1
|
Martinez AP, Chung AC, Huang S, Bisogni AJ, Lin Y, Cao Y, Williams EO, Kim JY, Yang JY, Lin DM. Pcdh19 mediates olfactory sensory neuron coalescence during postnatal stages and regeneration. iScience 2023; 26:108220. [PMID: 37965156 PMCID: PMC10641745 DOI: 10.1016/j.isci.2023.108220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/12/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
The mouse olfactory system regenerates constantly throughout life. While genes critical for the initial projection of olfactory sensory neurons (OSNs) to the olfactory bulb have been identified, what genes are important for maintaining the olfactory map during regeneration are still unknown. Here we show a mutation in Protocadherin 19 (Pcdh19), a cell adhesion molecule and member of the cadherin superfamily, leads to defects in OSN coalescence during regeneration. Surprisingly, lateral glomeruli were more affected and males in particular showed a more severe phenotype. Single cell analysis unexpectedly showed OSNs expressing the MOR28 odorant receptor could be subdivided into two major clusters. We showed that at least one protocadherin is differentially expressed between OSNs coalescing on the medial and lateral glomeruli. Moreover, females expressed a slightly different complement of genes from males. These features may explain the differential effects of mutating Pcdh19 on medial and lateral glomeruli in males and females.
Collapse
Affiliation(s)
- Andrew P. Martinez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Alexander C. Chung
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Suihong Huang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Adam J. Bisogni
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Yingxin Lin
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - Yue Cao
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - Eric O. Williams
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Jin Y. Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Jean Y.H. Yang
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - David M. Lin
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
2
|
Fukuda N, Fukuda T, Percipalle P, Oda K, Takei N, Czaplinski K, Touhara K, Yoshihara Y, Sasaoka T. Axonal mRNA binding of hnRNP A/B is crucial for axon targeting and maturation of olfactory sensory neurons. Cell Rep 2023; 42:112398. [PMID: 37083330 DOI: 10.1016/j.celrep.2023.112398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Spatiotemporal control of gene expression is important for neural development and function. Here, we show that heterogeneous nuclear ribonucleoprotein (hnRNP) A/B is highly expressed in developing olfactory sensory neurons (OSNs), and its knockout results in reduction in mature OSNs and aberrant targeting of OSN axons to the olfactory bulb. RNA immunoprecipitation analysis reveals that hnRNP A/B binds to a group of mRNAs that are highly related to axon projections and synapse assembly. Approximately 11% of the identified hnRNP A/B targets, including Pcdha and Ncam2, encode cell adhesion molecules. In Hnrnpab knockout mice, PCDHA and NCAM2 levels are significantly reduced at the axon terminals of OSNs. Furthermore, deletion of the hnRNP A/B-recognition motif in the 3' UTR of Pcdha leads to impaired PCDHA expression at the OSN axon terminals. Therefore, we propose that hnRNP A/B facilitates OSN maturation and axon projection by regulating the local expression of its target genes at axon terminals.
Collapse
Affiliation(s)
- Nanaho Fukuda
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Tomoyuki Fukuda
- Niigata University Graduate School of Medical and Dental Science, Niigata 951-8510, Japan
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, UAE; Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Kanako Oda
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Nobuyuki Takei
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | - Kazushige Touhara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Toshikuni Sasaoka
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
3
|
Keable R, Hu S, Pfundstein G, Kozlova I, Su F, Du X, Yang H, Gunnersen J, Schachner M, Leshchyns'ka I, Sytnyk V. The BACE1-generated C-terminal fragment of the neural cell adhesion molecule 2 (NCAM2) promotes BACE1 targeting to Rab11-positive endosomes. Cell Mol Life Sci 2022; 79:555. [PMID: 36251052 PMCID: PMC9576659 DOI: 10.1007/s00018-022-04575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022]
Abstract
Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), also known as β-secretase, is an aspartic protease. The sorting of this enzyme into Rab11-positive recycling endosomes regulates the BACE1-mediated cleavage of its substrates, however, the mechanisms underlying this targeting remain poorly understood. The neural cell adhesion molecule 2 (NCAM2) is a substrate of BACE1. We show that BACE1 cleaves NCAM2 in cultured hippocampal neurons and NCAM2-transfected CHO cells. The C-terminal fragment of NCAM2 that comprises the intracellular domain and a small portion of NCAM2’s extracellular domain, associates with BACE1. This association is not affected in cells with inhibited endocytosis, indicating that the interaction of NCAM2 and BACE1 precedes the targeting of BACE1 from the cell surface to endosomes. In neurons and CHO cells, this fragment and BACE1 co-localize in Rab11-positive endosomes. Overexpression of full-length NCAM2 or a recombinant NCAM2 fragment containing the transmembrane and intracellular domains but lacking the extracellular domain leads to an increase in BACE1 levels in these organelles. In NCAM2-deficient neurons, the levels of BACE1 are increased at the cell surface and reduced in intracellular organelles. These effects are correlated with increased levels of the soluble extracellular domain of BACE1 in the brains of NCAM2-deficient mice, suggesting increased shedding of BACE1 from the cell surface. Of note, shedding of the extracellular domain of Sez6, a protein cleaved exclusively by BACE1, is reduced in NCAM2-deficient animals. These results indicate that the BACE1-generated fragment of NCAM2 regulates BACE1 activity by promoting the targeting of BACE1 to Rab11-positive endosomes.
Collapse
Affiliation(s)
- Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shangfeng Hu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Irina Kozlova
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Feifei Su
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jenny Gunnersen
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
4
|
Parcerisas A, Ortega-Gascó A, Pujadas L, Soriano E. The Hidden Side of NCAM Family: NCAM2, a Key Cytoskeleton Organization Molecule Regulating Multiple Neural Functions. Int J Mol Sci 2021; 22:10021. [PMID: 34576185 PMCID: PMC8471948 DOI: 10.3390/ijms221810021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
Although it has been over 20 years since Neural Cell Adhesion Molecule 2 (NCAM2) was identified as the second member of the NCAM family with a high expression in the nervous system, the knowledge of NCAM2 is still eclipsed by NCAM1. The first studies with NCAM2 focused on the olfactory bulb, where this protein has a key role in axonal projection and axonal/dendritic compartmentalization. In contrast to NCAM1, NCAM2's functions and partners in the brain during development and adulthood have remained largely unknown until not long ago. Recent studies have revealed the importance of NCAM2 in nervous system development. NCAM2 governs neuronal morphogenesis and axodendritic architecture, and controls important neuron-specific processes such as neuronal differentiation, synaptogenesis and memory formation. In the adult brain, NCAM2 is highly expressed in dendritic spines, and it regulates synaptic plasticity and learning processes. NCAM2's functions are related to its ability to adapt to the external inputs of the cell and to modify the cytoskeleton accordingly. Different studies show that NCAM2 interacts with proteins involved in cytoskeleton stability and proteins that regulate calcium influx, which could also modify the cytoskeleton. In this review, we examine the evidence that points to NCAM2 as a crucial cytoskeleton regulation protein during brain development and adulthood. This key function of NCAM2 may offer promising new therapeutic approaches for the treatment of neurodevelopmental diseases and neurodegenerative disorders.
Collapse
Affiliation(s)
- Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Alba Ortega-Gascó
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Lluís Pujadas
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
5
|
Spatiotemporal processing of neural cell adhesion molecules 1 and 2 by BACE1 in vivo. J Biol Chem 2021; 296:100372. [PMID: 33548223 PMCID: PMC7949136 DOI: 10.1016/j.jbc.2021.100372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Neural cell adhesion molecules 1 (NCAM1) and 2 (NCAM2) belong to the cell adhesion molecules of the immunoglobulin superfamily and have been shown to regulate formation, maturation, and maintenance of synapses. NCAM1 and NCAM2 undergo proteolysis, but the identity of all the proteases involved and how proteolysis is used to regulate their functions are not known. We report here that NCAM1 and NCAM2 are BACE1 substrates in vivo. NCAM1 and NCAM2 overexpressed in HEK cells were both cleaved by metalloproteinases or BACE1, and NCAM2 was also processed by γ-secretase. We identified the BACE1 cleavage site of NCAM1 (at Glu 671) and NCAM2 (at Glu 663) using mass spectrometry and site-directed mutagenesis. Next, we assessed BACE1-mediated processing of NCAM1 and NCAM2 in the mouse brain during aging. NCAM1 and NCAM2 were cleaved in the olfactory bulb of BACE1+/+ but not BACE1−/− mice at postnatal day 10 (P10), 4 and 12 months of age. In the hippocampus, a BACE1-specific soluble fragment of NCAM1 (sNCAM1β) was only detected at P10. However, we observed an accumulation of full-length NCAM1 in hippocampal synaptosomes in 4-month-old BACE1−/− mice. We also found that polysialylated NCAM1 (PSA-NCAM1) levels were increased in BACE1−/− mice at P10 and demonstrated that BACE1 cleaves both NCAM1 and PSA-NCAM1 in vitro. In contrast, we did not find evidence for BACE1-dependent NCAM2 processing in the hippocampus at any age analyzed. In summary, our data demonstrate that BACE1 differentially processes NCAM1 and NCAM2 depending on the region of brain, subcellular localization, and age in vivo.
Collapse
|
6
|
Sheng L, Leshchyns'ka I, Sytnyk V. Neural Cell Adhesion Molecule 2 (NCAM2)-Induced c-Src-Dependent Propagation of Submembrane Ca2+ Spikes Along Dendrites Inhibits Synapse Maturation. Cereb Cortex 2020. [PMID: 29522129 DOI: 10.1093/cercor/bhy041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The neural cell adhesion molecule 2 (NCAM2) is encoded by a gene on chromosome 21 in humans. NCAM2 accumulates in synapses, but its role in regulation of synapse formation remains poorly understood. We demonstrate that an increase in NCAM2 levels results in increased instability of dendritic protrusions and reduced conversion of protrusions to dendritic spines in mouse cortical neurons. NCAM2 overexpression induces an increase in the frequency of submembrane Ca2+ spikes localized in individual dendritic protrusions and promotes propagation of submembrane Ca2+ spikes over segments of dendrites or the whole dendritic tree. NCAM2-dependent submembrane Ca2+ spikes are L-type voltage-gated Ca2+ channel-dependent, and their propagation but not initiation depends on the c-Src protein tyrosine kinase. Inhibition of initiation or propagation of NCAM2-dependent submembrane Ca2+ spikes reduces the NCAM2-dependent instability of dendritic protrusions. Synaptic boutons formed on dendrites of neurons with elevated NCAM2 expression are enriched in the protein marker of immature synapses GAP43, and the number of boutons with mature activity-dependent synaptic vesicle recycling is reduced. Our results indicate that synapse maturation is inhibited in NCAM2-overexpressing neurons and suggest that changes in NCAM2 levels and altered submembrane Ca2+ dynamics can cause defects in synapse maturation in Down syndrome and other brain disorders associated with abnormal NCAM2 expression.
Collapse
Affiliation(s)
- Lifu Sheng
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Pyrski M, Tusty M, Eckstein E, Oboti L, Rodriguez-Gil DJ, Greer CA, Zufall F. P/Q Type Calcium Channel Cav2.1 Defines a Unique Subset of Glomeruli in the Mouse Olfactory Bulb. Front Cell Neurosci 2018; 12:295. [PMID: 30233329 PMCID: PMC6131590 DOI: 10.3389/fncel.2018.00295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/16/2018] [Indexed: 11/24/2022] Open
Abstract
Voltage-gated calcium (Cav) channels are a prerequisite for signal transmission at the first olfactory sensory neuron (OSN) synapse within the glomeruli of the main olfactory bulb (MOB). We showed previously that the N-type Cav channel subunit Cav2.2 is present in the vast majority of glomeruli and plays a central role in presynaptic transmitter release. Here, we identify a distinct subset of glomeruli in the MOB of adult mice that is characterized by expression of the P/Q-type channel subunit Cav2.1. Immunolocalization shows that Cav2.1+ glomeruli reside predominantly in the medial and dorsal MOB, and in the vicinity of the necklace glomerular region close to the accessory olfactory bulb. Few glomeruli are detected on the ventral and lateral MOB. Cav2.1 labeling in glomeruli colocalizes with the presynaptic marker vGlut2 in the axon terminals of OSNs. Electron microscopy shows that Cav2.1+ presynaptic boutons establish characteristic asymmetrical synapses with the dendrites of second-order neurons in the glomerular neuropil. Cav2.1+ glomeruli receive axonal input from OSNs that express molecules of canonical OSNs: olfactory marker protein, the ion channel Cnga2, and the phosphodiesterase Pde4a. In the main olfactory epithelium, Cav2.1 labels a distinct subpopulation of OSNs whose distribution mirrors the topography of the MOB glomeruli, that shows the same molecular signature, and is already present at birth. Together, these experiments identify a unique Cav2.1+ multiglomerular domain in the MOB that may form a previously unrecognized olfactory subsystem distinct from other groups of necklace glomeruli that rely on cGMP signaling mechanisms.
Collapse
Affiliation(s)
- Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Mahbuba Tusty
- Department of Neuroscience and Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Eugenia Eckstein
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Livio Oboti
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Diego J. Rodriguez-Gil
- Department of Neuroscience and Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Charles A. Greer
- Department of Neuroscience and Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
8
|
Fedotov SA, Bragina JV, Besedina NG, Danilenkova LV, Kamysheva EA, Kamyshev NG. Gene CG15630 (fipi) is involved in regulation of the interpulse interval in Drosophila courtship song. J Neurogenet 2017; 32:15-26. [PMID: 29191114 DOI: 10.1080/01677063.2017.1405000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To study the central pattern generators functioning, previously we identified genes, whose neurospecific knockdowns led to deviations in the courtship song of Drosophila melanogaster males. Reduced expression of the gene CG15630 caused a decrease in the interpulse interval. To investigate the role of CG15630, which we have called here fipi (factor of interpulse interval), in the courtship song production, at first, we have characterized fipi transcripts and protein (FIPI) in the mutant flies carrying P insertion and deletions in this gene and in flies with its RNAi knockdown. FIPI is homologous to the mammalian NCAM2 protein, an important factor of neuronal development in the olfactory system. In this study, we have revealed that local fipi knockdown in the antennal olfactory sensory neurons (OR67d and IR84a), which are responsible for reception of chemosignals modulating courtship behavior, alters the interpulse interval in the opposite directions. Thus, a proper fipi expression seems to be necessary for perception of sexual chemosignals, and the effect of fipi knockdown on IPI value depends on the type of chemoreceptor neurons affected.
Collapse
Affiliation(s)
- Sergey A Fedotov
- a Pavlov Institute of Physiology, Russian Academy of Sciences , St. Petersburg , Russia
| | - Julia V Bragina
- a Pavlov Institute of Physiology, Russian Academy of Sciences , St. Petersburg , Russia
| | - Natalia G Besedina
- a Pavlov Institute of Physiology, Russian Academy of Sciences , St. Petersburg , Russia
| | - Larisa V Danilenkova
- a Pavlov Institute of Physiology, Russian Academy of Sciences , St. Petersburg , Russia
| | - Elena A Kamysheva
- a Pavlov Institute of Physiology, Russian Academy of Sciences , St. Petersburg , Russia
| | - Nikolai G Kamyshev
- a Pavlov Institute of Physiology, Russian Academy of Sciences , St. Petersburg , Russia
| |
Collapse
|
9
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
10
|
Scholz C, Steinemann D, Mälzer M, Roy M, Arslan-Kirchner M, Illig T, Schmidtke J, Stuhrmann M. NCAM2 deletion in a boy with macrocephaly and autism: Cause, association or predisposition? Eur J Med Genet 2016; 59:493-8. [PMID: 27596683 DOI: 10.1016/j.ejmg.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 12/28/2022]
Abstract
UNLABELLED We report on an 8-year-old boy with autism spectrum disorder (ASD), speech delay, behavioural problems, disturbed sleep and macrosomia including macrocephaly carrying a microdeletion that contains the entire NCAM2 gene and no other functional genes. Other family members with the microdeletion show a large skull circumference but do not exhibit any symptoms of autism spectrum disorder. Among many ASD-candidate genes, NCAM2 has been assumed to play a pivotal role in the development of ASD because of its function in the outgrowth and bundling of neurites. Our reported case raises the questions whether the NCAM2-deletion is the true cause of the ASD or only a risk factor and whether there might be any connection in NCAM2 with skull-size KEY WORDS autism spectrum disorder, macrocephaly, neural cell adhesion molecule 2 protein (NCAM2), array comparative genomic hybridization (microarray).
Collapse
Affiliation(s)
- Caroline Scholz
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany.
| | - Doris Steinemann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Madeleine Mälzer
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Mandy Roy
- Psychiatric Clinic, Hannover Medical School, Hannover, Germany
| | | | - Thomas Illig
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany; Hannover Unified Biobank, Germany
| | - Jörg Schmidtke
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Manfred Stuhrmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Leshchyns'ka I, Liew HT, Shepherd C, Halliday GM, Stevens CH, Ke YD, Ittner LM, Sytnyk V. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nat Commun 2015; 6:8836. [PMID: 26611261 PMCID: PMC4674770 DOI: 10.1038/ncomms9836] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/09/2015] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by synapse loss due to mechanisms that remain poorly understood. We show that the neural cell adhesion molecule 2 (NCAM2) is enriched in synapses in the human hippocampus. This enrichment is abolished in the hippocampus of AD patients and in brains of mice overexpressing the human amyloid-β (Aβ) precursor protein carrying the pathogenic Swedish mutation. Aβ binds to NCAM2 at the cell surface of cultured hippocampal neurons and induces removal of NCAM2 from synapses. In AD hippocampus, cleavage of the membrane proximal external region of NCAM2 is increased and soluble extracellular fragments of NCAM2 (NCAM2-ED) accumulate. Knockdown of NCAM2 expression or incubation with NCAM2-ED induces disassembly of GluR1-containing glutamatergic synapses in cultured hippocampal neurons. Aβ-dependent disassembly of GluR1-containing synapses is inhibited in neurons overexpressing a cleavage-resistant mutant of NCAM2. Our data indicate that Aβ-dependent disruption of NCAM2 functions in AD hippocampus contributes to synapse loss. Understanding how ß-amyloid contributes to synapse loss and dysfunction is a central goal of Alzheimer's disease research. Here, Leshchyns'ka et al. identify a novel mechanism by which Aß disassembles hippocampal glutamatergic synapses via cleavage of a neural cell adhesion molecule 2 (NCAM2).
Collapse
Affiliation(s)
- Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Heng Tai Liew
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Claire Shepherd
- Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
| | - Claire H Stevens
- Neuroscience Research Australia, Sydney, New South Wales 2031, Australia.,Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yazi D Ke
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lars M Ittner
- Neuroscience Research Australia, Sydney, New South Wales 2031, Australia.,Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
12
|
Deleyrolle L, Sabourin JC, Rothhut B, Fujita H, Guichet PO, Teigell M, Ripoll C, Chauvet N, Perrin F, Mamaeva D, Noda T, Mori K, Yoshihara Y, Hugnot JP. OCAM regulates embryonic spinal cord stem cell proliferation by modulating ErbB2 receptor. PLoS One 2015; 10:e0122337. [PMID: 25875008 PMCID: PMC4395419 DOI: 10.1371/journal.pone.0122337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/10/2015] [Indexed: 01/07/2023] Open
Abstract
The proliferation and differentiation of neural stem cells are tightly controlled by intrinsic and extrinsic cues. Cell adhesion molecules are increasingly recognized as regulators of these processes. Here we report the expression of the olfactory cell adhesion molecule (OCAM/NCAM2/RNCAM) during mouse spinal cord development and in neural stem cells cultured as neurospheres. OCAM is also weakly expressed in the dormant adult stem cell niche around the central canal and is overexpressed after spinal cord injury. Both transmembrane (TM) and glycosylphosphatidylinositol (GPI)-linked isoforms are present in neurospheres. Electron microscopy and internalisation experiments revealed a dynamic trafficking of OCAM between the membrane and intracellular compartments. After differentiation, OCAM remains in neurons and oligodendrocytes whereas no expression is detected in astrocytes. Using OCAM knockout (KO) mice, we found that mutant spinal cord stem cells showed an increased proliferation and self-renewal rates although no effect on differentiation was observed. This effect was reversed by lentivirus-mediated re-introduction of OCAM. Mechanistically, we identified the ErbB2/Neu/HER2 protein as being implicated in the enhanced proliferation of mutant cells. ErbB2 protein expression and phosphorylation level were significantly increased in KO cells whereas no difference was observed at the mRNA level. Overexpression of ErbB2 in wild-type and mutant cells also increased their growth while reintroduction of OCAM in mutant cells reduced the level of phosphorylated ErbB2. These results indicate that OCAM exerts a posttranscriptional control on the ErbB2 signalling in spinal cord stem cells. This study adds further support for considering cell adhesion molecules as regulators of the ErbB signalling.
Collapse
Affiliation(s)
- Loïc Deleyrolle
- Department of Neurosurgery, College of Medicine, University of Florida Gainesville, Gainesville, Florida, United States of America
| | | | - Bernard Rothhut
- INSERM U1051, Institute for Neuroscience, Hôpital Saint Eloi, Montpellier, France
- * E-mail:
| | | | | | - Marisa Teigell
- INSERM U1051, Institute for Neuroscience, Hôpital Saint Eloi, Montpellier, France
| | - Chantal Ripoll
- INSERM U1051, Institute for Neuroscience, Hôpital Saint Eloi, Montpellier, France
| | - Norbert Chauvet
- INSERM U661, Department of Endocrinology, Institute of Functional Genomics, Montpellier, France
- University of Montpellier 2, Montpellier, France
| | - Florence Perrin
- INSERM U1051, Institute for Neuroscience, Hôpital Saint Eloi, Montpellier, France
| | - Daria Mamaeva
- INSERM U1051, Institute for Neuroscience, Hôpital Saint Eloi, Montpellier, France
| | - Tetsuo Noda
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensaku Mori
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Jean-Philippe Hugnot
- INSERM U1051, Institute for Neuroscience, Hôpital Saint Eloi, Montpellier, France
- University of Montpellier 2, Montpellier, France
| |
Collapse
|
13
|
Neural cell adhesion molecule 2 promotes the formation of filopodia and neurite branching by inducing submembrane increases in Ca2+ levels. J Neurosci 2015; 35:1739-52. [PMID: 25632147 DOI: 10.1523/jneurosci.1714-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Changes in expression of the neural cell adhesion molecule 2 (NCAM2) have been proposed to contribute to neurodevelopmental disorders in humans. The role of NCAM2 in neuronal differentiation remains, however, poorly understood. Using genetically encoded Ca(2+) reporters, we show that clustering of NCAM2 at the cell surface of mouse cortical neurons induces submembrane [Ca(2+)] spikes, which depend on the L-type voltage-dependent Ca(2+) channels (VDCCs) and require activation of the protein tyrosine kinase c-Src. We also demonstrate that clustering of NCAM2 induces L-type VDCC- and c-Src-dependent activation of CaMKII. NCAM2-dependent submembrane [Ca(2+)] spikes colocalize with the bases of filopodia. NCAM2 activation increases the density of filopodia along neurites and neurite branching and outgrowth in an L-type VDCC-, c-Src-, and CaMKII-dependent manner. Our results therefore indicate that NCAM2 promotes the formation of filopodia and neurite branching by inducing Ca(2+) influx and CaMKII activation. Changes in NCAM2 expression in Down syndrome and autistic patients may therefore contribute to abnormal neurite branching observed in these disorders.
Collapse
|
14
|
Gu Z, Imai F, Kim IJ, Fujita H, Katayama KI, Mori K, Yoshihara Y, Yoshida Y. Expression of the immunoglobulin superfamily cell adhesion molecules in the developing spinal cord and dorsal root ganglion. PLoS One 2015; 10:e0121550. [PMID: 25826454 PMCID: PMC4380438 DOI: 10.1371/journal.pone.0121550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/03/2015] [Indexed: 01/22/2023] Open
Abstract
Cell adhesion molecules belonging to the immunoglobulin superfamily (IgSF) control synaptic specificity through hetero- or homophilic interactions in different regions of the nervous system. In the developing spinal cord, monosynaptic connections of exquisite specificity form between proprioceptive sensory neurons and motor neurons, however, it is not known whether IgSF molecules participate in regulating this process. To determine whether IgSF molecules influence the establishment of synaptic specificity in sensory-motor circuits, we examined the expression of 157 IgSF genes in the developing dorsal root ganglion (DRG) and spinal cord by in situ hybridization assays. We find that many IgSF genes are expressed by sensory and motor neurons in the mouse developing DRG and spinal cord. For instance, Alcam, Mcam, and Ocam are expressed by a subset of motor neurons in the ventral spinal cord. Further analyses show that Ocam is expressed by obturator but not quadriceps motor neurons, suggesting that Ocam may regulate sensory-motor specificity in these sensory-motor reflex arcs. Electrophysiological analysis shows no obvious defects in synaptic specificity of monosynaptic sensory-motor connections involving obturator and quadriceps motor neurons in Ocam mutant mice. Since a subset of Ocam+ motor neurons also express Alcam, Alcam or other functionally redundant IgSF molecules may compensate for Ocam in controlling sensory-motor specificity. Taken together, these results reveal that IgSF molecules are broadly expressed by sensory and motor neurons during development, and that Ocam and other IgSF molecules may have redundant functions in controlling the specificity of sensory-motor circuits.
Collapse
Affiliation(s)
- Zirong Gu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Fumiyasu Imai
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - In Jung Kim
- Department of Ophthalmology and Visual Science and Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | | | - Kei ichi Katayama
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kensaku Mori
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
15
|
Dishevelled proteins are associated with olfactory sensory neuron presynaptic terminals. PLoS One 2013; 8:e56561. [PMID: 23437169 PMCID: PMC3577874 DOI: 10.1371/journal.pone.0056561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/11/2013] [Indexed: 11/28/2022] Open
Abstract
Olfactory sensory neurons (OSNs) project their axons from the olfactory epithelium toward the olfactory bulb (OB) in a heterogeneous and unsorted arrangement. However, as the axons approach the glomerular layer of the OB, axons from OSNs expressing the same odorant receptor (OR) sort and converge to form molecularly homogeneous glomeruli. Axon guidance cues, cell adhesion molecules, and OR induced activity have been implicated in the final targeting of OSN axons to specific glomeruli. Less understood, and often controversial, are the mechanisms used by OSN axons to initially navigate from the OE toward the OB. We previously demonstrated a role for Wnt and Frizzled (Fz) molecules in OSN axon extension and organization within the olfactory nerve. Building on that we now turned our attention to the downstream signaling cascades from Wnt-Fz interactions. Dishevelled (Dvl) is a key molecule downstream of Fz receptors. Three isoforms of Dvl with specific as well as overlapping functions are found in mammals. Here, we show that Dvl-1 expression is restricted to OSNs in the dorsal recess of the nasal cavity, and labels a unique subpopulation of glomeruli. Dvl-2 and Dvl-3 have a widespread distribution in both the OE and OB. Both Dvl-1 and Dvl-2 are associated with intra-glomerular pre-synaptic OSN terminals, suggesting a role in synapse formation/stabilization. Moreover, because Dvl proteins were observed in all OSN axons, we hypothesize that they are important determinants of OSN cell differentiation and axon extension.
Collapse
|
16
|
Thompson MG, Foley DA, Colley KJ. The polysialyltransferases interact with sequences in two domains of the neural cell adhesion molecule to allow its polysialylation. J Biol Chem 2013; 288:7282-93. [PMID: 23341449 DOI: 10.1074/jbc.m112.438374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) is the major substrate for the polysialyltransferases (polySTs), ST8SiaII/STX and ST8SiaIV/PST. The polysialylation of NCAM N-glycans decreases cell adhesion and alters signaling. Previous work demonstrated that the first fibronectin type III repeat (FN1) of NCAM is required for polyST recognition and the polysialylation of the N-glycans on the adjacent Ig5 domain. In this work, we highlight the importance of an FN1 acidic patch in polyST recognition and also reveal that the polySTs are required to interact with sequences in the Ig5 domain for polysialylation to occur. We find that features of the Ig5 domain of the olfactory cell adhesion molecule (OCAM) are responsible for its lack of polysialylation. Specifically, two basic OCAM Ig5 residues (Lys and Arg) found near asparagines equivalent to those carrying the polysialylated N-glycans in NCAM substantially decrease or eliminate polysialylation when used to replace the smaller and more neutral residues (Ser and Asn) in analogous positions in NCAM Ig5. This decrease in polysialylation does not reflect altered glycosylation but instead is correlated with a decrease in polyST-NCAM binding. In addition, inserting non-conserved OCAM sequences into NCAM Ig5, including an "extra" N-glycosylation site, decreases or completely blocks NCAM polysialylation. Taken together, these results indicate that the polySTs not only recognize an acidic patch in the FN1 domain of NCAM but also must contact sequences in the Ig5 domain for polysialylation of Ig5 N-glycans to occur.
Collapse
Affiliation(s)
- Matthew G Thompson
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
17
|
Keydar I, Ben-Asher E, Feldmesser E, Nativ N, Oshimoto A, Restrepo D, Matsunami H, Chien MS, Pinto JM, Gilad Y, Olender T, Lancet D. General olfactory sensitivity database (GOSdb): candidate genes and their genomic variations. Hum Mutat 2013; 34:32-41. [PMID: 22936402 PMCID: PMC3627721 DOI: 10.1002/humu.22212] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 08/24/2012] [Indexed: 12/22/2022]
Abstract
Genetic variations in olfactory receptors likely contribute to the diversity of odorant-specific sensitivity phenotypes. Our working hypothesis is that genetic variations in auxiliary olfactory genes, including those mediating transduction and sensory neuronal development, may constitute the genetic basis for general olfactory sensitivity (GOS) and congenital general anosmia (CGA). We thus performed a systematic exploration for auxiliary olfactory genes and their documented variation. This included a literature survey, seeking relevant functional in vitro studies, mouse gene knockouts and human disorders with olfactory phenotypes, as well as data mining in published transcriptome and proteome data for genes expressed in olfactory tissues. In addition, we performed next-generation transcriptome sequencing (RNA-seq) of human olfactory epithelium and mouse olfactory epithelium and bulb, so as to identify sensory-enriched transcripts. Employing a global score system based on attributes of the 11 data sources utilized, we identified a list of 1,680 candidate auxiliary olfactory genes, of which 450 are shortlisted as having higher probability of a functional role. For the top-scoring 136 genes, we identified genomic variants (probably damaging single nucleotide polymorphisms, indels, and copy number deletions) gleaned from public variation repositories. This database of genes and their variants should assist in rationalizing the great interindividual variation in human overall olfactory sensitivity (http://genome.weizmann.ac.il/GOSdb).
Collapse
Affiliation(s)
- Ifat Keydar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Edna Ben-Asher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Nativ
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Arisa Oshimoto
- Department of Cell and Developmental Biology, Neuroscience Program, and Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program, and Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Ming-Shan Chien
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Jayant M. Pinto
- Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, Illinois
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
18
|
β3GnT2 null mice exhibit defective accessory olfactory bulb innervation. Mol Cell Neurosci 2012; 52:73-86. [PMID: 23006775 DOI: 10.1016/j.mcn.2012.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 08/14/2012] [Accepted: 09/14/2012] [Indexed: 01/19/2023] Open
Abstract
Vomeronasal sensory neurons (VSNs) extend axons to the accessory olfactory bulb (AOB) where they form synaptic connections that relay pheromone signals to the brain. The projections of apical and basal VSNs segregate in the AOB into anterior (aAOB) and posterior (pAOB) compartments. Although some aspects of this organization exhibit fundamental similarities with the main olfactory system, the mechanisms that regulate mammalian vomeronasal targeting are not as well understood. In the olfactory epithelium (OE), the glycosyltransferase β3GnT2 maintains expression of axon guidance cues required for proper glomerular positioning and neuronal survival. We show here that β3GnT2 also regulates guidance and adhesion molecule expression in the vomeronasal system in ways that are partially distinct from the OE. In wildtype mice, ephrinA5(+) axons project to stereotypic subdomains in both the aAOB and pAOB compartments. This pattern is dramatically altered in β3GnT2(-/-) mice, where ephrinA5 is upregulated exclusively on aAOB axons. Despite this, apical and basal VSN projections remain strictly segregated in the null AOB, although some V2r1b axons that normally project to the pAOB inappropriately innervate the anterior compartment. These fibers appear to arise from ectopic expression of V2r1b receptors in a subset of apical VSNs. The homotypic adhesion molecules Kirrel2 and OCAM that facilitate axon segregation and glomerular compartmentalization in the main olfactory bulb are ablated in the β3GnT2(-/-) aAOB. This loss is accompanied by a two-fold increase in the total number of V2r1b glomeruli and a failure to form morphologically distinct glomeruli in the anterior compartment. These results identify a novel function for β3GnT2 glycosylation in maintaining expression of layer-specific vomeronasal receptors, as well as adhesion molecules required for proper AOB glomerular formation.
Collapse
|
19
|
Winther M, Berezin V, Walmod PS. NCAM2/OCAM/RNCAM: Cell adhesion molecule with a role in neuronal compartmentalization. Int J Biochem Cell Biol 2012; 44:441-6. [DOI: 10.1016/j.biocel.2011.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
|
20
|
Ichinohe N. Small-scale module of the rat granular retrosplenial cortex: an example of the minicolumn-like structure of the cerebral cortex. Front Neuroanat 2012; 5:69. [PMID: 22275884 PMCID: PMC3254062 DOI: 10.3389/fnana.2011.00069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/28/2011] [Indexed: 11/23/2022] Open
Abstract
Structures associated with the small-scale module called “minicolumn” can be observed frequently in the cerebral cortex. However, the description of functional characteristics remains obscure. A significant confounding factor is the marked variability both in the definition of a minicolumn and in the diagnostic markers for identifying a minicolumn (see for review, Jones, 2000; DeFelipe et al., 2002; Rockland and Ichinohe, 2004). Within a minicolumn, cell columns are easily visualized by conventional Nissl staining. Dendritic bundles were first discovered with Golgi methods, but are more easily seen with microtubule-associated protein 2 immunohistochemistry. Myelinated axon bundles can be seen by Tau immunohistochemistry or myelin staining. Axon bundles of double bouquet cell can be seen by calbindin immunohistochemistry. The spatial interrelationship among these morphological elements is more complex than expected and is neither clear nor unanimously agreed upon. In this review, I would like to focus first on the minicolumnar structure found in layers 1 and 2 of the rat granular retrosplenial cortex. This modular structure was first discovered as a combination of prominent apical dendritic bundles from layer 2 pyramidal neurons and spatially matched thalamocortical patchy inputs (Wyss et al., 1990). Further examination showed more intricate components of this modular structure, which will be reviewed in this paper. Second, the postnatal development of this structure and potential molecular players for its formation will be reviewed. Thirdly, I will discuss how this modular organization is transformed in mutant rodents with a disorganized layer structure in the cerebral cortex (i.e., reeler mouse and shaking rat Kawasaki). Lastly, the potential significance of this type of module will be discussed.
Collapse
Affiliation(s)
- Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry Kodaira, Tokyo, Japan
| |
Collapse
|
21
|
Borisovska M, McGinley MJ, Bensen A, Westbrook GL. Loss of olfactory cell adhesion molecule reduces the synchrony of mitral cell activity in olfactory glomeruli. J Physiol 2011; 589:1927-41. [PMID: 21486802 DOI: 10.1113/jphysiol.2011.206276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Odours generate activity in olfactory receptor neurons, whose axons contact the dendritic tufts of mitral cells within olfactory bulb glomeruli. These axodendritic synapses are anatomically separated from dendrodendritic synapses within each glomerulus. Mitral cells within a glomerulus show highly synchronized activity as assessed with whole-cell recording from pairs of mitral cells. We examined glomerular activity in mice lacking the olfactory cell adhesion molecule (OCAM). Glomeruli in mice lacking OCAM show a redistribution of synaptic subcompartments, but the total area occupied by axonal inputs was similar to wild-type mice. Stimulation of olfactory nerve bundles showed that excitatory synaptic input to mitral cells as well as dendrodendritic inhibition was unaffected in the knockout. However, correlated spiking in mitral cells was significantly reduced, as was electrical coupling between apical dendrites. To analyse slow network dynamics we induced slow oscillations with a glutamate uptake blocker. Evoked and spontaneous slow oscillations in mitral cells and external tufted cells were broader and had multiple peaks in OCAM knockout mice, indicating that synchrony of slow glomerular activity was also reduced. To assess the degree of shared activity between mitral cells under physiological conditions, we analysed spontaneous sub-threshold voltage oscillations using coherence analysis. Coherent activity was markedly reduced in cells from OCAM knockout mice across a broad range of frequencies consistent with a decrease in tightly time-locked activity. We suggest that synchronous activity within each glomerulus is dependent on segregation of synaptic subcompartments.
Collapse
Affiliation(s)
- Maria Borisovska
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
22
|
McIntyre JC, Titlow WB, McClintock TS. Axon growth and guidance genes identify nascent, immature, and mature olfactory sensory neurons. J Neurosci Res 2011; 88:3243-56. [PMID: 20882566 DOI: 10.1002/jnr.22497] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurogenesis of projection neurons requires that axons be initiated, extended, and connected. Differences in the expression of axon growth and guidance genes must drive these events, but comprehensively characterizing these differences in a single neuronal type has not been accomplished. Guided by a catalog of gene expression in olfactory sensory neurons (OSNs), in situ hybridization and immunohistochemistry revealed that Cxcr4 and Dbn1, two axon initiation genes, marked the developmental transition from basal progenitor cells to immature OSNs in the olfactory epithelium. The CXCR4 immunoreactivity of these nascent OSNs overlapped partially with markers of proliferation of basal progenitor cells and partially with immunoreactivity for GAP43, the canonical marker of immature OSNs. Intracellular guidance cue signaling transcripts Ablim1, Crmp1, Dypsl2, Dpysl3, Dpysl5, Gap43, Marcskl1, and Stmn1-4 were specific to, or much more abundant in, the immature OSN layer. Receptors that mediate axonal inhibition or repulsion tended to be expressed in both immature and mature OSNs (Plxna1, Plxna4, Nrp2, Efna5) or specifically in mature OSNs (Plxna3, Unc5b, Efna3, Epha5, Epha7), although some were specific to immature OSNs (Plxnb1, Plxnb2, Plxdc2, Nrp1). Cell adhesion molecules were expressed either by both immature and mature OSNs (Dscam, Ncam1, Ncam2, Nrxn1) or solely by immature OSNs (Chl1, Nfasc1, Dscaml1). Given the loss of intracellular signaling protein expression, the continued expression of guidance cue receptors in mature OSNs is consistent with a change in the role of these receptors, perhaps to sending signals back to the cell body and nucleus.
Collapse
Affiliation(s)
- Jeremy C McIntyre
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | |
Collapse
|
23
|
Hyperpolarization-activated cyclic nucleotide-gated channels in olfactory sensory neurons regulate axon extension and glomerular formation. J Neurosci 2011; 30:16498-508. [PMID: 21147989 DOI: 10.1523/jneurosci.4225-10.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory sensory neuron (OSN) axon targeting/coalescence (Mombaerts et al., 1996; Wang et al., 1998; Feinstein and Mombaerts, 2004), recent work showed that G protein activation alone is sufficient to induce OSN axon coalescence (Imai et al., 2006; Chesler et al., 2007), suggesting an activity-dependent mechanism in glomerular development. Consistent with these data, OSN axon projections and convergence are perturbed in mice deficient for adenylyl cyclase III, which is downstream from the OR and catalyzes the conversion of ATP to cAMP. However, in cyclic nucleotide-gated (CNG) channel knock-out mice OSN axons are only transiently perturbed (Lin et al., 2000), suggesting that the CNG channel may not be the sole target of cAMP. This prompted us to investigate an alternative channel, the hyperpolarization-activated, cyclic nucleotide-gated cation channel (HCN), as a potential developmental target of cAMP in OSNs. Here, we demonstrate that HCN channels are developmentally precocious in OSNs and therefore are plausible candidates for affecting OSN axon development. Inhibition of HCN channels in dissociated OSNs significantly reduced neurite outgrowth. Moreover, in HCN1 knock-out mice the formation of glomeruli was delayed in parallel with perturbations of axon organization in the olfactory nerve. These data support the hypothesis that the outgrowth and coalescence of OSN axons is, at least in part, subject to activity-dependent mechanisms mediated via HCN channels.
Collapse
|
24
|
Miller AM, Maurer LR, Zou DJ, Firestein S, Greer CA. Axon fasciculation in the developing olfactory nerve. Neural Dev 2010; 5:20. [PMID: 20723208 PMCID: PMC2936880 DOI: 10.1186/1749-8104-5-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/19/2010] [Indexed: 11/10/2022] Open
Abstract
Olfactory sensory neuron (OSN) axons exit the olfactory epithelium (OE) and extend toward the olfactory bulb (OB) where they coalesce into glomeruli. Each OSN expresses only 1 of approximately 1,200 odor receptors (ORs). OSNs expressing the same OR are distributed in restricted zones of the OE. However, within a zone, the OSNs expressing a specific OR are not contiguous - distribution appears stochastic. Upon reaching the OB the OSN axons expressing the same OR reproducibly coalesce into two to three glomeruli. While ORs appear necessary for appropriate convergence of axons, a variety of adhesion associated molecules and activity-dependent mechanisms are also implicated. Recent data suggest pre-target OSN axon sorting may influence glomerular convergence. Here, using regional and OR-specific markers, we addressed the spatio-temporal properties associated with the onset of homotypic fasciculation in embryonic mice and assessed the degree to which subpopulations of axons remain segregated as they extend toward the nascent OB. We show that immediately upon crossing the basal lamina, axons uniformly turn sharply, usually at an approximately 90° angle toward the OB. Molecularly defined subpopulations of axons show evidence of spatial segregation within the nascent nerve by embryonic day 12, within 48 hours of the first OSN axons crossing the basal lamina, but at least 72 hours before synapse formation in the developing OB. Homotypic fasciculation of OSN axons expressing the same OR appears to be a hierarchical process. While regional segregation occurs in the mesenchyme, the final convergence of OR-specific subpopulations does not occur until the axons reach the inner nerve layer of the OB.
Collapse
Affiliation(s)
- Alexandra M Miller
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
25
|
Kulahin N, Walmod PS. The neural cell adhesion molecule NCAM2/OCAM/RNCAM, a close relative to NCAM. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:403-20. [PMID: 20017036 DOI: 10.1007/978-1-4419-1170-4_25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Structural basis for the polysialylation of the neural cell adhesion molecule. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:111-26. [PMID: 20017018 DOI: 10.1007/978-1-4419-1170-4_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
27
|
de Castro F. Wiring Olfaction: The Cellular and Molecular Mechanisms that Guide the Development of Synaptic Connections from the Nose to the Cortex. Front Neurosci 2009; 3:52. [PMID: 20582279 PMCID: PMC2858608 DOI: 10.3389/neuro.22.004.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 11/04/2009] [Indexed: 12/27/2022] Open
Abstract
Within the central nervous system, the olfactory system fascinates by its developmental and physiological particularities, and is one of the most studied models to understand the mechanisms underlying the guidance of growing axons to their appropriate targets. A constellation of contact-mediated (laminins, CAMs, ephrins, etc.) and secreted mechanisms (semaphorins, slits, growth factors, etc.) are known to play different roles in the establishment of synaptic interactions between the olfactory epithelium, olfactory bulb (OB) and olfactory cortex. Specific mechanisms of this system (including the amazing family of about 1000 different olfactory receptors) have been also proposed. In the last years, different reviews have focused in partial sights, specially in the mechanisms involved in the formation of the olfactory nerve, but a detailed review of the mechanisms implicated in the development of the connections among the different olfactory structures (olfactory epithelium, OB, olfactory cortex) remains to be written. In the present work, we afford this systematic review: the different cellular and molecular mechanisms which rule the formation of the olfactory nerve, the lateral olfactory tract and the intracortical connections, as well as the few data available regarding the accessory olfactory system. These mechanisms are compared, and the implications of the differences and similarities discussed in this fundamental scenario of ontogeny.
Collapse
Affiliation(s)
- Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| |
Collapse
|
28
|
Kosaka K, Sawai K, Tanaka C, Imafuji M, Kamei A, Kosaka T. Distinct domanial and lamellar distribution of clustered lipofuscin granules in microglia in the main olfactory bulb of young mice. Neurosci Res 2009; 65:286-95. [PMID: 19666062 DOI: 10.1016/j.neures.2009.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/14/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
Abstract
Lipofuscin granules are generally considered as age-pigment. However, we encountered numerous large irregular clusters of lipofuscin granules in the olfactory nerve layer and glomerular layer of the main olfactory bulb (MOB) of young adult and even juvenile mice of C57BL/6J strain. Those numerous autofluorescent irregular lipofuscin granules were contained in the cytoplasm of microglial cells. Importantly they showed a prominent pattern of distribution; that is, they were rather restricted to the OCAM positive ventro-lateral domain (V-domain) of the MOB but few in the OCAM negative dorso-medial domain (D-domain), even when microglia distributed rather homogeneously in both OCAM positive V-domain and OCAM negative D-domain. Those lipofuscin granules were not seen in MOBs of 10 days and 2w old C57BL mice, but usually encountered in the MOBs of 3w old mice. Similar clusters of lipofuscin granules in the olfactory nerve layer and glomerular layer were also encountered in BALB/c strain, and, although less prominent, in ICR and ddY strains. However, they were not encountered in young adult rats of three strains, Wistar, Sprague-Dawley and Long-Evans, indicating one of prominent species differences between mice and rats.
Collapse
Affiliation(s)
- Katsuko Kosaka
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Murrey HE, Ficarro SB, Krishnamurthy C, Domino SE, Peters EC, Hsieh-Wilson LC. Identification of the plasticity-relevant fucose-alpha(1-2)-galactose proteome from the mouse olfactory bulb. Biochemistry 2009; 48:7261-70. [PMID: 19527073 PMCID: PMC2717711 DOI: 10.1021/bi900640x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/15/2009] [Indexed: 01/29/2023]
Abstract
Fucose-alpha(1-2)-galactose [Fucalpha(1-2)Gal] sugars have been implicated in the molecular mechanisms that underlie neuronal development, learning, and memory. However, an understanding of their precise roles has been hampered by a lack of information regarding Fucalpha(1-2)Gal glycoproteins. Here, we report the first proteomic studies of this plasticity-relevant epitope. We identify five classes of putative Fucalpha(1-2)Gal glycoproteins: cell adhesion molecules, ion channels and solute carriers/transporters, ATP-binding proteins, synaptic vesicle-associated proteins, and mitochondrial proteins. In addition, we show that Fucalpha(1-2)Gal glycoproteins are enriched in the developing mouse olfactory bulb (OB) and exhibit a distinct spatiotemporal expression that is consistent with the presence of a "glycocode" to help direct olfactory sensory neuron (OSN) axonal pathfinding. We find that expression of Fucalpha(1-2)Gal sugars in the OB is regulated by the alpha(1-2)fucosyltransferase FUT1. FUT1-deficient mice exhibit developmental defects, including fewer and smaller glomeruli and a thinner olfactory nerve layer, suggesting that fucosylation contributes to OB development. Our findings significantly expand the number of Fucalpha(1-2)Gal glycoproteins and provide new insights into the molecular mechanisms by which fucosyl sugars contribute to neuronal processes.
Collapse
Affiliation(s)
- Heather E. Murrey
- Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Scott B. Ficarro
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121
| | - Chithra Krishnamurthy
- Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Steven E. Domino
- Department of Obstetrics and Gynecology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Eric C. Peters
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121
| | - Linda C. Hsieh-Wilson
- Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
30
|
Richard M, Sacquet J, Jany M, Schweitzer A, Jourdan F, Andrieux A, Pellier-Monnin V. STOP proteins contribute to the maturation of the olfactory system. Mol Cell Neurosci 2009; 41:120-34. [PMID: 19236915 DOI: 10.1016/j.mcn.2009.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 01/13/2009] [Accepted: 02/06/2009] [Indexed: 01/09/2023] Open
Abstract
Regulation of microtubule dynamics is crucial for axon growth and guidance as well as for the establishment of synaptic connections. STOPs (Stable Tubule Only Polypeptides) are microtubule-associated proteins that regulate microtubule stabilization but are also able to interact with actin or Golgi membranes. Here, we have investigated the involvement of STOPs during the development of the olfactory system. We first describe the spatio-temporal expression patterns of N- and E-STOP, the two neuronal-specific isoforms of STOP. E- and N-STOP are expressed in the axonal compartment of olfactory sensory neurons, but are differentially regulated during development. Interestingly, each neuronal isoform displays a specific gradient distribution within the olfactory nerve layer. Then, we have examined the development of the olfactory system in the absence of STOPs. Olfactory axons display a normal outgrowth and targeting in STOP-null mice, but maturation of the synapses in the glomerular neuropil is altered.
Collapse
Affiliation(s)
- Marion Richard
- Laboratoire Neurosciences Sensorielles, Comportement, Cognition, CNRS-UMR 5020, Université de Lyon, Lyon 1, F-69366, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Le Pichon CE, Valley MT, Polymenidou M, Chesler AT, Sagdullaev BT, Aguzzi A, Firestein S. Olfactory behavior and physiology are disrupted in prion protein knockout mice. Nat Neurosci 2008; 12:60-9. [PMID: 19098904 PMCID: PMC2704296 DOI: 10.1038/nn.2238] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 11/06/2008] [Indexed: 11/25/2022]
Abstract
The prion protein PrPC is infamous for its role in disease, yet its normal physiological function remains unknown. Here we report a novel behavioral phenotype of PrP−/− mice in an odor-guided task. This phenotype is manifest in three PrP knockout lines on different genetic backgrounds, strong evidence it is specific to the lack of PrPC rather than other genetic factors. PrP−/− mice also display altered behavior in a second olfactory task, suggesting the phenotype is olfactory specific. Furthermore, PrPC deficiency affects oscillatory activity in the deep layers of the main olfactory bulb, as well as dendrodendritic synaptic transmission between olfactory bulb granule and mitral cells. Importantly, both the behavioral and electrophysiological alterations found in PrP−/− mice are rescued by transgenic neuronal-specific expression of PrPC. These data suggest a critical role for PrPC in the normal processing of sensory information by the olfactory system.
Collapse
Affiliation(s)
- Claire E Le Pichon
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Shay EL, Greer CA, Treloar HB. Dynamic expression patterns of ECM molecules in the developing mouse olfactory pathway. Dev Dyn 2008; 237:1837-50. [PMID: 18570250 DOI: 10.1002/dvdy.21595] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Olfactory sensory neuron (OSN) axons follow stereotypic spatio-temporal paths in the establishment of the olfactory pathway. Extracellular matrix (ECM) molecules are expressed early in the developing pathway and are proposed to have a role in its initial establishment. During later embryonic development, OSNs sort out and target specific glomeruli to form precise, complex topographic projections. We hypothesized that ECM cues may help to establish this complex topography. The aim of this study was to characterize expression of ECM molecules during the period of glomerulogenesis, when synaptic contacts are forming. We examined expression of laminin-1, perlecan, tenascin-C, and CSPGs and found a coordinated pattern of expression of these cues in the pathway. These appear to restrict axons to the pathway while promoting axon outgrowth within. Thus, ECM molecules are present in dynamic spatio-temporal positions to affect OSN axons as they navigate to the olfactory bulb and establish synapses.
Collapse
Affiliation(s)
- Elaine L Shay
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8082, USA
| | | | | |
Collapse
|
33
|
Richard M, Sacquet J, Jourdan F, Pellier-Monnin V. Spatio-temporal expression pattern of receptors for myelin-associated inhibitors in the developing rat olfactory system. Brain Res 2008; 1252:52-65. [PMID: 19063867 DOI: 10.1016/j.brainres.2008.11.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/03/2008] [Accepted: 11/10/2008] [Indexed: 12/11/2022]
Abstract
The myelin-associated inhibitory proteins (Nogo-A, MAG and OMgp) that prevent axon regeneration in adult CNS, mediate their effects via a receptor referred as NgR1. Beside their inhibitory role in the adult CNS, Nogo-A and NgR1 might also be functionally involved in the developing nervous system. At the present time, no detailed study is available regarding either the onset of NgR1 expression during development or its spatio-temporal pattern of expression relative to the presence of Nogo-A. Two homologs of NgR1, NgR2 and NgR3, have been recently identified, but their function in the nervous system is still unknown in adult as well as during development. We have examined the spatio-temporal expression pattern of both NgR1, NgR2 and NgR3 mRNAs and corresponding proteins in the developing rat olfactory system using in situ hybridization and immunohistochemistry. From E15-E16 onwards, NgR1 mRNA was expressed by differentiating neurons in both the olfactory epithelium and the olfactory bulb. At all developmental stages, including adult animals, NgR1 protein was preferentially targeted to olfactory axons emerging from the olfactory epithelium. Using double-immunostainings in the postnatal olfactory mucosa, we confirm the neuronal localization of NgR1 and its preferential distribution along the olfactory axons. The NgR2 and NgR3 transcripts and their proteins display similar expression profiles in the olfactory system. Together, our data suggest that, in non-pathological conditions, NgR1 and its homologs may play a role in axon outgrowth in the rat olfactory system and may be relevant for the confinement of neural projections within the developing olfactory bulb.
Collapse
Affiliation(s)
- Marion Richard
- Laboratoire Neurosciences Sensorielles, Comportement, Cognition, CNRS-UMR 5020, Université de Lyon, Lyon 1, F-69366, France.
| | | | | | | |
Collapse
|
34
|
Tran H, Chen H, Walz A, Posthumus JC, Gong Q. Influence of olfactory epithelium on mitral/tufted cell dendritic outgrowth. PLoS One 2008; 3:e3816. [PMID: 19043569 PMCID: PMC2583930 DOI: 10.1371/journal.pone.0003816] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 11/07/2008] [Indexed: 12/14/2022] Open
Abstract
Stereotypical connections between olfactory sensory neuron axons and mitral cell dendrites in the olfactory bulb establish the first synaptic relay for olfactory perception. While mechanisms of olfactory sensory axon targeting are reported, molecular regulation of mitral cell dendritic growth and refinement are unclear. During embryonic development, mitral cell dendritic distribution overlaps with olfactory sensory axon terminals in the olfactory bulb. In this study, we investigate whether olfactory sensory neurons in the olfactory epithelium influence mitral cell dendritic outgrowth in vitro. We report a soluble trophic activity in the olfactory epithelium conditioned medium which promotes mitral/tufted cell neurite outgrowth. While the trophic activity is present in both embryonic and postnatal olfactory epithelia, only embryonic but not postnatal mitral/tufted cells respond to this activity. We show that BMP2, 5 and 7 promote mitral/tufted cells neurite outgrowth. However, the BMP antagonist, Noggin, fails to neutralize the olfactory epithelium derived neurite growth promoting activity. We provide evidence that olfactory epithelium derived activity is a protein factor with molecular weight between 50–100 kD. We also observed that Follistatin can effectively neutralize the olfactory epithelium derived activity, suggesting that TGF-beta family proteins are involved to promote mitral/tufted dendritic elaboration.
Collapse
Affiliation(s)
- Ha Tran
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Huaiyang Chen
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Andreas Walz
- The Rockefeller University, New York, New York, United States of America
| | - Jamie C. Posthumus
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Qizhi Gong
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Abnormal axonal guidance and brain anatomy in mouse mutants for the cell recognition molecules close homolog of L1 and NgCAM-related cell adhesion molecule. Neuroscience 2008; 155:221-33. [PMID: 18588951 DOI: 10.1016/j.neuroscience.2008.04.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
Cell recognition molecules of the L1 family serve important functions in the developing and the mature nervous system. Mutations in genes encoding the L1 family members close homolog of L1 (CHL1) and NgCAM-related cell adhesion molecule (NrCAM) have been found to alter connectivity and morphology of several brain regions. In order to emphasize similarities and differences of these two structurally related molecules, null mutants for CHL1 and NrCAM were directly compared with respect to axonal guidance in the hippocampus and the olfactory bulb and the sizes of the ventricular system and the cerebellar vermis using a combined structural magnetic resonance imaging (MRI) and histological approach. The results demonstrate that the absence of CHL1 leads to aberrant hippocampal mossy fiber projections whereas in both mutants, CHL1 and NrCAM, the guidance of the olfactory nerve projections is disturbed. Both mutations also alter the size of the ventricular system and the vermis with a specific profile of changes and partially opposite effects in each of the mutants. CHL1/NrCAM double-mutant mice do not show any enhancement of the single mutant's phenotype but balance the opposing effects on the ventricular system. In summary, the results show that CHL1 and NrCAM both affect axonal guidance and the anatomy of the ventricular system and the cerebellar vermis but act differently on these processes.
Collapse
|
36
|
Scolnick JA, Cui K, Duggan CD, Xuan S, Yuan XB, Efstratiadis A, Ngai J. Role of IGF signaling in olfactory sensory map formation and axon guidance. Neuron 2008; 57:847-57. [PMID: 18367086 DOI: 10.1016/j.neuron.2008.01.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 09/25/2007] [Accepted: 01/14/2008] [Indexed: 01/16/2023]
Abstract
Olfactory neurons project their axons to spatially invariant glomeruli in the olfactory bulb, forming an ordered pattern of innervation comprising the olfactory sensory map. A mirror symmetry exists within this map, such that neurons expressing a given receptor typically project to one glomerulus on the medial face and one glomerulus on the lateral face of the bulb. The mechanisms underlying an olfactory neuron's choice to project medially versus laterally remain largely unknown, however. Here we demonstrate that insulin-like growth factor (IGF) signaling is required for sensory innervation of the lateral olfactory bulb. Mutations that eliminate IGF signaling cause axons destined for targets in the lateral bulb to shift to ectopic sites on the ventral-medial surface. Using primary cultures of olfactory and cerebellar neurons, we further show that IGF is a chemoattractant for axon growth cones. Together these observations reveal a role of IGF signaling in sensory map formation and axon guidance.
Collapse
Affiliation(s)
- Jonathan A Scolnick
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Functional Genomics Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Lee W, Cheng TW, Gong Q. Olfactory sensory neuron-specific and sexually dimorphic expression of protocadherin 20. J Comp Neurol 2008; 507:1076-86. [PMID: 18095321 DOI: 10.1002/cne.21569] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Olfactory sensory axons navigate from the nasal cavity to the olfactory bulb and sort from among 1,000 different odorant receptor-expressing types to converge upon the same two or three glomeruli. To achieve this task during development, it is likely that multiple classes of regulatory molecules, including cell adhesion molecules, are involved. Cell adhesion molecules have been shown to be important in controlling axon guidance, fasciculation, and synapse formation. To gain further understanding of the involvement of adhesion molecules in olfactory circuitry development, we examined the dynamic and cell type specific expression of a novel protocadherin, PCDH20, in the olfactory system. PCDH20 is specifically expressed in newly differentiated olfactory sensory neurons and their axons during development. PCDH20 expression is down-regulated in the adult olfactory system, except in a small olfactory sensory neuron population. These small, discrete numbers of PCDH20-positive glomeruli in the adult olfactory bulb are consistently clustered in the ventral-caudal region in both male and female mice. However, adult males have higher numbers of PCDH20-positive glomeruli with a broader distribution, whereas adult females have fewer PCDH20-positive glomeruli with a more restricted distribution. The gender difference in PCDH20 expression may reflect olfactory receptor expression differences for gender-specific social discrimination.
Collapse
Affiliation(s)
- Wooje Lee
- Department of Cell Biology and Human Anatomy, University of California at Davis, School of Medicine, Davis, California 95616, USA
| | | | | |
Collapse
|
38
|
Kulahin N, Walmod PS. WITHDRAWN: The Neural Cell Adhesion Molecule NCAM2/OCAM/RNCAM, a Close Relative to NCAM. Neurochem Res 2008. [PMID: 18368488 DOI: 10.1007/s11064-008-9614-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 01/28/2008] [Indexed: 09/29/2022]
Abstract
Cell adhesion molecules (CAMs) constitute a large class of plasma membrane-anchored proteins that mediate attachment between neighboring cells and between cells and the surrounding extracellular matrix (ECM). However, CAMs are more than simple mediators of cell adhesion. The neural cell adhesion molecule (NCAM) is a well characterized, ubiquitously expressed CAM that is highly expressed in the nervous system. In addition to mediating cell adhesion, NCAM participates in a multitude of cellular events, including survival, migration, and differentiation of cells, outgrowth of neurites, and formation and plasticity of synapses. NCAM shares an overall sequence identity of approximately 44% with the neural cell adhesion molecule 2 (NCAM2), a protein also known as olfactory cell adhesion molecule (OCAM) and Rb-8 neural cell adhesion molecule (RNCAM), and the region-for-region sequence homology between the two proteins suggests that they are transcribed from paralogous genes. However, very little is known about the function of NCAM2, although it originally was described more than 20 years ago. In this review we summarize the known properties and functions of NCAM2 and describe some of the differences and similarities between NCAM and NCAM2.
Collapse
|
39
|
|
40
|
Harrison SJ, Nishinakamura R, Monaghan AP. Sall1 regulates mitral cell development and olfactory nerve extension in the developing olfactory bulb. Cereb Cortex 2007; 18:1604-17. [PMID: 18024993 DOI: 10.1093/cercor/bhm191] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sall1 is a zinc finger containing transcription factor that is highly expressed during mammalian embryogenesis. In humans, the developmental disorder Townes Brocks Syndrome is associated with mutations in the SALL1 gene. Sall1-deficient animals die at birth due to kidney deficits; however, its function in the nervous system has not been characterized. We examined the role of Sall1 in the developing olfactory system. We demonstrate that Sall1 is expressed by cells in the olfactory epithelium and olfactory bulb (OB). Sall1-deficient OBs are reduced in size and exhibit alterations in neurogenesis and mitral cell production. In addition, the olfactory nerve failed to extend past the ventral-medial region of the OB in Sall1-deficient animals. We observed intrinsic patterns of neurogenesis during olfactory development in control animals. In Sall1-mutant animals, these patterns of neurogenesis were disrupted. These findings suggest a role for Sall1 in regulating neuronal differentiation and maturation in developing neural structures.
Collapse
Affiliation(s)
- Susan J Harrison
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
41
|
Ichinohe N, Knight A, Ogawa M, Ohshima T, Mikoshiba K, Yoshihara Y, Terashima T, Rockland KS. Unusual patch-matrix organization in the retrosplenial cortex of the reeler mouse and Shaking rat Kawasaki. Cereb Cortex 2007; 18:1125-38. [PMID: 17728262 DOI: 10.1093/cercor/bhm148] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rat granular retrosplenial cortex (GRS) is a simplified cortex, with distinct stratification and, in the uppermost layers, distinct modularity. Thalamic and cortical inputs are segregated by layers and in layer 1 colocalize, respectively, with apical dendritic bundles originating from neurons in layers 2 or 5. To further investigate this organization, we turned to reelin-deficient reeler mouse and Shaking rat Kawasaki. We found that the disrupted lamination, evident in Nissl stains in these rodents, is in fact a patch-matrix mosaic of segregated afferents and dendrites. Patches consist of thalamocortical connections, visualized by vesicular glutamate transporter 2 (VGluT2) or AChE. The surrounding matrix consists of corticocortical terminations, visualized by VGluT1 or zinc. Dendrites concentrate in the matrix or patches, depending on whether they are OCAM positive (matrix) or negative (patches). In wild-type rodents and, presumably, mutants, OCAM(+) structures originate from layer 5 neurons. By double labeling for dendrites (filled by Lucifer yellow in fixed slice) and OCAM immunofluorescence, we ascertained 2 populations in reeler: dendritic branches either preferred (putative layer 5 neurons) or avoided (putative supragranular neurons) the OCAM(+) matrix. We conclude that input-target relationships are largely preserved in the mutant GRS and that dendrite-dendrite interactions involving OCAM influence the formation of the mosaic configuration.
Collapse
Affiliation(s)
- Noritaka Ichinohe
- Laboratory for Cortical Organization and Systematics, RIKEN, Brain Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The main olfactory epithelium of the mouse is a mosaic of 2000 populations of olfactory sensory neurons (OSNs). Each population expresses one allele of one of the 1000 intact odorant receptor (OR) genes. An OSN projects a single unbranched axon to a single glomerulus, from an array of 1600-1800 glomeruli in the main olfactory bulb. Within a glomerulus the OSN axon synapses with the dendrites of second-order neurons and interneurons. Axons of OSNs that express the same OR project to the same glomeruli-typically one glomerulus per half-bulb and thus four glomeruli per mouse. These glomeruli are located at characteristic positions within the glomerular layer of the bulb. ORs determine both the odorant response profile of the OSN and the projection of its axon to a specific glomerulus. I focus on genetic approaches to the axonal wiring problem, particularly on how ORs may function in axonal wiring.
Collapse
|