1
|
Li H, Zhang Y, Zhu Y, Zhao Q, Xu J, Li X, Zhao L, Li H, Liu M, Qian Y, Zhang X, Chen K. Functional insights into immunoglobulin superfamily proteins in invertebrate neurobiology and immunity. Front Immunol 2025; 16:1552151. [PMID: 40242768 PMCID: PMC11999971 DOI: 10.3389/fimmu.2025.1552151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
The Immunoglobulin Superfamily (IgSF) represents a vital protein family widely distributed in animal genomes, encompassing multifunctional proteins with immunoglobulin-like domains, including immunoglobulins. These proteins play pivotal roles in various biological processes, such as development, differentiation, adhesion, activation, regulation, and signal transduction. While the functions of IgSF in vertebrates are relatively well understood, their roles in invertebrates remain underexplored. This review aims to comprehensively summarize the functions and mechanisms of IgSF in invertebrates, focusing on arthropods, mollusks, and other primitive phyla. In arthropods, research on IgSF has primarily emphasized its roles in the nervous system, especially in axonal and synaptic regulation, and its critical functions in the immune system. Studies in mollusks have predominantly highlighted the immunological functions of IgSF in pathogen recognition, clearance responses, and signal transduction. In contrast, research on protozoa and platyhelminths has mainly focused on identifying IgSF molecules, with relatively limited insights into their functional roles. In sponges, IgSF is primarily associated with cell adhesion and intercellular recognition. By exploring the genetic and protein structural diversity of IgSF in invertebrates, this review reveals their multifunctionality and complexity in biological systems. It not only enhances our understanding of the roles of IgSF in invertebrates but also lays the groundwork for future studies on their potential applications in evolutionary biology and disease models.
Collapse
Affiliation(s)
- Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
- Ocean College, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Yijie Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yunhuan Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Qingzhi Zhao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Jialu Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Xianwei Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Ling Zhao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Hairun Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Mingcheng Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yuncheng Qian
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Xiaofen Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Shiosaka S. Kallikrein 8: A key sheddase to strengthen and stabilize neural plasticity. Neurosci Biobehav Rev 2022; 140:104774. [PMID: 35820483 DOI: 10.1016/j.neubiorev.2022.104774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Neural networks are modified and reorganized throughout life, even in the matured brain. Synapses in the networks form, change, or disappear dynamically in the plasticity state. The pre- and postsynaptic signaling, transmission, and structural dynamics have been studied considerably well. However, not many studies have shed light on the events in the synaptic cleft and intercellular space. Neural activity-dependent protein shedding is a phenomenon in which (1) presynaptic excitation evokes secretion or activation of sheddases, (2) sheddases are involved not only in cleavage of membrane- or matrix-bound proteins but also in mechanical modulation of cell-to-cell connectivity, and (3) freed activity domains of protein factors play a role in receptor-mediated or non-mediated biological actions. Kallikrein 8/neuropsin (KLK8) is a kallikrein family serine protease rich in the mammalian limbic brain. Accumulated evidence has suggested that KLK8 is an important modulator of neural plasticity and consequently, cognition. Insufficiency, as well as excess of KLK8 may have detrimental effects on limbic functions.
Collapse
Affiliation(s)
- Sadao Shiosaka
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka Prefectural Hospital Organization, Miyanosaka 3-16-21, Hirakata-shi, Osaka 573-0022, Japan.
| |
Collapse
|
3
|
Das B, Singh N, Yao AY, Zhou J, He W, Hu X, Yan R. BACE1 controls synaptic function through modulating release of synaptic vesicles. Mol Psychiatry 2021; 26:6394-6410. [PMID: 34158621 PMCID: PMC8760050 DOI: 10.1038/s41380-021-01166-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 01/20/2023]
Abstract
BACE1 initiates production of β-amyloid peptides (Aβ), which is associated with cognitive dysfunction in Alzheimer's disease (AD) due to abnormal oligomerization and aggregation. While BACE1 inhibitors show strong reduction in Aβ deposition, they fail to improve cognitive function in patients, largely due to its role in synaptic function. We show that BACE1 is required for optimal release of synaptic vesicles. BACE1 deficiency or inhibition decreases synaptic vesicle docking in the synaptic active zones. Consistently, BACE1-null mice or mice treated with clinically tested BACE1 inhibitors Verubecestat and Lanabecestat exhibit severe reduction in hippocampal LTP and learning behaviors. To counterbalance this synaptic deficit, we discovered that BACE1-null mice treated with positive allosteric modulators (PAMs) of metabotropic glutamate receptor 1 (mGluR1), whose levels were reduced in BACE1-null mice and significantly improved long-term potentiation and cognitive behaviors. Similarly, mice treated with mGluR1 PAM showed significantly mitigated synaptic deficits caused by BACE1 inhibitors. Together, our data suggest that a therapy combining BACE1 inhibitors for reducing amyloid deposition and an mGluR1 PAM for counteracting BACE1-mediated synaptic deficits appears to be an effective approach for treating AD patients.
Collapse
Affiliation(s)
- Brati Das
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Neeraj Singh
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Annie Y Yao
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - John Zhou
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Wanxia He
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Xiangyou Hu
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Riqiang Yan
- Department of Neuroscience, UConn Health, Farmington, CT, USA.
| |
Collapse
|
4
|
Hu X, Das B, Hou H, He W, Yan R. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions. J Exp Med 2018; 215:927-940. [PMID: 29444819 PMCID: PMC5839766 DOI: 10.1084/jem.20171831] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/16/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
This study uses mouse models to answer how BACE1 inhibitory drugs will be beneficial to Alzheimer’s patients. Hu et al. find that sequentially increased deletion of BACE1 in one adult Alzheimer’s mouse model reverses preexisting amyloid plaques and mitigates synaptic failures. BACE1 initiates the generation of the β-amyloid peptide, which likely causes Alzheimer’s disease (AD) when accumulated abnormally. BACE1 inhibitory drugs are currently being developed to treat AD patients. To mimic BACE1 inhibition in adults, we generated BACE1 conditional knockout (BACE1fl/fl) mice and bred BACE1fl/fl mice with ubiquitin-CreER mice to induce deletion of BACE1 after passing early developmental stages. Strikingly, sequential and increased deletion of BACE1 in an adult AD mouse model (5xFAD) was capable of completely reversing amyloid deposition. This reversal in amyloid deposition also resulted in significant improvement in gliosis and neuritic dystrophy. Moreover, synaptic functions, as determined by long-term potentiation and contextual fear conditioning experiments, were significantly improved, correlating with the reversal of amyloid plaques. Our results demonstrate that sustained and increasing BACE1 inhibition in adults can reverse amyloid deposition in an AD mouse model, and this observation will help to provide guidance for the proper use of BACE1 inhibitors in human patients.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Brati Das
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
5
|
Kudumala SR, Penserga T, Börner J, Slipchuk O, Kakad P, Lee LH, Qureshi A, Pielage J, Godenschwege TA. Lissencephaly-1 dependent axonal retrograde transport of L1-type CAM Neuroglian in the adult drosophila central nervous system. PLoS One 2017; 12:e0183605. [PMID: 28837701 PMCID: PMC5570280 DOI: 10.1371/journal.pone.0183605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/08/2017] [Indexed: 11/25/2022] Open
Abstract
Here, we established the Drosophila Giant Fiber neurons (GF) as a novel model to study axonal trafficking of L1-type Cell Adhesion Molecules (CAM) Neuroglian (Nrg) in the adult CNS using live imaging. L1-type CAMs are well known for their importance in nervous system development and we previously demonstrated a role for Nrg in GF synapse formation. However, in the adult they have also been implicated in synaptic plasticity and regeneration. In addition, to its canonical role in organizing cytoskeletal elements at the plasma membrane, vertebrate L1CAM has also been shown to regulate transcription indirectly as well as directly via its import to the nucleus. Here, we intend to determine if the sole L1CAM homolog Nrg is retrogradley transported and thus has the potential to relay signals from the synapse to the soma. Live imaging of c-terminally tagged Nrg in the GF revealed that there are at least two populations of retrograde vesicles that differ in speed, and either move with consistent or varying velocity. To determine if endogenous Nrg is retrogradely transported, we inhibited two key regulators, Lissencephaly-1 (Lis1) and Dynactin, of the retrograde motor protein Dynein. Similar to previously described phenotypes for expression of poisonous subunits of Dynactin, we found that developmental knock down of Lis1 disrupted GF synaptic terminal growth and that Nrg vesicles accumulated inside the stunted terminals in both mutant backgrounds. Moreover, post mitotic Lis1 knock down in mature GFs by either RNAi or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) induced mutations, resulted in normal length terminals with fully functional GF synapses which also exhibited severe accumulation of endogenous Nrg vesicles. Thus, our data suggests that accumulation of Nrg vesicles is due to failure of retrograde transport rather than a failure of terminal development. Together with the finding that post mitotic knock down of Lis1 also disrupted retrograde transport of tagged Nrg vesicles in GF axons, it demonstrates that endogenous Nrg protein is transported from the synapse to the soma in the adult central nervous system in a Lis1-dependent manner.
Collapse
Affiliation(s)
- Sirisha R. Kudumala
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Tyrone Penserga
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Jana Börner
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Olesya Slipchuk
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Priyanka Kakad
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - LaTasha H. Lee
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Aater Qureshi
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Jan Pielage
- Department of Biology, Division of Zoology/Neurobiology, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Tanja A. Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
6
|
Neural Cell Adhesion Molecules of the Immunoglobulin Superfamily Regulate Synapse Formation, Maintenance, and Function. Trends Neurosci 2017; 40:295-308. [PMID: 28359630 DOI: 10.1016/j.tins.2017.03.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 02/05/2023]
Abstract
Immunoglobulin superfamily adhesion molecules are among the most abundant proteins in vertebrate and invertebrate nervous systems. Prominent family members are the neural cell adhesion molecules NCAM and L1, which were the first to be shown to be essential not only in development but also in synaptic function and as key regulators of synapse formation, synaptic activity, plasticity, and synaptic vesicle recycling at distinct developmental and activity stages. In addition to interacting with each other, adhesion molecules interact with ion channels and cytokine and neurotransmitter receptors. Mutations in their genes are linked to neurological disorders associated with abnormal development and synaptic functioning. This review presents an overview of recent studies on these molecules and their crucial impact on neurological disorders.
Collapse
|
7
|
Kataria H, Lutz D, Chaudhary H, Schachner M, Loers G. Small Molecule Agonists of Cell Adhesion Molecule L1 Mimic L1 Functions In Vivo. Mol Neurobiol 2016; 53:4461-83. [PMID: 26253722 DOI: 10.1007/s12035-015-9352-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/07/2015] [Indexed: 02/05/2023]
Abstract
Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery after injury, leading to severe disabilities in motor functions and pain. Peripheral nerve injury impairs motor, sensory, and autonomic functions, particularly in cases where nerve gaps are large and chronic nerve injury ensues. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration after acute injury. We screened libraries of known drugs for small molecule agonists of L1 and evaluated the effect of hit compounds in cell-based assays in vitro and in mice after femoral nerve and spinal cord injuries in vivo. We identified eight small molecule L1 agonists and showed in cell-based assays that they stimulate neuronal survival, neuronal migration, and neurite outgrowth and enhance Schwann cell proliferation and migration and myelination of neurons in an L1-dependent manner. In a femoral nerve injury mouse model, enhanced functional regeneration and remyelination after application of the L1 agonists were observed. In a spinal cord injury mouse model, L1 agonists improved recovery of motor functions, being paralleled by enhanced remyelination, neuronal survival, and monoaminergic innervation, reduced astrogliosis, and activation of microglia. Together, these findings suggest that application of small organic compounds that bind to L1 and stimulate the beneficial homophilic L1 functions may prove to be a valuable addition to treatments of nervous system injuries.
Collapse
Affiliation(s)
- Hardeep Kataria
- Institut für Biosynthese Neuraler Strukturen, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum-Hamburg Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - David Lutz
- Institut für Biosynthese Neuraler Strukturen, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum-Hamburg Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Harshita Chaudhary
- Institut für Biosynthese Neuraler Strukturen, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum-Hamburg Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
| | - Gabriele Loers
- Institut für Biosynthese Neuraler Strukturen, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum-Hamburg Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| |
Collapse
|
8
|
Sasaki K, Omotuyi OI, Ueda M, Shinohara K, Ueda H. NMDA receptor agonists reverse impaired psychomotor and cognitive functions associated with hippocampal Hbegf-deficiency in mice. Mol Brain 2015; 8:83. [PMID: 26637193 PMCID: PMC4670538 DOI: 10.1186/s13041-015-0176-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Structural and functional changes of the hippocampus are correlated with psychiatric disorders and cognitive dysfunctions. Genetic deletion of heparin-binding epidermal growth factor-like growth factor (HB-EGF), which is predominantly expressed in cortex and hippocampus, also causes similar psychiatric and cognitive dysfunctions, accompanying down-regulated NMDA receptor signaling. However, little is known of such dysfunctions in hippocampus-specific Hbegf cKO mice. RESULTS We successfully developed hippocampus-specific cKO mice by crossbreeding floxed Hbegf and Gng7-Cre knock-in mice, as Gng7 promoter-driven Cre is highly expressed in hippocampal neurons as well as striatal medium spiny neurons. In mice lacking hippocampus Hbegf gene, there was a decreased neurogenesis in the subgranular zone (SGZ) of the dentate gyrus as well as down-regulation of PSD-95/NMDA-receptor-NR1/NR2B subunits and related NMDA receptor signaling. Psychiatric, social-behavioral and cognitive abnormalities were also observed in hippocampal cKO mice. Interestingly, D-cycloserine and nefiracetam, positive allosteric modulators (PAMs) of NMDA receptor reversed the apparent reduction in NMDA receptor signaling and most behavioral abnormalities. Furthermore, decreased SGZ neurogenesis in hippocampal cKO mice was reversed by nefiracetam. CONCLUSIONS The present study demonstrates that PAMs of NMDA receptor have pharmacotherapeutic potentials to reverse down-regulated NMDA receptor signaling, neuro-socio-cognitive abnormalities and decreased neurogenesis in hippocampal cKO mice.
Collapse
Affiliation(s)
- Keita Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Olaposi Idowu Omotuyi
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Mutsumi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Kazuyuki Shinohara
- Department of Neurobiology and Behavior, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| |
Collapse
|
9
|
Hoogeboom R, Tolar P. Molecular Mechanisms of B Cell Antigen Gathering and Endocytosis. Curr Top Microbiol Immunol 2015; 393:45-63. [PMID: 26336965 DOI: 10.1007/82_2015_476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Generation of high-affinity, protective antibodies requires B cell receptor (BCR) signaling, as well as antigen internalization and presentation to helper T cells. B cell antigen internalization is initiated by antigen capture, either from solution or from immune synapses formed on the surface of antigen-presenting cells, and proceeds via clathrin-dependent endocytosis and intracellular routing to late endosomes. Although the components of this pathway are still being discovered, it has become clear that antigen internalization is actively regulated by BCR signaling at multiple steps and, vice versa, that localization of the BCR along the endocytic pathway modulates signaling. Accordingly, defects in BCR internalization or trafficking contribute to enhanced B cell activation in models of autoimmune diseases and in B cell lymphomas. In this review, we discuss how BCR signaling complexes regulate each of the steps of this endocytic process and why defects along this pathway manifest as hyperactive B cell responses in vivo.
Collapse
Affiliation(s)
- Robbert Hoogeboom
- Division of Immune Cell Biology, National Institute for Medical Research, Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK
| | - Pavel Tolar
- Division of Immune Cell Biology, National Institute for Medical Research, Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK.
| |
Collapse
|
10
|
Itoh K, Fujisaki K, Watanabe M. Human L1CAM carrying the missense mutations of the fibronectin-like type III domains is localized in the endoplasmic reticulum and degraded by polyubiquitylation. J Neurosci Res 2011; 89:1637-45. [PMID: 21688291 DOI: 10.1002/jnr.22695] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/11/2011] [Accepted: 04/15/2011] [Indexed: 11/09/2022]
Abstract
Any mutations in the human neural cell adhesion molecule L1 (hL1CAM) gene might cause various types of serious neurological syndromes in humans, characterized by increased mortality, mental retardation, and various malformations of the nervous system. Such missense mutations often cause severe abnormalities or even fatalities, and the reason for this may be a disruption of the adhesive function of L1CAM resulting from a misdirection of the degradative pathway. Transfection studies using neuroblastoma N2a cells demonstrated that hL1CAM carrying the missense mutations in the fibronectin-like type III (FnIII) domains most likely is located within the endoplasmic reticulum (ER), but it is less well expressed on the cell surface. One mutant, L935P, in the fourth FnIII domain, was chosen from six mutants (K655 and G698 at Fn1, L935P and P941 at Fn4, W1036 and Y1070 at Fn5) in the FnIII domains to study in detail the functions of hL1CAM(200 kDa) , such as the intracellular traffic and degradation, because only a single band at 200 kDa was detected in the hL1CAM(L935P) -transfected cells. hL1CAM(200 kDa) is expressed predominantly in the ER but not on the cell surface. In addition, this missense mutated hL1CAM(200 kDa) is polyubiquitylated at some sites in the extracellular domain and thus becomes degraded by proteasomes via the ER-associated degradation pathway. These observations demonstrate that the missense mutations of hL1CAM in the FnIII domain may cause the resultant pathogenesis because of a loss of expression on the cell surface resulting from misrouting to the degradative pathway.
Collapse
Affiliation(s)
- Kouichi Itoh
- Laboratory of Molecular and Cellular Neurosciences, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki-city, Kagawa, Japan.
| | | | | |
Collapse
|
11
|
Schäfer MK, Schmitz B, Diestel S. L1CAM ubiquitination facilitates its lysosomal degradation. FEBS Lett 2010; 584:4475-80. [DOI: 10.1016/j.febslet.2010.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/15/2010] [Accepted: 10/06/2010] [Indexed: 02/07/2023]
|
12
|
Tapanes-Castillo A, Weaver EJ, Smith RP, Kamei Y, Caspary T, Hamilton-Nelson KL, Slifer SH, Martin ER, Bixby JL, Lemmon VP. A modifier locus on chromosome 5 contributes to L1 cell adhesion molecule X-linked hydrocephalus in mice. Neurogenetics 2010; 11:53-71. [PMID: 19565280 PMCID: PMC2863031 DOI: 10.1007/s10048-009-0203-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 06/08/2009] [Indexed: 12/25/2022]
Abstract
Humans with L1 cell adhesion molecule (L1CAM) mutations exhibit X-linked hydrocephalus, as well as other severe neurological disorders. L1-6D mutant mice, which are homozygous for a deletion that removes the sixth immunoglobulin-like domain of L1cam, seldom display hydrocephalus on the 129/Sv background. However, the same L1-6D mutation produces severe hydrocephalus on the C57BL/6J background. To begin to understand how L1cam deficiencies result in hydrocephalus and to identify modifier loci that contribute to X-linked hydrocephalus by genetically interacting with L1cam, we conducted a genome-wide scan on F2 L1-6D mice, bred from L1-6D 129S2/SvPasCrlf and C57BL/6J mice. Linkage studies, utilizing chi-square tests and quantitative trait loci mapping techniques, were performed. Candidate modifier loci were further investigated in an extension study. Linkage was confirmed for a locus on chromosome 5, which we named L1cam hydrocephalus modifier 1 (L1hydro1), p = 4.04 X 10(-11).
Collapse
Affiliation(s)
- Alexis Tapanes-Castillo
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Lois Pope LIFE Center, Room 4-16, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Eli J. Weaver
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Lois Pope LIFE Center, Room 4-16, 1095 NW 14th Terrace, Miami, FL 33136, USA, Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA
| | - Robin P. Smith
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Lois Pope LIFE Center, Room 4-16, 1095 NW 14th Terrace, Miami, FL 33136, USA, Neuroscience Program, University of Miami, Miami, FL, USA
| | - Yoshimasa Kamei
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Kara L. Hamilton-Nelson
- Dr. John T. MacDonald Foundation, Department of Human Genetics, Miami Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Susan H. Slifer
- Dr. John T. MacDonald Foundation, Department of Human Genetics, Miami Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Eden R. Martin
- Dr. John T. MacDonald Foundation, Department of Human Genetics, Miami Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - John L. Bixby
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Lois Pope LIFE Center, Room 4-16, 1095 NW 14th Terrace, Miami, FL 33136, USA, Neuroscience Program, University of Miami, Miami, FL, USA, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA, Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vance P. Lemmon
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Lois Pope LIFE Center, Room 4-16, 1095 NW 14th Terrace, Miami, FL 33136, USA, Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA, Neuroscience Program, University of Miami, Miami, FL, USA, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
13
|
Pegoraro S, Broccard FD, Ruaro ME, Bianchini D, Avossa D, Pastore G, Bisson G, Altafini C, Torre V. Sequential steps underlying neuronal plasticity induced by a transient exposure to gabazine. J Cell Physiol 2010; 222:713-28. [PMID: 20027606 DOI: 10.1002/jcp.21998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Periods of intense electrical activity can initiate neuronal plasticity leading to long lasting changes of network properties. By combining multielectrode extracellular recordings with DNA microarrays, we have investigated in rat hippocampal cultures the temporal sequence of events of neuronal plasticity triggered by a transient exposure to the GABA(A) receptor antagonist gabazine (GabT). GabT induced a synchronous bursting pattern of activity. The analysis of electrical activity identified three main phases during neuronal plasticity induced by GabT: (i) immediately after termination of GabT, an early synchronization (E-Sync) of the spontaneous electrical activity appears that progressively decay after 3-6 h. E-Sync is abolished by inhibitors of the ERK1/2 pathway but not by inhibitors of gene transcription; (ii) the evoked response (induced by a single pulse of extracellular electrical stimulation) was maximally potentiated 3-10 h after GabT (M-LTP); and (iii) at 24 h the spontaneous electrical activity became more synchronous (L-Sync). The genome-wide analysis identified three clusters of genes: (i) an early rise of transcription factors (Cluster 1), primarily composed by members of the EGR and Nr4a families, maximally up-regulated 1.5 h after GabT; (ii) a successive up-regulation of some hundred genes, many of which known to be involved in LTP (Cluster 2), 3 h after GabT likely underlying M-LTP. Moreover, in Cluster 2 several genes coding for K(+) channels are down-regulated at 24 h. (iii) Genes in Cluster 3 are up-regulated at 24 h and are involved in cellular homeostasis. This approach allows relating different steps of neuronal plasticity to specific transcriptional profiles.
Collapse
Affiliation(s)
- Silvia Pegoraro
- International School for Advanced Studies, Area Science Park, Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Diestel S, Schaefer D, Cremer H, Schmitz B. NCAM is ubiquitylated, endocytosed and recycled in neurons. J Cell Sci 2007; 120:4035-49. [DOI: 10.1242/jcs.019729] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The neural cell adhesion molecule NCAM plays an important role during neural development and in the adult brain. To study the intracellular trafficking of NCAM in neurons, two major isoforms, NCAM140 or NCAM180, were expressed in primary cortical neurons and in the rat B35 neuroblastoma cell line. NCAM was endocytosed and subsequently recycled to the plasma membrane, whereas only a minor fraction was degraded in lysosomes. In cortical neurons, endocytosis of NCAM was detected in the soma, neurites and growth cones in a developmentally regulated fashion. Furthermore, we found that NCAM is mono-ubiquitylated at the plasma membrane and endocytosis was significantly increased in cells overexpressing ubiquitin. Therefore, we propose that ubiquitylation represents an endocytosis signal for NCAM.
Collapse
Affiliation(s)
- Simone Diestel
- Institute of Animal Sciences, Department of Biochemistry, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| | - Daniel Schaefer
- Institute of Animal Sciences, Department of Biochemistry, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| | - Harold Cremer
- Institut de Biologie du Développement de Marseille-Luminy, UMR 6216, CNRS/Université de la Méditeranée, Campus de Luminy-case 907, 13288 Marseille cedex 9, France
| | - Brigitte Schmitz
- Institute of Animal Sciences, Department of Biochemistry, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| |
Collapse
|
15
|
Hawasli AH, Benavides DR, Nguyen C, Kansy JW, Hayashi K, Chambon P, Greengard P, Powell CM, Cooper DC, Bibb JA. Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat Neurosci 2007; 10:880-886. [PMID: 17529984 PMCID: PMC3910113 DOI: 10.1038/nn1914] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 05/03/2007] [Indexed: 12/30/2022]
Abstract
Learning is accompanied by modulation of postsynaptic signal transduction pathways in neurons. Although the neuronal protein kinase cyclin-dependent kinase 5 (Cdk5) has been implicated in cognitive disorders, its role in learning has been obscured by the perinatal lethality of constitutive knockout mice. Here we report that conditional knockout of Cdk5 in the adult mouse brain improved performance in spatial learning tasks and enhanced hippocampal long-term potentiation and NMDA receptor (NMDAR)-mediated excitatory postsynaptic currents. Enhanced synaptic plasticity in Cdk5 knockout mice was attributed to reduced NR2B degradation, which caused elevations in total, surface and synaptic NR2B subunit levels and current through NR2B-containing NMDARs. Cdk5 facilitated the degradation of NR2B by directly interacting with both it and its protease, calpain. These findings reveal a previously unknown mechanism by which Cdk5 facilitates calpain-mediated proteolysis of NR2B and may control synaptic plasticity and learning.
Collapse
Affiliation(s)
- Ammar H Hawasli
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - David R Benavides
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - Chan Nguyen
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - Janice W Kansy
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - Kanehiro Hayashi
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, Centre Universitaire de Strasbourg, France
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | - Craig M Powell
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - Donald C Cooper
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - James A Bibb
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| |
Collapse
|
16
|
Dequidt C, Danglot L, Alberts P, Galli T, Choquet D, Thoumine O. Fast turnover of L1 adhesions in neuronal growth cones involving both surface diffusion and exo/endocytosis of L1 molecules. Mol Biol Cell 2007; 18:3131-43. [PMID: 17538021 PMCID: PMC1949362 DOI: 10.1091/mbc.e06-12-1101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We investigated the interplay between surface trafficking and binding dynamics of the immunoglobulin cell adhesion molecule L1 at neuronal growth cones. Primary neurons were transfected with L1 constructs bearing thrombin-cleavable green fluorescent protein (GFP), allowing visualization of newly exocytosed L1 or labeling of membrane L1 molecules by Quantum dots. Intracellular L1-GFP vesicles showed preferential centrifugal motion, whereas surface L1-GFP diffused randomly, revealing two pathways to address L1 to adhesive sites. We triggered L1 adhesions using microspheres coated with L1-Fc protein or anti-L1 antibodies, manipulated by optical tweezers. Microspheres coupled to the actin retrograde flow at the growth cone periphery while recruiting L1-GFP molecules, of which 50% relied on exocytosis. Fluorescence recovery after photobleaching experiments revealed a rapid recycling of L1-GFP molecules at L1-Fc (but not anti-L1) bead contacts, attributed to a high lability of L1-L1 bonds at equilibrium. L1-GFP molecules truncated in the intracellular tail as well as neuronal cell adhesion molecules (NrCAMs) missing the clathrin adaptor binding sequence showed both little internalization and reduced turnover rates, indicating a role of endocytosis in the recycling of mature L1 contacts at the base of the growth cone. Thus, unlike for other molecules such as NrCAM or N-cadherin, diffusion/trapping and exo/endocytosis events cooperate to allow the fast renewal of L1 adhesions.
Collapse
Affiliation(s)
- Caroline Dequidt
- *Unité Mixte de Recherche Centre National de la Recherche Scientifique 5091, Institut François Magendie, Université Bordeaux 2, 33077 Bordeaux, France; and
| | - Lydia Danglot
- Membrane Traffic in Epithelial and Neuronal Morphogenesis, Equipe Avenir Inserm, Institut Jacques Monod, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7592, Universités Paris 6 et 7, 75251 Paris, France
| | - Philipp Alberts
- Membrane Traffic in Epithelial and Neuronal Morphogenesis, Equipe Avenir Inserm, Institut Jacques Monod, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7592, Universités Paris 6 et 7, 75251 Paris, France
| | - Thierry Galli
- Membrane Traffic in Epithelial and Neuronal Morphogenesis, Equipe Avenir Inserm, Institut Jacques Monod, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7592, Universités Paris 6 et 7, 75251 Paris, France
| | - Daniel Choquet
- *Unité Mixte de Recherche Centre National de la Recherche Scientifique 5091, Institut François Magendie, Université Bordeaux 2, 33077 Bordeaux, France; and
| | - Olivier Thoumine
- *Unité Mixte de Recherche Centre National de la Recherche Scientifique 5091, Institut François Magendie, Université Bordeaux 2, 33077 Bordeaux, France; and
| |
Collapse
|
17
|
Hu X, Shi Q, Zhou X, He W, Yi H, Yin X, Gearing M, Levey A, Yan R. Transgenic mice overexpressing reticulon 3 develop neuritic abnormalities. EMBO J 2007; 26:2755-67. [PMID: 17476306 PMCID: PMC1888669 DOI: 10.1038/sj.emboj.7601707] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 03/23/2007] [Indexed: 11/09/2022] Open
Abstract
Dystrophic neurites are swollen dendrites or axons recognizable near amyloid plaques as a part of important pathological feature of Alzheimer's disease (AD). We report herein that reticulon 3 (RTN3) is accumulated in a distinct population of dystrophic neurites named as RTN3 immunoreactive dystrophic neurites (RIDNs). The occurrence of RIDNs is concomitant with the formation of high-molecular-weight RTN3 aggregates in brains of AD cases and mice expressing mutant APP. Ultrastructural analysis confirms accumulation of RTN3-containing aggregates in RIDNs. It appears that the protein level of RTN3 governs the formation of RIDNs because transgenic mice expressing RTN3 will develop RIDNs, initially in the hippocampal CA1 region, and later in other hippocampal and cortical regions. Importantly, we show that the presence of dystrophic neurites in Tg-RTN3 mice causes impairments in spatial learning and memory, as well as synaptic plasticity, implying that RIDNs potentially contribute to AD cognitive dysfunction. Together, we demonstrate that aggregation of RTN3 contributes to AD pathogenesis by inducing neuritic dystrophy. Inhibition of RTN3 aggregation is likely a therapeutic approach for reducing neuritic dystrophy.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Qi Shi
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xiangdong Zhou
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hong Yi
- Microscopy Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Xinghua Yin
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Marla Gearing
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA. Tel.: +1 216 445 2690; Fax: +1 216 444 7927; E-mail:
| |
Collapse
|
18
|
Kopanitsa MV, Afinowi NO, Grant SGN. Recording long-term potentiation of synaptic transmission by three-dimensional multi-electrode arrays. BMC Neurosci 2006; 7:61. [PMID: 16942609 PMCID: PMC1574331 DOI: 10.1186/1471-2202-7-61] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 08/30/2006] [Indexed: 11/15/2022] Open
Abstract
Background Multi-electrode arrays (MEAs) have become popular tools for recording spontaneous and evoked electrical activity of excitable tissues. The majority of previous studies of synaptic transmission in brain slices employed MEAs with planar electrodes that had limited ability to detect signals coming from deeper, healthier layers of the slice. To overcome this limitation, we used three-dimensional (3D) MEAs with tip-shaped electrodes to probe plasticity of field excitatory synaptic potentials (fEPSPs) in the CA1 area of hippocampal slices of 129S5/SvEvBrd and C57BL/6J-TyrC-Brd mice. Results Using 3D MEAs, we were able to record larger fEPSPs compared to signals measured by planar MEAs. Several stimulation protocols were used to induce long-term potentiation (LTP) of synaptic responses in the CA1 area recorded following excitation of Schäffer collateral/commissural fibres. Either two trains of high frequency tetanic stimulation or three trains of theta-burst stimulation caused a persistent, pathway specific enhancement of fEPSPs that remained significantly elevated for at least 60 min. A third LTP induction protocol that comprised 150 pulses delivered at 5 Hz, evoked moderate LTP if excitation strength was increased to 1.5× of the baseline stimulus. In all cases, we observed a clear spatial plasticity gradient with maximum LTP levels detected in proximal apical dendrites of pyramidal neurones. No significant differences in the manifestation of LTP were observed between 129S5/SvEvBrd and C57BL/6J-TyrC-Brd mice with the three protocols used. All forms of plasticity were sensitive to inhibition of N-methyl-D-aspartate (NMDA) receptors. Conclusion Principal features of LTP (magnitude, pathway specificity, NMDA receptor dependence) recorded in the hippocampal slices using MEAs were very similar to those seen in conventional glass electrode experiments. Advantages of using MEAs are the ability to record from different regions of the slice and the ease of conducting several experiments on a multiplexed platform which could be useful for efficient screening of novel transgenic mice.
Collapse
Affiliation(s)
- Maksym V Kopanitsa
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Nurudeen O Afinowi
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Seth GN Grant
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|