1
|
Gonzalez-Hurtado E, Leveau C, Li K, Qu R, Mishra M, Goldberg EL, Sidorov S, Yeung ST, Khairallah C, Gonzalez D, Shepard TM, Camell C, Artyomov MN, Kluger Y, Khanna KM, Dixit VD. Nerve-associated macrophages control adipose homeostasis across lifespan and restrain age-related inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618004. [PMID: 39416197 PMCID: PMC11482937 DOI: 10.1101/2024.10.12.618004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Age-related inflammation or inflammaging is a key mechanism that increases disease burden and may control lifespan. How adipose tissue macrophages (ATMs) control inflammaging is not well understood in part because the molecular identities of niche-specific ATMs are incompletely known. Using intravascular labeling to exclude circulating myeloid cells and subsequent single-cell sequencing with orthogonal validation, we define the diversity and alterations in niche resident ATMs through lifespan. Aging led to depletion of vessel-associated macrophages (VAMs), expansion of lipid-associated macrophages (LAMs), and emergence of a unique subset of CD38+ age-associated macrophages (AAMs) in visceral white adipose tissue (VAT). Interestingly, CD169+CD11c- ATMs are enriched in a subpopulation of nerve-associated macrophages (NAMs) that declines with age. Depletion of CD169+ NAMs in aged mice increases inflammaging and impairs lipolysis suggesting that they are necessary for preventing catecholamine resistance in VAT. These findings reveal specialized ATMs control adipose homeostasis and link inflammation to tissue dysfunction during aging.
Collapse
|
2
|
Ronan R, Kshirsagar A, Rebelo AL, Sunny A, Kilcoyne M, Flaherty RO, Rudd PM, Schlosser G, Saldova R, Pandit A, McMahon SS. Distinct Glycosylation Responses to Spinal Cord Injury in Regenerative and Nonregenerative Models. J Proteome Res 2022; 21:1449-1466. [PMID: 35506863 PMCID: PMC9171824 DOI: 10.1021/acs.jproteome.2c00043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/28/2022]
Abstract
Traumatic spinal cord injury (SCI) results in disruption of tissue integrity and loss of function. We hypothesize that glycosylation has a role in determining the occurrence of regeneration and that biomaterial treatment can influence this glycosylation response. We investigated the glycosylation response to spinal cord transection in Xenopus laevis and rat. Transected rats received an aligned collagen hydrogel. The response compared regenerative success, regenerative failure, and treatment in an established nonregenerative mammalian system. In a healthy rat spinal cord, ultraperformance liquid chromatography (UPLC) N-glycoprofiling identified complex, hybrid, and oligomannose N-glycans. Following rat SCI, complex and outer-arm fucosylated glycans decreased while oligomannose and hybrid structures increased. Sialic acid was associated with microglia/macrophages following SCI. Treatment with aligned collagen hydrogel had a minimal effect on the glycosylation response. In Xenopus, lectin histochemistry revealed increased levels of N-acetyl-glucosamine (GlcNAc) in premetamorphic animals. The addition of GlcNAc is required for processing complex-type glycans and is a necessary foundation for additional branching. A large increase in sialic acid was observed in nonregenerative animals. This work suggests that glycosylation may influence regenerative success. In particular, loss of complex glycans in rat spinal cord may contribute to regeneration failure. Targeting the glycosylation response may be a promising strategy for future therapies.
Collapse
Affiliation(s)
- Rachel Ronan
- SFI
Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Galway H91 W2TY, Ireland
- Discipline
of Anatomy, National University of Ireland, Galway H91 W5P7, Ireland
| | - Aniket Kshirsagar
- SFI
Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Galway H91 W2TY, Ireland
| | - Ana Lúcia Rebelo
- SFI
Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Galway H91 W2TY, Ireland
| | - Abbah Sunny
- SFI
Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Galway H91 W2TY, Ireland
| | - Michelle Kilcoyne
- Discipline
of Microbiology, National University of
Ireland, Galway, Galway H91 W2TY, Ireland
| | - Roisin O’ Flaherty
- Department
of Chemistry, Maynooth University, Maynooth, Co., Kildare W23 F2H6, Ireland
- The
National Institute for Bioprocessing, Research,
and Training (NIBRT), Dublin A94 X099, Ireland
| | - Pauline M. Rudd
- The
National Institute for Bioprocessing, Research,
and Training (NIBRT), Dublin A94 X099, Ireland
- Conway
Institute, University College Dublin, Belfield, Dublin 4 D04
PR94, Ireland
| | - Gerhard Schlosser
- School of
Natural Science, National University of
Ireland, Galway, Galway H91 W2TY, Ireland
| | - Radka Saldova
- SFI
Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Galway H91 W2TY, Ireland
- The
National Institute for Bioprocessing, Research,
and Training (NIBRT), Dublin A94 X099, Ireland
- UCD
School of Medicine, College of Health and Agricultural Science (CHAS), University College Dublin (UCD), Dublin D04 PR94, Ireland
| | - Abhay Pandit
- SFI
Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Galway H91 W2TY, Ireland
| | - Siobhan S. McMahon
- SFI
Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Galway H91 W2TY, Ireland
- Discipline
of Anatomy, National University of Ireland, Galway H91 W5P7, Ireland
| |
Collapse
|
3
|
Wu G, Murugesan G, Nagala M, McCraw A, Haslam SM, Dell A, Crocker PR. Activation of regulatory T cells triggers specific changes in glycosylation associated with Siglec-1-dependent inflammatory responses. Wellcome Open Res 2021; 6:134. [PMID: 35224210 PMCID: PMC8844539 DOI: 10.12688/wellcomeopenres.16834.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Siglec-1 is a macrophage lectin-like receptor that mediates sialic acid-dependent cellular interactions. Its upregulation on macrophages in autoimmune disease was shown previously to promote inflammation through suppressing the expansion of regulatory T cells (Tregs). Here we investigate the molecular basis for Siglec-1 binding to Tregs using in vitro-induced cells as a model system. Methods: Glycosylation changes that affect Siglec‑1 binding were studied by comparing activated and resting Tregs using RNA-Seq, glycomics, proteomics and binding of selected antibodies and lectins. A proximity labelling and proteomics strategy was used to identify Siglec-1 counter-receptors expressed on activated Tregs. Results: Siglec-1 binding was strongly upregulated on activated Tregs, but lost under resting conditions. Glycomics revealed changes in N-glycans and glycolipids following Treg activation and we observed changes in expression of multiple 'glycogenes' that could lead to the observed increase in Siglec-1 binding. Proximity labelling of intact, living cells identified 49 glycoproteins expressed by activated Tregs that may function as Siglec-1 counter-receptors. These represent ~5% of the total membrane protein pool and were mainly related to T cell activation and proliferation. We demonstrate that several of these counter-receptors were upregulated following activation of Tregs and provide initial evidence that their altered glycosylation may also be important for Siglec-1 binding. Conclusions: We provide the first comprehensive analysis of glycan changes that occur in activated Tregs, leading to recognition by the macrophage lectin, Siglec-1 and suppression of Treg expansion. We furthermore provide insights into glycoprotein counter-receptors for Siglec-1 expressed by activated Tregs that are likely to be important for suppressing Treg expansion.
Collapse
Affiliation(s)
- Gang Wu
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Gavuthami Murugesan
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Manjula Nagala
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Alex McCraw
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Paul R. Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| |
Collapse
|
4
|
Lüningschrör P, Slotta C, Heimann P, Briese M, Weikert UM, Massih B, Appenzeller S, Sendtner M, Kaltschmidt C, Kaltschmidt B. Absence of Plekhg5 Results in Myelin Infoldings Corresponding to an Impaired Schwann Cell Autophagy, and a Reduced T-Cell Infiltration Into Peripheral Nerves. Front Cell Neurosci 2020; 14:185. [PMID: 32733205 PMCID: PMC7358705 DOI: 10.3389/fncel.2020.00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation and dysregulation of the immune system are hallmarks of several neurodegenerative diseases. An activated immune response is considered to be the cause of myelin breakdown in demyelinating disorders. In the peripheral nervous system (PNS), myelin can be degraded in an autophagy-dependent manner directly by Schwann cells or by macrophages, which are modulated by T-lymphocytes. Here, we show that the NF-κB activator Pleckstrin homology containing family member 5 (Plekhg5) is involved in the regulation of both Schwann cell autophagy and recruitment of T-lymphocytes in peripheral nerves during motoneuron disease. Plekhg5-deficient mice show defective axon/Schwann cell units characterized by myelin infoldings in peripheral nerves. Even at late stages, Plekhg5-deficient mice do not show any signs of demyelination and inflammation. Using RNAseq, we identified a transcriptional signature for an impaired immune response in sciatic nerves, which manifested in a reduced number of CD4+ and CD8+ T-cells. These findings identify Plekhg5 as a promising target to impede myelin breakdown in demyelinating PNS disorders.
Collapse
Affiliation(s)
- Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Carsten Slotta
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany.,Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | - Peter Heimann
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich M Weikert
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Bita Massih
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Silke Appenzeller
- Core Unit Systems Medicine, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | | | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany.,Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
5
|
Iris F, Beopoulos A, Gea M. How scientific literature analysis yields innovative therapeutic hypothesis through integrative iterations. Curr Opin Pharmacol 2018; 42:62-70. [PMID: 30092386 DOI: 10.1016/j.coph.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/12/2018] [Indexed: 12/27/2022]
Abstract
It is becoming generally accepted that the current diagnostic system often guarantees, rather than diminishes, disease heterogeneity. In effects, syndrome-dominated conceptual thinking has become a barrier to understanding the biological causes of complex, multifactorial diseases characterized by clinical and therapeutic heterogeneity. Furthermore, not only is the flood of currently available medical and biological information highly heterogeneous, it is also often conflicting. Together with the entire absence of functional models of pathogenesis and pathological evolution of complex diseases, this leads to a situation where illness activity cannot be coherently approached and where therapeutic developments become highly problematic. Acquisition of the necessary knowledge can be obtained, in parts, using in silico models produced through analytical approaches and processes collectively known as `Systems Biology'. However, without analytical approaches that specifically incorporate the facts that all that is called `information' is not necessarily useful nor utilisable and that all information should be considered as a priori suspect, modelling attempts will fail because of the much too numerous conflicting and, although correct in molecular terms, physiologically invalid reports. In the present essay, we suggest means whereby this body of problems could be functionally attacked and describe new analytical approaches that have demonstrated their efficacy in alleviating these difficulties.
Collapse
Affiliation(s)
- Francois Iris
- Bio-Modeling Systems, Tour CIT, 3 Rue de l'Arrivée, 75015, Paris, France.
| | | | - Manuel Gea
- Bio-Modeling Systems, Tour CIT, 3 Rue de l'Arrivée, 75015, Paris, France
| |
Collapse
|
6
|
Abstract
Lectins recognize a diverse array of carbohydrate structures and perform numerous essential biological functions. Here we focus on only two families of lectins, the Siglecs and C-type lectins. Triggering of intracellular signaling cascades following ligand recognition by these receptors can have profound effects on the induction and modulation of immunity. In this chapter, we provide a brief overview of each family and then focus on selected examples that highlight how these lectins can influence myeloid cell functioning in health and disease. Receptors that are discussed include Sn (Siglec-1), CD33 (Siglec-3), and Siglec-5, -7, -8, -9, -10, -11, -14, -15, -E, -F, and -G as well as Dectin-1, MICL, Dectin-2, Mincle/MCL, and the macrophage mannose receptor.
Collapse
|
7
|
O'Neill ASG, Terry SYA, Brown K, Meader L, Wong AMS, Cooper JD, Crocker PR, Wong W, Mullen GED. Non-invasive molecular imaging of inflammatory macrophages in allograft rejection. EJNMMI Res 2015; 5:69. [PMID: 26611870 PMCID: PMC4661159 DOI: 10.1186/s13550-015-0146-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/16/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Macrophages represent a critical cell type in host defense, development and homeostasis. The ability to image non-invasively pro-inflammatory macrophage infiltrate into a transplanted organ may provide an additional tool for the monitoring of the immune response of the recipient against the donor graft. We therefore decided to image in vivo sialoadhesin (Sn, Siglec 1 or CD169) using anti-Sn mAb (SER-4) directly radiolabelled with (99m)Tc pertechnetate. METHODS We used a heterotopic heart transplantation model where allogeneic or syngeneic heart grafts were transplanted into the abdomen of recipients. In vivo nanosingle-photon emission computed tomography (SPECT/CT) imaging was performed 7 days post transplantation followed by biodistribution and histology. RESULTS In wild-type mice, the majority of (99m)Tc-SER-4 monoclonal antibody cleared from the blood with a half-life of 167 min and was located predominantly on Sn(+) tissues in the spleen, liver and bone marrow. The biodistribution in the transplantation experiments confirmed data derived from the non-invasive SPECT/CT images, with significantly higher levels of (99m)Tc-SER-4 observed in allogeneic grafts (9.4 (±2.7) %ID/g) compared to syngeneic grafts (4.3 (±10.3) %ID/g) (p = 0.0022) or in mice which received allogeneic grafts injected with (99m)Tc-IgG isotype control (5.9 (±0.6) %ID/g) (p = 0.0185). The transplanted heart to blood ratio was also significantly higher in recipients with allogeneic grafts receiving (99m)Tc-SER-4 as compared to recipients with syngeneic grafts (p = 0.000004) or recipients with allogeneic grafts receiving (99m)Tc-IgG isotype (p = 0.000002). CONCLUSIONS Here, we demonstrate that imaging of Sn(+) macrophages in inflammation may provide an important additional and non-invasive tool for the monitoring of the pathophysiology of cellular immunity in a transplant model.
Collapse
Affiliation(s)
- Alexander S G O'Neill
- Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK. .,Division of Medical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Samantha Y A Terry
- Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Kathryn Brown
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Lucy Meader
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Andrew M S Wong
- Pediatric Storage Disorders Laboratory, Department of Neuroscience and Centre for the Cellular Basis of Behaviour, King's College London, London, UK
| | - Jonathan D Cooper
- Pediatric Storage Disorders Laboratory, Department of Neuroscience and Centre for the Cellular Basis of Behaviour, King's College London, London, UK
| | - Paul R Crocker
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee, UK
| | - Wilson Wong
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Gregory E D Mullen
- Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK.,MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
8
|
Thornley TB, Fang Z, Balasubramanian S, Larocca RA, Gong W, Gupta S, Csizmadia E, Degauque N, Kim BS, Koulmanda M, Kuchroo VK, Strom TB. Fragile TIM-4-expressing tissue resident macrophages are migratory and immunoregulatory. J Clin Invest 2014; 124:3443-54. [PMID: 24983317 DOI: 10.1172/jci73527] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 05/22/2014] [Indexed: 01/03/2023] Open
Abstract
Macrophages characterized as M2 and M2-like regulate immune responses associated with immune suppression and healing; however, the relationship of this macrophage subset to CD169+ tissue-resident macrophages and their contribution to shaping alloimmune responses is unknown. Here we identified a population of M2-like tissue-resident macrophages that express high levels of the phosphatidylserine receptor TIM-4 and CD169 (TIM-4hiCD169+). Labeling and tracking of TIM-4hiCD169+ macrophages in mice revealed that this population is a major subset of tissue-resident macrophages, homes to draining LNs following oxidative stress, exhibits an immunoregulatory and hypostimulatory phenotype that is maintained after migration to secondary lymphoid organs, favors preferential induction of antigen-stimulated Tregs, and is highly susceptible to apoptosis. Moreover, CD169+ tissue-resident macrophages were resistant to oxidative stress-induced apoptosis in mice lacking TIM-4. Compared with heart allografts from WT mice, Tim4-/- heart allografts survived much longer and were more easily tolerized by non-immunosuppressed recipients. Furthermore, Tim4-/- allograft survival was associated with the infiltration of Tregs into the graft. Together, our data provide evidence that M2-like TIM-4hiCD169+ tissue-resident macrophages are immunoregulatory and promote engraftment of cardiac allografts, but their influence is diminished by TIM-4-dependent programmed cell death.
Collapse
|
9
|
Kidder D, Richards HE, Lyons PA, Crocker PR. Sialoadhesin deficiency does not influence the severity of lupus nephritis in New Zealand black x New Zealand white F1 mice. Arthritis Res Ther 2013; 15:R175. [PMID: 24286366 PMCID: PMC3978688 DOI: 10.1186/ar4364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/11/2013] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a chronic inflammatory condition with multisystem involvement. One of the key features of the disease is the upregulation of type I interferons, resulting in the so-called "interferon signature". Recent flow cytometric and transcriptomic studies identified Sialoadhesin (Sn, CD169) as an important interferon-induced blood monocyte biomarker in diseased patients. To investigate a potential causative role of Sn in SLE, we generated NZBWF1 (New Zealand Black x New Zealand White F1) mice lacking Sn and compared onset and progression of disease with NZBWF1 expressing normal levels of Sn. METHODS Sn expression in renal tissues of pre-diseased and diseased NZBWF1 mice was evaluated by Quantitative real time PCR (QPCR) and immunohistochemistry. Sn-/- NZBWF1 mice were generated by speed congenics. Disease severity of Sn+/+ and Sn-/- NZBWF1 mice was assessed by serum immunoassays, flow cytometry, light microscopy and immunohistochemistry. RESULTS Renal tissues from proteinuric NZBWF1 mice exhibited a significant upregulation of Sn mRNA and protein expression following disease onset. Further immunohistochemical analysis showed that Sn+ macrophages assumed a distinct periglomerular distribution and, unlike CD68+ macrophages, were not present within the glomeruli. Analysis of disease severity in Sn-/- and Sn+/+ NZBWF1 mice revealed no significant differences in the disease progression between the two groups although Sn-deficient mice showed a more rapid onset of proteinuria. CONCLUSIONS These data confirm a positive correlation of Sn with disease activity. However, Sn deficiency does not have a significant effect on the severity and progression of lupus nephritis in the NZBWF1 mouse model.
Collapse
|
10
|
O'Neill ASG, van den Berg TK, Mullen GED. Sialoadhesin - a macrophage-restricted marker of immunoregulation and inflammation. Immunology 2013. [PMID: 23181380 DOI: 10.1111/imm.12042] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sialoadhesin (Sn, also known as Siglec-1 and CD169) is a macrophage-restricted cell surface receptor that is conserved across mammals. Sn is a member of the sialic acid-binding IgG-like lectin (Siglec) family of proteins characterized by affinity to specifically sialylated ligands, and under normal conditions is expressed on subsets of macrophages in secondary lymphoid tissues, such as lymph node and spleen. However, Sn-positive macrophages can also be found in a variety of pathological conditions, including (autoimmune) inflammatory infiltrates and tumours. Sn has been shown to contribute to sialylated pathogen uptake, antigen presentation and lymphocyte proliferation, and to influence both immunity and tolerance. This review presents Sn as a macrophage-specific marker of inflammation and immunoregulation with the potential to becoming an important biomarker for immunologically active macrophages and a target for therapy.
Collapse
Affiliation(s)
- Alexander S G O'Neill
- Division of Imaging Sciences, King's College London, St Thomas' Hospital, London, UK.
| | | | | |
Collapse
|
11
|
Kidder D, Richards HE, Ziltener HJ, Garden OA, Crocker PR. Sialoadhesin ligand expression identifies a subset of CD4+Foxp3- T cells with a distinct activation and glycosylation profile. THE JOURNAL OF IMMUNOLOGY 2013; 190:2593-602. [PMID: 23408841 DOI: 10.4049/jimmunol.1201172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sialoadhesin (Sn) is a sialic acid-binding Ig-like lectin expressed selectively on macrophage subsets. In a model of experimental autoimmune encephalomyelitis, Sn interacted with sialylated ligands expressed selectively on CD4(+)Foxp3(+) regulatory T cells (Tregs) and inhibited their proliferation. In this study, we examined the induction of Sn ligands (SnL) on all splenic CD4(+) T cells following in vitro activation. Most CD4(+) Tregs strongly upregulated SnL, whereas only a small subset of ~20% CD4(+)Foxp3(-) T cells (effector T cells [Teffs]) upregulated SnL. SnL(+) Teffs displayed higher levels of activation markers CD25 and CD69, exhibited increased proliferation, and produced higher amounts of IL-2 and IFN-γ than corresponding SnL(-) Teffs. Coculture of activated Teffs with Sn(+) macrophages or Sn(+) Chinese hamster ovary cells resulted in increased cell death, suggesting a regulatory role for Sn-SnL interactions. The key importance of α2,3-sialylation in SnL expression was demonstrated by increased binding of α2,3-linkage-specific Maackia amurensis lectin, increased expression of α2,3-sialyltransferase ST3GalVI, and loss of SnL following treatment with an α2,3-linkage-specific sialidase. The induction of SnL on activated CD4(+) T cells was dependent on N-glycan rather than O-glycan biosynthesis and independent of the mucin-like molecules CD43 and P-selectin glycoprotein ligand-1, previously implicated in Sn interactions. Induction of ligands on CD4(+)Foxp3(-) Teffs was also observed in vivo using the New Zealand Black × New Zealand White F1 murine model of spontaneous lupus and SnL levels on Teffs correlated strongly with the degree of proteinuria. Collectively, these data indicate that SnL is a novel marker of activated CD4(+) Teffs that are implicated in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Dana Kidder
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | |
Collapse
|
12
|
Klaas M, Oetke C, Lewis LE, Erwig LP, Heikema AP, Easton A, Willison HJ, Crocker PR. Sialoadhesin promotes rapid proinflammatory and type I IFN responses to a sialylated pathogen, Campylobacter jejuni. THE JOURNAL OF IMMUNOLOGY 2012; 189:2414-22. [PMID: 22851711 DOI: 10.4049/jimmunol.1200776] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sialoadhesin (Sn) is a macrophage (Mφ)-restricted receptor that recognizes sialylated ligands on host cells and pathogens. Although Sn is thought to be important in cellular interactions of Mφs with cells of the immune system, the functional consequences of pathogen engagement by Sn are unclear. As a model system, we have investigated the role of Sn in Mφ interactions with heat-killed Campylobacter jejuni expressing a GD1a-like, sialylated glycan. Compared to Sn-expressing bone marrow-derived macrophages (BMDM) from wild-type mice, BMDM from mice either deficient in Sn or expressing a non-glycan-binding form of Sn showed greatly reduced phagocytosis of sialylated C. jejuni. This was accompanied by a strong reduction in MyD88-dependent secretion of TNF-α, IL-6, IL-12, and IL-10. In vivo studies demonstrated that functional Sn was required for rapid TNF-α and IFN-β responses to i.v.-injected sialylated C. jejuni. Bacteria were captured within minutes after i.v. injection and were associated with Mφs in both liver and spleen. In the spleen, IFN-β-reactive cells were localized to Sn⁺ Mφs and other cells in the red pulp and marginal zone. Together, these studies demonstrate that Sn plays a key role in capturing sialylated pathogens and promoting rapid proinflammatory cytokine and type I IFN responses.
Collapse
Affiliation(s)
- Mariliis Klaas
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Klaas M, Crocker PR. Sialoadhesin in recognition of self and non-self. Semin Immunopathol 2012; 34:353-64. [PMID: 22450957 DOI: 10.1007/s00281-012-0310-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/05/2012] [Indexed: 11/28/2022]
Abstract
The immune system is tightly regulated to maintain an appropriate balance between immune activation and tolerance. Macrophages play a key role in this process since they express many pathogen recognition molecules as well as receptors for 'self'. Sialoadhesin is a major macrophage receptor that specifically recognizes sialic acid, an abundant component of host glycoconjugates but which can also be found on several human pathogens. In recent years, several studies have demonstrated that sialoadhesin can contribute to the uptake and processing of sialylated pathogens as well as playing an important role in regulating inflammatory and autoimmune responses via recognition of self.
Collapse
Affiliation(s)
- Mariliis Klaas
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee, UK
| | | |
Collapse
|
14
|
Bremer M, Fröb F, Kichko T, Reeh P, Tamm ER, Suter U, Wegner M. Sox10 is required for Schwann-cell homeostasis and myelin maintenance in the adult peripheral nerve. Glia 2011; 59:1022-32. [PMID: 21491499 DOI: 10.1002/glia.21173] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/16/2011] [Indexed: 11/07/2022]
Abstract
The transcription factor Sox10 functions during multiple consecutive stages of Schwann-cell development in the peripheral nervous system (PNS). Although Sox10 continues to be expressed in mature Schwann cells of the adult peripheral nerve, it is currently unclear whether it is still functional. Here, we used a genetic strategy to selectively delete Sox10 in glia of adult mice in a tamoxifen-dependent manner. The tamoxifen-treated mice developed a severe peripheral neuropathy that was associated with dramatic alterations in peripheral nerve structure and function. Demyelination and axonal degeneration were as much evident as signs of neuroinflammation. Compound action potentials exhibited pathophysiological alterations. Sox10-deleted Schwann cells persisted in the peripheral nerve, but did not exhibit a mature, myelinating phenotype arguing that Sox10 is rather required for differentiation and maintenance of the differentiated state than for survival. Our report is the first evidence that Sox10 is still essentially required for Schwann-cell function in the adult PNS and establishes a useful model in which to study human peripheral neuropathies.
Collapse
Affiliation(s)
- Magdalena Bremer
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Lack of evidence for a pathogenic role of T-lymphocytes in an animal model for Charcot-Marie-Tooth disease 1A. Neurobiol Dis 2010; 38:78-84. [PMID: 20064611 DOI: 10.1016/j.nbd.2010.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/23/2009] [Accepted: 01/03/2010] [Indexed: 11/21/2022] Open
Abstract
We have previously shown that in two distinct models for inherited neuropathies of the Charcot-Marie-Tooth (CMT) type, T-lymphocytes are critically involved in demyelination. In the present study, we tested whether T-lymphocytes have a similar pathogenetic impact in another CMT model, i.e., in mice overexpressing the peripheral myelin protein (PMP)-22, representing the most prevalent form CMT1A. By cross breeding the myelin mutant mice with mutants lacking mature T- and B-lymphocytes (RAG-1-deficient mice), the pathological alterations were not changed in comparison to PMP22 mutants with a normal immune system. Reciprocal enhancement of lymphocyte activation, by inactivation of the lymphocytic co-inhibitor programmed death-1, also did not alter pathological changes, as opposed to models with approved lymphocytic involvement. These findings strongly suggest that lymphocytes are not pathogenetically relevant in this model for CMT1A. We suggest that - in contrast to myelin phagocytosing macrophages - T-lymphocytes are not a promising target for treatment of CMT1A.
Collapse
|
16
|
Bi S, Baum LG. Sialic acids in T cell development and function. Biochim Biophys Acta Gen Subj 2009; 1790:1599-610. [DOI: 10.1016/j.bbagen.2009.07.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 11/16/2022]
|
17
|
Wu C, Rauch U, Korpos E, Song J, Loser K, Crocker PR, Sorokin LM. Sialoadhesin-positive macrophages bind regulatory T cells, negatively controlling their expansion and autoimmune disease progression. THE JOURNAL OF IMMUNOLOGY 2009; 182:6508-16. [PMID: 19414805 DOI: 10.4049/jimmunol.0804247] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An important regulatory suppressive function in autoimmune and other inflammatory processes has been ascribed to CD4(+)Foxp3(+) regulatory T cells (Tregs), which requires direct cell-cell communication between Tregs, effector T cells, and APCs. However, the molecular basis for these interactions has not yet been clarified. We show here that sialoadhesin (Sn), the prototype of the siglec family of sialic acid-binding transmembrane proteins, expressed by resident and activated tissue-infiltrating macrophages, directly binds to Tregs, negatively regulating their expansion in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). In this model, macrophages infiltrate the CNS exhibiting tissue-destructing and demyelinating activity, leading to MS-like symptoms. We show here that severity of EAE symptoms is reduced in Sn knockout (KO) mice compared with wild-type littermates due to an up-regulation of CD4(+)Foxp3(+) Treg lymphocytes. Through the use of a Sn fusion protein, Tregs were shown to express substantial amounts of Sn ligand on their cell surface, and direct interaction of Sn(+) macrophages with Tregs specifically inhibited Treg but not effector T lymphocyte proliferation. Conversely, blocking of Sn on macrophages by Sn-specific Abs resulted in elevated proliferation of Tregs. Data indicate that Sn(+) macrophages regulate Treg homeostasis which subsequently influences EAE progression. We propose a new direct cell-cell interaction-based mechanism regulating the expansion of the Tregs during the immune response, representing a "dialogue" between Sn(+) macrophages and Sn-accessible sialic acid residues on Treg lymphocytes.
Collapse
Affiliation(s)
- Chuan Wu
- Institute for Physiological Chemistry and Pathobiochemistry, Muenster University, Muenster, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Siglecs are cell-surface proteins found primarily on hematopoietic cells. By definition, they are members of the immunoglobulin gene super-family and bind sialic acid. Most contain cytoplasmic tyrosine motifs implicated in cell signaling. This review will first summarize characteristics common and unique to Siglecs, followed by a discussion of each human Siglec in numerical order, mentioning in turn its closest murine ortholog or paralog. Each section will describe its pattern of cellular expression, latest known immune functions, ligands, and signaling pathways, with the focus being predominantly on CD33-related Siglecs. Potential clinical and therapeutic implications of each Siglec will also be covered.
Collapse
Affiliation(s)
- Stephan von Gunten
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21224-6821, USA
| | | |
Collapse
|
19
|
Martini R, Fischer S, López-Vales R, David S. Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia 2008; 56:1566-1577. [DOI: 10.1002/glia.20766] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Ducreux J, Vanbever R, Crocker PR. The inhibitory potencies of monoclonal antibodies to the macrophage adhesion molecule sialoadhesin are greatly increased following PEGylation. Bioconjug Chem 2008; 19:2088-94. [PMID: 18808170 PMCID: PMC2730630 DOI: 10.1021/bc800259z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PEGylation of antibodies is known to increase their half-life in systemic circulation, but nothing is known regarding whether PEGylation can improve the inhibitory potency of antibodies against target receptors. In this paper, we have examined this question using antibodies directed to Sialoadhesin (Sn), a macrophage-restricted adhesion molecule that mediates sialic acid dependent binding to different cells. Anti-Sn monoclonal antibodies (mAbs), SER-4 and 3D6, were conjugated to PEG 5 kDa or and PEG 20 kDa, resulting in the incorporation of up to 3 molecules of PEG per mAb molecule. Following purification of PEGylated mAbs by anion exchange chromatography, it was shown that PEGylation had little or no effect on antigen binding activity but led to a dramatic increase in inhibitory potency that was proportional to both the size of the PEG and the degree of derivatization. Thus, PEGylation of antibodies directed to cell surface receptors could be a powerful approach to improve the therapeutic efficacy of antibodies, not only by increasing their half-life in vivo, but also by increasing their inhibitory potency for blocking receptor-ligand interactions.
Collapse
Affiliation(s)
| | | | - Paul R. Crocker
- Author to whom correspondence should be addressed. Phone: (44) 1382 345781. fax: (44) 1382 345783.
| |
Collapse
|
21
|
Jaroenpool J, Rogers KA, Pattanapanyasat K, Villinger F, Onlamoon N, Crocker PR, Ansari AA. Differences in the constitutive and SIV infection induced expression of Siglecs by hematopoietic cells from non-human primates. Cell Immunol 2008; 250:91-104. [PMID: 18331725 DOI: 10.1016/j.cellimm.2008.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/25/2008] [Accepted: 01/29/2008] [Indexed: 02/06/2023]
Abstract
The expression of the Siglec family of molecules by hematopoietic cells from uninfected and SIV infected disease susceptible rhesus macaques (RM) and SIV infected disease resistant sooty mangabeys (SM) and for comparison humans was carried out. The predominant cell lineage in all three species expressing Siglec's was monocytes. The major finding by both a cross sectional and a prospective SIV infection study showed that, whereas monocytes from RM show marked increase in each Siglec constitutively expressed, monocytes from SM showed marked decreases in Siglec-1 expression. While monocytes from all three species constitutively expressed Siglec-3, human monocytes in addition expressed Siglec-5 and -9 and to a lower density 7, monocytes from RM expressed Siglec-7 and those from SM expressed Siglec-1. Monocytes from all three species, however, expressed mRNA for Siglec-1, -5, -7 and -9. The reasons for the failure to detect these molecules at the protein level and the mechanisms for such distinct effects of SIV infection on Siglec expression are discussed.
Collapse
Affiliation(s)
- Jiraporn Jaroenpool
- Department of Pathology & Lab Medicine, Emory University School of Medicine, Winship Cancer Center, Room, 2309 WMB, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Fischer S, Kleinschnitz C, Müller M, Kobsar I, Ip CW, Rollins BJ, Martini R. Monocyte chemoattractant protein-1 is a pathogenic component in a model for a hereditary peripheral neuropathy. Mol Cell Neurosci 2008; 37:359-66. [DOI: 10.1016/j.mcn.2007.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
23
|
Immune effects of mesenchymal stem cells: Implications for Charcot–Marie–Tooth disease. Cell Immunol 2008; 253:11-5. [DOI: 10.1016/j.cellimm.2008.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 05/28/2008] [Accepted: 06/04/2008] [Indexed: 12/12/2022]
|
24
|
Meyer zu Hörste G, Hu W, Hartung HP, Lehmann HC, Kieseier BC. The immunocompetence of Schwann cells. Muscle Nerve 2007; 37:3-13. [PMID: 17823955 DOI: 10.1002/mus.20893] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Schwann cells are the myelinating glial cells of the peripheral nervous system that support and ensheath axons with myelin to enable rapid saltatory signal propagation in the axon. Immunocompetence, however, has only recently been recognized as an important feature of Schwann cells. An autoimmune response against components of the peripheral nervous system triggers disabling inflammatory neuropathies in patients and corresponding animal models. The immune system participates in nerve damage and disease manifestation even in non-inflammatory hereditary neuropathies. A growing body of evidence suggests that Schwann cells may modulate local immune responses by recognizing and presenting antigens and may also influence and terminate nerve inflammation by secreting cytokines. This review summarizes current knowledge on the interaction of Schwann cells with the immune system, which is involved in diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- Gerd Meyer zu Hörste
- Department of Neurology, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
25
|
Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol 2007; 7:255-66. [PMID: 17380156 DOI: 10.1038/nri2056] [Citation(s) in RCA: 1546] [Impact Index Per Article: 85.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell surfaces in the immune system are richly equipped with a complex mixture of glycans, which can be recognized by diverse glycan-binding proteins. The Siglecs are a family of sialic-acid-binding immunoglobulin-like lectins that are thought to promote cell-cell interactions and regulate the functions of cells in the innate and adaptive immune systems through glycan recognition. In this Review, we describe recent studies on signalling mechanisms and discuss the potential role of Siglecs in triggering endocytosis and in pathogen recognition. Finally, we discuss the postulated functions of the recently discovered CD33-related Siglecs and consider the factors that seem to be driving their rapid evolution.
Collapse
Affiliation(s)
- Paul R Crocker
- Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD 15EH, UK.
| | | | | |
Collapse
|
26
|
Ey B, Kobsar I, Blazyca H, Kroner A, Martini R. Visualization of degenerating axons in a dysmyelinating mouse mutant with axonal loss. Mol Cell Neurosci 2007; 35:153-60. [PMID: 17383197 DOI: 10.1016/j.mcn.2007.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 02/13/2007] [Indexed: 01/27/2023] Open
Abstract
Mice homozygously deficient for the myelin component P0 show loss of axons in peripheral nerves. In order to investigate the morphological characteristics of degenerating axons, we crossbred the myelin mutants with a transgenic mouse line expressing yellow fluorescent protein (YFP) in a small proportion of neurons. Peripheral nerves of the double mutants were prepared into small fiber bundles and investigated by fluorescence microscopy. We could identify the tips of degenerating axon as bulb-like structures. Additionally, by electron microscopy, these structures were characterized as axoplasmic extensions containing numerous membraneous compartments. By immunoelectron microscopy, the degenerating end bulbs were in contact with ensheathing Schwann cells that contained YFP-immunoreactivity possibly reflecting phagocytosis of axon material by these cells. Immunohistochemistry using antibodies against macrophages revealed that YFP-positive bulbs, but also other axonal swellings, were often associated with macrophages supporting our previous findings that myelin-related axonal loss is partially mediated by these cells.
Collapse
Affiliation(s)
- Birgit Ey
- Department of Neurology, Developmental Neurobiology, University of Wuerzburg, Josef-Schneiderstr. 11, D-97080 Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
27
|
Ip CW, Kroner A, Crocker PR, Nave KA, Martini R. Sialoadhesin deficiency ameliorates myelin degeneration and axonopathic changes in the CNS of PLP overexpressing mice. Neurobiol Dis 2007; 25:105-11. [PMID: 17064921 DOI: 10.1016/j.nbd.2006.08.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/24/2006] [Accepted: 08/30/2006] [Indexed: 02/05/2023] Open
Abstract
PLP overexpressing mice display demyelination and axonopathic changes, accompanied by an elevation of CD8+ T-lymphocytes and CD11b+ macrophages in the CNS. By crossbreeding these mutants with RAG-1-deficient mice lacking mature lymphocytes, we could recently demonstrate a pathogenetic impact of the CD8+ cells. In the present study, we investigated the pathogenetic impact of CD11b+ macrophages by crossbreeding the myelin mutants with knockout mice deficient for the macrophage-restricted adhesion molecule sialoadhesin (Sn). In the wild-type mice, Sn is barely detectable on CD11b+ cells, whereas in the myelin mutants, almost all CD11b+ cells express Sn. In the double mutants, upregulation of CD8+ T-cells and CD11b+ macrophages is reduced and pathological alterations are ameliorated. These data indicate that in a primarily genetically caused myelin disorder of the CNS macrophages expressing Sn partially mediate pathogenesis. These findings may have substantial impact on treatment strategies for leukodystrophic disorders and some forms of multiple sclerosis.
Collapse
Affiliation(s)
- Chi Wang Ip
- Department of Neurology, Section of Developmental Neurobiology, University of Wuerzburg, Josef-Schneider Str. 11, D-97080 Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Müller M, Berghoff M, Kobsar I, Kiefer R, Martini R. Macrophage colony stimulating factor is a crucial factor for the intrinsic macrophage response in mice heterozygously deficient for the myelin protein P0. Exp Neurol 2007; 203:55-62. [PMID: 16962581 DOI: 10.1016/j.expneurol.2006.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/11/2006] [Accepted: 07/21/2006] [Indexed: 12/12/2022]
Abstract
Mouse mutants heterozygously deficient for the myelin protein P0 (P0+/-) resemble certain forms of human hereditary neuropathies. Endoneurial macrophages of intrinsic origin are intimately involved in the pathogenesis of the demyelinating neuropathy in these mutants. We have previously shown that deficiency for macrophage colony stimulating factor (M-CSF) prevents an increase of the number of endoneurial macrophages and alleviates the mutants' demyelinating phenotype. The aim of this study was to investigate which population of endoneurial macrophages - long-term resident macrophages or recently infiltrated macrophages - is affected by M-CSF deficiency. For this purpose, we generated bone marrow chimeric mice by transplanting GFP+ bone marrow into P0 mutants (P0+/-) and P0 mutants that lack M-CSF (P0+/- mcsf-op). This enabled us to discriminate recently infiltrated short-term resident GFP+ macrophages from long-term resident GFP- macrophages. Three months after bone marrow transplantation, P0+/- mice expressing M-CSF showed a substantial upregulation and activation of both GFP- and GFP+ macrophages in femoral nerves when compared to P0+/+ mice. In contrast, in P0+/- mcsf-op mutants, both GFP- and GFP+ macrophages did not substantially increase. Only small numbers of GFP+ but no GFP- macrophages were activated and phagocytosed myelin in chimeric P0+/- mcsf-op mutants, possibly reflecting recent activation outside the endoneurium before entering the nerve. Our findings demonstrate that M-CSF is crucial for the activation, in situ increase and myelin phagocytosis of both long-term and short-term resident endoneurial macrophages in P0+/- myelin mutants. M-CSF is, therefore, considered as a target candidate for therapeutic strategies to treat human demyelinating neuropathies.
Collapse
Affiliation(s)
- Marcus Müller
- Department of Neurology, University of Münster, Albert-Schweitzer-Str. 33, D-48129 Münster, Germany
| | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Mutations in a number of genes have been associated with inherited neuropathies (Charcot-Marie-Tooth or CMT disease). This review highlights how animal models of demyelinating CMT have improved our understanding of disease mechanisms. Transgenic CMT models also allow therapies to be developed in a preclinical setting. RECENT FINDINGS Rodent models for the most common subtypes of human CMT disease are now available, and two mouse mutants modeling the rare CMT4B subform have lately extended this repertoire. In a peripheral myelin protein 22 kDa (Pmp22) transgenic rat model of CMT1A, administration of a progesterone receptor antagonist reduced Pmp22 overexpression, axon loss and clinical impairments. Dietary ascorbic acid prevented dysmyelination and premature death in a Pmp22 transgenic mouse line. Neurotrophin-3 promoted small fiber remyelination in CMT1A xenografts and sensory functions in CMT1A patients. Gene expression profiling in rodent models of CMT may identify further therapeutical targets. While original classifications distinguish the demyelinating and axonal forms of CMT, recent findings emphasize that axon loss is a common feature, possibly caused by Schwann cell defects rather than demyelination per se. This supports our model that myelination and long-term axonal support are distinct functions of all myelinating glial cells. SUMMARY Animal models have opened up new perspectives on the pathomechanisms and possible treatment strategies of inherited neuropathies.
Collapse
|
30
|
Ip CW, Kroner A, Bendszus M, Leder C, Kobsar I, Fischer S, Wiendl H, Nave KA, Martini R. Immune cells contribute to myelin degeneration and axonopathic changes in mice overexpressing proteolipid protein in oligodendrocytes. J Neurosci 2006; 26:8206-16. [PMID: 16885234 PMCID: PMC6673777 DOI: 10.1523/jneurosci.1921-06.2006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Overexpression of the major myelin protein of the CNS, proteolipid protein (PLP), leads to late-onset degeneration of myelin and pathological changes in axons. Based on the observation that in white matter tracts of these mutants both CD8+ T-lymphocytes and CD11b+ macrophage-like cells are numerically elevated, we tested the hypothesis that these cells are pathologically involved in the primarily genetically caused neuropathy. Using flow cytometry of mutant brains, CD8+ cells could be identified as activated effector cells, and confocal microscopy revealed a close association of the T-cells with MHC-I+ (major histocompatibility complex class I positive) oligodendrocytes. Crossbreeding the myelin mutants with mice deficient in the recombination activating gene-1 (RAG-1) lacking mature T- and B-lymphocytes led to a reduction of the number of CD11b+ cells and to a substantial alleviation of pathological changes. In accordance with these findings, magnetic resonance imaging revealed less ventricular enlargement in the double mutants, partially because of more preserved corpora callosa. To investigate the role of CD8+ versus CD4+ T-lymphocytes, we reconstituted the myelin-RAG-1 double mutants with bone marrow from either CD8-negative (CD4+) or CD4-negative (CD8+) mice. The severe ventricular enlargement was only found when the double mutants were reconstituted with bone marrow from CD8+ mice, suggesting that the CD8+ lymphocytes play a critical role in the immune-related component of myelin degeneration in the mutants. These findings provide strong evidence that a primary glial damage can cause secondary immune reactions of pathological significance as it has been suggested for some forms of multiple sclerosis and other leukodystrophies.
Collapse
|