1
|
Murcia-Belmonte V, Chauvin G, Coca Y, Escalante A, Klein R, Herrera E. EphA4 Mediates EphrinB1-Dependent Adhesion in Retinal Ganglion Cells. J Neurosci 2025; 45:e0043242024. [PMID: 39622649 PMCID: PMC11756631 DOI: 10.1523/jneurosci.0043-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 10/04/2024] [Accepted: 11/11/2024] [Indexed: 01/24/2025] Open
Abstract
Eph/ephrin signaling is crucial for organizing retinotopic maps in vertebrates. Unlike other EphAs, which are expressed in the embryonic ventral retina, EphA4 is found in the retinal ganglion cell (RGC) layer at perinatal stages, and its role in mammalian visual system development remains unclear. Using classic in vitro stripe assays, we demonstrate that, while RGC axons are repelled by ephrinB2, they grow on ephrinB1 stripes through EphA4-mediated adhesion. In vivo, retinal axons from EphA4-deficient mice from either sex show impaired arborization in the medial, but not lateral, regions of the superior colliculus that express ephrinB1. Gain-of-function experiments further reveal that ephrinB1-mediated adhesion depends on EphA4 tyrosine kinase activity but it is independent of its sterile alpha motif. Together, our findings suggest that EphA4/ephrinB1 forward signaling likely facilitates adhesion between retinal axon terminals and cells in the medial colliculus, contributing to the establishment of proper connectivity within the visual system.
Collapse
Affiliation(s)
- Verónica Murcia-Belmonte
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Géraud Chauvin
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Yaiza Coca
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Augusto Escalante
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Rüdiger Klein
- Department 'Molecules - Signals - Development', Max Planck Institute for Biological Intelligence, Martinsried 82152, Germany
| | - Eloísa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| |
Collapse
|
2
|
Verma M, Chopra M, Kumar H. Unraveling the Potential of EphA4: A Breakthrough Target and Beacon of Hope for Neurological Diseases. Cell Mol Neurobiol 2023; 43:3375-3391. [PMID: 37477786 PMCID: PMC11409998 DOI: 10.1007/s10571-023-01390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Erythropoietin-producing hepatocellular carcinoma A4 (EphA4) is a transmembrane receptor protein which is a part of the most prominent family of receptor tyrosine kinases (RTKs). It serves a crucial role in both physiological, biological, and functional states binding with their ligand like Ephrins. Its abundance in the majority of the body's systems has been reported. Moreover, it draws much attention in the CNS since it influences axonal and vascular guidance. Also, it has a widespread role at the pathological state of various CNS disorders. Reports suggest it obstructs axonal regeneration in various neurodegenerative diseases and neurological disorders. Although, neuro-regeneration is still an open challenge to the modern drug discovery community. Hence, in this review, we will provide information about the role of EphA4 in neurological diseases by which it may emerge as a therapeutic target for CNS disease. We will also provide a glance at numerous signaling pathways that activate or inhibit the EphA4-associated biological processes contributing to the course of neurodegenerative diseases. Thus, this work might serve as a basis for futuristic studies that are related to the target-based drug discovery in the field of neuro-regeneration. Pathological and physiological events associated with EphA4 and Ephrin upregulation and interaction.
Collapse
Affiliation(s)
- Meenal Verma
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Manjeet Chopra
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Hemant Kumar
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
3
|
Paşcalău R, Badea TC. Signaling - transcription interactions in mouse retinal ganglion cells early axon pathfinding -a literature review. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1180142. [PMID: 38983012 PMCID: PMC11182120 DOI: 10.3389/fopht.2023.1180142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/21/2023] [Indexed: 07/11/2024]
Abstract
Sending an axon out of the eye and into the target brain nuclei is the defining feature of retinal ganglion cells (RGCs). The literature on RGC axon pathfinding is vast, but it focuses mostly on decision making events such as midline crossing at the optic chiasm or retinotopic mapping at the target nuclei. In comparison, the exit of RGC axons out of the eye is much less explored. The first checkpoint on the RGC axons' path is the optic cup - optic stalk junction (OC-OS). OC-OS development and the exit of the RGC pioneer axons out of the eye are coordinated spatially and temporally. By the time the optic nerve head domain is specified, the optic fissure margins are in contact and the fusion process is ongoing, the first RGCs are born in its proximity and send pioneer axons in the optic stalk. RGC differentiation continues in centrifugal waves. Later born RGC axons fasciculate with the more mature axons. Growth cones at the end of the axons respond to guidance cues to adopt a centripetal direction, maintain nerve fiber layer restriction and to leave the optic cup. Although there is extensive information on OC-OS development, we still have important unanswered questions regarding its contribution to the exit of the RGC axons out of the eye. We are still to distinguish the morphogens of the OC-OS from the axon guidance molecules which are expressed in the same place at the same time. The early RGC transcription programs responsible for axon emergence and pathfinding are also unknown. This review summarizes the molecular mechanisms for early RGC axon guidance by contextualizing mouse knock-out studies on OC-OS development with the recent transcriptomic studies on developing RGCs in an attempt to contribute to the understanding of human optic nerve developmental anomalies. The published data summarized here suggests that the developing optic nerve head provides a physical channel (the closing optic fissure) as well as molecular guidance cues for the pioneer RGC axons to exit the eye.
Collapse
Affiliation(s)
- Raluca Paşcalău
- Research and Development Institute, Transilvania University of Braşov, Braşov, Romania
- Ophthalmology Clinic, Cluj County Emergency Hospital, Cluj-Napoca, Romania
| | - Tudor Constantin Badea
- Research and Development Institute, Transilvania University of Braşov, Braşov, Romania
- National Center for Brain Research, Institutul de Cercetări pentru Inteligență Artificială, Romanian Academy, Bucharest, Romania
| |
Collapse
|
4
|
Zhou ZX, Xu LJ, Wang HN, Cheng S, Li F, Miao Y, Lei B, Gao F, Wang Z. EphA4/ephrinA3 reverse signaling mediated downregulation of glutamate transporter GLAST in Müller cells in an experimental glaucoma model. Glia 2023; 71:720-741. [PMID: 36416239 DOI: 10.1002/glia.24307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
Deficiency of glutamate transporter GLAST in Müller cells may be culpable for excessive extracellular glutamate, which involves in retinal ganglion cell (RGC) damage in glaucoma. We elucidated how GLAST was regulated in rat chronic ocular hypertension (COH) model. Western blot and whole-cell patch-clamp recordings showed that GLAST proteins and GLAST-mediated current densities in Müller cells were downregulated at the early stages of COH. In normal rats, intravitreal injection of the ephrinA3 activator EphA4-Fc mimicked the changes of GLAST in COH retinas. In purified cultured Müller cells, EphA4-Fc treatment reduced GLAST expression at mRNA and protein levels, which was reversed by the tyrosine kinase inhibitor PP2 or transfection with ephrinA3-siRNA (Si-EFNA3), suggesting that EphA4/ephrinA3 reverse signaling mediated GLAST downregulation. EphA4/ephrinA3 reverse signaling-induced GLAST downregulation was mediated by inhibiting PI3K/Akt/NF-κB pathways since EphA4-Fc treatment of cultured Müller cells reduced the levels of p-Akt/Akt and NF-κB p65, which were reversed by transfecting Si-EFNA3. In Müller cells with ephrinA3 knockdown, the PI3K inhibitor LY294002 still decreased the protein levels of NF-κB p65 in the presence of EphA4-Fc, and the mRNA levels of GLAST were reduced by LY294002 and the NF-κB inhibitor SN50, respectively. Pre-injection of the PI3K/Akt pathway activator 740 Y-P reversed the GLAST downregulation in COH retinas. Western blot and TUNEL staining showed that transfecting of Si-EFNA3 reduced Müller cell gliosis and RGC apoptosis in COH retinas. Our results suggest that activated EphA4/ephrinA3 reverse signaling induces GLAST downregulation in Müller cells via inhibiting PI3K/Akt/NF-κB pathways, thus contributing to RGC damage in glaucoma.
Collapse
Affiliation(s)
- Zhi-Xin Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lin-Jie Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bo Lei
- Institutes of Neuroscience and Third Affiliated Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Feng Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Xu LJ, Wang HN, Zhou H, Li SY, Li F, Miao Y, Lei B, Sun XH, Gao F, Wang Z. EphA4/ephrinA3 reverse signaling induced Müller cell gliosis and production of pro-inflammatory cytokines in experimental glaucoma. Brain Res 2023; 1801:148204. [PMID: 36529265 DOI: 10.1016/j.brainres.2022.148204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Previous work showed that ephrinA3/EphA4 forward signaling contributed to retinal ganglion cell (RGC) damage in experimental glaucoma. Since up-regulated patterns of ephrinA3 and EphA4 were observed in Müller cells and RGCs, an EphA4/ephrinA3 reverse signaling may exist in Müller cells of chronic ocular hypertension (COH) retina. We investigated effects of EphA4/ephrinA3 reverse signaling activation on Müller cells in COH retina. Intravitreal injection of the ephrinA3 agonist EphA4-Fc increased glial fibrillary acidic protein (GFAP) levels in normal retinas, suggestive of Müller cell gliosis, which was confirmed in purified cultured Müller cells treated with EphA4-Fc. These effects were mediated by intracellular STAT3 signaling pathway as phosphorylated STAT3 (p-STAT3) levels and ratios of p-STAT3/STAT3 were significantly increased in both COH retinas and EphA4-Fc intravitreally injected retinas, as well as in EphA4-Fc treated purified cultured Müller cells. The increase of GFAP protein levels in EphA4-Fc-injected retinas and EphA4-Fc treated purified cultured Müller cells could be partially eliminated by stattic, a selective STAT3 blocker. Co-immunoprecipitation results testified to the presence of interaction between ephrinA3 and STAT3/p-STAT3. In addition, intravitreal injection of EphA4-Fc or EphA4-Fc treatment of cultured Müller cells significantly up-regulated mRNA and protein contents of pro-inflammatory cytokines. Moreover, intravitreal injection of EphA4-Fc increased the number of apoptotic RGCs, which could be reversed by the tyrosine kinase blocker PP2. Overall, EphA4/ephrinA3 reverse signaling may induce Müller cell gliosis and increases release of pro-inflammatory factors, which could contribute to RGC death in glaucoma. Inhibition of EphA4/ephrinA3 signaling may provide an effective neuroprotection in glaucoma.
Collapse
Affiliation(s)
- Lin-Jie Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Han Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Shu-Ying Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Bo Lei
- Institute of Neuroscience and Third Affiliated Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, China
| | - Xing-Huai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China.
| | - Feng Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China.
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Abstract
The vertebrate eye is derived from the neuroepithelium, surface ectoderm, and extracellular mesenchyme. The neuroepithelium forms an optic cup in which the spatial separation of three domains is established, namely, the region of multipotent retinal progenitor cells (RPCs), the ciliary margin zone (CMZ)-which possesses both a neurogenic and nonneurogenic potential-and the optic disk (OD), the interface between the optic stalk and the neuroretina. Here, we show by genetic ablation in the developing optic cup that Meis1 and Meis2 homeobox genes function redundantly to maintain the retinal progenitor pool while they simultaneously suppress the expression of genes characteristic of CMZ and OD fates. Furthermore, we demonstrate that Meis transcription factors bind regulatory regions of RPC-, CMZ-, and OD-specific genes, thus providing a mechanistic insight into the Meis-dependent gene regulatory network. Our work uncovers the essential role of Meis1 and Meis2 as regulators of cell fate competence, which organize spatial territories in the vertebrate eye.
Collapse
|
7
|
Xu LJ, Gao F, Cheng S, Zhou ZX, Li F, Miao Y, Niu WR, Yuan F, Sun XH, Wang Z. Activated ephrinA3/EphA4 forward signaling induces retinal ganglion cell apoptosis in experimental glaucoma. Neuropharmacology 2020; 178:108228. [PMID: 32745487 DOI: 10.1016/j.neuropharm.2020.108228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have demonstrated that EphA4 participates in neuronal injury, and there is a strong interaction between ephrinA3 and EphA4. In this study, we showed that in a rat chronic ocular hypertension (COH) experimental glaucoma model, expression of EphA4 and ephrinA3 proteins was increased in retinal cells, including retinal ganglion cells (RGCs) and Müller cells, which may result in ephrinA3/EphA4 forward signaling activation on RGCs, as evidenced by increased p-EphA4/EphA4 ratio. Intravitreal injection of ephrinA3-Fc, an activator of EphA4, mimicked the effect of COH on p-EphA4/EphA4 and induced an increase in TUNEL-positive signals in normal retinas, which was accompanied by dendritic spine retraction and thinner dendrites in RGCs. Furthermore, Intravitreal injection of ephrinA3-Fc increased the levels of phosphorylated src and GluA2 (p-src and p-GluA2). Co-immunoprecipitation assay demonstrated interactions between EphA4, p-src and GluA2. Intravitreal injection of ephrinA3-Fc reduced the expression of GluA2 proteins on the surface of normal retinal cells, which was prevented by intravitreal injection of PP2, an inhibitor of src-family tyrosine kinases. Pre-injection of PP2 or the Ca2+-permeable GluA2-lacking AMPA receptor inhibitor Naspm significantly and partially reduced the number of TUNEL-positive RGCs in the ephrinA3-Fc-injected and COH retinas. Our results suggest that activated ephrinA3/EphA4 forward signaling promoted GluA2 endocytosis, then resulted in dendritic spine retraction of RGCs, thus contributing to RGC apoptosis in COH rats. Attenuation of the strength of ephrinA/EphA signaling in an appropriate manner may be an effective way for preventing the loss of RGCs in glaucoma.
Collapse
Affiliation(s)
- Lin-Jie Xu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feng Gao
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China
| | - Shuo Cheng
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhi-Xin Zhou
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fang Li
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanying Miao
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei-Ran Niu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fei Yuan
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xing-Huai Sun
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China.
| | - Zhongfeng Wang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Herrera E, Agudo-Barriuso M, Murcia-Belmonte V. Cranial Pair II: The Optic Nerves. Anat Rec (Hoboken) 2018; 302:428-445. [DOI: 10.1002/ar.23922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/19/2017] [Accepted: 05/14/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Eloísa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH); Av. Santiago Ramón y Cajal, s/n., 03550 Sant Joan d'Alacant Alicante Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina; Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca); Murcia Spain
| | - Verónica Murcia-Belmonte
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH); Av. Santiago Ramón y Cajal, s/n., 03550 Sant Joan d'Alacant Alicante Spain
| |
Collapse
|
9
|
Bernstein CS, Anderson MT, Gohel C, Slater K, Gross JM, Agarwala S. The cellular bases of choroid fissure formation and closure. Dev Biol 2018; 440:137-151. [PMID: 29803644 DOI: 10.1016/j.ydbio.2018.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023]
Abstract
Defects in choroid fissure (CF) formation and closure lead to coloboma, a major cause of childhood blindness. Despite genetic advances, the cellular defects underlying coloboma remain poorly elucidated due to our limited understanding of normal CF morphogenesis. We address this deficit by conducting high-resolution spatio-temporal analyses of CF formation and closure in the chick, mouse and fish. We show that a small ventral midline invagination initiates CF formation in the medial-proximal optic cup, subsequently extending it dorsally toward the lens, and proximally into the optic stalk. Unlike previously supposed, the optic disc does not form solely as a result of this invagination. Morphogenetic events that alter the shape of the proximal optic cup also direct clusters of outer layer and optic stalk cells to form dorsal optic disc. A cross-species comparison suggests that CF closure can be accomplished by breaking down basement membranes (BM) along the CF margins, and by establishing BM continuity along the dorsal and ventral surfaces of the CF. CF closure is subsequently accomplished via two distinct mechanisms: tissue fusion or the intercalation of various tissues into the inter-CF space. We identify several novel cell behaviors that underlie CF fusion, many of which involve remodeling of the retinal epithelium. In addition to BM disruption, these include NCAD downregulation along the SOX2+ retinal CF margin, and the protrusion or movement of partially polarized retinal cells into the inter-CF space to mediate fusion. Proximally, the inter-CF space does not fuse or narrow and is instead loosely packed with migrating SOX2+/PAX2+/Vimentin+ astrocytes until it is closed by the outgoing optic nerve. Taken together, our results highlight distinct proximal-distal differences in CF morphogenesis and closure and establish detailed cellular models that can be utilized for understanding the genetic bases of coloboma.
Collapse
Affiliation(s)
- Cassidy S Bernstein
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 78712, USA
| | - Mitchell T Anderson
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 78712, USA
| | - Chintan Gohel
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 78712, USA
| | - Kayleigh Slater
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Seema Agarwala
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cell and Molecular Biology, University of Texas at Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
10
|
Taylor JSH. Studies with Ray Guillery on the early development of the visual pathways: eyecup, optic nerve, chiasm and optic tract. Eur J Neurosci 2018; 49:909-912. [PMID: 29575408 DOI: 10.1111/ejn.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jeremy S H Taylor
- Department of Physiology Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, UK
| |
Collapse
|
11
|
Kiessling S, O'Callaghan EK, Freyburger M, Cermakian N, Mongrain V. The cell adhesion molecule EphA4 is involved in circadian clock functions. GENES BRAIN AND BEHAVIOR 2017; 17:82-92. [PMID: 28425198 DOI: 10.1111/gbb.12387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 12/29/2022]
Abstract
Circadian (∼24 h) rhythms of cellular network plasticity in the central circadian clock, the suprachiasmatic nucleus (SCN), have been described. The neuronal network in the SCN regulates photic resetting of the circadian clock as well as stability of the circadian system during both entrained and constant conditions. EphA4, a cell adhesion molecule regulating synaptic plasticity by controlling connections of neurons and astrocytes, is expressed in the SCN. To address whether EphA4 plays a role in circadian photoreception and influences the neuronal network of the SCN, we have analyzed circadian wheel-running behavior of EphA4 knockout (EphA4-/- ) mice under different light conditions and upon photic resetting, as well as their light-induced protein response in the SCN. EphA4-/- mice exhibited reduced wheel-running activity, longer endogenous periods under constant darkness and shorter periods under constant light conditions, suggesting an effect of EphA4 on SCN function. Moreover, EphA4-/- mice exhibited suppressed phase delays of their wheel-running activity following a light pulse during the beginning of the subjective night (CT15). Accordingly, light-induced c-FOS (FBJ murine osteosarcoma viral oncogene homolog) expression was diminished. Our results suggest a circadian role for EphA4 in the SCN neuronal network, affecting the circadian system and contributing to the circadian response to light.
Collapse
Affiliation(s)
- S Kiessling
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Present address: Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - E K O'Callaghan
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - M Freyburger
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - N Cermakian
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - V Mongrain
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
12
|
Noh H, Lee H, Park E, Park S. Proper closure of the optic fissure requires ephrin A5-EphB2-JNK signaling. Development 2016; 143:461-72. [PMID: 26839344 DOI: 10.1242/dev.129478] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of complex organs such as the eye requires a delicate and coordinated balance of cell division and cell death. Although apoptosis is prevalent in the proximoventral optic cup, the precise role it plays in eye development needs to be investigated further. In this study, we show that reduced apoptosis in the proximoventral optic cup prevents closure of the optic fissure. We also show that expression of ephrin A5 (Efna5) partially overlaps with Eph receptor B2 (Ephb2) expression in the proximoventral optic cup and that binding of EphB2 to ephrin A5 induces a sustained activation of JNK. This prolonged JNK signal promotes apoptosis and prevents cell proliferation. Thus, we propose that the unique cross-subclass interaction of EphB2 with ephrin A5 has evolved to function upstream of JNK signaling for the purpose of maintaining an adequate pool of progenitor cells to ensure proper closure of the optic fissure.
Collapse
Affiliation(s)
- Hyuna Noh
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| | - Haeryung Lee
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| | - Eunjeong Park
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| | - Soochul Park
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| |
Collapse
|
13
|
Wang L, Wang J, Ma D, Taylor JS, Chan SO. Isoform-specific localization of Nogo protein in the optic pathway of mouse embryos. J Comp Neurol 2016; 524:2322-34. [DOI: 10.1002/cne.23953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Liqing Wang
- Department of Neurology; the Third Affiliated Hospital of Sun Yat-Sen University; Guangzhou Guangdong 510630 China
| | - Jun Wang
- Department of Anatomy and Embryology; School of Basic Medical Sciences, Peking University; Beijing 100191 China
| | - Ding Ma
- School of Biomedical Sciences; The Chinese University of Hong Kong, Shatin, N.T; Hong Kong China
| | - Jeremy S.H. Taylor
- Department of Physiology; Anatomy and Genetics, Le Gros Clark Building, Oxford OX1 3QX; United Kingdom
| | - Sun-On Chan
- School of Biomedical Sciences; The Chinese University of Hong Kong, Shatin, N.T; Hong Kong China
| |
Collapse
|
14
|
Rothe M, Kanwal N, Dietmann P, Seigfried F, Hempel A, Schütz D, Reim D, Engels R, Linnemann A, Schmeisser MJ, Bockmann J, Kühl M, Boeckers TM, Kühl SJ. An Epha4/Sipa1l3/Wnt pathway regulates eye development and lens maturation. Development 2016; 144:321-333. [DOI: 10.1242/dev.147462] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/06/2016] [Indexed: 01/21/2023]
Abstract
The signal-induced proliferation associated family of proteins comprises four members, SIPA1 and SIPA1L1-1L3. Mutations of the human SIPA1L3 gene result in congenital cataracts. In Xenopus, loss of Sipa1l3 function led to a severe eye phenotype that was distinguished by smaller eyes and lenses including lens fiber cell maturation defects. We found a direct interaction between Sipa1l3 and Epha4, building a functional platform for proper ocular development. Epha4 deficiency phenocopied loss of Sipa1l3 and rescue experiments demonstrated that Epha4 acts up-stream of Sipa1l3 during eye development. Both, Sipa1l3 and Epha4 are required for early eye specification. The ocular phenotype, upon loss of either Epha4 or Sipa1l3, was partially mediated by rax. We demonstrated that canonical Wnt signaling is inhibited downstream of Epha4/Sipa1l3 during normal eye development. Depletion of either Sipa1l3 or Epha4 resulted in an up-regulation of axin2 expression, a direct Wnt/β-catenin target gene. In line with this, Sipa1l3 or Epha4 depletion could be rescued by blocking Wnt/β-catenin or activating non-canonical Wnt signaling. We therefore conclude that this pathomechanism prevents proper eye development and maturation of lens fiber cells resulting in congenital cataracts.
Collapse
Affiliation(s)
- Melanie Rothe
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, 89081 Ulm University, Ulm, Germany
| | - Noreen Kanwal
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, 89081 Ulm University, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Franziska Seigfried
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, 89081 Ulm University, Ulm, Germany
| | - Annemarie Hempel
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, 89081 Ulm University, Ulm, Germany
| | - Desiree Schütz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Dominik Reim
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, 89081 Ulm University, Ulm, Germany
| | - Rebecca Engels
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Alexander Linnemann
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Michael J. Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Susanne J. Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
15
|
Joly S, Jordi N, Schwab ME, Pernet V. The Ephrin receptor EphA4 restricts axonal sprouting and enhances branching in the injured mouse optic nerve. Eur J Neurosci 2014; 40:3021-31. [DOI: 10.1111/ejn.12677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Sandrine Joly
- Brain Research Institute; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
- Department of Health Sciences and Technology; ETH Zurich; Zurich Switzerland
| | - Noémie Jordi
- Brain Research Institute; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
- Department of Health Sciences and Technology; ETH Zurich; Zurich Switzerland
| | - Martin E. Schwab
- Brain Research Institute; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
- Department of Health Sciences and Technology; ETH Zurich; Zurich Switzerland
| | - Vincent Pernet
- Brain Research Institute; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
- Department of Health Sciences and Technology; ETH Zurich; Zurich Switzerland
| |
Collapse
|
16
|
Tiwari S, Dharmarajan S, Shivanna M, Otteson DC, Belecky-Adams TL. Histone deacetylase expression patterns in developing murine optic nerve. BMC DEVELOPMENTAL BIOLOGY 2014; 14:30. [PMID: 25011550 PMCID: PMC4099093 DOI: 10.1186/1471-213x-14-30] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/26/2014] [Indexed: 11/17/2022]
Abstract
Background Histone deacetylases (HDACs) play important roles in glial cell development and in disease states within multiple regions of the central nervous system. However, little is known about HDAC expression or function within the optic nerve. As a first step in understanding the role of HDACs in optic nerve, this study examines the spatio-temporal expression patterns of methylated histone 3 (K9), acetylated histone 3 (K18), and HDACs 1–6 and 8–11 in the developing murine optic nerve head. Results Using RT-qPCR, western blot and immunofluorescence, three stages were analyzed: embryonic day 16 (E16), when astrocyte precursors are found in the optic stalk, postnatal day 5 (P5), when immature astrocytes and oligodendrocytes are found throughout the optic nerve, and P30, when optic nerve astrocytes and oligodendrocytes are mature. Acetylated and methylated histone H3 immunoreactivity was co-localized in the nuclei of most SOX2 positive glia within the optic nerve head and adjacent optic nerve at all developmental stages. HDACs 1–11 were expressed in the optic nerve glial cells at all three stages of optic nerve development in the mouse, but showed temporal differences in overall levels and subcellular localization. HDACs 1 and 2 were predominantly nuclear throughout optic nerve development and glial cell maturation. HDACs 3, 5, 6, 8, and 11 were predominantly cytoplasmic, but showed nuclear localization in at least one stage of optic nerve development. HDACs 4, 9 and10 were predominantly cytoplasmic, with little to no nuclear expression at any time during the developmental stages examined. Conclusions Our results showing that HDACs 1, 2, 3, 5, 6, 8, and 11 were each localized to the nuclei of SOX2 positive glia at some stages of optic nerve development and maturation and extend previous reports of HDAC expression in the aging optic nerve. These HDACs are candidates for further research to understand how chromatin remodeling through acetylation, deacetylation and methylation contributes to glial development as well as their injury response.
Collapse
Affiliation(s)
| | | | | | | | - Teri L Belecky-Adams
- Department of Biology, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis IN-46202, India.
| |
Collapse
|
17
|
Pernet V, Schwab ME. Lost in the jungle: new hurdles for optic nerve axon regeneration. Trends Neurosci 2014; 37:381-7. [PMID: 24874558 DOI: 10.1016/j.tins.2014.05.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
Abstract
The poor regenerative capacity of injured central nervous system (CNS) axons leads to permanent neurological deficits after brain, spinal cord, or optic nerve lesions. In the optic nerve, recent studies showed that stimulation of the cytokine or mammalian target of rapamycin (mTOR) signaling pathways potently enhances sprouting and regeneration of injured retinal ganglion cell axons in adult mice, but does not allow the majority of axons to reach their main cerebral targets. New analyses have revealed axon navigation defects in the optic nerve and at the optic chiasm under conditions of strong growth stimulation. We propose that a balanced growth stimulatory treatment will have to be combined with guidance factors and suppression of local growth inhibitory factors to obtain the full regeneration of long CNS axonal tracts.
Collapse
Affiliation(s)
- Vincent Pernet
- Brain Research Institute, University of Zürich, and Department of Health Sciences and Technology, ETH Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | - Martin E Schwab
- Brain Research Institute, University of Zürich, and Department of Health Sciences and Technology, ETH Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
18
|
Duan LJ, Takeda K, Fong GH. Hypoxia inducible factor-2α regulates the development of retinal astrocytic network by maintaining adequate supply of astrocyte progenitors. PLoS One 2014; 9:e84736. [PMID: 24475033 PMCID: PMC3903483 DOI: 10.1371/journal.pone.0084736] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
Here we investigate the role of hypoxia inducible factor (HIF)-2α in coordinating the development of retinal astrocytic and vascular networks. Three Cre mouse lines were used to disrupt floxed Hif-2α, including Rosa26CreERT2, Tie2Cre, and GFAPCre. Global Hif-2α disruption by Rosa26CreERT2 led to reduced astrocytic and vascular development in neonatal retinas, whereas endothelial disruption by Tie2Cre had no apparent effects. Hif-2α deletion in astrocyte progenitors by GFAPCre significantly interfered with the development of astrocytic networks, which failed to reach the retinal periphery and were incapable of supporting vascular development. Perplexingly, the abundance of strongly GFAP+ mature astrocytes transiently increased at P0 before they began to lag behind the normal controls by P3. Pax2+ and PDGFRα+ astrocytic progenitors and immature astrocytes were dramatically diminished at all stages examined. Despite decreased number of astrocyte progenitors, their proliferation index or apoptosis was not altered. The above data can be reconciled by proposing that HIF-2α is required for maintaining the supply of astrocyte progenitors by slowing down their differentiation into non-proliferative mature astrocytes. HIF-2α deficiency in astrocyte progenitors may accelerate their differentiation into astrocytes, a change which greatly interferes with the replenishment of astrocyte progenitors due to insufficient time for proliferation. Rapidly declining progenitor supply may lead to premature cessation of astrocyte development. Given that HIF-2α protein undergoes oxygen dependent degradation, an interesting possibility is that retinal blood vessels may regulate astrocyte differentiation through their oxygen delivery function. While our findings support the consensus that retinal astrocytic template guides vascular development, they also raise the possibility that astrocytic and vascular networks may mutually regulate each other's development, mediated at least in part by HIF-2α.
Collapse
Affiliation(s)
- Li-Juan Duan
- The Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Kotaro Takeda
- The Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Guo-Hua Fong
- The Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
19
|
de Castro F, Bribián A, Ortega MC. Regulation of oligodendrocyte precursor migration during development, in adulthood and in pathology. Cell Mol Life Sci 2013; 70:4355-68. [PMID: 23689590 PMCID: PMC11113994 DOI: 10.1007/s00018-013-1365-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 12/25/2022]
Abstract
Oligodendrocytes are the myelin-forming cells in the central nervous system (CNS). These cells originate from oligodendrocyte precursor cells (OPCs) during development, and they migrate extensively from oligodendrogliogenic niches along the neural tube to colonise the entire CNS. Like many other such events, this migratory process is precisely regulated by a battery of positional and signalling cues that act via their corresponding receptors and that are expressed dynamically by OPCs. Here, we will review the cellular and molecular basis of this important event during embryonic and postnatal development, and we will discuss the relevance of the substantial number of OPCs existing in the adult CNS. Similarly, we will consider the behaviour of OPCs in normal and pathological conditions, especially in animal models of demyelination and of the demyelinating disease, multiple sclerosis. The spontaneous remyelination observed after damage in demyelinating pathologies has a limited effect. Understanding the cellular and molecular mechanisms underlying the biology of OPCs, particularly adult OPCs, should help in the design of neuroregenerative strategies to combat multiple sclerosis and other demyelinating diseases.
Collapse
Affiliation(s)
- Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain,
| | | | | |
Collapse
|
20
|
Optic chiasm presentation of Semaphorin6D in the context of Plexin-A1 and Nr-CAM promotes retinal axon midline crossing. Neuron 2012; 74:676-90. [PMID: 22632726 DOI: 10.1016/j.neuron.2012.03.025] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2012] [Indexed: 01/23/2023]
Abstract
At the optic chiasm, retinal ganglion cells (RGCs) project ipsi- or contralaterally to establish the circuitry for binocular vision. Ipsilateral guidance programs have been characterized, but contralateral guidance programs are not well understood. Here, we identify a tripartite molecular system for contralateral RGC projections: Semaphorin6D (Sema6D) and Nr-CAM are expressed on midline radial glia and Plexin-A1 on chiasm neurons, and Plexin-A1 and Nr-CAM are also expressed on contralateral RGCs. Sema6D is repulsive to contralateral RGCs, but Sema6D in combination with Nr-CAM and Plexin-A1 converts repulsion to growth promotion. Nr-CAM functions as a receptor for Sema6D. Sema6D, Plexin-A1, and Nr-CAM are all required for efficient RGC decussation at the optic chiasm. These findings suggest a mechanism by which a complex of Sema6D, Nr-CAM, and Plexin-A1 at the chiasm midline alters the sign of Sema6D and signals Nr-CAM/Plexin-A1 receptors on RGCs to implement the contralateral RGC projection.
Collapse
|
21
|
Myelin-derived ephrinB3 restricts axonal regeneration and recovery after adult CNS injury. Proc Natl Acad Sci U S A 2012; 109:5063-8. [PMID: 22411787 DOI: 10.1073/pnas.1113953109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recovery of neurological function after traumatic injury of the adult mammalian central nervous system is limited by lack of axonal growth. Myelin-derived inhibitors contribute to axonal growth restriction, with ephrinB3 being a developmentally important axonal guidance cue whose expression in mature oligodendrocytes suggests a role in regeneration. Here we explored the in vivo regeneration role of ephrinB3 using mice lacking a functional ephrinB3 gene. We confirm that ephrinB3 accounts for a substantial portion of detergent-resistant myelin-derived inhibition in vitro. To assess in vivo regeneration, we crushed the optic nerve and examined retinal ganglion fibers extending past the crush site. Significantly increased axonal regeneration is detected in ephrinB3(-/-) mice. Studies of spinal cord injury in ephrinB3(-/-) mice must take into account altered spinal cord development and an abnormal hopping gait before injury. In a near-total thoracic transection model, ephrinB3(-/-) mice show greater spasticity than wild-type mice for 2 mo, with slightly greater hindlimb function at later time points, but no evidence for axonal regeneration. After a dorsal hemisection injury, increased corticospinal and raphespinal growth in the caudal spinal cord are detected by 6 wk. This increased axonal growth is accompanied by improved locomotor performance measured in the open field and by kinematic analysis. Thus, ephrinB3 contributes to myelin-derived axonal growth inhibition and limits recovery from adult CNS trauma.
Collapse
|
22
|
EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PLoS One 2011; 6:e24636. [PMID: 21931787 PMCID: PMC3172248 DOI: 10.1371/journal.pone.0024636] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 08/16/2011] [Indexed: 01/08/2023] Open
Abstract
Upregulation and activation of developmental axon guidance molecules, such as semaphorins and members of the Eph receptor tyrosine kinase family and their ligands, the ephrins, play a role in the inhibition of axonal regeneration following injury to the central nervous system. Previously we have demonstrated in a knockout model that axonal regeneration following spinal cord injury is promoted in the absence of the axon guidance protein EphA4. Antagonism of EphA4 was therefore proposed as a potential therapy to promote recovery from spinal cord injury. To further assess this potential, two soluble recombinant blockers of EphA4, unclustered ephrin-A5-Fc and EphA4-Fc, were examined for their ability to promote axonal regeneration and to improve functional outcome following spinal cord hemisection in wildtype mice. A 2-week administration of either of these blockers following spinal cord injury was sufficient to promote substantial axonal regeneration and functional recovery by 5 weeks following injury. Both inhibitors produced a moderate reduction in astrocytic gliosis, indicating that much of the effect of the blockers may be due to promotion of axon growth. These studies provide definitive evidence that soluble inhibitors of EphA4 function offer considerable therapeutic potential for the treatment of spinal cord injury and may have broader potential for the treatment of other central nervous system injuries.
Collapse
|
23
|
Nelson BR, Ueki Y, Reardon S, Karl MO, Georgi S, Hartman BH, Lamba DA, Reh TA. Genome-wide analysis of Müller glial differentiation reveals a requirement for Notch signaling in postmitotic cells to maintain the glial fate. PLoS One 2011; 6:e22817. [PMID: 21829655 PMCID: PMC3149061 DOI: 10.1371/journal.pone.0022817] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/29/2011] [Indexed: 01/09/2023] Open
Abstract
Previous studies have shown that Müller glia are closely related to retinal progenitors; these two cell types express many of the same genes and after damage to the retina, Müller glia can serve as a source for new neurons, particularly in non-mammalian vertebrates. We investigated the period of postnatal retinal development when progenitors are differentiating into Müller glia to better understand this transition. FACS purified retinal progenitors and Müller glia from various ages of Hes5-GFP mice were analyzed by Affymetrix cDNA microarrays. We found that genes known to be enriched/expressed by Müller glia steadily increase over the first three postnatal weeks, while genes associated with the mitotic cell cycle are rapidly downregulated from P0 to P7. Interestingly, progenitor genes not directly associated with the mitotic cell cycle, like the proneural genes Ascl1 and Neurog2, decline more slowly over the first 10–14 days of postnatal development, and there is a peak in Notch signaling several days after the presumptive Müller glia have been generated. To confirm that Notch signaling continues in the postmitotic Müller glia, we performed in situ hybridization, immunolocalization for the active form of Notch, and immunofluorescence for BrdU. Using genetic and pharmacological approaches, we found that sustained Notch signaling in the postmitotic Müller glia is necessary for their maturation and the stabilization of the glial identity for almost a week after the cells have exited the mitotic cell cycle.
Collapse
Affiliation(s)
- Branden R. Nelson
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Yumi Ueki
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Sara Reardon
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Mike O. Karl
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Sean Georgi
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Byron H. Hartman
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Deepak A. Lamba
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Thomas A. Reh
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
24
|
Kilpinen S, Ojala K, Kallioniemi O. Analysis of kinase gene expression patterns across 5681 human tissue samples reveals functional genomic taxonomy of the kinome. PLoS One 2010; 5:e15068. [PMID: 21151926 PMCID: PMC2997066 DOI: 10.1371/journal.pone.0015068] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 10/17/2010] [Indexed: 01/03/2023] Open
Abstract
Kinases play key roles in cell signaling and represent major targets for drug development, but the regulation of their activation and their associations with health and disease have not been systematically analyzed. Here, we carried out a bioinformatic analysis of the expression levels of 459 human kinase genes in 5681 samples consisting of 44 healthy and 55 malignant human tissues. Defining the tissues where the kinase genes were transcriptionally active led to a functional genomic taxonomy of the kinome and a classification of human tissues and disease types based on the similarity of their kinome gene expression. The co-expression network around each of the kinase genes was defined in order to determine the functional context, i.e. the biological processes that were active in the cells and tissues where the kinase gene was expressed. Strong associations for individual kinases were found for mitosis (69 genes, including AURKA and BUB1), cell cycle control (73 genes, including PLK1 and AURKB), DNA repair (49 genes, including CHEK1 and ATR), immune response (72 genes, including MATK), neuronal (131 genes, including PRKCE) and muscular (72 genes, including MYLK2) functions. We then analyzed which kinase genes gain or lose transcriptional activity in the development of prostate and lung cancers and elucidated the functional associations of individual cancer associated kinase genes. In summary, we report here a systematic classification of kinases based on the bioinformatic analysis of their expression in human tissues and diseases, as well as grouping of tissues and tumor types according to the similarity of their kinome transcription.
Collapse
Affiliation(s)
- Sami Kilpinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
25
|
Nakamura PA, Cramer KS. Formation and maturation of the calyx of Held. Hear Res 2010; 276:70-8. [PMID: 21093567 DOI: 10.1016/j.heares.2010.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 11/24/2022]
Abstract
Sound localization requires precise and specialized neural circuitry. A prominent and well-studied specialization is found in the mammalian auditory brainstem. Globular bushy cells of the ventral cochlear nucleus (VCN) project contralaterally to neurons of the medial nucleus of the trapezoid body (MNTB), where their large axons terminate on cell bodies of MNTB principal neurons, forming the calyces of Held. The VCN-MNTB pathway is necessary for the accurate computation of interaural intensity and time differences; MNTB neurons provide inhibitory input to the lateral superior olive, which compares levels of excitation from the ipsilateral ear to levels of tonotopically matched inhibition from the contralateral ear, and to the medial superior olive, where precise inhibition from MNTB neurons tunes the delays of binaural excitation. Here we review the morphological and physiological aspects of the development of the VCN-MNTB pathway and its calyceal termination, along with potential mechanisms that give rise to its precision. During embryonic development, VCN axons grow towards the midline, cross the midline into the region of the presumptive MNTB and then form collateral branches that will terminate in calyces of Held. In rodents, immature calyces of Held appear in MNTB during the first few days of postnatal life. These calyces mature morphologically and physiologically over the next three postnatal weeks, enabling fast, high fidelity transmission in the VCN-MNTB pathway.
Collapse
Affiliation(s)
- Paul A Nakamura
- Department of Neurobiology and Behavior, University of California, Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550, USA
| | | |
Collapse
|
26
|
Zhang D, Hu X, Qian L, O'Callaghan JP, Hong JS. Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 2010; 41:232-41. [PMID: 20148316 PMCID: PMC3629545 DOI: 10.1007/s12035-010-8098-4] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/07/2010] [Indexed: 12/18/2022]
Abstract
Astrogliosis, a cellular reaction with specific structural and functional characteristics, represents a remarkably homotypic response of astrocytes to all kinds of central nervous system (CNS) pathologies. Astrocytes play diverse functions in the brain, both harmful and beneficial. Mounting evidence indicates that astrogliosis is an underlying component of a diverse range of diseases and associated neuropathologies. The mechanisms that lead to astrogliosis are not fully understood, nevertheless, damaged neurons have long been reported to induce astrogliosis and astrogliosis has been used as an index for underlying neuronal damage. As the predominant source of proinflammatory factors in the CNS, microglia are readily activated under certain pathological conditions. An increasing body of evidence suggests that release of cytokines and other soluble products by activated microglia can significantly influence the subsequent development of astrogliosis and scar formation in CNS. It is well known that damaged neurons activate microglia very quickly, therefore, it is possible that activated microglia contribute factors/mediators through which damaged neuron induce astrogliosis. The hypothesis that activated microglia initiate and maintain astrogliosis suggests that suppression of microglial overactivation might effectively attenuate reactive astrogliosis. Development of targeted anti-microglial activation therapies might slow or halt the progression of astrogliosis and, therefore, help achieve a more beneficial environment in various CNS pathologies.
Collapse
Affiliation(s)
- Dan Zhang
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA,
| | | | | | | | | |
Collapse
|
27
|
Samson M, Emerson MM, Cepko CL. Robust marking of photoreceptor cells and pinealocytes with several reporters under control of the Crx gene. Dev Dyn 2010; 238:3218-25. [PMID: 19882727 DOI: 10.1002/dvdy.22138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Crx is a member of the Otx family of homeobox genes with expression restricted to vertebrate retinal photoreceptor and bipolar cells as well as the pinealocytes of the pineal organ. To facilitate the visualization of Crx-expressing cells, we generated transgenic mice expressing several reporters under the control of the Crx regulatory sequences present within a bacterial artificial chromosome (BAC). These mice expand the transgenic mouse collection, which uses photoreceptor regulatory elements for reporter gene expression by providing a broader repertoire of reporter genes. In addition, because Crx is expressed very soon after a cell fated to be a photoreceptor cell becomes postmitotic, they provide a means for early identification of immature photoreceptor cells.
Collapse
Affiliation(s)
- Maria Samson
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
28
|
Culican SM, Bloom AJ, Weiner JA, DiAntonio A. Phr1 regulates retinogeniculate targeting independent of activity and ephrin-A signalling. Mol Cell Neurosci 2009; 41:304-12. [PMID: 19371781 DOI: 10.1016/j.mcn.2009.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022] Open
Abstract
Proper functioning of the mammalian visual system requires that connections between the eyes and their central targets develop precisely. At birth, axons from the two eyes project to broad, overlapping regions of the dorsal-lateral geniculate nucleus (dLGN). In the adult, retinal axons segregate into distinct monocular regions at stereotyped locations within the dLGN. This process is driven by both molecular cues and activity-dependent synaptic competition. Here we demonstrate that Phr1, an evolutionarily conserved regulator of synapse formation and axon guidance, defines a novel molecular pathway required for proper localization of retinogeniculate projections. Following conditional excision of Phr1 in the retina, eye-specific domains within the dLGN are severely disturbed, despite normal spontaneous retinal wave activity and monocular segregation. Although layer placement is dramatically altered, Phr1 mutant retinal axons respond to ephrin-A in vitro. These findings indicate that Phr1 is a key presynaptic regulator of retinogeniculate layer placement independent of activity, segregation, or ephrin-A signaling.
Collapse
Affiliation(s)
- Susan M Culican
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
29
|
Abstract
At the optic chiasm, retinal ganglion cell (RGC) axons make the decision to either avoid or traverse the midline, a maneuver that establishes the binocular pathways. In mice, the ipsilateral retinal projection arises from RGCs in the peripheral ventrotemporal (VT) crescent of the retina. These RGCs express the guidance receptor EphB1, which interacts with ephrin-B2 on radial glia cells at the optic chiasm to repulse VT axons away from the midline and into the ipsilateral optic tract. However, because VT RGCs express more than one EphB receptor, the sufficiency and specificity of the EphB1 receptor in directing the ipsilateral projection is unclear. In this study, we use in utero retinal electroporation to demonstrate that ectopic EphB1 expression can redirect RGCs with a normally crossed projection to an ipsilateral trajectory. Moreover, EphB1 is specifically required for rerouting RGC projections ipsilaterally, because introduction of the highly similar EphB2 receptor is much less efficient in redirecting RGC fibers, even when expressed at higher surface levels. Introduction of EphB1-EphB2 chimeric receptors into RGCs reveals that both extracellular and juxtamembrane domains of EphB1 are required to efficiently convert RGC projections ipsilaterally. Together, these data describe for the first time functional differences between two highly similar Eph receptors at a decision point in vivo, with EphB1 displaying unique properties that efficiently drives the uncrossed retinal projection.
Collapse
|
30
|
Howell GR, Libby RT, John SWM. Mouse genetic models: an ideal system for understanding glaucomatous neurodegeneration and neuroprotection. PROGRESS IN BRAIN RESEARCH 2009; 173:303-21. [PMID: 18929118 DOI: 10.1016/s0079-6123(08)01122-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Here we review how mouse studies are contributing to understanding glaucoma. We include discussion of aqueous humor drainage and intraocular pressure elevation, because new treatments to avoid exposure to high pressure will indirectly protect neurons from glaucoma, and complement direct neuroprotective strategies. We describe how mouse models are adding to both the understanding of glaucomatous neurodegeneration and the development of neuroprotective strategies.
Collapse
Affiliation(s)
- Gareth R Howell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|
31
|
Korn MJ, Cramer KS. Distribution of glial-associated proteins in the developing chick auditory brainstem. Dev Neurobiol 2008; 68:1093-106. [PMID: 18498086 DOI: 10.1002/dneu.20645] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the avian brainstem, nucleus magnocellularis (NM) projects bilaterally to nucleus laminaris (NL) in a pathway that facilitates sound localization. The distribution of glia during the development of this pathway has not previously been characterized. Radial glia, astrocytes, and oligodendrocytes facilitate many processes including axon pathfinding, synaptic development, and maturation. Here we determined the spatiotemporal expression patterns of glial cell types in embryonic development of the chick auditory brainstem using glial-specific antibodies and histological markers. We found that vimentin-positive processes are intercalated throughout the NL cell layer. Astrocytes are found in two domains: one in the ventral neuropil region and the other dorsolateral to NM. GFAP-positive processes are primarily distributed along the ventral margin of NL. Astrocytic processes penetrate the NL cell layer following the onset of synaptogenesis, but before pruning and maturation. The dynamic, nonoverlapping expression patterns of GFAP and vimentin suggest that distinct glial populations are found in dorsal versus ventral regions of NL. Myelination occurs after axons have reached their targets. FluoroMyelin and myelin basic protein (MBP) gradually increase along the mediolateral axis of NL starting at E10. Multiple GFAP-positive processes are directly apposed to NM-NL axons and MBP, which suggests a role in early myelinogenesis. Our results show considerable changes in glial development after initial NM-NL connections are made, suggesting that glia may facilitate maturation of the auditory circuit.
Collapse
Affiliation(s)
- Matthew J Korn
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA 92697-4550, USA
| | | |
Collapse
|
32
|
Ip CW, Kohl B, Kleinschnitz C, Reuss B, Nave KA, Kroner A, Martini R. Origin of CD11b+ macrophage-like cells in the CNS of PLP-overexpressing mice: Low influx of haematogenous macrophages and unchanged blood-brain-barrier in the optic nerve. Mol Cell Neurosci 2008; 38:489-94. [DOI: 10.1016/j.mcn.2008.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 01/07/2023] Open
|
33
|
Zic2 regulates retinal ganglion cell axon avoidance of ephrinB2 through inducing expression of the guidance receptor EphB1. J Neurosci 2008; 28:5910-9. [PMID: 18524895 DOI: 10.1523/jneurosci.0632-08.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The navigation of retinal axons to ipsilateral and contralateral targets in the brain depends on the decision to cross or avoid the midline at the optic chiasm, a critical guidance maneuver that establishes the binocular visual pathway. Previous work has identified a specific guidance receptor, EphB1, that mediates the repulsion of uncrossed axons away from its ligand, ephrinB2, at the optic chiasm midline (Williams et al., 2003), and a transcription factor Zic2, that, like EphB1, is required for formation of the ipsilateral retinal projection (Herrera et al., 2003). Although the reported similarities in localization implicated that Zic2 regulates EphB1 (Herrera et al., 2003; Williams et al., 2003; Pak et al., 2004), whether Zic2 drives expression of EphB1 protein has not been elucidated. Here we show that EphB1 protein is expressed in the growth cones of axons from ventrotemporal (VT) retina that project ipsilaterally and that repulsion by ephrinB2 is determined by the presence of this receptor on growth cones. Moreover, ectopic delivery of Zic2 into explants from non-VT retina induces expression of EphB1 mRNA and protein. The upregulated EphB1 receptor protein is localized to growth cones and is functional, because it is sufficient to change retinal ganglion cell axon behavior from extension onto, to avoidance of, ephrinB2 substrates. Our results demonstrate that Zic2 upregulates EphB1 expression and define a link between a transcription factor and expression of a guidance receptor protein essential for axon guidance at the vertebrate midline.
Collapse
|
34
|
Wang J, Chan CK, Taylor JS, Chan SO. Localization of Nogo and its receptor in the optic pathway of mouse embryos. J Neurosci Res 2008; 86:1721-33. [DOI: 10.1002/jnr.21626] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, Barbay JM, Marchant JK, Mahesh N, Porciatti V, Whitmore AV, Masland RH, John SWM. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 2007; 179:1523-37. [PMID: 18158332 PMCID: PMC2373494 DOI: 10.1083/jcb.200706181] [Citation(s) in RCA: 478] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 11/19/2007] [Indexed: 01/21/2023] Open
Abstract
Here, we use a mouse model (DBA/2J) to readdress the location of insult(s) to retinal ganglion cells (RGCs) in glaucoma. We localize an early sign of axon damage to an astrocyte-rich region of the optic nerve just posterior to the retina, analogous to the lamina cribrosa. In this region, a network of astrocytes associates intimately with RGC axons. Using BAX-deficient DBA/2J mice, which retain all of their RGCs, we provide experimental evidence for an insult within or very close to the lamina in the optic nerve. We show that proximal axon segments attached to their cell bodies survive to the proximity of the lamina. In contrast, axon segments in the lamina and behind the eye degenerate. Finally, the Wld(s) allele, which is known to protect against insults to axons, strongly protects against DBA/2J glaucoma and preserves RGC activity as measured by pattern electroretinography. These experiments provide strong evidence for a local insult to axons in the optic nerve.
Collapse
|
36
|
Tremblay ME, Riad M, Bouvier D, Murai KK, Pasquale EB, Descarries L, Doucet G. Localization of EphA4 in axon terminals and dendritic spines of adult rat hippocampus. J Comp Neurol 2007; 501:691-702. [PMID: 17299751 DOI: 10.1002/cne.21263] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Eph receptors and their ephrin ligands assume various roles during central nervous system development. Several of these proteins are also expressed in the mature brain, and notably in the hippocampus, where EphA4 and ephrins have been shown to influence dendritic spine morphology and long-term potentiation (LTP). To examine the cellular and subcellular localization of EphA4 in adult rat ventral hippocampus, we used light and electron microscopic immunocytochemistry with a specific polyclonal antibody against EphA4. After immunoperoxidase labeling, EphA4 immunoreactivity was found to be enriched in the neuropil layers of CA1, CA3, and dentate gyrus. In all examined layers of these regions, myelinated axons, small astrocytic leaflets, unmyelinated axons, dendritic spines, and axon terminals were immunolabeled in increasing order of frequency. Neuronal cell bodies and dendritic branches were immunonegative. EphA4-labeled dendritic spines and axon terminals corresponded to 9-19% and 25-40% of the total number of spines and axon terminals, respectively. Most labeled spines were innervated by unlabeled terminals, but synaptic contacts between two labeled elements were seen. The vast majority of synaptic junctions made by labeled elements was asymmetrical and displayed features of excitatory synapses. Immunogold labeling of EphA4 was located mostly on the plasma membrane of axons, dendritic spines, and axon terminals, supporting its availability for surface interactions with ephrins. The dual preferential labeling of EphA4 on pre- or postsynaptic specializations of excitatory synapses in adult rat hippocampus is consistent with roles for this receptor in synaptic plasticity and LTP.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|