryo. It further proliferates and forms radial glia-like structures, which are known to be the primary neural progenitor cells that differentiate into neurons, astrocytes, and oligodendrocytes. Interestingly, neurospheres lead to the formation of large projection neurons and radial glia, which mimic the early stage of cortical development in an in vivo system. Overall, this new, facile, strategic mixed primary neuron culture method offers a potential platform for understanding the effect of neurochemical modulators, which has tremendous future implications in the screening of neurotherapeutics.
Collapse
Affiliation(s)
- Juhee Khan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Gaurav Das
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Varsha Gupta
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saswat Mohapatra
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Subhajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
20
|
Sánchez-Maldonado B, Galicia MDL, Rojo C, González-Gil A, Flor-García M, Picazo RA. Spheroids Spontaneously Generated In Vitro from Sheep Ovarian Cortical Cells Contain Integrating Cells That Exhibit Hallmarks of Neural Stem/Progenitor Cells. Stem Cells Dev 2018; 27:1557-1576. [PMID: 30251912 DOI: 10.1089/scd.2017.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell spheroids are inducible or spontaneously generated cell aggregates produced in vitro that can provide a valuable model for developmental biology, stem cell biology, and cancer therapy research. This investigation aimed to define the cellular identity of spheroids spontaneously generated in vitro from sheep ovarian cortical cells cultured under specific serum-free conditions. Spheroids were characterized during 21 days of culture by morphometric evaluation, detection of alkaline phosphatase (AP) activity, gene expression analyses of stemness transcription factors and several lineage markers, immunolocalization analyses, as well as assessment of self-renewal and differentiation potential. Cell aggregation, evidenced from day 3 of culture onward, resulted in efficient generation of 65-75 spheroids for every 500,000 cells seeded. The spheroids reached maximum diameter (187 ± 15.9 μm) during the second week of culture and exhibited AP activity. Sox2, Oct4, and Nanog were expressed throughout the culture period, with upregulation of Sox2. Neural lineage specification genes (eg, nestin, vimentin, Pax6, and p75NTR) were expressed from day 10 onward at levels above that of Oct4, Nanog and those for endoderm [alpha-fetoprotein (AFP)], and mesoderm (brachyury) specification. Neural stem cell (NSC)/neural progenitor cell (NPC) markers, nestin, Pax6, p75NTR, and vimentin, were extensively localized in cells on day 10, 15 (44.75% ± 5.84%; 93.54% ± 1.35%; 78.90% ± 4.80%; 73.82% ± 3.40%, respectively), and 21 (49.98% ± 5.30%; 91.84% ± 1.9%; 76.74% ± 11.0%; 95.80% ± 3.60%, respectively). Spheroid cell self-renewal was evidenced by cell proliferation and the generation of new spheroids during two consecutive expansion periods. Culture of spheroid cells under differentiation conditions gave rise to cells showing immunolocalization of the neuron-specific antigen NeuN and the astroglial antigen GFAP (glial fibrillary acidic protein). Our results indicate that spheroids spontaneously generated in this culture system were comprised of cells with molecular characteristics of NSC/NPC that can self-renew and differentiate into neurons and glia, supporting the identity of spheroids as neurospheres.
Collapse
Affiliation(s)
- Belén Sánchez-Maldonado
- 1 Departamento de Medicina y Cirugía, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - María de Lourdes Galicia
- 2 Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - Concepción Rojo
- 3 Sección Departamental de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - Alfredo González-Gil
- 2 Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - Miguel Flor-García
- 4 Departamento de Neuropatología Molecular, Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM , Madrid, España.,5 Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid , Madrid, España
| | - Rosa A Picazo
- 2 Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| |
Collapse
|
21
|
Ferguson EL, Naseer S, Powell LC, Hardwicke J, Young FI, Zhu B, Liu Q, Song B, Thomas DW. Controlled release of dextrin-conjugated growth factors to support growth and differentiation of neural stem cells. Stem Cell Res 2018; 33:69-78. [PMID: 30321831 PMCID: PMC6288241 DOI: 10.1016/j.scr.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/06/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
An essential aspect of stem cell in vitro culture and in vivo therapy is achieving sustained levels of growth factors to support stem cell survival and expansion, while maintaining their multipotency and differentiation potential. This study investigated the ability of dextrin (~74,000 g/mol; 27.8 mol% succinoylation) conjugated to epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF; or FGF-2) (3.9 and 6.7% w/w protein loading, respectively) to support the expansion and differentiation of stem cells in vitro via sustained, controllable growth factor release. Supplementation of mouse neural stem cells (mNSCs) with dextrin-growth factor conjugates led to greater and prolonged proliferation compared to unbound EGF/bFGF controls, with no detectable apoptosis after 7 days of treatment. Immunocytochemical detection of neural precursor (nestin) and differentiation (Olig2, MAP2, GFAP) markers verified that controlled release of dextrin-conjugated growth factors preserves stem cell properties of mNSCs for up to 7 days. These results show the potential of dextrin-growth factor conjugates for localized delivery of bioactive therapeutic agents to support stem cell expansion and differentiation, and as an adjunct to direct neuronal repair.
Collapse
Affiliation(s)
- Elaine L Ferguson
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK.
| | - Sameza Naseer
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Lydia C Powell
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK
| | - Joseph Hardwicke
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK
| | - Fraser I Young
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK
| | - Bangfu Zhu
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Qian Liu
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Bing Song
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK
| | - David W Thomas
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK
| |
Collapse
|
22
|
Navarro Quiroz E, Navarro Quiroz R, Ahmad M, Gomez Escorcia L, Villarreal JL, Fernandez Ponce C, Aroca Martinez G. Cell Signaling in Neuronal Stem Cells. Cells 2018; 7:E75. [PMID: 30011912 PMCID: PMC6070865 DOI: 10.3390/cells7070075] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/30/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
The defining characteristic of neural stem cells (NSCs) is their ability to multiply through symmetric divisions and proliferation, and differentiation by asymmetric divisions, thus giving rise to different types of cells of the central nervous system (CNS). A strict temporal space control of the NSC differentiation is necessary, because its alterations are associated with neurological dysfunctions and, in some cases, death. This work reviews the current state of the molecular mechanisms that regulate the transcription in NSCs, organized according to whether the origin of the stimulus that triggers the molecular cascade in the CNS is internal (intrinsic factors) or whether it is the result of the microenvironment that surrounds the CNS (extrinsic factors).
Collapse
Affiliation(s)
- Elkin Navarro Quiroz
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
- School of Medicine, Universidad Rafael Nuñez, Cartagena 130001, Colombia.
| | - Roberto Navarro Quiroz
- Centro de Investigación en Salud para el Trópico, Universidad Cooperativa de Colombia, Santa Marta 470002, Colombia.
| | - Mostapha Ahmad
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
| | - Lorena Gomez Escorcia
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
| | | | | | - Gustavo Aroca Martinez
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
- Clinica de la Costa, Barranquilla 080002, Colombia.
| |
Collapse
|
23
|
So K, Chung Y, Yu SK, Jun Y. Regional Immunoreactivity of Pax6 in the Neurogenic Zone After Chronic Prenatal Hypoxia. ACTA ACUST UNITED AC 2018; 31:1125-1129. [PMID: 29102934 DOI: 10.21873/invivo.11178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Neurogenesis is a complex process to generate new neurons from neural progenitor cells. Neural progenitor cells are observed in two principal neurogenic regions of the forebrain, the subventricular zone and the subgranular zone of the hippocampal dentate gyrus. The cerebral cortex also plays a role as the neurogenic zone under hypoxic conditions. Hypoxia has many effects on neurogenesis, but the effect of chronic prenatal hypoxia on paired box 6 (Pax6), a protein that plays an important role in neurogenesis, has not been studied in vivo. In the present study, we used a rat model to evaluate the effect of hypoxia on Pax6 immunoreactivity. MATERIALS AND METHODS Hypoxia status was induced by unilateral uterine-artery ligation in pregnant rats. The fetuses were obtained from the uterine horn on the twenty-first day of pregnancy and immunohistochemistry of the fetal brain was examined regarding anti-hypoxia-induced factor 1α and Pax6 antibody. RESULTS The density of HIF1α-IR cells in the hypoxia group was greater than the density of HIF1α-IR cells in the control group in the subventricular zone, subgranular zone, and cerebral cortex. The density of Pax6-IR cells in the hypoxic group was higher in both the subventricular zone and the subgranular zone than in the control group. However, the density of Pax6-IR cells in the cerebral cortex was lower in fetuses that experienced hypoxia than in control fetuses. CONCLUSION These results suggest that Pax6 immunoreactivity showed diverse patterns in the neurogenic zone after prenatal hypoxia and Pax6 has important effects on neurogenesis.
Collapse
Affiliation(s)
- Keumyoung So
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwang-ju, Republic of Korea
| | - Yoonyoung Chung
- Department of Anatomy, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| | - Sun-Kyoung Yu
- Department of Oral anatomy, School of Dentistry, Chosun University, Gwang-ju, Republic of Korea
| | - Yonghyun Jun
- Department of Anatomy, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| |
Collapse
|
24
|
Dennis DJ, Han S, Schuurmans C. bHLH transcription factors in neural development, disease, and reprogramming. Brain Res 2018; 1705:48-65. [PMID: 29544733 DOI: 10.1016/j.brainres.2018.03.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 01/16/2023]
Abstract
The formation of functional neural circuits in the vertebrate central nervous system (CNS) requires that appropriate numbers of the correct types of neuronal and glial cells are generated in their proper places and times during development. In the embryonic CNS, multipotent progenitor cells first acquire regional identities, and then undergo precisely choreographed temporal identity transitions (i.e. time-dependent changes in their identity) that determine how many neuronal and glial cells of each type they will generate. Transcription factors of the basic-helix-loop-helix (bHLH) family have emerged as key determinants of neural cell fate specification and differentiation, ensuring that appropriate numbers of specific neuronal and glial cell types are produced. Recent studies have further revealed that the functions of these bHLH factors are strictly regulated. Given their essential developmental roles, it is not surprising that bHLH mutations and de-regulated expression are associated with various neurological diseases and cancers. Moreover, the powerful ability of bHLH factors to direct neuronal and glial cell fate specification and differentiation has been exploited in the relatively new field of cellular reprogramming, in which pluripotent stem cells or somatic stem cells are converted to neural lineages, often with a transcription factor-based lineage conversion strategy that includes one or more of the bHLH genes. These concepts are reviewed herein.
Collapse
Affiliation(s)
- Daniel J Dennis
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada
| | - Sisu Han
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Mo JL, Liu Q, Kou ZW, Wu KW, Yang P, Chen XH, Sun FY. MicroRNA-365 modulates astrocyte conversion into neuron in adult rat brain after stroke by targeting Pax6. Glia 2018; 66:1346-1362. [PMID: 29451327 PMCID: PMC6001668 DOI: 10.1002/glia.23308] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 01/01/2023]
Abstract
Reactive astrocytes induced by ischemia can transdifferentiate into mature neurons. This neurogenic potential of astrocytes may have therapeutic value for brain injury. Epigenetic modifications are widely known to involve in developmental and adult neurogenesis. PAX6, a neurogenic fate determinant, contributes to the astrocyte‐to‐neuron conversion. However, it is unclear whether microRNAs (miRs) modulate PAX6‐mediated astrocyte‐to‐neuron conversion. In the present study we used bioinformatic approaches to predict miRs potentially targeting Pax6, and transient middle cerebral artery occlusion (MCAO) to model cerebral ischemic injury in adult rats. These rats were given striatal injection of glial fibrillary acidic protein targeted enhanced green fluorescence protein lentiviral vectors (Lv‐GFAP‐EGFP) to permit cell fate mapping for tracing astrocytes‐derived neurons. We verified that miR‐365 directly targets to the 3′‐UTR of Pax6 by luciferase assay. We found that miR‐365 expression was significantly increased in the ischemic brain. Intraventricular injection of miR‐365 antagomir effectively increased astrocytic PAX6 expression and the number of new mature neurons derived from astrocytes in the ischemic striatum, and reduced neurological deficits as well as cerebral infarct volume. Conversely, miR‐365 agomir reduced PAX6 expression and neurogenesis, and worsened brain injury. Moreover, exogenous overexpression of PAX6 enhanced the astrocyte‐to‐neuron conversion and abolished the effects of miR‐365. Our results demonstrate that increase of miR‐365 in the ischemic brain inhibits astrocyte‐to‐neuron conversion by targeting Pax6, whereas knockdown of miR‐365 enhances PAX6‐mediated neurogenesis from astrocytes and attenuates neuronal injury in the brain after ischemic stroke. Our findings provide a foundation for developing novel therapeutic strategies for brain injury.
Collapse
Affiliation(s)
- Jia-Lin Mo
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qi Liu
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zeng-Wei Kou
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Kun-Wei Wu
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ping Yang
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xian-Hua Chen
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Feng-Yan Sun
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
26
|
Farzanehfar P. Comparative review of adult midbrain and striatum neurogenesis with classical neurogenesis. Neurosci Res 2018; 134:1-9. [PMID: 29339103 DOI: 10.1016/j.neures.2018.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/14/2022]
Abstract
Parkinson's Disease (PD) motor symptoms are caused by loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) of the midbrain. Dopamine cell replacement therapy (DA CRT), either by cell transplantation or endogenous repair, has been a potential treatment to replace dead cells and improve PD motor symptoms. Adult midbrain and striatum have been studied for many years to find evidence of neurogenesis. Although the literature is controversial, recent research has revived the possibility of neurogenesis here. This paper aims to review the process of neurogenesis (by focusing on gene expression patterns) in the adult midbrain/striatum and compare it with classical neurogenesis that occurs in developing midbrain, Sub Ventricular Zone (SVZ) and Sub Granular Zone (SGZ) of the adult brain.
Collapse
Affiliation(s)
- Parisa Farzanehfar
- Florey Institute for Neuroscience & Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia; St Vincent's Hospital, Fitzroy, Victoria 3065, Australia.
| |
Collapse
|
27
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Jorfi M, D'Avanzo C, Kim DY, Irimia D. Three-Dimensional Models of the Human Brain Development and Diseases. Adv Healthc Mater 2018; 7:10.1002/adhm.201700723. [PMID: 28845922 PMCID: PMC5762251 DOI: 10.1002/adhm.201700723] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 06/24/2017] [Indexed: 01/07/2023]
Abstract
Deciphering the human brain pathophysiology remains one of the greatest challenges of the 21st century. Neurological disorders represent a significant proportion of diseases burden; however, the complexity of the brain physiology makes it challenging to model its diseases. Simple in vitro models have been very useful for precise measurements in controled conditions. However, existing models are limited in their ability to replicate complex interactions between various cells in the brain. Studying human brain requires sophisticated models to reconstitute the tangled architecture and functions of brain cells. Recently, advances in the development of three-dimensional (3D) brain cell culture models have begun to recapitulate various aspects of the human brain physiology in vitro and replicate basic disease processes of Alzheimer's disease, amyotrophic lateral sclerosis, and microcephaly. In this review, we discuss the progress, advantages, limitations, and future directions of 3D cell culture systems for modeling the human brain development and diseases.
Collapse
Affiliation(s)
- Mehdi Jorfi
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| | - Carla D'Avanzo
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| | - Daniel Irimia
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| |
Collapse
|
29
|
Engineering new neurons: in vivo reprogramming in mammalian brain and spinal cord. Cell Tissue Res 2017; 371:201-212. [PMID: 29170823 DOI: 10.1007/s00441-017-2729-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Neurons are postmitotic. Once lost because of injury or degeneration, they do not regenerate in most regions of the mammalian central nervous system. Recent advancements nevertheless clearly reveal that new neurons can be reprogrammed from non-neuronal cells, especially glial cells, in the adult mammalian brain and spinal cord. Here, we give a brief overview concerning cell fate reprogramming in vivo and then focus on the underlying molecular and cellular mechanisms. Specifically, we critically review the cellular sources and the reprogramming factors for in vivo neuronal conversion. Influences of environmental cues and the challenges ahead are also discussed. The ability of inducing new neurons from an abundant and broadly distributed non-neuronal cell source brings new perspectives regarding regeneration-based therapies for traumatic brain and spinal cord injuries and degenerative diseases.
Collapse
|
30
|
Gómez Pinto LI, Rodríguez D, Adamo AM, Mathieu PA. TGF-β pro-oligodendrogenic effects on adult SVZ progenitor cultures and its interaction with the Notch signaling pathway. Glia 2017; 66:396-412. [PMID: 29076551 DOI: 10.1002/glia.23253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
Adult neural progenitor cells (NPCs) are capable of differentiating into neurons, astrocytes, and oligodendrocytes throughout life. Notch and transforming growth factor β1 (TGF-β) signaling pathways play critical roles in controlling these cell fate decisions. TGF-β has been previously shown to exert pro-neurogenic effects on hippocampal and subventricular zone (SVZ) NPCs in vitro and to interact with Notch in different cellular types. Therefore, the aim of our work was to study the effect of TGF-β on adult rat brain SVZ NPC glial commitment and its interaction with Notch signaling. Initial cell characterization revealed a large proportion of Olig2+, Nestin+, and glial fibrillary acidic protein (GFAP+) cells, a low percentage of platelet-derived growth factor receptor α (PDGFRα+) or NG2+ cells, and <1% Tuj1+ cells. Immunocytochemical analyses showed a significant increase in the percentage of PDGFRα+, NG2+, and GFAP+ cells upon four-day TGF-β treatment, which demonstrates the pro-gliogenic effect of this growth factor on adult brain SVZ NPCs. Real-time polymerase chain reaction analyses showed that TGF-β induced the expression of Notch ligand Jagged1 and downstream gene Hes1. Notch signaling inhibition in cultures treated with TGF-β produced a decrease in the proportion of PDGFRα+ cells, while TGF-β receptor II (TβRII) inhibition also rendered a decrease in the proportion of PDGFRα+ cells, concomitantly with a decrease in Jagged1 levels. These findings demonstrate the participation of Notch signaling in TGF-β effects and illustrate the impact of TGF-β on glial cell fate decisions of adult brain SVZ NPCs, as well as on oligodendroglial progenitor cell proliferation and maturation.
Collapse
Affiliation(s)
- Laura I Gómez Pinto
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, CABA, C1113AAD, Argentina
| | - Debora Rodríguez
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 and Av Constitución, 6700, Luján, Buenos Aires, Argentina
| | - Ana M Adamo
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, CABA, C1113AAD, Argentina
| | - Patricia A Mathieu
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, CABA, C1113AAD, Argentina
| |
Collapse
|
31
|
Abstract
During vertebrate embryonic development, the spinal cord is formed by the neural derivatives of a neuromesodermal population that is specified at early stages of development and which develops in concert with the caudal regression of the primitive streak. Several processes related to spinal cord specification and maturation are coupled to this caudal extension including neurogenesis, ventral patterning and neural crest specification and all of them seem to be crucially regulated by Fibroblast Growth Factor (FGF) signaling, which is prominently active in the neuromesodermal region and transiently in its derivatives. Here we review the role of FGF signaling in those processes, trying to separate its different functions and highlighting the interactions with other signaling pathways. Finally, these early functions of FGF signaling in spinal cord development may underlay partly its ability to promote regeneration in the lesioned spinal cord as well as its action promoting specific fates in neural stem cell cultures that may be used for therapeutical purposes.
Collapse
Affiliation(s)
- Ruth Diez Del Corral
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Champalimaud Research, Champalimaud Centre for the UnknownLisbon, Portugal
| | - Aixa V Morales
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
32
|
Vojnits K, Pan H, Dai X, Sun H, Tong Q, Darabi R, Huard J, Li Y. Functional Neuronal Differentiation of Injury-Induced Muscle-Derived Stem Cell-Like Cells with Therapeutic Implications. Sci Rep 2017; 7:1177. [PMID: 28446779 PMCID: PMC5430871 DOI: 10.1038/s41598-017-01311-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/27/2017] [Indexed: 12/23/2022] Open
Abstract
Mammalian skeletal muscles contain a number of heterogeneous cell populations. Our previous study characterized a unique population of myogenic lineage stem cells that can be isolated from adult mammalian skeletal muscles upon injury. These injury-induced muscle-derived stem cell-like cells (iMuSCs) displayed a multipotent state with sensitiveness and strong migration abilities. Here, we report that these iMuSCs have the capability to form neurospheres that represent multiple neural phenotypes. The induced neuronal cells expressed various neuron-specific proteins, their mRNA expression during neuronal differentiation recapitulated embryonic neurogenesis, they generated action potentials, and they formed functional synapses in vitro. Furthermore, the transplantation of iMuSCs or their cell extracts into the muscles of mdx mice (i.e., a mouse model of Duchenne Muscular Dystrophy [DMD]) could restore the morphology of their previously damaged neuromuscular junctions (NMJs), suggesting that the beneficial effects of iMuSCs may not be restricted to cell restoration alone, but also due to their transient paracrine actions. The current study reveals the essential role of iMuSCs in the restoration of NMJs related to injuries and diseases.
Collapse
Affiliation(s)
- Kinga Vojnits
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM) at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA.,Department of Pediatric Surgery, University of Texas McGovern Medical School at Houston, Houston, 77030, TX, USA
| | - Haiying Pan
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM) at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA.,Department of Orthopeadic, University of Texas McGovern Medical School at Houston, Houston, 77030, TX, USA
| | - Xiaojing Dai
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM) at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA.,Department of Pediatric Surgery, University of Texas McGovern Medical School at Houston, Houston, 77030, TX, USA
| | - Hao Sun
- Center for Metabolic and Degenerative Disease, The IMM at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA
| | - Qingchun Tong
- Center for Metabolic and Degenerative Disease, The IMM at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM) at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA
| | - Johnny Huard
- Department of Orthopeadic, University of Texas McGovern Medical School at Houston, Houston, 77030, TX, USA.,Center for Sports Regenerative Medicine, Steadman Philippon Research Institute, Vail, CO, USA.,Center for Tissue Engineering and Aging Research, The IMM at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA
| | - Yong Li
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM) at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA. .,Department of Pediatric Surgery, University of Texas McGovern Medical School at Houston, Houston, 77030, TX, USA. .,Center for Tissue Engineering and Aging Research, The IMM at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA.
| |
Collapse
|
33
|
Torper O, Götz M. Brain repair from intrinsic cell sources: Turning reactive glia into neurons. PROGRESS IN BRAIN RESEARCH 2017; 230:69-97. [PMID: 28552236 DOI: 10.1016/bs.pbr.2016.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The replacement of lost neurons in the brain due to injury or disease holds great promise for the treatment of neurological disorders. However, logistical and ethical hurdles in obtaining and maintaining viable cells for transplantation have proven difficult to overcome. In vivo reprogramming offers an alternative, to bypass many of the restrictions associated with an exogenous cell source as it relies on a source of cells already present in the brain. Recent studies have demonstrated the possibility to target and reprogram glial cells into functional neurons with high efficiency in the murine brain, using virally delivered transcription factors. In this chapter, we explore the different populations of glial cells, how they react to injury and how they can be exploited for reprogramming purposes. Further, we review the most significant publications and how they have contributed to the understanding of key aspects in direct reprogramming needed to take into consideration, like timing, cell type targeted, and regional differences. Finally, we discuss future challenges and what remains to be explored in order to determine the potential of in vivo reprogramming for future brain repair.
Collapse
Affiliation(s)
- Olof Torper
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany.
| |
Collapse
|
34
|
Rolando C, Erni A, Grison A, Beattie R, Engler A, Gokhale P, Milo M, Wegleiter T, Jessberger S, Taylor V. Multipotency of Adult Hippocampal NSCs In Vivo Is Restricted by Drosha/NFIB. Cell Stem Cell 2016; 19:653-662. [DOI: 10.1016/j.stem.2016.07.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 05/23/2016] [Accepted: 07/06/2016] [Indexed: 11/26/2022]
|
35
|
Romariz SAA, Paiva DS, Galindo LT, Barnabé GF, Guedes VA, Borlongan CV, Longo BM. Medial Ganglionic Eminence Cells Freshly Obtained or Expanded as Neurospheres Show Distinct Cellular and Molecular Properties in Reducing Epileptic Seizures. CNS Neurosci Ther 2016; 23:127-134. [PMID: 27770487 DOI: 10.1111/cns.12650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 01/20/2023] Open
Abstract
AIMS Medial ganglionic eminence (MGE) progenitors give rise to inhibitory interneurons and may serve as an alternative cell source for large-scale cell transplantation for epilepsy after in vitro expansion. We investigated whether modifications in the culture medium of MGE neurospheres affect neuronal differentiation and expression of MGE-specific genes. In vivo, we compared anticonvulsant effects and cell differentiation pattern among neurospheres grown in different culture media and compared them with freshly harvested MGE cells. METHODS We used four variations of cell culture: standard, containing growth factors (EGF/FGF-2) (GF); addition of retinoic acid (GF-RA); withdrawal of EGF/FGF-2 (WD); and addition of retinoic acid and withdrawal of EGF/FGF-2 (WD-RA). Based on in vitro results neurosphere-grown (WD-RA or GF conditions) or fresh MGE cells were transplanted into the hippocampus. RESULTS In vitro WD-RA showed increased neuronal population and higher expression of Dlx1, Nkx2.1, and Lhx6 genes in comparison with GF culture condition. After transplantation, fresh MGE cells and neurospheres (GF) showed anticonvulsant effects. However, fresh MGE cells differentiated preferentially into inhibitory neurons, while GF gave rise to glial cells. CONCLUSION We conclude that freshly isolated and neurosphere-grown MGE cells reduced seizures by different mechanisms (inhibitory interneurons vs. astrocytes). Fresh MGE cells appear more appropriate for cell therapies targeting inhibitory interneurons for conferring anticonvulsant outcomes.
Collapse
Affiliation(s)
- Simone A A Romariz
- Departamento de Fisiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Daisyléa S Paiva
- Departamento de Fisiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Layla T Galindo
- Departamento de Bioquímica, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Gabriela F Barnabé
- Ludwig Institute for Cancer Research at Instituto Sírio-Libanês de Ensino e Pesquisa, São Paulo, SP, Brazil
| | - Vivian A Guedes
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Beatriz M Longo
- Departamento de Fisiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| |
Collapse
|
36
|
Götz M, Nakafuku M, Petrik D. Neurogenesis in the Developing and Adult Brain-Similarities and Key Differences. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018853. [PMID: 27235475 DOI: 10.1101/cshperspect.a018853] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adult neurogenesis in the mammalian brain is often viewed as a continuation of neurogenesis at earlier, developmental stages. Here, we will critically review the extent to which this is the case highlighting similarities as well as key differences. Although many transcriptional regulators are shared in neurogenesis at embryonic and adult stages, recent findings on the molecular mechanisms by which these neuronal fate determinants control fate acquisition and maintenance have revealed profound differences between development and adulthood. Importantly, adult neurogenesis occurs in a gliogenic environment, hence requiring adult-specific additional and unique mechanisms of neuronal fate specification and maintenance. Thus, a better understanding of the molecular logic for continuous adult neurogenesis provides important clues to develop strategies to manipulate endogenous stem cells for the purpose of repair.
Collapse
Affiliation(s)
- Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Munich, Germany Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, 80336 Munich, Germany Synergy, Munich Cluster for Systems Neurology, 81377 Munich, Germany
| | - Masato Nakafuku
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45140 Departments of Pediatrics and Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - David Petrik
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Munich, Germany Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, 80336 Munich, Germany
| |
Collapse
|
37
|
Rusznák Z, Henskens W, Schofield E, Kim WS, Fu Y. Adult Neurogenesis and Gliogenesis: Possible Mechanisms for Neurorestoration. Exp Neurobiol 2016; 25:103-12. [PMID: 27358578 PMCID: PMC4923354 DOI: 10.5607/en.2016.25.3.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022] Open
Abstract
The subgranular zone (SGZ) and subventricular zone (SVZ) are developmental remnants of the germinal regions of the brain, hence they retain the ability to generate neuronal progenitor cells in adult life. Neurogenesis in adult brain has an adaptive function because newly produced neurons can integrate into and modify existing neuronal circuits. In contrast to the SGZ and SVZ, other brain regions have a lower capacity to produce new neurons, and this usually occurs via parenchymal and periventricular cell genesis. Compared to neurogenesis, gliogenesis occurs more prevalently in the adult mammalian brain. Under certain circumstances, interaction occurs between neurogenesis and gliogenesis, facilitating glial cells to transform into neuronal lineage. Therefore, modulating the balance between neurogenesis and gliogenesis may present a new perspective for neurorestoration, especially in diseases associated with altered neurogenesis and/or gliogenesis, cell loss, or disturbed homeostasis of cellular constitution. The present review discusses important neuroanatomical features of adult neurogenesis and gliogenesis, aiming to explore how these processes could be modulated toward functional repair of the adult brain.
Collapse
Affiliation(s)
- Zoltán Rusznák
- Neuroscience Research Australia, Sydney, NSW 2031, Australia
| | - Willem Henskens
- Neuroscience Research Australia, Sydney, NSW 2031, Australia.; Prince of Wales Clinical School, UNSW Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Emma Schofield
- Neuroscience Research Australia, Sydney, NSW 2031, Australia
| | - Woojin S Kim
- Neuroscience Research Australia, Sydney, NSW 2031, Australia.; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - YuHong Fu
- Neuroscience Research Australia, Sydney, NSW 2031, Australia.; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
38
|
Jones KS, Connor BJ. The Effect of Pro-Neurogenic Gene Expression on Adult Subventricular Zone Precursor Cell Recruitment and Fate Determination After Excitotoxic Brain Injury. J Stem Cells Regen Med 2016. [PMID: 27397999 PMCID: PMC4929891 DOI: 10.46582/jsrm.1201005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite the presence of on-going neurogenesis in the adult mammalian brain, neurons are generally not replaced after injury. Using a rodent model of excitotoxic cell loss and retroviral (RV) lineage tracing, we previously demonstrated transient recruitment of precursor cells from the subventricular zone (SVZ) into the lesioned striatum. In the current study we determined that these cells included migratory neuroblasts and oligodendrocyte precursor cells (OPC), with the predominant response from glial cells. We attempted to override this glial response by ectopic expression of the pro-neurogenic genes Pax6 or Dlx2 in the adult rat SVZ following quinolinic acid lesioning. RV-Dlx2 over-expression stimulated repair at a previously non-neurogenic time point by enhancing neuroblast recruitment and the percentage of cells that retained a neuronal fate within the lesioned area, compared to RV-GFP controls. RV-Pax6 expression was unsuccessful at inhibiting glial fate and intriguingly, increased OPC cell numbers with no change in neuronal recruitment. These findings suggest that gene choice is important when attempting to augment endogenous repair as the lesioned environment can overcome pro-neurogenic gene expression. Dlx2 over-expression however was able to partially overcome an anti-neuronal environment and therefore is a promising candidate for further study of striatal regeneration.
Collapse
Affiliation(s)
- Kathryn S Jones
- Centre for Brain Research, Department of Pharmacology and Clinical Pharmacology, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland
| | - Bronwen J Connor
- Centre for Brain Research, Department of Pharmacology and Clinical Pharmacology, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland
| |
Collapse
|
39
|
Ypsilanti AR, Rubenstein JLR. Transcriptional and epigenetic mechanisms of early cortical development: An examination of how Pax6 coordinates cortical development. J Comp Neurol 2015; 524:609-29. [PMID: 26304102 DOI: 10.1002/cne.23866] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 12/26/2022]
Abstract
The development of the cortex is an elaborate process that integrates a plethora of finely tuned molecular processes ranging from carefully regulated gradients of transcription factors, dynamic changes in the chromatin landscape, or formation of protein complexes to elicit and regulate transcription. Combined with cellular processes such as cell type specification, proliferation, differentiation, and migration, all of these developmental processes result in the establishment of an adult mammalian cortex with its typical lamination and regional patterning. By examining in-depth the role of one transcription factor, Pax6, on the regulation of cortical development, its integration in the regulation of chromatin state, and its regulation by cis-regulatory elements, we aim to demonstrate the importance of integrating each level of regulation in our understanding of cortical development.
Collapse
Affiliation(s)
- Athéna R Ypsilanti
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, California
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
40
|
Lee SW, Lee HJ, Hwang HS, Ko K, Han DW, Ko K. Optimization of Matrigel-based culture for expansion of neural stem cells. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1035750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
41
|
Kimura R, Yoshizaki K, Osumi N. Dynamic expression patterns of Pax6 during spermatogenesis in the mouse. J Anat 2015; 227:1-9. [PMID: 26032914 DOI: 10.1111/joa.12318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2015] [Indexed: 01/09/2023] Open
Abstract
Spermatogenesis is a series of complex processes to generate mature sperm, and various molecules play crucial roles in regulating these processes. Previous studies imply a possibility that a transcriptional factor Pax6, a key player of brain and sensory organ development, could be involved in spermatogenesis, but neither expression nor function of Pax6 in the adult testis has been examined yet. In the present study, we described for the first time Pax6 expression dynamics in the adult mouse testis. Using cell-type-specific markers, the expression of Pax6 was detected in 67.0% of promyelocytic leukemia zinc finger (Plzf)-positive type A spermatogonia. The expression of Pax6 was also observed in p63-positive spermatocytes and round spermatids. We did not detect any expression of Pax6 in Sox9-positive Sertoli cells or in elongated spermatids and mature sperm. High-resolution analyses revealed that Pax6 formed a single dot-like structure during mid-phase of the pachytene spermatocyte. This dot-like structure co-localized with γH2A.X demarcating XY body, a domain in which X and Y chromosomes are silenced and compartmentalized. These results may suggest a novel role of Pax6 in spermatogenesis.
Collapse
Affiliation(s)
- Ryuichi Kimura
- Department of Developmental Neuroscience, Center for Neuroscience, Tohoku University School of Medicine, Sendai, Japan
| | - Kaichi Yoshizaki
- Department of Developmental Neuroscience, Center for Neuroscience, Tohoku University School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Center for Neuroscience, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
42
|
Götz M, Sirko S, Beckers J, Irmler M. Reactive astrocytes as neural stem or progenitor cells: In vivo lineage, In vitro potential, and Genome-wide expression analysis. Glia 2015; 63:1452-68. [PMID: 25965557 PMCID: PMC5029574 DOI: 10.1002/glia.22850] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/01/2015] [Accepted: 04/15/2015] [Indexed: 12/25/2022]
Abstract
Here, we review the stem cell hallmarks of endogenous neural stem cells (NSCs) during development and in some niches of the adult mammalian brain to then compare these with reactive astrocytes acquiring stem cell hallmarks after traumatic and ischemic brain injury. Notably, even endogenous NSCs including the earliest NSCs, the neuroepithelial cells, generate in most cases only a single type of progeny and self‐renew only for a rather short time in vivo. In vitro, however, especially cells cultured under neurosphere conditions reveal a larger potential and long‐term self‐renewal under the influence of growth factors. This is rather well comparable to reactive astrocytes in the traumatic or ischemic brain some of which acquire neurosphere‐forming capacity including multipotency and long‐term self‐renewal in vitro, while they remain within their astrocyte lineage in vivo. Both reactive astrocytes and endogenous NSCs exhibit stem cell hallmarks largely in vitro, but their lineage differs in vivo. Both populations generate largely a single cell type in vivo, but endogenous NSCs generate neurons and reactive astrocytes remain in the astrocyte lineage. However, at some early postnatal stages or in some brain regions reactive astrocytes can be released from this fate restriction, demonstrating that they can also enact neurogenesis. Thus, reactive astrocytes and NSCs share many characteristic hallmarks, but also exhibit key differences. This conclusion is further substantiated by genome‐wide expression analysis comparing NSCs at different stages with astrocytes from the intact and injured brain parenchyma. GLIA 2015;63:1452–1468
Collapse
Affiliation(s)
- Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany.,SYNERGY, Excellence Cluster of Systemic Neurology, LMU, Munich, Germany
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Center Munich, Munich, Germany.,Department of Experimental Genetics, Technical University Munich, Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
43
|
Manuel MN, Mi D, Mason JO, Price DJ. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front Cell Neurosci 2015; 9:70. [PMID: 25805971 PMCID: PMC4354436 DOI: 10.3389/fncel.2015.00070] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/18/2015] [Indexed: 12/19/2022] Open
Abstract
Understanding brain development remains a major challenge at the heart of understanding what makes us human. The neocortex, in evolutionary terms the newest part of the cerebral cortex, is the seat of higher cognitive functions. Its normal development requires the production, positioning, and appropriate interconnection of very large numbers of both excitatory and inhibitory neurons. Pax6 is one of a relatively small group of transcription factors that exert high-level control of cortical development, and whose mutation or deletion from developing embryos causes major brain defects and a wide range of neurodevelopmental disorders. Pax6 is very highly conserved between primate and non-primate species, is expressed in a gradient throughout the developing cortex and is essential for normal corticogenesis. Our understanding of Pax6’s functions and the cellular processes that it regulates during mammalian cortical development has significantly advanced in the last decade, owing to the combined application of genetic and biochemical analyses. Here, we review the functional importance of Pax6 in regulating cortical progenitor proliferation, neurogenesis, and formation of cortical layers and highlight important differences between rodents and primates. We also review the pathological effects of PAX6 mutations in human neurodevelopmental disorders. We discuss some aspects of Pax6’s molecular actions including its own complex transcriptional regulation, the distinct molecular functions of its splice variants and some of Pax6’s known direct targets which mediate its actions during cortical development.
Collapse
Affiliation(s)
- Martine N Manuel
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - Da Mi
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - John O Mason
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - David J Price
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| |
Collapse
|
44
|
Swartling FJ, Čančer M, Frantz A, Weishaupt H, Persson AI. Deregulated proliferation and differentiation in brain tumors. Cell Tissue Res 2015; 359:225-54. [PMID: 25416506 PMCID: PMC4286433 DOI: 10.1007/s00441-014-2046-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/22/2014] [Indexed: 01/24/2023]
Abstract
Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment resistance, suppress tumor growth, and prevent recurrence in patients.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Matko Čančer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Aaron Frantz
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Anders I Persson
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
45
|
Intranasal administration of human MSC for ischemic brain injury in the mouse: in vitro and in vivo neuroregenerative functions. PLoS One 2014; 9:e112339. [PMID: 25396420 PMCID: PMC4232359 DOI: 10.1371/journal.pone.0112339] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/14/2014] [Indexed: 01/01/2023] Open
Abstract
Intranasal treatment with C57BL/6 MSCs reduces lesion volume and improves motor and cognitive behavior in the neonatal hypoxic-ischemic (HI) mouse model. In this study, we investigated the potential of human MSCs (hMSCs) to treat HI brain injury in the neonatal mouse. Assessing the regenerative capacity of hMSCs is crucial for translation of our knowledge to the clinic. We determined the neuroregenerative potential of hMSCs in vitro and in vivo by intranasal administration 10 d post-HI in neonatal mice. HI was induced in P9 mouse pups. 1×106 or 2×106 hMSCs were administered intranasally 10 d post-HI. Motor behavior and lesion volume were measured 28 d post-HI. The in vitro capacity of hMSCs to induce differentiation of mouse neural stem cell (mNSC) was determined using a transwell co-culture differentiation assay. To determine which chemotactic factors may play a role in mediating migration of MSCs to the lesion, we performed a PCR array on 84 chemotactic factors 10 days following sham-operation, and at 10 and 17 days post-HI. Our results show that 2×106 hMSCs decrease lesion volume, improve motor behavior, and reduce scar formation and microglia activity. Moreover, we demonstrate that the differentiation assay reflects the neuroregenerative potential of hMSCs in vivo, as hMSCs induce mNSCs to differentiate into neurons in vitro. We also provide evidence that the chemotactic factor CXCL10 may play an important role in hMSC migration to the lesion site. This is suggested by our finding that CXCL10 is significantly upregulated at 10 days following HI, but not at 17 days after HI, a time when MSCs no longer reach the lesion when given intranasally. The results described in this work also tempt us to contemplate hMSCs not only as a potential treatment option for neonatal encephalopathy, but also for a plethora of degenerative and traumatic injuries of the nervous system.
Collapse
|
46
|
Curto GG, Nieto-Estévez V, Hurtado-Chong A, Valero J, Gómez C, Alonso JR, Weruaga E, Vicario-Abejón C. Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb. Stem Cells Dev 2014; 23:2813-30. [PMID: 25117830 DOI: 10.1089/scd.2014.0058] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The paired type homeobox 6 (Pax6) transcription factor (TF) regulates multiple aspects of neural stem cell (NSC) and neuron development in the embryonic central nervous system. However, less is known about the role of Pax6 in the maintenance and differentiation of adult NSCs and in adult neurogenesis. Using the +/Sey(Dey) mouse, we have analyzed how Pax6 heterozygosis influences the self-renewal and proliferation of adult olfactory bulb stem cells (aOBSCs). In addition, we assessed its influence on neural differentiation, neuronal incorporation, and cell death in the adult OB, both in vivo and in vitro. Our results indicate that the Pax6 mutation alters Nestin(+)-cell proliferation in vivo, as well as self-renewal, proliferation, and survival of aOBSCs in vitro although a subpopulation of +/Sey(Dey) progenitors is able to expand partially similar to wild-type progenitors. This mutation also impairs aOBSC differentiation into neurons and oligodendrocytes, whereas it increases cell death while preserving astrocyte survival and differentiation. Furthermore, Pax6 heterozygosis causes a reduction in the variety of neurochemical interneuron subtypes generated from aOBSCs in vitro and in the incorporation of newly generated neurons into the OB in vivo. Our findings support an important role of Pax6 in the maintenance of aOBSCs by regulating cell death, self-renewal, and cell fate, as well as in neuronal incorporation into the adult OB. They also suggest that deregulation of the cell cycle machinery and TF expression in aOBSCs which are deficient in Pax6 may be at the origin of the phenotypes observed in this adult NSC population.
Collapse
Affiliation(s)
- Gloria G Curto
- 1 Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca , Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tan B, Yu J, Yin Y, Jia G, Jiang W, Yu L. The Olig family affects central nervous system development and disease. Neural Regen Res 2014; 9:329-36. [PMID: 25206819 PMCID: PMC4146145 DOI: 10.4103/1673-5374.128232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2013] [Indexed: 11/04/2022] Open
Abstract
Neural cell differentiation and maturation is a critical step during central nervous system development. The oligodendrocyte transcription family (Olig family) is known to be an important factor in regulating neural cell differentiation. Because of this, the Olig family also affects acute and chronic central nervous system diseases, including brain injury, multiple sclerosis, and even gliomas. Improved understanding about the functions of the Olig family in central nervous system development and disease will greatly aid novel breakthroughs in central nervous system diseases. This review investigates the role of the Olig family in central nervous system development and related diseases.
Collapse
Affiliation(s)
- Botao Tan
- Department of Rehabilitation Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jing Yu
- Department of Rehabilitation Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Yin
- Department of Rehabilitation Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gongwei Jia
- Department of Rehabilitation Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wei Jiang
- Department of Rehabilitation Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lehua Yu
- Department of Rehabilitation Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
Bazarek S, Peterson DA. Prospects for engineering neurons from local neocortical cell populations as cell-mediated therapy for neurological disorders. J Comp Neurol 2014; 522:2857-76. [PMID: 24756774 PMCID: PMC4729289 DOI: 10.1002/cne.23618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/18/2014] [Accepted: 04/20/2014] [Indexed: 12/21/2022]
Abstract
There is little cell replacement following neurological injury, limiting the regenerative response of the CNS. Progress in understanding the biology of neural stem cells has raised interest in using stem cells for replacing neurons lost to injury or to disease. Stem cell therapy may also have a role in rebuilding deficient neural circuitry underlying mood disorders, epilepsy, and pain modulation among other roles. In vitro expansion of stem cells with directed differentiation prior to transplantation is one approach to stem cell therapy. Emerging evidence suggests that it may be possible to convert in vivo endogenous neural cells to a neuronal fate directly, providing an alternative strategy for stem cell therapy to the CNS. This review assesses the evidence for engineering a subtype-specific neuronal fate of endogenous neural cells in the cerebral cortex as a function of initial cell lineage, reactive response to injury, conversion factors, and environmental context. We conclude with a discussion of some of the challenges that must be overcome to move this alternative in vivo engineered conversion process toward becoming a viable therapeutic option.
Collapse
Affiliation(s)
- Stanley Bazarek
- Center for Stem Cell and Regenerative Medicine, Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, 60064
| | | |
Collapse
|
49
|
Clowry GJ. An enhanced role and expanded developmental origins for gamma-aminobutyric acidergic interneurons in the human cerebral cortex. J Anat 2014; 227:384-93. [PMID: 24839870 DOI: 10.1111/joa.12198] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2014] [Indexed: 12/16/2022] Open
Abstract
Human beings have considerably expanded cognitive abilities compared with all other species and they also have a relatively larger cerebral cortex compared with their body size. But is a bigger brain the only reason for higher cognition or have other features evolved in parallel? Humans have more and different types of GABAergic interneurons, found in different places, than our model species. Studies are beginning to show differences in function. Is this expanded repertoire of functional types matched by an evolution of their developmental origins? Recent studies support the idea that generation of interneurons in the ventral telencephalon may be more complicated in primates, which have evolved a large and complex outer subventricular zone in the ganglionic eminences. In addition, proportionally more interneurons appear to be produced in the caudal ganglionic eminence, the majority of which populate the superficial layers of the cortex. Whether or not the cortical proliferative zones are a source of interneurogenesis, and to what extent and of what significance, is a contentious issue. As there is growing evidence that conditions such as autism, schizophrenia and congenital epilepsy may have developmental origins in the failure of interneuron production and migration, it is important we understand fully the similarities and differences between human development and our animal models.
Collapse
Affiliation(s)
- Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
50
|
Lillien L. Rostral-caudal distribution of Emx1-lineage stem/transit amplifying cells and lineage progression in embryonic cortex depend on Hedgehog signaling. Dev Neurobiol 2014; 74:1096-109. [PMID: 24771701 DOI: 10.1002/dneu.22186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/02/2014] [Accepted: 04/24/2014] [Indexed: 11/09/2022]
Abstract
Lineage progression of neural precursors to an EGF-responsive state can be promoted by several extrinsic signals, including fibroblast growth factor 2 (FGF2) and Hedgehog (Hh). It has been suggested that EGF-responsive precursors in the embryonic cerebral cortex originate in the ventral telencephalon in an FGF-dependent manner and migrate dorsally. To determine whether cortical EGF-responsive cells originate locally from dorsal precursors, we marked these precursors using Emx1-cre and the cre reporter Z/EG and observed a local origin for EGF-responsive cells. We also found a rostral-caudal difference in the abundance of self-renewing, neurogenic Emx1-lineage precursors, with more present rostrally. Deleting the Hh receptor smoothened in Emx-1 lineage cells impaired their progression to an EGF-responsive state. Moreover, loss of smoothened increased the proportion of neurogenic, self-renewing Emx1-lineage cells in caudal regions of cortex, eliminating their asymmetric distribution. Our results support the idea that Hh signaling promotes lineage progression of stem/transit amplifying cells, particularly in caudal regions of the embryonic cortex, leading to rostral-caudal differences in the abundance of neurogenic, self-renewing precursors.
Collapse
Affiliation(s)
- Laura Lillien
- Department of Neurobiology, University of Pittsburgh School of Medicine, W1454 Biomedical Science Tower, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|