1
|
Vilardo L, Cifola I, Nardella M, Pelucchi P, Ciotti MT, Bianchi A, Rinaldi A, Arisi I, Brandi R, d'Onofrio M, Galvanetto N, Gatti G, Catalano M, Lanzuolo C, Guglielmi L, D'Agnano I. Lamin A/C regulates cerebellar granule cell maturation. Cell Biol Toxicol 2025; 41:66. [PMID: 40186700 PMCID: PMC11972193 DOI: 10.1007/s10565-025-10011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/10/2025] [Indexed: 04/07/2025]
Abstract
Lamin A/C is a nuclear type V intermediate filament protein part of the meshwork structure underlying the inner nuclear membrane (nuclear lamina), which plays numerous roles, including maintenance of nuclear shape, heterochromatin organization, and transcriptional regulation. Our group has demonstrated the role of Lamin A/C in different pathophysiological conditions. Here, we investigated for the first time how Lamin A/C affects neuronal maturation in rat cerebellar granule cells (GCs). Primary rat cerebellar GCs where we silenced the Lmna gene constituted our key model; this provided a rather homogeneous cellular system showing a neuronal population in vitro. We then validated our findings in another in vivo murine model with knock-out of the Lmna gene and in an in vitro human neuronal model with silencing of the LMNA gene. We observed across three different models that Lamin A/C down-regulation affects neurons maturation by protecting the cells from glutamate-evoked excitotoxicity and correlates with an inhibition of calcium influxes and a down-regulation of pro-inflammatory cytokine pathways. Consistent with previous findings from our group, this study corroborates that Lamin A/C plays a key role in neural development and opens new significant implications for a better comprehension of the mechanisms involved in neurodegenerative diseases, where changes in the nuclear envelope are linked to neuroinflammatory processes and damage.
Collapse
Affiliation(s)
- Laura Vilardo
- CNR, Institute for Biomedical Technologies (ITB), Segrate, MI, Italy
| | - Ingrid Cifola
- CNR, Institute for Biomedical Technologies (ITB), Segrate, MI, Italy
| | - Marta Nardella
- Institute of Biochemistry and Cell Biology (IBBC), CNR, Monterotondo Scalo, RM, Italy
| | - Paride Pelucchi
- CNR, Institute for Biomedical Technologies (ITB), Segrate, MI, Italy
| | - Maria Teresa Ciotti
- Institute of Biochemistry and Cell Biology (IBBC), CNR, Monterotondo Scalo, RM, Italy
| | - Andrea Bianchi
- Istituto Nazionale Genetica Molecolare (INGM), Milan, Italy
| | - Arianna Rinaldi
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute (EBRI) "Rita Levi Montalcini", Rome, Italy
| | - Rossella Brandi
- European Brain Research Institute (EBRI) "Rita Levi Montalcini", Rome, Italy
| | - Mara d'Onofrio
- European Brain Research Institute (EBRI) "Rita Levi Montalcini", Rome, Italy
| | | | - Giuliana Gatti
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Loredana Guglielmi
- Faculty of Health and Medical Sciences, School of Biosciences, University of Surrey, Guildford, UK.
| | - Igea D'Agnano
- CNR, Institute for Biomedical Technologies (ITB), Segrate, MI, Italy.
| |
Collapse
|
2
|
Yun C, Li W, Qiao Y, Xiao H, Qu B, Xu T, Li T. Collagen protein-chitosan nerve conduits with neuroepithelial stem cells promote peripheral nerve regeneration. Sci Rep 2024; 14:20748. [PMID: 39237597 PMCID: PMC11377726 DOI: 10.1038/s41598-024-71435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
The peripheral nervous system consists of ganglia, nerve trunks, plexuses, and nerve endings, that transmit afferent and efferent information. Regeneration after a peripheral nerve damage is sluggish and imperfect. Peripheral nerve injury frequently causes partial or complete loss of motor and sensory function, physical impairment, and neuropathic pain, all of which have a negative impact on patients' quality of life. Because the mechanism of peripheral nerve injury and healing is still unclear, the therapeutic efficacy is limited. As peripheral nerve injury research has processed, an increasing number of studies have revealed that biological scaffolds work in tandem with progenitor cells to repair peripheral nerve injury. Here, we fabricated collagen chitosan nerve conduit bioscaffolds together with collagen and then filled neuroepithelial stem cells (NESCs). Scanning electron microscopy showed that the NESCs grew well on the scaffold surface. Compared to the control group, the NESCs group contained more cells with bigger diameters and myelinated structures around the axons. Our findings indicated that a combination of chitosan-collagen bioscaffold and neural stem cell transplantation can facilitate the functional restoration of peripheral nerve tissue, with promising future applications and research implications.
Collapse
Affiliation(s)
- Chenping Yun
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Wei Li
- Department of Anesthesia, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yongjie Qiao
- Department of Pharmacy, The People's Hospital of Jimo, Qingdao, 266299, Shandong, China
| | - Hecun Xiao
- Department of Nephrology, Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Baoming Qu
- Department of Basic Medicine, Qilu Institute of Technology, Jinan, 250200, China
| | - Tao Xu
- Department of Traditional Chinese Medicine, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, 266013, Shandong, China.
| | - Tao Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Department of Neurosurgery, The Third Affiliated Hospital of Shandong First Medical University, Shandong First Medical University, Jinan, 250031, Shandong, China.
| |
Collapse
|
3
|
Zhou Y, Li H, Liu X, Chi X, Gu Z, Cui B, Bergquist J, Wang B, Tian G, Yang C, Xu F, Mi J. The Combination of Quantitative Proteomics and Systems Genetics Analysis Reveals that PTN Is Associated with Sleep-Loss-Induced Cognitive Impairment. J Proteome Res 2023; 22:2936-2949. [PMID: 37611228 DOI: 10.1021/acs.jproteome.3c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Sleep loss is associated with cognitive dysfunction. However, the detailed mechanisms remain unclear. In this study, we established a para-chlorophenylalanine (PCPA)-induced insomniac mouse model with impaired cognitive function. Mass-spectrometry-based proteomics showed that the expression of 164 proteins was significantly altered in the hippocampus of the PCPA mice. To identify critical regulators among the potential markers, a transcriptome-wide association screening was performed in the BXD mice panel. Among the candidates, the expression of pleiotrophin (Ptn) was significantly associated with cognitive functions, indicating that Ptn-mediates sleep-loss-induced cognitive impairment. Gene co-expression analysis further revealed the potential mechanism by which Ptn mediates insomnia-induced cognitive impairment via the MAPK signaling pathway; that is, the decreased secretion of Ptn induced by insomnia leads to reduced binding to Ptprz1 on the postsynaptic membrane with the activation of the MAPK pathway via Fos and Nr4a1, further leading to the apoptosis of neurons. In addition, Ptn is genetically trans-regulated in the mouse hippocampus and implicated in neurodegenerative diseases in human genome-wide association studies. Our study provides a novel biomarker for insomnia-induced cognitive impairment and a new strategy for seeking neurological biomarkers by the integration of proteomics and systems genetics.
Collapse
Affiliation(s)
- Yutong Zhou
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Hui Li
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Xiaoya Liu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Xiaodong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Zhaoxi Gu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Binsen Cui
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Jonas Bergquist
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala 75124, Sweden
| | - Binsheng Wang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| |
Collapse
|
4
|
Foreman M, Maddy K, Patel A, Reddy A, Costello M, Lucke-Wold B. Differentiating Lumbar Spinal Etiology from Peripheral Plexopathies. Biomedicines 2023; 11:756. [PMID: 36979737 PMCID: PMC10044821 DOI: 10.3390/biomedicines11030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Clinicians have managed and treated lower back pain since the earliest days of practice. Historically, lower back pain and its accompanying symptoms of radiating leg pain and muscle weakness have been recognized to be due to any of the various lumbar spine pathologies that lead to the compression of the lumbar nerves at the root, the most common of which is the radiculopathy known as sciatica. More recently, however, with the increased rise in chronic diseases, the importance of differentially diagnosing a similarly presenting pathology, known as lumbosacral plexopathy, cannot be understated. Given the similar clinical presentation of lumbar spine pathologies and lumbosacral plexopathies, it can be difficult to differentiate these two diagnoses in the clinical setting. Resultingly, the inappropriate diagnosis of either pathology can result in ineffective clinical management. Thus, this review aims to aid in the clinical differentiation between lumbar spine pathology and lumbosacral plexopathy. Specifically, this paper delves into spine and plexus anatomy, delineates the clinical assessment of both pathologies, and highlights powerful diagnostic tools in the hopes of bolstering appropriate diagnosis and treatment. Lastly, this review will describe emerging treatment options for both pathologies in the preclinical and clinical realms, with a special emphasis on regenerative nerve therapies.
Collapse
Affiliation(s)
- Marco Foreman
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| | - Krisna Maddy
- Department of Neurosurgery, University of Miami, Miami, FL 33136, USA
| | - Aashay Patel
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| | - Akshay Reddy
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| | - Meredith Costello
- Department of Neurosurgery, University of Miami, Miami, FL 33136, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
5
|
Wong FSY, Tsang KK, Chan BP, Lo ACY. Both non-coated and polyelectrolytically-coated intraocular collagen-alginate composite gels enhanced photoreceptor survival in retinal degeneration. Biomaterials 2023; 293:121948. [PMID: 36516686 DOI: 10.1016/j.biomaterials.2022.121948] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Treatments of vision-threatening retinal diseases are often hampered by drug delivery difficulties. Polyelectrolytically-coated alginate encapsulated-cell therapy (ECT) systems have shown therapeutic efficacy through prolonged in vivo drug delivery but still face various biocompatibility, viability, drug delivery and mechanical stability issues in clinical trials. Here, novel, injectable alginate-poly-l-lysine (AP)-coated composite alginate-collagen (CAC) ECT gels were developed for sustained ocular drug delivery, and their long-term performance was compared with non-coated CAC ECT gels. All optimised AP-coated gels (AP1- and AP5.5-CAC ECT: 2 mg/ml collagen, 1.5% high molecular weight alginate, 50,000 cells/gel, with 0.01% or 0.05% poly-l-lysine coating for 5 min, followed by 0.15% alginate coating) and non-coated gels showed effective cell proliferation control, cell viability support and continuous delivery of bioactive glial cell-derived neurotrophic factor (GDNF) with no significant gel degradation in vitro and in rat vitreous. Most importantly, intravitreally injected gels demonstrated therapeutic efficacy in Royal College of Surgeons rats with retinal degeneration, resulting in reduced photoreceptor apoptosis and retinal function loss. At 6 months post-implantation, no host-tissue attachment or ingrowth was detected on the retrieved gels. Non-coated gels were mechanically more stable than AP5.5-coated ones under the current cell loading. This study demonstrated that both coated and non-coated ECT gels can serve as well-controlled, sustained drug delivery platforms for treating posterior eye diseases without immunosuppression.
Collapse
Affiliation(s)
- Francisca Siu Yin Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ken Kin Tsang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Barbara Pui Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Guo YL, Zhai QY, Ye YH, Ren YQ, Song ZH, Ge KL, Cheng BH. Neuroprotective effects of neural stem cells pretreated with neuregulin1β on PC12 cells exposed to oxygen-glucose deprivation/reoxygenation. Neural Regen Res 2023; 18:618-625. [DOI: 10.4103/1673-5374.350207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Li X, Zhang X, Hao M, Wang D, Jiang Z, Sun L, Gao Y, Jin Y, Lei P, Zhuo Y. The application of collagen in the repair of peripheral nerve defect. Front Bioeng Biotechnol 2022; 10:973301. [PMID: 36213073 PMCID: PMC9542778 DOI: 10.3389/fbioe.2022.973301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Collagen is a natural polymer expressed in the extracellular matrix of the peripheral nervous system. It has become increasingly crucial in peripheral nerve reconstruction as it was involved in regulating Schwann cell behaviors, maintaining peripheral nerve functions during peripheral nerve development, and being strongly upregulated after nerve injury to promote peripheral nerve regeneration. Moreover, its biological properties, such as low immunogenicity, excellent biocompatibility, and biodegradability make it a suitable biomaterial for peripheral nerve repair. Collagen provides a suitable microenvironment to support Schwann cells’ growth, proliferation, and migration, thereby improving the regeneration and functional recovery of peripheral nerves. This review aims to summarize the characteristics of collagen as a biomaterial, analyze its role in peripheral nerve regeneration, and provide a detailed overview of the recent advances concerning the optimization of collagen nerve conduits in terms of physical properties and structure, as well as the application of the combination with the bioactive component in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xiaolan Li
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Hao
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ye Jin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Peng Lei, ; Yue Zhuo,
| | - Yue Zhuo
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Peng Lei, ; Yue Zhuo,
| |
Collapse
|
8
|
Liu H, Wei T, Huang Q, Liu W, Yang Y, Jin Y, Wu D, Yuan K, Zhang P. The roles, mechanism, and mobilization strategy of endogenous neural stem cells in brain injury. Front Aging Neurosci 2022; 14:924262. [PMID: 36062152 PMCID: PMC9428262 DOI: 10.3389/fnagi.2022.924262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Brain injury poses a heavy disease burden in the world, resulting in chronic deficits. Therapies for brain injuries have been focused on pharmacologic, small molecule, endocrine and cell-based therapies. Endogenous neural stem cells (eNSCs) are a group of stem cells which can be activated in vivo by damage, neurotrophic factors, physical factor stimulation, and physical exercise. The activated eNSCs can proliferate, migrate and differentiate into neuron, oligodendrocyte and astrocyte, and play an important role in brain injury repair and neural plasticity. The roles of eNSCs in the repair of brain injury include but are not limited to ameliorating cognitive function, improving learning and memory function, and promoting functional gait behaviors. The activation and mobilization of eNSCs is important to the repair of injured brain. In this review we describe the current knowledge of the common character of brain injury, the roles and mechanism of eNSCs in brain injury. And then we discuss the current mobilization strategy of eNSCs following brain injury. We hope that a comprehensive awareness of the roles and mobilization strategy of eNSCs in the repair of cerebral ischemia may help to find some new therapeutic targets and strategy for treatment of stroke.
Collapse
Affiliation(s)
- Haijing Liu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Tao Wei
- Library, Kunming Medical University, Kunming, China
- School of Continuing Education, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qin Huang
- Department of Teaching Affairs and Administration, Kunming Medical University, Kunming, China
| | - Wei Liu
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yaopeng Yang
- Department of Pulmonary and Critical Care Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Kai Yuan
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
9
|
Song S, McConnell KW, Amores D, Levinson A, Vogel H, Quarta M, Rando TA, George PM. Electrical stimulation of human neural stem cells via conductive polymer nerve guides enhances peripheral nerve recovery. Biomaterials 2021; 275:120982. [PMID: 34214785 PMCID: PMC8325644 DOI: 10.1016/j.biomaterials.2021.120982] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 01/09/2023]
Abstract
Severe peripheral nerve injuries often result in permanent loss of function of the affected limb. Current treatments are limited by their efficacy in supporting nerve regeneration and behavioral recovery. Here we demonstrate that electrical stimulation through conductive nerve guides (CNGs) enhances the efficacy of human neural progenitor cells (hNPCs) in treating a sciatic nerve transection in rats. Electrical stimulation strengthened the therapeutic potential of NPCs by upregulating gene expression of neurotrophic factors which are critical in augmenting synaptic remodeling, nerve regeneration, and myelination. Electrically-stimulated hNPC-containing CNGs are significantly more effective in improving sensory and motor functions starting at 1-2 weeks after treatment than either treatment alone. Electrophysiology and muscle assessment demonstrated successful re-innervation of the affected target muscles in this group. Furthermore, histological analysis highlighted an increased number of regenerated nerve fibers with thicker myelination in electrically-stimulated hNPC-containing CNGs. The elevated expression of tyrosine kinase receptors (Trk) receptors, known to bind to neurotrophic factors, indicated the long-lasting effect from electrical stimulation on nerve regeneration and distal nerve re-innervation. These data suggest that electrically-enhanced stem cell-based therapy provides a regenerative rehabilitative approach to promote peripheral nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Shang Song
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly W McConnell
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Danielle Amores
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexa Levinson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Marco Quarta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital, Palo Alto, CA, USA
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Yao X, Yan Z, Wang X, Jiang H, Qian Y, Fan C. The influence of reduced graphene oxide on stem cells: a perspective in peripheral nerve regeneration. Regen Biomater 2021; 8:rbab032. [PMID: 34188955 PMCID: PMC8226110 DOI: 10.1093/rb/rbab032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Graphene and its derivatives are fascinating materials for their extraordinary electrochemical and mechanical properties. In recent decades, many researchers explored their applications in tissue engineering and regenerative medicine. Reduced graphene oxide (rGO) possesses remarkable structural and functional resemblance to graphene, although some residual oxygen-containing groups and defects exist in the structure. Such structure holds great potential since the remnant-oxygenated groups can further be functionalized or modified. Moreover, oxygen-containing groups can improve the dispersion of rGO in organic or aqueous media. Therefore, it is preferable to utilize rGO in the production of composite materials. The rGO composite scaffolds provide favorable extracellular microenvironment and affect the cellular behavior of cultured cells in the peripheral nerve regeneration. On the one hand, rGO impacts on Schwann cells and neurons which are major components of peripheral nerves. On the other hand, rGO-incorporated composite scaffolds promote the neurogenic differentiation of several stem cells, including embryonic stem cells, mesenchymal stem cells, adipose-derived stem cells and neural stem cells. This review will briefly introduce the production and major properties of rGO, and its potential in modulating the cellular behaviors of specific stem cells. Finally, we present its emerging roles in the production of composite scaffolds for nerve tissue engineering.
Collapse
Affiliation(s)
- Xiangyun Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Huiquan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Metro loop Road Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
11
|
A Biomarker for Predicting Responsiveness to Stem Cell Therapy Based on Mechanism-of-Action: Evidence from Cerebral Injury. Cell Rep 2021; 31:107622. [PMID: 32402283 DOI: 10.1016/j.celrep.2020.107622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 04/16/2020] [Indexed: 11/20/2022] Open
Abstract
To date, no stem cell therapy has been directed to specific recipients-and, conversely, withheld from others-based on a clinical or molecular profile congruent with that cell's therapeutic mechanism-of-action (MOA) for that condition. We address this challenge preclinically with a prototypical scenario: human neural stem cells (hNSCs) against perinatal/neonatal cerebral hypoxic-ischemic injury (HII). We demonstrate that a clinically translatable magnetic resonance imaging (MRI) algorithm, hierarchical region splitting, provides a rigorous, expeditious, prospective, noninvasive "biomarker" for identifying subjects with lesions bearing a molecular profile indicative of responsiveness to hNSCs' neuroprotective MOA. Implanted hNSCs improve lesional, motor, and/or cognitive outcomes only when there is an MRI-measurable penumbra that can be forestalled from evolving into necrotic core; the core never improves. Unlike the core, a penumbra is characterized by a molecular profile associated with salvageability. Hence, only lesions characterized by penumbral > core volumes should be treated with cells, making such measurements arguably a regenerative medicine selection biomarker.
Collapse
|
12
|
Darvishi M, Hamidabadi HG, Bojnordi MN, Saeednia S, Zahiri M, Niapour A, Alizadeh R. Differentiation of human dental pulp stem cells into functional motor neuron: In vitro and ex vivo study. Tissue Cell 2021; 72:101542. [PMID: 33964606 DOI: 10.1016/j.tice.2021.101542] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
There are several therapeutic options for spinal cord injury (SCI), among these strategies stem cell therapy is a potential treatment. The stem cells based therapies have been investigating in acute phase of clinical trials for promoting spinal repair in humans through replacement of functional neuronal and glial cells. The aim of this study was to evaluate the differentiation of Human Dental Pulp Stem Cells (hDPSCs) into functional motor neuron like cells (MNLCs) and promote neuroregeneration by stimulating local neurogenesis in the adult spinal cord slice culture. The immunocytochemistry analysis demonstrated that hDPSCs were positive for mesenchymal stem cell markers (CD73, CD90 and CD105) and negative for the hematopoietic markers (CD34 and CD45). hDPSCs were induced to neurospheres (via implementing B27, EGF, and bFGF) and then neural stem cells (NSC). The NSC differentiated into MNLCs in two steps: first by Shh and RA and ; then with GDNF and BDNF administration. The NS and the NSC were assessed for Oct4, nestin, Nanog, Sox2 expression while the MNLCs were evaluated by ISLET1, Olig2, and HB9 genes. Our results showed that hDPSC can be differentiated into motor neuron phenotype with expression of the motor neuron genes. The functionality of MNLCs was demonstrated by FM1-43, intracellular calcium ion shift and co- culture with C2C12. We co-cultivated hDPSCs with adult rat spinal slices in vitro. Immunostaining and hoechst assay showed that hDPSCs were able to migrate, proliferate and integrate in both the anterolateral zone and the edges of the spinal slices.
Collapse
Affiliation(s)
- Marzieh Darvishi
- Department of Anatomy, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Maryam Nazm Bojnordi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sara Saeednia
- Department of Basic Sciences, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Maria Zahiri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Ciciriello AJ, Smith DR, Munsell MK, Boyd SJ, Shea LD, Dumont CM. Acute Implantation of Aligned Hydrogel Tubes Supports Delayed Spinal Progenitor Implantation. ACS Biomater Sci Eng 2020; 6:5771-5784. [DOI: 10.1021/acsbiomaterials.0c00844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Andrew J. Ciciriello
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33156, United States
- Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW Seventh Avenue Suite 475, Miami, Florida 33136, United States
| | - Dominique R. Smith
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, United States
| | - Mary K. Munsell
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, United States
| | - Sydney J. Boyd
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33156, United States
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Courtney M. Dumont
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33156, United States
- Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW Seventh Avenue Suite 475, Miami, Florida 33136, United States
| |
Collapse
|
14
|
Ng NN, Thakor AS. Locoregional delivery of stem cell-based therapies. Sci Transl Med 2020; 12:eaba4564. [PMID: 32522806 DOI: 10.1126/scitranslmed.aba4564] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Interventional regenerative medicine (IRM) uses image-guided, minimally invasive procedures for the targeted delivery of stem cell-based therapies to regenerate, replace, or repair damaged organs. Although many cellular therapies have shown promise in the preclinical setting, clinical results have been suboptimal. Most intravenously delivered cells become trapped in the lungs and reticuloendothelial system, resulting in little therapy reaching target tissues. IRM aims to increase the efficacy of cell-based therapies by locoregional stem cell delivery via endovascular, endoluminal, or direct injection into tissues. This review highlights routes of delivery, disease states, and mechanisms of action involved in the targeted delivery of stem cells.
Collapse
Affiliation(s)
- Nathan Norton Ng
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Avnesh Sinh Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA.
| |
Collapse
|
15
|
Tierney WM, Uhlendorf TL, Lemus AJ, Ortega BA, Magaña J, Ochoa J, Van Trigt W, Cruz A, Kopyov A, Kopyov OV, Cohen RW. Transplanted Human Neural Progenitor Cells Attenuate Motor Dysfunction and Lengthen Longevity in a Rat Model of Ataxia. Cell Transplant 2020; 29:963689720920275. [PMID: 32314612 PMCID: PMC7444227 DOI: 10.1177/0963689720920275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/06/2020] [Accepted: 03/26/2020] [Indexed: 12/29/2022] Open
Abstract
The spastic Han Wistar (sHW) rat serves as a model for human ataxia presenting symptoms of motor deterioration, weight loss, shortened lifespan, and Purkinje neuron loss. Past studies revealed that human neural progenitor cells (NPCs) improved ataxic symptoms at 20 d posttransplantation in sHW rats. In this study, we investigated the fate and longer-term effectiveness of these transplanted NPCs. Rats were placed into four treatment groups: an untreated normal control group (n = 10), an untreated mutant rat control (n = 10), a mutant group that received an injection of dead NPCs (n = 9), and a mutant group that received live NPCs (n = 10). Bilateral cerebellar injections containing 500,000 of either live or dead NPCs were performed on mutant sHW rats at 40 d of age. Motor activity for all mutant rats started to decline in open field testing around day 35. However, at day 45, the live NPC-treated mutants exhibited significant improvements in open field activity. Similar improvements were observed during rotarod testing and weight gain through the completion of the experiments (100 d). Immunohistochemistry revealed few surviving human NPCs in the cerebella of 80- and 100-d-old NPC-treated mutants; while cresyl violet staining revealed that live NPC-treated mutants had significantly more surviving Purkinje neurons compared to mutants that were untreated or received dead NPCs. Direct stereotactic implantation of NPCs alleviated the symptoms of ataxia, acting as a neuroprotectant, supporting future clinical applications of these NPCs in the areas of ataxia as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Wesley M. Tierney
- Department of Biology, California State University, Northridge, CA, USA
| | - Toni L. Uhlendorf
- Department of Biology, California State University, Northridge, CA, USA
| | - Aaron J.J. Lemus
- Department of Biology, California State University, Northridge, CA, USA
| | - Bianca A. Ortega
- Department of Biology, California State University, Northridge, CA, USA
| | - Jesse Magaña
- Department of Biology, California State University, Northridge, CA, USA
| | | | | | | | | | | | - Randy W. Cohen
- Department of Biology, California State University, Northridge, CA, USA
| |
Collapse
|
16
|
Teng YD. Functional multipotency of stem cells: Biological traits gleaned from neural progeny studies. Semin Cell Dev Biol 2019; 95:74-83. [DOI: 10.1016/j.semcdb.2019.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/24/2019] [Accepted: 02/21/2019] [Indexed: 12/28/2022]
|
17
|
Influencing neuroplasticity in stroke treatment with advanced biomaterials-based approaches. Adv Drug Deliv Rev 2019; 148:204-218. [PMID: 30579882 DOI: 10.1016/j.addr.2018.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/05/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Abstract
Since the early 1990s, we have known that the adult brain is not static and has the capacity to repair itself. The delivery of various therapeutic factors and cells have resulted in some exciting pre-clinical and clinical outcomes in stroke models by targeting post-injury plasticity to enhance recovery. Developing a deeper understanding of the pathways that modulate plasticity will enable us to optimize delivery strategies for therapeutics and achieve more robust effects. Biomaterials are a key tool for the optimization of these potential treatments, owing to their biocompatibility and tunability. In this review, we identify factors and targets that impact plastic processes known to contribute to recovery, discuss the role of biomaterials in enhancing the efficacy of treatment strategies, and suggest combinatorial approaches based on the stage of injury progression.
Collapse
|
18
|
Teng YD. Functional Multipotency of Stem Cells and Recovery Neurobiology of Injured Spinal Cords. Cell Transplant 2019; 28:451-459. [PMID: 31134830 PMCID: PMC6628559 DOI: 10.1177/0963689719850088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/31/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
This invited concise review was written for the special issue of Cell Transplantation to celebrate the 25th anniversary of the American Society for Neural Therapy and Repair (ASNTR). I aimed to present a succinct summary of two interweaved lines of research work carried out by my team members and collaborators over the past decade. Since the middle of the 20th century, biomedical research has been driven overwhelmingly by molecular technology-based focal endeavors. Our investigative undertakings, however, were orchestrated to define and propose novel theoretical frameworks to enhance the field's ability to overcome complex neurological disorders. The effort has engendered two important academic concepts: Functional Multipotency of Stem Cells, and Recovery Neurobiology of Injured Spinal Cords. Establishing these theories was facilitated by academic insight gleaned from stem cell-based multimodal cross-examination studies using tactics of material science, systems neurobiology, glial biology, and neural oncology. It should be emphasized that the collegial environment cultivated by the mission of the ASNTR greatly promoted the efficacy of inter-laboratory collaborations. Notably, our findings have shed new light on fundamentals of stem cell biology and adult mammalian spinal cord neurobiology. Moreover, the novel academic leads have enabled determination of potential therapeutic targets to restore function for spinal cord injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yang D. Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical
School/Spaulding Rehabilitation Hospital Network, Charlestown, USA
- Department of Neurosurgery, Harvard Medical School/Brigham and Women’s
Hospital, Boston, USA
- Division of SCI Research, Veterans Affairs Boston Healthcare System, Boston,
USA
| |
Collapse
|
19
|
Baker EW, Kinder HA, West FD. Neural stem cell therapy for stroke: A multimechanistic approach to restoring neurological function. Brain Behav 2019; 9:e01214. [PMID: 30747485 PMCID: PMC6422715 DOI: 10.1002/brb3.1214] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/02/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Neural stem cells (NSCs) have demonstrated multimodal therapeutic function for stroke, which is the leading cause of long-term disability and the second leading cause of death worldwide. In preclinical stroke models, NSCs have been shown to modulate inflammation, foster neuroplasticity and neural reorganization, promote angiogenesis, and act as a cellular replacement by differentiating into mature neural cell types. However, there are several key technical questions to address before NSC therapy can be applied to the clinical setting on a large scale. PURPOSE OF REVIEW In this review, we will discuss the various sources of NSCs, their therapeutic modes of action to enhance stroke recovery, and considerations for the clinical translation of NSC therapies. Understanding the key factors involved in NSC-mediated tissue recovery and addressing the current translational barriers may lead to clinical success of NSC therapy and a first-in-class restorative therapy for stroke patients.
Collapse
Affiliation(s)
- Emily W Baker
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| |
Collapse
|
20
|
Kong F, Zhou J, Du C, He X, Kong L, Hu C, Ying H. Long-term survival and late complications of intensity-modulated radiotherapy for recurrent nasopharyngeal carcinoma. BMC Cancer 2018; 18:1139. [PMID: 30453915 PMCID: PMC6245884 DOI: 10.1186/s12885-018-5055-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 11/07/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND To evaluate the effectiveness and toxicities of intensity-modulated radiotherapy (IMRT) for locally recurrent nasopharyngeal carcinoma (NPC). METHODS One hundred and eighty-four previously irradiated NPC patients with recurrent disease and re-irradiated by IMRT between February 2005 to May 2013 had been reviewed. The disease was re-staged I in 33, II in 27, III in 70 and IV in 54 patients. Seventy-five percent of the patients received cisplatin-based chemotherapy. RESULTS The median survival time was 33 months. The 3-year actuarial rates of local recurrence-free survival (LRFS), distant metastases-free survival (DMFS), and overall survival (OS) rates were 85.1, 91.1, and 46.0%, respectively. About 53% of the patients experienced Grade 3-4 late toxicities. Forty-four patients died of massive hemorrhage of the nasopharynx caused by radiation induced mucosal necrosis. Multivariate analysis indicated that chemotherapy and time interval between initial radiotherapy and re-irradiation were independent predictors for DMFS. CONCLUSION IMRT is an effective method for patients with locally recurrent NPC. Massive hemorrhage of the nasopharynx is the major sever late complication and also the leading cause of death. Early recurrence is negative factor for DMFS. Combination of chemotherapy can improve DMFS, but not for OS. Optimal salvage treatment strategies focusing on improvement of survival and minimization of late toxicities are warranted.
Collapse
Affiliation(s)
- Fangfang Kong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Junjun Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chengrun Du
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Xiayun He
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Lin Kong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Chaosu Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Hongmei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
21
|
Dumont CM, Munsell MK, Carlson MA, Cummings BJ, Anderson AJ, Shea LD. Spinal Progenitor-Laden Bridges Support Earlier Axon Regeneration Following Spinal Cord Injury. Tissue Eng Part A 2018; 24:1588-1602. [PMID: 30215293 DOI: 10.1089/ten.tea.2018.0053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT Spinal cord injury (SCI) results in loss of tissue innervation below the injury. Spinal progenitors have a greater ability to repair the damage and can be injected into the injury, but their regenerative potential is hampered by their poor survival after transplantation. Biomaterials can create a cell delivery platform and generate a more hospitable microenvironment for the progenitors within the injury. In this work, polymeric bridges are used to deliver embryonic spinal progenitors to the injury, resulting in increased progenitor survival and subsequent regeneration and functional recovery, thus demonstrating the importance of combined therapeutic approaches for SCI.
Collapse
Affiliation(s)
- Courtney M Dumont
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Mary K Munsell
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Mitchell A Carlson
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Brian J Cummings
- 2 Institute for Memory Impairments and Neurological Disorders (iMIND), University of California , Irvine, California.,3 Sue and Bill Gross Stem Cell Research Center, University of California , Irvine, California.,4 Department of Anatomy and Neurobiology and University of California , Irvine, California.,5 Department of Physical Medicine and Rehabilitation, University of California , Irvine, California
| | - Aileen J Anderson
- 2 Institute for Memory Impairments and Neurological Disorders (iMIND), University of California , Irvine, California.,3 Sue and Bill Gross Stem Cell Research Center, University of California , Irvine, California.,4 Department of Anatomy and Neurobiology and University of California , Irvine, California.,5 Department of Physical Medicine and Rehabilitation, University of California , Irvine, California
| | - Lonnie D Shea
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan.,6 Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
22
|
Sato Y, Shinjyo N, Sato M, Nilsson MKL, Osato K, Zhu C, Pekna M, Kuhn HG, Blomgren K. Grafting Neural Stem and Progenitor Cells Into the Hippocampus of Juvenile, Irradiated Mice Normalizes Behavior Deficits. Front Neurol 2018; 9:715. [PMID: 30254600 PMCID: PMC6141740 DOI: 10.3389/fneur.2018.00715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/08/2018] [Indexed: 11/17/2022] Open
Abstract
The pool of neural stem and progenitor cells (NSPCs) in the dentate gyrus of the hippocampus is reduced by ionizing radiation. This explains, at least partly, the learning deficits observed in patients after radiotherapy, particularly in pediatric cases. An 8 Gy single irradiation dose was delivered to the whole brains of postnatal day 9 (P9) C57BL/6 mice, and BrdU-labeled, syngeneic NSPCs (1.0 × 105 cells/injection) were grafted into each hippocampus on P21. Three months later, behavior tests were performed. Irradiation impaired novelty-induced exploration, place learning, reversal learning, and sugar preference, and it altered the movement pattern. Grafting of NSPCs ameliorated or even normalized the observed deficits. Less than 4% of grafted cells survived and were found in the dentate gyrus 5 months later. The irradiation-induced loss of endogenous, undifferentiated NSPCs in the dentate gyrus was completely restored by grafted NSPCs in the dorsal, but not the ventral, blade. The grafted NSPCs did not exert appreciable effects on the endogenous NSPCs; however, more than half of the grafted NSPCs differentiated. These results point to novel strategies aimed at ameliorating the debilitating late effects of cranial radiotherapy, particularly in children.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Noriko Shinjyo
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Machiko Sato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Narita Hospital, Nagoya, Japan
| | - Marie K L Nilsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Kazuhiro Osato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Changlian Zhu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Hans G Kuhn
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Zhou ZB, Niu YL, Huang GX, Lu JJ, Chen A, Zhu L. Silencing of circRNA.2837 Plays a Protective Role in Sciatic Nerve Injury by Sponging the miR-34 Family via Regulating Neuronal Autophagy. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:718-729. [PMID: 30098504 PMCID: PMC6088565 DOI: 10.1016/j.omtn.2018.07.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/16/2018] [Accepted: 07/22/2018] [Indexed: 12/15/2022]
Abstract
Circular RNAs (circRNAs) represent a class of non-coding RNAs that are involved in transcriptional and posttranscriptional gene expression regulation and associated with different kinds of human diseases. However, the characterization and function of circular RNAs in peripheral nerve injuries remain elusive. Here, we established a rat sciatic nerve injury model and identified at least 4,942 distinct circular RNA candidates and a series of circular RNAs that were differentially expressed in injured nerve tissues compared with matched normal tissues. We characterized one frequently downregulated circular RNA, circRNA.2837, and further investigated its function in sciatic nerve injury. We found that circRNA.2837 regulated autophagy in neurons in vitro and in vivo, and downregulation of circRNA.2837 alleviated sciatic nerve injury via inducing autophagy in vivo. Mechanistically, knockdown of circRNA.2837 may protect neurons against neurological injury by acting as a sponge for members of miR-34 family. Our findings suggested that differentially expressed circular RNAs were involved in the pathogenesis of sciatic nerve injury, and circular RNAs exerted regulatory functions in sciatic nerve injury and might be used as potential targets in sciatic nerve injury therapy.
Collapse
Affiliation(s)
- Zhi-Bin Zhou
- Orthopaedic Trauma and Reconstruction Surgery Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yu-Long Niu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Gao-Xiang Huang
- Department of Pathology, No.181 Hospital of PLA, Guilin, Guangxi, 541002, China
| | - Jia-Jia Lu
- Orthopaedic Trauma and Reconstruction Surgery Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Aimin Chen
- Orthopaedic Trauma and Reconstruction Surgery Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Lei Zhu
- Orthopaedic Trauma and Reconstruction Surgery Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
24
|
Petersen ED, Zenchak JR, Lossia OV, Hochgeschwender U. Neural Stem Cells Derived Directly from Adipose Tissue. Stem Cells Dev 2018; 27:637-647. [PMID: 29649413 DOI: 10.1089/scd.2017.0195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Neural stem cells (NSCs) are characterized as self-renewing cell populations with the ability to differentiate into the multiple tissue types of the central nervous system. These cells can differentiate into mature neurons, astrocytes, and oligodendrocytes. This category of stem cells has been shown to be a promisingly effective treatment for neurodegenerative diseases and neuronal injury. Most treatment studies with NSCs in animal models use embryonic brain-derived NSCs. This approach presents both ethical and feasibility issues for translation to human patients. Adult tissue is a more practical source of stem cells for transplantation therapies in humans. Some adult tissues such as adipose tissue and bone marrow contain a wide variety of stem cell populations, some of which have been shown to be similar to embryonic stem cells, possessing many pluripotent properties. Of these stem cell populations, some are able to respond to neuronal growth factors and can be expanded in vitro, forming neurospheres analogous to cells harvested from embryonic brain tissue. In this study, we describe a method for the collection and culture of cells from adipose tissue that directly, without going through intermediates such as mesenchymal stem cells, results in a population of NSCs that are able to be expanded in vitro and be differentiated into functional neuronal cells. These adipose-derived NSCs display a similar phenotype to those directly derived from embryonic brain. When differentiated into neurons, cells derived from adipose tissue have spontaneous spiking activity with network characteristics similar to that of neuronal cultures.
Collapse
Affiliation(s)
- Eric D Petersen
- Program in Neuroscience, Central Michigan University , College of Medicine, Mount Pleasant, Michigan
| | - Jessica R Zenchak
- Program in Neuroscience, Central Michigan University , College of Medicine, Mount Pleasant, Michigan
| | - Olivia V Lossia
- Program in Neuroscience, Central Michigan University , College of Medicine, Mount Pleasant, Michigan
| | - Ute Hochgeschwender
- Program in Neuroscience, Central Michigan University , College of Medicine, Mount Pleasant, Michigan
| |
Collapse
|
25
|
Fan WL, Liu P, Wang G, Pu JG, Xue X, Zhao JH. Transplantation of hypoxic preconditioned neural stem cells benefits functional recovery via enhancing neurotrophic secretion after spinal cord injury in rats. J Cell Biochem 2018; 119:4339-4351. [PMID: 28884834 DOI: 10.1002/jcb.26397] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/30/2017] [Indexed: 12/25/2022]
Abstract
Spinal cord injury (SCI) is a debilitating, costly, and common pathological condition that affects the function of central nervous system (CNS). To date, there are few promising therapeutic strategies available for SCI. To look for a suitable therapeutic strategy, we have developed a sublethal hypoxic preconditioning procedure using Fluorescence-activated cell sorting (FACS) analysis, LDH releasing, and cell viability assays in vitro. Meanwhile, we have examined the benefits of neural stem cells (NSCs) transplantation prior to hypoxic preconditioning on functional recovery and potential mechanism via MRI screening, H&E, and Nissl staining, immunofluorescence staining and Elisa assays. Our data showed that transplantation of hypoxic prconditioned NSCs could enhance neuronal survival, especially 5-TH+ and ChAT+ neurons, in the injured spinal cord to reinforce functional benefits. The hypoxia exposure upregulated HIF-1α, neurotrophic and growth factors including neurotrophin-3 (NT-3), glial cell-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) in vitro and in vivo. Furthermore, functional recovery, including locomotor and hypersensitivities to mechanical and thermal stimulation assessed via behavioral and sensory tests, improved significantly in rats with engraftment of NSCs after hypoxia exposure from day 14 post-SCI, compared with the control and N-NSCs groups. In short, the approach employed in this study could result in functional recovery via upregulating neurotrophic and growth factors, which implies that hypoxic preconditioning strategy could serve as an effective and feasible strategy for cell-based therapy in the treatment of SCI in rats.
Collapse
Affiliation(s)
- Wei-Li Fan
- Department of Spinal Surgery, Daping Hospital, Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| | - Peng Liu
- Department of Spinal Surgery, Daping Hospital, Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| | - Guan Wang
- Department of Spinal Surgery, Daping Hospital, Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| | - Jun-Gang Pu
- Department of Spinal Surgery, Daping Hospital, Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| | - Xin Xue
- Department of Spinal Surgery, Daping Hospital, Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| | - Jian-Hua Zhao
- Department of Spinal Surgery, Daping Hospital, Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| |
Collapse
|
26
|
Marei HE, Elnegiry AA, Zaghloul A, Althani A, Afifi N, Abd-Elmaksoud A, Farag A, Lashen S, Rezk S, Shouman Z, Cenciarelli C, Hasan A. Nanotubes impregnated human olfactory bulb neural stem cells promote neuronal differentiation in Trimethyltin-induced neurodegeneration rat model. J Cell Physiol 2017; 232:3586-3597. [PMID: 28121007 DOI: 10.1002/jcp.25826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/03/2017] [Accepted: 01/24/2017] [Indexed: 12/12/2022]
Abstract
Neural stem cells (NSCs) are multipotent self-renewing cells that could be used in cellular-based therapy for a wide variety of neurodegenerative diseases including Alzheimer's diseases (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Being multipotent in nature, they are practically capable of giving rise to major cell types of the nervous tissue including neurons, astrocytes, and oligodendrocytes. This is in marked contrast to neural progenitor cells which are committed to a specific lineage fate. In previous studies, we have demonstrated the ability of NSCs isolated from human olfactory bulb (OB) to survive, proliferate, differentiate, and restore cognitive and motor deficits associated with AD, and PD rat models, respectively. The use of carbon nanotubes (CNTs) to enhance the survivability and differentiation potential of NSCs following their in vivo engraftment have been recently suggested. Here, in order to assess the ability of CNTs to enhance the therapeutic potential of human OBNSCs for restoring cognitive deficits and neurodegenerative lesions, we co-engrafted CNTs and human OBNSCs in TMT-neurodegeneration rat model. The present study revealed that engrafted human OBNSCS-CNTs restored cognitive deficits, and neurodegenerative changes associated with TMT-induced rat neurodegeneration model. Moreover, the CNTs seemed to provide a support for engrafted OBNSCs, with increasing their tendency to differentiate into neurons rather than into glia cells. The present study indicate the marked ability of CNTs to enhance the therapeutic potential of human OBNSCs which qualify this novel therapeutic paradigm as a promising candidate for cell-based therapy of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Hany E Marei
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Ahmed A Elnegiry
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Adel Zaghloul
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Asma Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Ahmed Abd-Elmaksoud
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Amany Farag
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Samah Lashen
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Shymaa Rezk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
27
|
Nuryyev RL, Uhlendorf TL, Tierney W, Zatikyan S, Kopyov O, Kopyov A, Ochoa J, Trigt WV, Malone CS, Cohen RW. Transplantation of Human Neural Progenitor Cells Reveals Structural and Functional Improvements in the Spastic Han-Wistar Rat Model of Ataxia. Cell Transplant 2017; 26:1811-1821. [PMID: 29338380 PMCID: PMC5784519 DOI: 10.1177/0963689717723637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
The use of regenerative medicine to treat nervous system disorders like ataxia has been proposed to either replace or support degenerating neurons. In this study, we assessed the ability of human neural progenitor cells (hNPCs) to repair and restore the function of dying neurons within the spastic Han-Wistar rat (sHW), a model of ataxia. The sHW rat suffers from neurodegeneration of specific neurons, including cerebellar Purkinje cells and hippocampal CA3 pyramidal cells leading to the observed symptoms of forelimb tremor, hind-leg rigidity, gait abnormality, motor incoordination, and a shortened life span. To alleviate the symptoms of neurodegeneration and to replace or augment dying neurons, neuronal human progenitor cells were implanted into the sHW rats. At 30 d of age, male sHW mutant rats underwent subcutaneous implantation of an Alzet osmotic pump that infused cyclosporine (15 mg/kg/d) used to suppress the rat's immune system. At 40 d, sHW rats received bilateral injections (500,000 cells in 5 µL media) of live hNPCs, dead hNPCs, live human embryonic kidney cells, or growth media either into the cerebellar cortex or into the hippocampus. To monitor results, motor activity scores (open-field testing) and weights of the animals were recorded weekly. The sHW rats that received hNPC transplantation into the cerebellum, at 60 d of age, displayed significantly higher motor activity scores and sustained greater weights and longevities than control-treated sHW rats or any hippocampal treatment group. In addition, cerebellar histology revealed that the transplanted hNPCs displayed signs of migration and signs of neuronal development in the degenerated Purkinje cell layer. This study revealed that implanted human progenitor cells reduced the ataxic symptoms in the sHW rat, identifying a future clinical use of these progenitor cells against ataxia and associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruslan L. Nuryyev
- Department of Biology, California State University, Northridge, CA, USA
| | - Toni L. Uhlendorf
- Department of Biology, California State University, Northridge, CA, USA
| | - Wesley Tierney
- Department of Biology, California State University, Northridge, CA, USA
| | - Suren Zatikyan
- Department of Biology, California State University, Northridge, CA, USA
| | | | | | | | | | - Cindy S. Malone
- Department of Biology, California State University, Northridge, CA, USA
| | - Randy W. Cohen
- Department of Biology, California State University, Northridge, CA, USA
| |
Collapse
|
28
|
Sussman ES, Steinberg GK. A Focused Review of Clinical and Preclinical Studies of Cell-Based Therapies in Stroke. Neurosurgery 2017; 64:92-96. [PMID: 28899062 PMCID: PMC5901313 DOI: 10.1093/neuros/nyx329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/18/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Eric S. Sussman
- Department of Neurosurgery, Sta-nford University School of Medicine and Stanford Health Care, Stanford, California
| | - Gary K. Steinberg
- Department of Neurosurgery, Sta-nford University School of Medicine and Stanford Health Care, Stanford, California
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine and Stanford Health Care, Stanford, California
| |
Collapse
|
29
|
Neuroprotective Effects of Stem Cells in Ischemic Stroke. Stem Cells Int 2017; 2017:4653936. [PMID: 28757878 PMCID: PMC5512103 DOI: 10.1155/2017/4653936] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/11/2017] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke, the most common subtype of stroke, has been one of the leading causes of mobility and mortality worldwide. However, it is still lacking of efficient agents. Stem cell therapy, with its vigorous advantages, has attracted researchers around the world. Numerous experimental researches in animal models of stroke have demonstrated the promising efficacy in treating ischemic stroke. The underlying mechanism involved antiapoptosis, anti-inflammation, promotion of angiogenesis and neurogenesis, formation of new neural cells and neuronal circuitry, antioxidation, and blood-brain barrier (BBB) protection. This review would focus on the types and neuroprotective actions of stem cells and its potential mechanisms for ischemic stroke.
Collapse
|
30
|
Safety of neural stem cell transplantation in patients with severe traumatic brain injury. Exp Ther Med 2017; 13:3613-3618. [PMID: 28588689 DOI: 10.3892/etm.2017.4423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Neural stem cell (NSC) therapy is a promising treatment for traumatic brain injury (TBI). In addition, mesenchymal stem cells (MSCs) have been investigated for the treatment of TBI due to their functions in neural regeneration and their neurotrophic effect. In the present study, the safety, feasibility and biological effects of autologous MSC-derived NSC-like cell transplantation were investigated in 10 patients with severe TBI. All patients received intravenous or intrathecal injections of human NSC-like cells and were evaluated with physical and neurological examinations, routine laboratory tests and neuroradiological findings. The results indicated that the majority of patients experienced improved neurological function in different degrees during the follow-up period. No mortality or serious adverse events were observed in any patient subsequent to transplantation. Higher serum levels of nerve growth factor and brain-derived neurotrophic factor were detected following the transplantation, as compared with the levels prior to treatment. Overall, the present results suggest that transplantation of autologous NSC-like cells is feasible and appears to be safe for the treatment of non-acute severe TBI.
Collapse
|
31
|
Tajiri N, Quach DM, Kaneko Y, Wu S, Lee D, Lam T, Hayama KL, Hazel TG, Johe K, Wu MC, Borlongan CV. NSI-189, a small molecule with neurogenic properties, exerts behavioral, and neurostructural benefits in stroke rats. J Cell Physiol 2017; 232:2731-2740. [PMID: 28181668 PMCID: PMC5518191 DOI: 10.1002/jcp.25847] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/07/2017] [Indexed: 12/26/2022]
Abstract
Enhancing neurogenesis may be a powerful stroke therapy. Here, we tested in a rat model of ischemic stroke the beneficial effects of NSI-189, an orally active, new molecular entity (mol. wt. 366) with enhanced neurogenic activity, and indicated as an anti-depressant drug in a clinical trial (Fava et al., , Molecular Psychiatry, DOI: 10.1038/mp.2015.178) and being tested in a Phase 2 efficacy trial (ClinicalTrials.gov, , ClinicalTrials.gov Identifier: NCT02695472) for treatment of major depression. Oral administration of NSI-189 in adult Sprague-Dawley rats starting at 6 hr after middle cerebral artery occlusion, and daily thereafter over the next 12 weeks resulted in significant amelioration of stroke-induced motor and neurological deficits, which was maintained up to 24 weeks post-stroke. Histopathological assessment of stroke brains from NSI-189-treated animals revealed significant increments in neurite outgrowth as evidenced by MAP2 immunoreactivity that was prominently detected in the hippocampus and partially in the cortex. These results suggest NSI-189 actively stimulated remodeling of the stroke brain. Parallel in vitro studies further probed this remodeling process and demonstrated that oxygen glucose deprivation and reperfusion (OGD/R) initiated typical cell death processes, which were reversed by NSI-189 treatment characterized by significant attenuation of OGD/R-mediated hippocampal cell death and increased Ki67 and MAP2 expression, coupled with upregulation of neurogenic factors such as BDNF and SCF. These findings support the use of oral NSI-189 as a therapeutic agent well beyond the initial 6-hr time window to accelerate and enhance the overall functional improvement in the initial 6 months post stroke.
Collapse
Affiliation(s)
- Naoki Tajiri
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University South Florida College of Medicine, Tampa, Florida
| | | | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University South Florida College of Medicine, Tampa, Florida
| | | | - David Lee
- Neuralstem, Inc., Rockville, Maryland
| | - Tina Lam
- Neuralstem, Inc., Rockville, Maryland
| | | | | | - Karl Johe
- Neuralstem, Inc., Rockville, Maryland
| | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University South Florida College of Medicine, Tampa, Florida
| |
Collapse
|
32
|
Yang H, Liu C, Chen B, An J, Zhang R, Zhang Q, Zhao J, He B, Hao DJ. Efficient Generation of Functionally Active Spinal Cord Neurons from Spermatogonial Stem Cells. Mol Neurobiol 2017; 54:788-803. [PMID: 27566610 DOI: 10.1007/s12035-016-0057-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022]
Abstract
Neural stem cells (NSCs) are hitherto regarded as perspective candidates for cell transplantation in clinical therapies for multilevel spinal cord injury and function restoration. However, the extreme drawbacks of NSCs available for injury transplantation still represent a significant bottleneck in neural regeneration medicine. Therefore, it is essential to establish a suitable cell reservoir as an issue-free alternative. Here, we demonstrate that spermatogonial stem cells (SSCs) derived from rat testis robustly give rise to terminally differentiated, functionally mature spinal cord neurons by using an optimized differentiation protocol. After performing a 3-week in vitro differentiation procedure, most cells exhibited neural morphological features and were Tuj-1 positive. Of note, approximately 60 % of the obtained cells coexpressed choline acetyltransferase (CHAT), acetylcholinesterase (AchE), and calcitonin gene-related peptide (CGRP). More importantly, apart from acquisition of neural antigenic and biochemical properties, nearly all neurons efficiently exhibited in vitro functionality similar to wild-type neurons, such as synapse formation, increased neuronal calcium influx, and electrophysiology. This is the first report revealing consistent and reproducible generation of large amounts of functional neurons from SSCs. Collectively, this system is suitable for studies of SSC transdifferentiation into neuronal cells and can provide sufficient neurons for the treatment of spinal cord injury as well as for genetic and small molecule screenings.
Collapse
Affiliation(s)
- Hao Yang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
| | - Cuicui Liu
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Bo Chen
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Jing An
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Rui Zhang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Qian Zhang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Jingjing Zhao
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Baorong He
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
| | - Ding-Jun Hao
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
| |
Collapse
|
33
|
Sandhu MS, Ross HH, Lee KZ, Ormerod BK, Reier PJ, Fuller DD. Intraspinal transplantation of subventricular zone-derived neural progenitor cells improves phrenic motor output after high cervical spinal cord injury. Exp Neurol 2017; 287:205-215. [PMID: 27302679 PMCID: PMC6154390 DOI: 10.1016/j.expneurol.2016.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 01/30/2023]
Abstract
Following spinal cord injury (SCI), intraspinal transplantation of neural progenitor cells (NPCs) harvested from the forebrain sub-ventricular zone (SVZ) can improve locomotor outcomes. Cervical SCI often results in respiratory-related impairments, and here we used an established model cervical SCI (C2 hemisection, C2Hx) to confirm the feasibility of mid-cervical transplantation of SVZ-derived NPCs and the hypothesis that that this procedure would improve spontaneous respiratory motor recovery. NPCs were isolated from the SVZ of enhanced green fluorescent protein (GFP) expressing neonatal rats, and then intraspinally delivered immediately caudal to an acute C2Hx lesion in adult non-GFP rats. Whole body plethysmography conducted at 4 and 8wks post-transplant demonstrated increased inspiratory tidal volume in SVZ vs. sham transplants during hypoxic (P=0.003) or hypercapnic respiratory challenge (P=0.019). Phrenic nerve output was assessed at 8wks post-transplant; burst amplitude recorded ipsilateral to C2Hx was greater in SVZ vs. sham rats across a wide range of conditions (e.g., quiet breathing through maximal chemoreceptor stimulation; P<0.001). Stereological analyses at 8wks post-injury indicated survival of ~50% of transplanted NPCs with ~90% of cells distributed in ipsilateral white matter at or near the injection site. Peak inspiratory phrenic bursting after NPC transplant was positively correlated with the total number of surviving cells (P<0.001). Immunohistochemistry confirmed an astrocytic phenotype in a subset of the transplanted cells with no evidence for neuronal differentiation. We conclude that intraspinal transplantation of SVZ-derived NPCs can improve respiratory recovery following high cervical SCI.
Collapse
Affiliation(s)
- M S Sandhu
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States
| | - H H Ross
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States
| | - K Z Lee
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States
| | - B K Ormerod
- University of Florida, Department of Biomedical Engineering, P.O. Box 116131, Gainesville, FL 32611-6131, United States
| | - P J Reier
- University of Florida, Department of Neuroscience, P.O. Box 100244, Gainesville, FL 32610-0244, United States
| | - D D Fuller
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States.
| |
Collapse
|
34
|
Wang C, Lu CF, Peng J, Hu CD, Wang Y. Roles of neural stem cells in the repair of peripheral nerve injury. Neural Regen Res 2017; 12:2106-2112. [PMID: 29323053 PMCID: PMC5784362 DOI: 10.4103/1673-5374.221171] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.
Collapse
Affiliation(s)
- Chong Wang
- Central Hospital of Handan, Handan, Hebei Province; Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Chang-Feng Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, ; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries of Chinese PLA, Beijing, China
| | - Cheng-Dong Hu
- Central Hospital of Handan, Handan, Hebei Province, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries of Chinese PLA, Beijing, China
| |
Collapse
|
35
|
Uhlendorf TL, Nuryyev RL, Kopyov AO, Ochoa J, Younesi S, Cohen RW, Kopyov OV. Efficacy of Two Delivery Routes for Transplanting Human Neural Progenitor Cells (NPCs) Into the Spastic Han-Wistar Rat, a Model of Ataxia. Cell Transplant 2016; 26:259-269. [PMID: 27938495 DOI: 10.3727/096368916x693527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An emerging avenue for recalcitrant neurodegenerative disease treatment is neural progenitor cell (NPC) transplantation. In this study, we investigated the effectiveness of two different delivery routes of human-derived NPC inoculation: injection into the common carotid artery or unilateral stereotactic implantation into the degenerating cerebellum and hippocampus of spastic Han-Wistar (sHW) rats, a model of ataxia. At 30 days of age, sHW mutants were implanted with osmotic pumps preloaded with cyclosporine. Ten days after pump implantation, the animals were given either 3,000,000 live human-derived NPCs (hNPCs; n = 12) or 3,000,000 dead NPCs (dNPCs; n = 12) injected into the common carotid artery, or were given two unilateral implantations of 500,000 hNPCs into the cerebellum and 500,000 hNPCs into the hippocampus of each sHW rat (n = 12) or 500,000 dNPCs by unilateral implantation into the cerebellum and hippocampus (n = 12). We also compared treated sHW rats to untreated sHW rats: normal rats (n = 12) and sibling sHW rats (n = 12). Motor activity and animal weights were monitored every 5 days to ascertain effectiveness of the two types of delivery methods compared to the untreated mutant and normal animals. Mutant rats with hNPC implantations, but not dNPC or carotid artery injections, showed significant deceleration of motor deterioration (p < 0.05). These mutants with hNPC implantations also retained weight longer than dNPC mutants did (p < 0.05). At the end of the experiment, animals were sacrificed for histological evaluation. Using fluorescent markers (Qtracker) incorporated into the hNPC prior to implantation and human nuclear immunostaining, we observed few hNPCs in the brains of carotid artery-injected mutants. However, significant numbers of surviving hNPCs were seen using these techniques in mutant cerebellums and hippocampi implanted with hNPC. Our results show that direct implantation of hNPCs reduced ataxic symptoms in the sHW rat, demonstrating that stereotactic route of stem cell delivery correlates to improved clinical outcomes.
Collapse
|
36
|
Hachem LD, Mothe AJ, Tator CH. Glutamate Increases In Vitro Survival and Proliferation and Attenuates Oxidative Stress-Induced Cell Death in Adult Spinal Cord-Derived Neural Stem/Progenitor Cells via Non-NMDA Ionotropic Glutamate Receptors. Stem Cells Dev 2016; 25:1223-33. [PMID: 27316370 DOI: 10.1089/scd.2015.0389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Traumatic spinal cord injury (SCI) leads to a cascade of secondary chemical insults, including oxidative stress and glutamate excitotoxicity, which damage host neurons and glia. Transplantation of exogenous neural stem/progenitor cells (NSPCs) has shown promise in enhancing regeneration after SCI, although survival of transplanted cells remains poor. Understanding the response of NSPCs to the chemical mediators of secondary injury is essential in finding therapies to enhance survival. We examined the in vitro effects of glutamate and glutamate receptor agonists on adult rat spinal cord-derived NSPCs. NSPCs isolated from the periventricular region of the adult rat spinal cord were exposed to various concentrations of glutamate for 96 h. We found that glutamate treatment (500 μM) for 96 h significantly increased live cell numbers, reduced cell death, and increased proliferation, but did not significantly alter cell phenotype. Concurrent glutamate treatment (500 μM) in the setting of H2O2 exposure (500 μM) for 10 h increased NSPC survival compared to H2O2 exposure alone. The effects of glutamate on NSPCs were blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist GYKI-52466, but not by the N-methyl-D-aspartic acid receptor antagonist MK-801 or DL-AP5, or the mGluR3 antagonist LY-341495. Furthermore, treatment of NSPCs with AMPA, kainic acid, or the kainate receptor-specific agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid mimicked the responses seen with glutamate both alone and in the setting of oxidative stress. These findings offer important insights into potential mechanisms to enhance NSPC survival and implicate a potential role for glutamate in promoting NSPC survival and proliferation after traumatic SCI.
Collapse
Affiliation(s)
- Laureen D Hachem
- 1 Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Toronto, Canada
| | - Andrea J Mothe
- 1 Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Toronto, Canada
| | - Charles H Tator
- 1 Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Toronto, Canada .,2 Division of Neurosurgery, Department of Surgery, University of Toronto , Toronto, Canada
| |
Collapse
|
37
|
Wong FSY, Wong CCH, Chan BP, Lo ACY. Sustained Delivery of Bioactive GDNF from Collagen and Alginate-Based Cell-Encapsulating Gel Promoted Photoreceptor Survival in an Inherited Retinal Degeneration Model. PLoS One 2016; 11:e0159342. [PMID: 27441692 PMCID: PMC4956057 DOI: 10.1371/journal.pone.0159342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022] Open
Abstract
Encapsulated-cell therapy (ECT) is an attractive approach for continuously delivering freshly synthesized therapeutics to treat sight-threatening posterior eye diseases, circumventing repeated invasive intravitreal injections and improving local drug availability clinically. Composite collagen-alginate (CAC) scaffold contains an interpenetrating network that integrates the physical and biological merits of its constituents, including biocompatibility, mild gelling properties and availability. However, CAC ECT properties and performance in the eye are not well-understood. Previously, we reported a cultured 3D CAC system that supported the growth of GDNF-secreting HEK293 cells with sustainable GDNF delivery. Here, the system was further developed into an intravitreally injectable gel with 1x104 or 2x105 cells encapsulated in 2mg/ml type I collagen and 1% alginate. Gels with lower alginate concentration yielded higher initial cell viability but faster spheroid formation while increasing initial cell density encouraged cell growth. Continuous GDNF delivery was detected in culture and in healthy rat eyes for at least 14 days. The gels were well-tolerated with no host tissue attachment and contained living cell colonies. Most importantly, gel-implanted in dystrophic Royal College of Surgeons rat eyes for 28 days retained photoreceptors while those containing higher initial cell number yielded better photoreceptor survival. CAC ECT gels offers flexible system design and is a potential treatment option for posterior eye diseases.
Collapse
Affiliation(s)
- Francisca S. Y. Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Calvin C. H. Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Barbara P. Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
38
|
Geranmayeh MH, Baghbanzadeh A, Barin A, Salar-Amoli J, Dehghan MM, Rahbarghazi R, Azari H. Paracrine Neuroprotective Effects of Neural Stem Cells on Glutamate-Induced Cortical Neuronal Cell Excitotoxicity. Adv Pharm Bull 2015; 5:515-21. [PMID: 26819924 DOI: 10.15171/apb.2015.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/28/2015] [Accepted: 07/30/2015] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Glutamate is a major excitatory neurotransmitter in mammalian central nervous system. Excessive glutamate releasing overactivates its receptors and changes calcium homeostasis that in turn leads to a cascade of intracellular events causing neuronal degeneration. In current study, we used neural stem cells conditioned medium (NSCs-CM) to investigate its neuroprotective effects on glutamate-treated primary cortical neurons. METHODS Embryonic rat primary cortical cultures were exposed to different concentrations of glutamate for 1 hour and then they incubated with NSCs-CM. Subsequently, the amount of cell survival in different glutamate excitotoxic groups were measured after 24 h of incubation by trypan blue exclusion assay and MTT assay. Hoechst and propidium iodide were used for determining apoptotic and necrotic cell death pathways proportion and then the effect of NSCs-CM was investigated on this proportion. RESULTS NSCs conditioned medium increased viability rate of the primary cortical neurons after glutamate-induced excitotoxicity. Also we found that NSCs-CM provides its neuroprotective effects mainly by decreasing apoptotic cell death rate rather than necrotic cell death rate. CONCLUSION The current study shows that adult neural stem cells could exert paracrine neuroprotective effects on cortical neurons following a glutamate neurotoxic insult.
Collapse
Affiliation(s)
- Mohammad Hossein Geranmayeh
- Section of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Baghbanzadeh
- Section of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abbas Barin
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jamileh Salar-Amoli
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Azari
- Neural Stem Cell and Regenerative Neuroscience Laboratory, Department of Anatomical Sciences, Shiraz School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.; Neural Stem Cell and Regenerative Neuroscience Laboratory, Shiraz Stem Cell Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Siddiqui AM, Khazaei M, Fehlings MG. Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. PROGRESS IN BRAIN RESEARCH 2015; 218:15-54. [PMID: 25890131 DOI: 10.1016/bs.pbr.2014.12.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the big challenges in neuroscience that remains to be understood is why the central nervous system is not able to regenerate to the extent that the peripheral nervous system does. This is especially problematic after traumatic injuries, like spinal cord injury (SCI), since the lack of regeneration leads to lifelong deficits and paralysis. Treatment of SCI has improved during the last several decades due to standardized protocols for emergency medical response teams and improved medical, surgical, and rehabilitative treatments. However, SCI continues to result in profound impairments for the individual. There are many processes that lead to the pathophysiology of SCI, such as ischemia, vascular disruption, neuroinflammation, oxidative stress, excitotoxicity, demyelination, and cell death. Current treatments include surgical decompression, hemodynamic control, and methylprednisolone. However, these early treatments are associated with modest functional recovery. Some treatments currently being investigated for use in SCI target neuroprotective (riluzole, minocycline, G-CSF, FGF-2, and polyethylene glycol) or neuroregenerative (chondroitinase ABC, self-assembling peptides, and rho inhibition) strategies, while many cell therapies (embryonic stem cells, neural stem cells, induced pluripotent stem cells, mesenchymal stromal cells, Schwann cells, olfactory ensheathing cells, and macrophages) have also shown promise. However, since SCI has multiple factors that determine the progress of the injury, a combinatorial therapeutic approach will most likely be required for the most effective treatment of SCI.
Collapse
Affiliation(s)
- Ahad M Siddiqui
- Department of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mohamad Khazaei
- Department of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Sun JM, Kurtzberg J. Cord blood for brain injury. Cytotherapy 2015; 17:775-785. [PMID: 25800775 DOI: 10.1016/j.jcyt.2015.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 12/13/2022]
Abstract
Recovery from neurological injuries is typically incomplete and often results in significant and permanent disabilities. Currently, most available therapies are limited to supportive or palliative measures, aimed at managing the symptoms of the condition. Because restorative therapies targeting the underlying cause of most neurological diseases do not exist, cell therapies targeting anti-inflammatory, neuroprotective and regenerative potential hold great promise. Cord blood (CB) cells can induce repair through mechanisms that involve trophic or cell-based paracrine effects or cellular integration and differentiation. Both may be operative in emerging CB therapies for neurologic conditions, and there are numerous potential applications of CB-based regenerative therapies in neurological diseases, including genetic diseases of childhood, ischemic events such as stroke and neurodegenerative diseases of adulthood. CB appears to hold promise as an effective therapy for patients with brain injuries. In this Review, we describe the state of science and clinical applications of CB therapy for brain injury.
Collapse
Affiliation(s)
- Jessica M Sun
- Pediatric Blood and Marrow Transplant Program, Duke University, Durham, North Carolina, USA; The Robertston Clinical and Translational Cell Therapy Program, Duke University, Durham, North Carolina, USA.
| | - Joanne Kurtzberg
- Pediatric Blood and Marrow Transplant Program, Duke University, Durham, North Carolina, USA; The Robertston Clinical and Translational Cell Therapy Program, Duke University, Durham, North Carolina, USA; The Carolinas Cord Blood Bank, Durham, North Carolina, USA
| |
Collapse
|
41
|
Knippenberg S, Rath KJ, Böselt S, Thau-Habermann N, Schwarz SC, Dengler R, Wegner F, Petri S. Intraspinal administration of human spinal cord-derived neural progenitor cells in the G93A-SOD1 mouse model of ALS delays symptom progression, prolongs survival and increases expression of endogenous neurotrophic factors. J Tissue Eng Regen Med 2015; 11:751-764. [PMID: 25641599 DOI: 10.1002/term.1972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/15/2014] [Accepted: 10/28/2014] [Indexed: 12/14/2022]
Abstract
Neural stem or progenitor cells are considered to be a novel therapeutic strategy for amyotrophic lateral sclerosis (ALS), based on their potential to generate a protective environment rather than to replace degenerating motor neurons. Following local injection to the spinal cord, neural progenitor cells may generate glial cells and release neurotrophic factors. In the present study, human spinal cord-derived neural progenitor cells (hscNPCs) were injected into the lumbar spinal cord of G93A-SOD1 ALS transgenic mice. We evaluated the potential effect of hscNPC treatment by survival analysis and behavioural/phenotypic assessments. Immunohistological and real-time PCR experiments were performed at a defined time point to study the underlying mechanisms. Symptom progression in hscNPC-injected mice was significantly delayed at the late stage of disease. On average, survival was only prolonged for 5 days. Animals treated with hscNPCs performed significantly better in motor function tests between weeks 18 and 19. Increased production of GDNF and IGF-1 mRNA was detectable in spinal cord tissue of hscNPC-treated mice. In summary, treatment with hscNPCs led to increased endogenous production of several growth factors and increased the preservation of innervated motor neurons but had only a small effect on overall survival. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Klaus Jan Rath
- Department of Neurology, Hannover Medical School, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Sebastian Böselt
- Department of Neurology, Hannover Medical School, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Nadine Thau-Habermann
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Sigrid C Schwarz
- German Centre for Neurodegenerative Diseases (DZNE), Technical University of Munich, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
42
|
Rong JU, Wen Z, Rong WU, Zhichun F. Interaction between neural stem cells and bone marrow derived-mesenchymal stem cells during differentiation. Biomed Rep 2014; 3:242-246. [PMID: 25798249 DOI: 10.3892/br.2014.405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023] Open
Abstract
Due to their capacity to self-replicate or produce specific differentiated cell types, neural stem cells (NSCs) and bone marrow derived-mesenchymal stem cells (BMSCs) are potential sources for cell transplantation therapies, particularly for neural injury. However, the interaction between NSCs and BMSCs during differentiation has not yet been defined. The interaction is believed to improve the effectiveness and efficiency of cell therapy. In the present study, human NSCs and BMSCs were cultured and the Transwell co-culture system was used to observe the interplay between NSCs and BMSCs during differentiation. The results revealed that NSCs promoted BMSCs to differentiate into neurons and NSCs; whereas, BMSCs did not affect the differentiation of NSCs. Simultaneously, co-culture increased the concentration of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are secreted by NSCs and BMSCs. The present findings suggest that co-culture of NSCs and BMSCs can promote the differentiation and this process may be modulated by BDNF and NGF.
Collapse
Affiliation(s)
- J U Rong
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, Chongqing Medical University, Chengdu, Sichuan 610091, P.R. China
| | - Zeng Wen
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, Chongqing Medical University, Chengdu, Sichuan 610091, P.R. China
| | - W U Rong
- Neonatal Medical Center, Huaian Maternity and Child Healthcare Hospital Affiliated to Yangzhou University Medical Academy, Huaian, Jiangsu 223002, P.R. China
| | - Feng Zhichun
- Department of Neonatology, Bayi Children's Hospital Affiliated to General Hospital of Beijing Military Command, Beijing 100700, P.R. China
| |
Collapse
|
43
|
Intrathecal lidocaine neurotoxicity: Combination with bupivacaine and ropivacaine and effect of nerve growth factor. Life Sci 2014; 112:10-21. [DOI: 10.1016/j.lfs.2014.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/04/2014] [Accepted: 07/01/2014] [Indexed: 11/22/2022]
|
44
|
Roll L, Faissner A. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage. Front Cell Neurosci 2014; 8:219. [PMID: 25191223 PMCID: PMC4137450 DOI: 10.3389/fncel.2014.00219] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/18/2014] [Indexed: 01/07/2023] Open
Abstract
The limited regeneration capacity of the adult central nervous system (CNS) requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation. In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP) and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo. As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM), a complex network that contains numerous signaling molecules. It appears that signals in the damaged CNS lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C (TN-C). Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section.
Collapse
Affiliation(s)
- Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr-University Bochum Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
45
|
Benderitter M, Caviggioli F, Chapel A, Coppes RP, Guha C, Klinger M, Malard O, Stewart F, Tamarat R, van Luijk P, Limoli CL. Stem cell therapies for the treatment of radiation-induced normal tissue side effects. Antioxid Redox Signal 2014; 21:338-55. [PMID: 24147585 PMCID: PMC4060814 DOI: 10.1089/ars.2013.5652] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Targeted irradiation is an effective cancer therapy but damage inflicted to normal tissues surrounding the tumor may cause severe complications. While certain pharmacologic strategies can temper the adverse effects of irradiation, stem cell therapies provide unique opportunities for restoring functionality to the irradiated tissue bed. RECENT ADVANCES Preclinical studies presented in this review provide encouraging proof of concept regarding the therapeutic potential of stem cells for treating the adverse side effects associated with radiotherapy in different organs. Early-stage clinical data for radiation-induced lung, bone, and skin complications are promising and highlight the importance of selecting the appropriate stem cell type to stimulate tissue regeneration. CRITICAL ISSUES While therapeutic efficacy has been demonstrated in a variety of animal models and human trials, a range of additional concerns regarding stem cell transplantation for ameliorating radiation-induced normal tissue sequelae remain. Safety issues regarding teratoma formation, disease progression, and genomic stability along with technical issues impacting disease targeting, immunorejection, and clinical scale-up are factors bearing on the eventual translation of stem cell therapies into routine clinical practice. FUTURE DIRECTIONS Follow-up studies will need to identify the best possible stem cell types for the treatment of early and late radiation-induced normal tissue injury. Additional work should seek to optimize cellular dosing regimes, identify the best routes of administration, elucidate optimal transplantation windows for introducing cells into more receptive host tissues, and improve immune tolerance for longer-term engrafted cell survival into the irradiated microenvironment.
Collapse
Affiliation(s)
- Marc Benderitter
- 1 Laboratory of Radiopathology and Experimental Therapies, IRSN , PRP-HOM, SRBE, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry 2013; 18:1067-76. [PMID: 23732879 DOI: 10.1038/mp.2013.67] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/19/2013] [Accepted: 04/08/2013] [Indexed: 02/08/2023]
Abstract
One of the prevailing hypotheses suggests schizophrenia as a neurodevelopmental disorder, involving dysfunction of dopaminergic and glutamatergic systems. Accumulating evidence suggests mitochondria as an additional pathological factor in schizophrenia. An attractive model to study processes related to neurodevelopment in schizophrenia is reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) and differentiating them into different neuronal lineages. iPSCs from three schizophrenia patients and from two controls were reprogrammed from hair follicle keratinocytes, because of their accessibility and common ectodermal origin with neurons. iPSCs were differentiated into Pax6(+)/Nestin(+) neural precursors and then further differentiated into β3-Tubulin(+)/tyrosine hydroxylase(+)/DAT(+) dopaminergic neurons. In addition, iPSCs were differentiated through embryonic bodies into β3-Tubulin(+)/Tbox brain1(+) glutamatergic neurons. Schizophrenia-derived dopaminergic cells showed severely impaired ability to differentiate, whereas glutamatergic cells were unable to maturate. Mitochondrial respiration and its sensitivity to dopamine-induced inhibition were impaired in schizophrenia-derived keratinocytes and iPSCs. Moreover, we observed dissipation of mitochondrial membrane potential (Δψm) and perturbations in mitochondrial network structure and connectivity in dopaminergic along the differentiation process and in glutamatergic cells. Our data unravel perturbations in neural differentiation and mitochondrial function, which may be interconnected, and of relevance to dysfunctional neurodevelopmental processes in schizophrenia.
Collapse
|
47
|
Pellegrini L, Bennis Y, Guillet B, Velly L, Garrigue P, Sabatier F, Dignat-George F, Bruder N, Pisano P. Therapeutic benefit of a combined strategy using erythropoietin and endothelial progenitor cells after transient focal cerebral ischemia in rats. Neurol Res 2013; 35:937-47. [PMID: 23816235 DOI: 10.1179/1743132813y.0000000235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Many studies have demonstrated beneficial effects of either erythropoietin (EPO) or endothelial progenitor cell (EPC) treatment in cerebral ischemia. To improve post-ischemic tissue repair, we investigated the effect of systemic administration of endothelial colony-forming cells (ECFCs), considered as relevant endothelial progenitors due to their specific vasculogenic activity, in the presence or absence of EPO, on functional recovery, apoptosis, angiogenesis, and neurogenesis in a transient focal cerebral ischemia model in the adult rat. DESIGN Experimental study. INTERVENTION The rats were divided into four groups 24 hours after ischemia,, namely control, ECFCs, EPO, and ECFCs+EPO, and received a single intravenous injection of ECFCs (5 × 10(6) cells) and/or intraperitoneal administration of EPO (2500 UI/kg per day for 3 days). MEASUREMENT Infarct volume, functional recovery, apoptosis, angiogenesis, and neurogenesis were assessed at different time points after ischemia. MAIN RESULTS The combination of EPO and ECFCs was the only treatment that completely restored neurological function. The ECFCs+EPO treatment was also the most effective to decrease apoptosis and to increase angiogenesis and neurogenesis in the ischemic hemisphere compared to controls and to groups receiving ECFCs or EPO alone. CONCLUSION These results suggest that EPO could act in a synergistic way with ECFCs to potentiate their therapeutic benefits.
Collapse
|
48
|
Teng YD, Benn SC, Kalkanis SN, Shefner JM, Onario RC, Cheng B, Lachyankar MB, Marconi M, Li J, Yu D, Han I, Maragakis NJ, Lládo J, Erkmen K, Redmond DE, Sidman RL, Przedborski S, Rothstein JD, Brown RH, Snyder EY. Multimodal actions of neural stem cells in a mouse model of ALS: a meta-analysis. Sci Transl Med 2013; 4:165ra164. [PMID: 23253611 DOI: 10.1126/scitranslmed.3004579] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal disease characterized by the unremitting degeneration of motor neurons. Multiple processes involving motor neurons and other cell types have been implicated in its pathogenesis. Neural stem cells (NSCs) perform multiple actions within the nervous system to fulfill their functions of organogenesis and homeostasis. We test the hypothesis that transplanted, undifferentiated multipotent migratory NSCs may help to ameliorate an array of pathological mechanisms in the SOD1(G93A) transgenic mouse model of ALS. On the basis of a meta-analysis of 11 independent studies performed by a consortium of ALS investigators, we propose that transplanted NSCs (both mouse and human) can slow both the onset and the progression of clinical signs and prolong survival in ALS mice, particularly if regions sustaining vital functions such as respiration are rendered chimeric. The beneficial effects of transplanted NSCs seem to be mediated by a number of actions including their ability to produce trophic factors, preserve neuromuscular function, and reduce astrogliosis and inflammation. We conclude that the widespread, pleiotropic, modulatory actions exerted by transplanted NSCs may represent an accessible therapeutic application of stem cells for treating ALS and other untreatable degenerative diseases.
Collapse
Affiliation(s)
- Yang D Teng
- Departments of Neurosurgery and PM&R, Brigham & Women's Hospital, Spaulding Rehabilitation Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
van Gorp S, Leerink M, Kakinohana O, Platoshyn O, Santucci C, Galik J, Joosten EA, Hruska-Plochan M, Goldberg D, Marsala S, Johe K, Ciacci JD, Marsala M. Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Res Ther 2013; 4:57. [PMID: 23710605 PMCID: PMC3706882 DOI: 10.1186/scrt209] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/25/2013] [Indexed: 12/15/2022] Open
Abstract
Introduction Intraspinal grafting of human neural stem cells represents a promising approach to promote recovery of function after spinal trauma. Such a treatment may serve to: I) provide trophic support to improve survival of host neurons; II) improve the structural integrity of the spinal parenchyma by reducing syringomyelia and scarring in trauma-injured regions; and III) provide neuronal populations to potentially form relays with host axons, segmental interneurons, and/or α-motoneurons. Here we characterized the effect of intraspinal grafting of clinical grade human fetal spinal cord-derived neural stem cells (HSSC) on the recovery of neurological function in a rat model of acute lumbar (L3) compression injury. Methods Three-month-old female Sprague–Dawley rats received L3 spinal compression injury. Three days post-injury, animals were randomized and received intraspinal injections of either HSSC, media-only, or no injections. All animals were immunosuppressed with tacrolimus, mycophenolate mofetil, and methylprednisolone acetate from the day of cell grafting and survived for eight weeks. Motor and sensory dysfunction were periodically assessed using open field locomotion scoring, thermal/tactile pain/escape thresholds and myogenic motor evoked potentials. The presence of spasticity was measured by gastrocnemius muscle resistance and electromyography response during computer-controlled ankle rotation. At the end-point, gait (CatWalk), ladder climbing, and single frame analyses were also assessed. Syrinx size, spinal cord dimensions, and extent of scarring were measured by magnetic resonance imaging. Differentiation and integration of grafted cells in the host tissue were validated with immunofluorescence staining using human-specific antibodies. Results Intraspinal grafting of HSSC led to a progressive and significant improvement in lower extremity paw placement, amelioration of spasticity, and normalization in thermal and tactile pain/escape thresholds at eight weeks post-grafting. No significant differences were detected in other CatWalk parameters, motor evoked potentials, open field locomotor (Basso, Beattie, and Bresnahan locomotion score (BBB)) score or ladder climbing test. Magnetic resonance imaging volume reconstruction and immunofluorescence analysis of grafted cell survival showed near complete injury-cavity-filling by grafted cells and development of putative GABA-ergic synapses between grafted and host neurons. Conclusions Peri-acute intraspinal grafting of HSSC can represent an effective therapy which ameliorates motor and sensory deficits after traumatic spinal cord injury.
Collapse
|
50
|
Ramasamy S, Narayanan G, Sankaran S, Yu YH, Ahmed S. Neural stem cell survival factors. Arch Biochem Biophys 2013; 534:71-87. [PMID: 23470250 DOI: 10.1016/j.abb.2013.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 12/21/2022]
Abstract
Neural stem and progenitor cells (NSCs and NPs) give rise to the central nervous system (CNS) during embryonic development. NSCs and NPs differentiate into three main cell-types of the CNS; astrocytes, oligodendrocytes, and neurons. NSCs are present in the adult CNS and are important in maintenance and repair. Adult NSCs hold great promise for endogenous or self-repair of the CNS. Intriguingly, NSCs have been implicated as the cells that give rise to brain tumors. Thus, the balance between survival, growth and differentiation is a critical aspect of NSC biology, during development, in the adult, and in disease processes. In this review, we survey what is known about survival factors that control both embryonic and adult NSCs. We discuss the neurosphere culture system as this is widely used to measure NSC activity and behavior in vitro and emphasize the importance of clonality. We define here NSC survival factors in their broadest sense to include any factor that influences survival and proliferation of NSCs and NPs. NSC survival factors identified to date include growth factors, morphogens, proteoglycans, cytokines, hormones, and neurotransmitters. Understanding NSC and NP interaction in response to these survival factors will provide insight to CNS development, disease and repair.
Collapse
Affiliation(s)
- Srinivas Ramasamy
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore
| | | | | | | | | |
Collapse
|