1
|
DePew AT, Bruckner JJ, O'Connor-Giles KM, Mosca TJ. Neuronal LRP4 directs the development, maturation and cytoskeletal organization of Drosophila peripheral synapses. Development 2024; 151:dev202517. [PMID: 38738619 PMCID: PMC11190576 DOI: 10.1242/dev.202517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Synaptic development requires multiple signaling pathways to ensure successful connections. Transmembrane receptors are optimally positioned to connect the synapse and the rest of the neuron, often acting as synaptic organizers to synchronize downstream events. One such organizer, the LDL receptor-related protein LRP4, is a cell surface receptor that has been most well-studied postsynaptically at mammalian neuromuscular junctions. Recent work, however, identified emerging roles, but how LRP4 acts as a presynaptic organizer and the downstream mechanisms of LRP4 are not well understood. Here, we show that LRP4 functions presynaptically at Drosophila neuromuscular synapses, acting in motoneurons to instruct pre- and postsynaptic development. Loss of presynaptic LRP4 results in multiple defects, impairing active zone organization, synapse growth, physiological function, microtubule organization, synaptic ultrastructure and synapse maturation. We further demonstrate that LRP4 promotes most aspects of presynaptic development via a downstream SR-protein kinase, SRPK79D. These data demonstrate a function for presynaptic LRP4 as a peripheral synaptic organizer, highlight a downstream mechanism conserved with its CNS function in Drosophila, and underscore previously unappreciated but important developmental roles for LRP4 in cytoskeletal organization, synapse maturation and active zone organization.
Collapse
Affiliation(s)
- Alison T. DePew
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joseph J. Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kate M. O'Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
DePew AT, Bruckner JJ, O’Connor-Giles KM, Mosca TJ. Neuronal LRP4 directs the development, maturation, and cytoskeletal organization of peripheral synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.564481. [PMID: 37961323 PMCID: PMC10635100 DOI: 10.1101/2023.11.03.564481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synapse development requires multiple signaling pathways to accomplish the myriad of steps needed to ensure a successful connection. Transmembrane receptors on the cell surface are optimally positioned to facilitate communication between the synapse and the rest of the neuron and often function as synaptic organizers to synchronize downstream signaling events. One such organizer, the LDL receptor-related protein LRP4, is a cell surface receptor most well-studied postsynaptically at mammalian neuromuscular junctions. Recent work, however, has identified emerging roles for LRP4 as a presynaptic molecule, but how LRP4 acts as a presynaptic organizer, what roles LRP4 plays in organizing presynaptic biology, and the downstream mechanisms of LRP4 are not well understood. Here we show that LRP4 functions presynaptically at Drosophila neuromuscular synapses, acting in motor neurons to instruct multiple aspects of pre- and postsynaptic development. Loss of presynaptic LRP4 results in a range of developmental defects, impairing active zone organization, synapse growth, physiological function, microtubule organization, synaptic ultrastructure, and synapse maturation. We further demonstrate that LRP4 promotes most aspects of presynaptic development via a downstream SR-protein kinase, SRPK79D. SRPK79D overexpression suppresses synaptic defects associated with loss of lrp4. These data demonstrate a function for LRP4 as a peripheral synaptic organizer acting presynaptically, highlight a downstream mechanism conserved with its CNS function, and indicate previously unappreciated roles for LRP4 in cytoskeletal organization, synapse maturation, and active zone organization, underscoring its developmental importance.
Collapse
Affiliation(s)
- Alison T. DePew
- Dept. of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Joseph J. Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI 02912 USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Timothy J. Mosca
- Dept. of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107 USA
- Lead Contact
| |
Collapse
|
3
|
Chen J, Du X, Xu X, Zhang S, Yao L, He X, Wang Y. Comparative Proteomic Analysis Provides New Insights into the Molecular Basis of Thermal-Induced Parthenogenesis in Silkworm ( Bombyx mori). INSECTS 2023; 14:insects14020134. [PMID: 36835703 PMCID: PMC9962255 DOI: 10.3390/insects14020134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 05/27/2023]
Abstract
Artificial parthenogenetic induction via thermal stimuli in silkworm is an important technique that has been used in sericultural production. However, the molecular mechanism underlying it remains largely unknown. We have created a fully parthenogenetic line (PL) with more than 85% occurrence and 80% hatching rate via hot water treatment and genetic selection, while the parent amphigenetic line (AL) has less than 30% pigmentation rate and less than 1% hatching rate when undergoing the same treatment. Here, isobaric tags for relative and absolute quantitation (iTRAQ)-based analysis were used to investigate the key proteins and pathways associated with silkworm parthenogenesis. We uncovered the unique proteomic features of unfertilized eggs in PL. In total, 274 increased abundance proteins and 211 decreased abundance proteins were identified relative to AL before thermal induction. Function analysis displayed an increased level of translation and metabolism in PL. After thermal induction, 97 increased abundance proteins and 187 decreased abundance proteins were identified. An increase in stress response-related proteins and decrease in energy metabolism suggested that PL has a more effective response to buffer the thermal stress than AL. Cell cycle-related proteins, including histones, and spindle-related proteins were decreased in PL, indicating an important role of this decrease in the process of ameiotic parthenogenesis.
Collapse
Affiliation(s)
- Jine Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xin Du
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xia Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Lusong Yao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiuling He
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yongqiang Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Veselkina ER, Trostnikov MV, Roshina NV, Pasyukova EG. The Effect of the Tau Protein on D. melanogaster Lifespan Depends on GSK3 Expression and Sex. Int J Mol Sci 2023; 24:2166. [PMID: 36768490 PMCID: PMC9916465 DOI: 10.3390/ijms24032166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The microtubule-associated conserved protein tau has attracted significant attention because of its essential role in the formation of pathological changes in the nervous system, which can reduce longevity. The study of the effects caused by tau dysfunction and the molecular mechanisms underlying them is complicated because different forms of tau exist in humans and model organisms, and the changes in protein expression can be multidirectional. In this article, we show that an increase in the expression of the main isoform of the Drosophila melanogaster tau protein in the nervous system has differing effects on lifespan depending on the sex of individuals but has no effect on the properties of the nervous system, in particular, the synaptic activity and distribution of another microtubule-associated protein, Futsch, in neuromuscular junctions. Reduced expression of tau in the nervous system does not affect the lifespan of wild-type flies, but it does increase the lifespan dramatically shortened by overexpression of the shaggy gene encoding the GSK3 (Glycogen Synthase Kinase 3) protein kinase, which is one of the key regulators of tau phosphorylation levels. This effect is accompanied by the normalization of the Futsch protein distribution impaired by shaggy overexpression. The results presented in this article demonstrate that multidirectional changes in tau expression can lead to effects that depend on the sex of individuals and the expression level of GSK3.
Collapse
Affiliation(s)
- Ekaterina R. Veselkina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - Mikhail V. Trostnikov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Natalia V. Roshina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena G. Pasyukova
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
5
|
Dzaki N, Bu S, Lau SSY, Yong WL, Yu F. Drosophila GSK3β promotes microtubule disassembly and dendrite pruning in sensory neurons. Development 2022; 149:281771. [PMID: 36264221 DOI: 10.1242/dev.200844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022]
Abstract
The evolutionarily conserved Glycogen Synthase Kinase 3β (GSK3β), a negative regulator of microtubules, is crucial for neuronal polarization, growth and migration during animal development. However, it remains unknown whether GSK3β regulates neuronal pruning, which is a regressive process. Here, we report that the Drosophila GSK3β homologue Shaggy (Sgg) is cell-autonomously required for dendrite pruning of ddaC sensory neurons during metamorphosis. Sgg is necessary and sufficient to promote microtubule depolymerization, turnover and disassembly in the dendrites. Although Sgg is not required for the minus-end-out microtubule orientation in dendrites, hyperactivated Sgg can disturb the dendritic microtubule orientation. Moreover, our pharmacological and genetic data suggest that Sgg is required to promote dendrite pruning at least partly via microtubule disassembly. We show that Sgg and Par-1 kinases act synergistically to promote microtubule disassembly and dendrite pruning. Thus, Sgg and Par-1 might converge on and phosphorylate a common downstream microtubule-associated protein(s) to disassemble microtubules and thereby facilitate dendrite pruning.
Collapse
Affiliation(s)
- Najat Dzaki
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Shufeng Bu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604.,Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Samuel Song Yuan Lau
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Wei Lin Yong
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604.,Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
6
|
Karagas NE, Gupta R, Rastegari E, Tan KL, Leung HH, Bellen HJ, Venkatachalam K, Wong CO. Loss of Activity-Induced Mitochondrial ATP Production Underlies the Synaptic Defects in a Drosophila Model of ALS. J Neurosci 2022; 42:8019-8037. [PMID: 36261266 PMCID: PMC9617612 DOI: 10.1523/jneurosci.2456-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022] Open
Abstract
Mutations in the gene encoding vesicle-associated membrane protein B (VAPB) cause a familial form of amyotrophic lateral sclerosis (ALS). Expression of an ALS-related variant of vapb (vapbP58S ) in Drosophila motor neurons results in morphologic changes at the larval neuromuscular junction (NMJ) characterized by the appearance of fewer, but larger, presynaptic boutons. Although diminished microtubule stability is known to underlie these morphologic changes, a mechanism for the loss of presynaptic microtubules has been lacking. By studying flies of both sexes, we demonstrate the suppression of vapbP58S -induced changes in NMJ morphology by either a loss of endoplasmic reticulum (ER) Ca2+ release channels or the inhibition Ca2+/calmodulin (CaM)-activated kinase II (CaMKII). These data suggest that decreased stability of presynaptic microtubules at vapbP58S NMJs results from hyperactivation of CaMKII because of elevated cytosolic [Ca2+]. We attribute the Ca2+ dyshomeostasis to delayed extrusion of cytosolic Ca2+ Suggesting that this defect in Ca2+ extrusion arose from an insufficient response to the bioenergetic demand of neural activity, depolarization-induced mitochondrial ATP production was diminished in vapbP58S neurons. These findings point to bioenergetic dysfunction as a potential cause for the synaptic defects in vapbP58S -expressing motor neurons.SIGNIFICANCE STATEMENT Whether the synchrony between the rates of ATP production and demand is lost in degenerating neurons remains poorly understood. We report that expression of a gene equivalent to an amyotrophic lateral sclerosis (ALS)-causing variant of vesicle-associated membrane protein B (VAPB) in fly neurons decouples mitochondrial ATP production from neuronal activity. Consequently, levels of ATP in mutant neurons are unable to keep up with the bioenergetic burden of neuronal activity. Reduced rate of Ca2+ extrusion, which could result from insufficient energy to power Ca2+ ATPases, results in the accumulation of residual Ca2+ in mutant neurons and leads to alterations in synaptic vesicle (SV) release and synapse development. These findings suggest that synaptic defects in a model of ALS arise from the loss of activity-induced ATP production.
Collapse
Affiliation(s)
- Nicholas E Karagas
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, Texas 77030
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and University of Texas Health Sciences Center Graduate School of Biomedical Sciences, Houston, TX, 77030
| | - Richa Gupta
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, Texas 77030
| | - Elham Rastegari
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, Texas 77030
| | - Kai Li Tan
- Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Duncan Neurological Research Institute, Texas Children Hospital, Houston, Texas 77030
| | - Ho Hang Leung
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Hugo J Bellen
- Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Duncan Neurological Research Institute, Texas Children Hospital, Houston, Texas 77030
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, Texas 77030
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and University of Texas Health Sciences Center Graduate School of Biomedical Sciences, Houston, TX, 77030
- Graduate Program in Neuroscience, MD Anderson Cancer Center and University of Texas Health Sciences Center Graduate School of Biomedical Sciences, Houston, TX, 77030
| | - Ching-On Wong
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
7
|
Duhart JC, Mosca TJ. Genetic regulation of central synapse formation and organization in Drosophila melanogaster. Genetics 2022; 221:6597078. [PMID: 35652253 DOI: 10.1093/genetics/iyac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Parato J, Bartolini F. The microtubule cytoskeleton at the synapse. Neurosci Lett 2021; 753:135850. [PMID: 33775740 DOI: 10.1016/j.neulet.2021.135850] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
In neurons, microtubules (MTs) provide routes for transport throughout the cell and structural support for dendrites and axons. Both stable and dynamic MTs are necessary for normal neuronal functions. Research in the last two decades has demonstrated that MTs play additional roles in synaptic structure and function in both pre- and postsynaptic elements. Here, we review current knowledge of the functions that MTs perform in excitatory and inhibitory synapses, as well as in the neuromuscular junction and other specialized synapses, and discuss the implications that this knowledge may have in neurological disease.
Collapse
Affiliation(s)
- Julie Parato
- Columbia University Medical Center, Department of Pathology & Cell Biology, 630 West 168(th)Street, P&S 15-421, NY, NY, 10032, United States; SUNY Empire State College, Department of Natural Sciences, 177 Livingston Street, Brooklyn, NY, 11201, United States
| | - Francesca Bartolini
- Columbia University Medical Center, Department of Pathology & Cell Biology, 630 West 168(th)Street, P&S 15-421, NY, NY, 10032, United States.
| |
Collapse
|
9
|
Rangel J, Shepherd TF, Gonzalez AN, Hillhouse A, Konganti K, Ing NH. Transcriptomic analysis of the honey bee (Apis mellifera) queen spermathecae reveals genes that may be involved in sperm storage after mating. PLoS One 2021; 16:e0244648. [PMID: 33417615 PMCID: PMC7793254 DOI: 10.1371/journal.pone.0244648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Honey bee (Apis mellifera) queens have a remarkable organ, the spermatheca, which successfully stores sperm for years after a virgin queen mates. This study uniquely characterized and quantified the transcriptomes of the spermathecae from mated and virgin honey bee queens via RNA sequencing to identify differences in mRNA levels based on a queen's mating status. The transcriptome of drone semen was analyzed for comparison. Samples from three individual bees were independently analyzed for mated queen spermathecae and virgin queen spermathecae, and three pools of semen from ten drones each were collected from three separate colonies. In total, the expression of 11,233 genes was identified in mated queen spermathecae, 10,521 in virgin queen spermathecae, and 10,407 in drone semen. Using a cutoff log2 fold-change value of 2.0, we identified 212 differentially expressed genes between mated and virgin spermathecal queen tissues: 129 (1.4% of total) were up-regulated and 83 (0.9% of total) were down-regulated in mated queen spermathecae. Three genes in mated queen spermathecae, three genes in virgin queen spermathecae and four genes in drone semen that were more highly expressed in those tissues from the RNA sequencing data were further validated by real time quantitative PCR. Among others, expression of Kielin/chordin-like and Trehalase mRNAs was highest in the spermathecae of mated queens compared to virgin queen spermathecae and drone semen. Expression of the mRNA encoding Alpha glucosidase 2 was higher in the spermathecae of virgin queens. Finally, expression of Facilitated trehalose transporter 1 mRNA was greatest in drone semen. This is the first characterization of gene expression in the spermathecae of honey bee queens revealing the alterations in mRNA levels within them after mating. Future studies will extend to other reproductive tissues with the purpose of relating levels of specific mRNAs to the functional competence of honey bee queens and the colonies they head.
Collapse
Affiliation(s)
- Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Tonya F. Shepherd
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Alejandra N. Gonzalez
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Andrew Hillhouse
- Texas A&M Institute of Genome Sciences and Society, Texas A&M University, College Station, Texas, United States of America
| | - Kranti Konganti
- Texas A&M Institute of Genome Sciences and Society, Texas A&M University, College Station, Texas, United States of America
| | - Nancy H. Ing
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
10
|
Chou VT, Johnson SA, Van Vactor D. Synapse development and maturation at the drosophila neuromuscular junction. Neural Dev 2020; 15:11. [PMID: 32741370 PMCID: PMC7397595 DOI: 10.1186/s13064-020-00147-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Synapses are the sites of neuron-to-neuron communication and form the basis of the neural circuits that underlie all animal cognition and behavior. Chemical synapses are specialized asymmetric junctions between a presynaptic neuron and a postsynaptic target that form through a series of diverse cellular and subcellular events under the control of complex signaling networks. Once established, the synapse facilitates neurotransmission by mediating the organization and fusion of synaptic vesicles and must also retain the ability to undergo plastic changes. In recent years, synaptic genes have been implicated in a wide array of neurodevelopmental disorders; the individual and societal burdens imposed by these disorders, as well as the lack of effective therapies, motivates continued work on fundamental synapse biology. The properties and functions of the nervous system are remarkably conserved across animal phyla, and many insights into the synapses of the vertebrate central nervous system have been derived from studies of invertebrate models. A prominent model synapse is the Drosophila melanogaster larval neuromuscular junction, which bears striking similarities to the glutamatergic synapses of the vertebrate brain and spine; further advantages include the simplicity and experimental versatility of the fly, as well as its century-long history as a model organism. Here, we survey findings on the major events in synaptogenesis, including target specification, morphogenesis, and the assembly and maturation of synaptic specializations, with a emphasis on work conducted at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Vivian T Chou
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth A Johnson
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Tu V, Mayoral J, Yakubu RR, Tomita T, Sugi T, Han B, Williams T, Ma Y, Weiss LM. MAG2, a Toxoplasma gondii Bradyzoite Stage-Specific Cyst Matrix Protein. mSphere 2020; 5:e00100-20. [PMID: 32075884 PMCID: PMC7031614 DOI: 10.1128/msphere.00100-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii causes a chronic infection that affects a significant portion of the world's population, and this latent infection is the source of reactivation of toxoplasmosis. An attribute of the slowly growing bradyzoite stage of the parasite is the formation of a cyst within infected cells, allowing the parasite to escape the host's immune response. In this study, a new bradyzoite cyst matrix antigen (MAG) was identified through a hybridoma library screen. This cyst matrix antigen, matrix antigen 2 (MAG2), contains 14 tandem repeats consisting of acidic, basic, and proline residues. Immunoblotting revealed that MAG2 migrates at a level higher than its predicted molecular weight, and computational analysis showed that the structure of MAG2 is highly disordered. Cell fractionation studies indicated that MAG2 was associated with both insoluble and soluble cyst matrix material, suggesting that it interacts with the intracyst network (ICN). Examination of the kinetics of MAG2 within the cyst matrix using fluorescence recovery after photobleaching (FRAP) demonstrated that MAG2 does not readily diffuse within the cyst matrix. Kinetic studies of MAG1 demonstrated that this protein has different diffusion kinetics in tachyzoite and bradyzoite vacuoles and that its mobility is not altered in the absence of MAG2. In addition, deletion of MAG2 does not influence growth, cystogenesis, or cyst morphology.IMPORTANCE This report expands on the list of characterized Toxoplasma gondii cyst matrix proteins. Using fluorescence recovery after photobleaching (FRAP), we have shown that matrix proteins within the cyst matrix are not mainly in a mobile state, providing further evidence of how proteins behave within the cyst matrix. Understanding the proteins expressed during the bradyzoite stage of the parasite reveals how the parasite functions during chronic infection.
Collapse
Affiliation(s)
- Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joshua Mayoral
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rama R Yakubu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tatsuki Sugi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Bing Han
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tere Williams
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yanfen Ma
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
12
|
POU domain motif3 (Pdm3) induces wingless (wg) transcription and is essential for development of larval neuromuscular junctions in Drosophila. Sci Rep 2020; 10:517. [PMID: 31949274 PMCID: PMC6965103 DOI: 10.1038/s41598-020-57425-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
Wnt is a conserved family of secreted proteins that play diverse roles in tissue growth and differentiation. Identification of transcription factors that regulate wnt expression is pivotal for understanding tissue-specific signaling pathways regulated by Wnt. We identified pdm3m7, a new allele of the pdm3 gene encoding a POU family transcription factor, in a lethality-based genetic screen for modifiers of Wingless (Wg) signaling in Drosophila. Interestingly, pdm3m7 larvae showed slow locomotion, implying neuromuscular defects. Analysis of larval neuromuscular junctions (NMJs) revealed decreased bouton number with enlarged bouton in pdm3 mutants. pdm3 NMJs also had fewer branches at axon terminals than wild-type NMJs. Consistent with pdm3m7 being a candidate wg modifier, NMJ phenotypes in pdm3 mutants were similar to those of wg mutants, implying a functional link between these two genes. Indeed, lethality caused by Pdm3 overexpression in motor neurons was completely rescued by knockdown of wg, indicating that Pdm3 acts upstream to Wg. Furthermore, transient expression of Pdm3 induced ectopic expression of wg-LacZ reporter and Wg effector proteins in wing discs. We propose that Pdm3 expressed in presynaptic NMJ neurons regulates wg transcription for growth and development of both presynaptic neurons and postsynaptic muscles.
Collapse
|
13
|
Vargas EJM, Matamoros AJ, Qiu J, Jan CH, Wang Q, Gorczyca D, Han TW, Weissman JS, Jan YN, Banerjee S, Song Y. The microtubule regulator ringer functions downstream from the RNA repair/splicing pathway to promote axon regeneration. Genes Dev 2020; 34:194-208. [PMID: 31919191 PMCID: PMC7000917 DOI: 10.1101/gad.331330.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
In this study, Vargas et al. set out to elucidate the downstream effectors of the Rtca-mediated RNA repair/splicing pathway. Using genome-wide transcriptome analysis, the authors demonstrate that the microtubule-associated protein (MAP) tubulin polymerization-promoting protein (TPPP) ringer functions downstream from and is suppressed by Rtca via Xbp1-dependent transcription. Ringer cell-autonomously promotes axon regeneration in the peripheral and central nervous system. Promoting axon regeneration in the central and peripheral nervous system is of clinical importance in neural injury and neurodegenerative diseases. Both pro- and antiregeneration factors are being identified. We previously reported that the Rtca mediated RNA repair/splicing pathway restricts axon regeneration by inhibiting the nonconventional splicing of Xbp1 mRNA under cellular stress. However, the downstream effectors remain unknown. Here, through transcriptome profiling, we show that the tubulin polymerization-promoting protein (TPPP) ringmaker/ringer is dramatically increased in Rtca-deficient Drosophila sensory neurons, which is dependent on Xbp1. Ringer is expressed in sensory neurons before and after injury, and is cell-autonomously required for axon regeneration. While loss of ringer abolishes the regeneration enhancement in Rtca mutants, its overexpression is sufficient to promote regeneration both in the peripheral and central nervous system. Ringer maintains microtubule stability/dynamics with the microtubule-associated protein futsch/MAP1B, which is also required for axon regeneration. Furthermore, ringer lies downstream from and is negatively regulated by the microtubule-associated deacetylase HDAC6, which functions as a regeneration inhibitor. Taken together, our findings suggest that ringer acts as a hub for microtubule regulators that relays cellular status information, such as cellular stress, to the integrity of microtubules in order to instruct neuroregeneration.
Collapse
Affiliation(s)
- Ernest J Monahan Vargas
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrew J Matamoros
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jingyun Qiu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Calvin H Jan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158, USA.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David Gorczyca
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Tina W Han
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158, USA.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Swati Banerjee
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Chou VT, Johnson S, Long J, Vounatsos M, Van Vactor D. dTACC restricts bouton addition and regulates microtubule organization at the Drosophila neuromuscular junction. Cytoskeleton (Hoboken) 2020; 77:4-15. [PMID: 31702858 PMCID: PMC7027520 DOI: 10.1002/cm.21578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Abstract
Regulation of the synaptic cytoskeleton is essential to proper neuronal development and wiring. Perturbations in neuronal microtubules (MTs) are associated with numerous pathologies, yet it remains unclear how changes in MTs may be coupled to synapse morphogenesis. Studies have identified many MT regulators that promote synapse growth. However, less is known about the factors that restrict growth, despite the potential links of synaptic overgrowth to severe neurological conditions. Here, we report that dTACC, which is implicated in MT assembly and stability, prevents synapse overgrowth at the Drosophila neuromuscular junction by restricting addition of new boutons throughout larval development. dTACC localizes to the axonal MT lattice and is required to maintain tubulin levels and the integrity of higher-order MT structures in motor axon terminals. While previous reports have demonstrated the roles of MT-stabilizing proteins in promoting synapse growth, our findings suggest that in certain contexts, MT stabilization may correlate with restricted growth.
Collapse
Affiliation(s)
- Vivian T. Chou
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - Seth Johnson
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - Jennifer Long
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - Maxime Vounatsos
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - David Van Vactor
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| |
Collapse
|
15
|
Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis. Cells 2019; 8:cells8101232. [PMID: 31658749 PMCID: PMC6829861 DOI: 10.3390/cells8101232] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
By influencing Ca2+ homeostasis in spatially and architecturally distinct neuronal compartments, the endoplasmic reticulum (ER) illustrates the notion that form and function are intimately related. The contribution of ER to neuronal Ca2+ homeostasis is attributed to the organelle being the largest reservoir of intracellular Ca2+ and having a high density of Ca2+ channels and transporters. As such, ER Ca2+ has incontrovertible roles in the regulation of axodendritic growth and morphology, synaptic vesicle release, and neural activity dependent gene expression, synaptic plasticity, and mitochondrial bioenergetics. Not surprisingly, many neurological diseases arise from ER Ca2+ dyshomeostasis, either directly due to alterations in ER resident proteins, or indirectly via processes that are coupled to the regulators of ER Ca2+ dynamics. In this review, we describe the mechanisms involved in the establishment of ER Ca2+ homeostasis in neurons. We elaborate upon how changes in the spatiotemporal dynamics of Ca2+ exchange between the ER and other organelles sculpt neuronal function and provide examples that demonstrate the involvement of ER Ca2+ dyshomeostasis in a range of neurological and neurodegenerative diseases.
Collapse
|
16
|
Migh E, Götz T, Földi I, Szikora S, Gombos R, Darula Z, Medzihradszky KF, Maléth J, Hegyi P, Sigrist S, Mihály J. Microtubule organization in presynaptic boutons relies on the formin DAAM. Development 2018; 145:dev158519. [PMID: 29487108 DOI: 10.1242/dev.158519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 02/14/2018] [Indexed: 02/02/2023]
Abstract
Regulation of the cytoskeleton is fundamental to the development and function of synaptic terminals, such as neuromuscular junctions. Despite the identification of numerous proteins that regulate synaptic actin and microtubule dynamics, the mechanisms of cytoskeletal control during terminal arbor formation have remained largely elusive. Here, we show that DAAM, a member of the formin family of cytoskeleton organizing factors, is an important presynaptic regulator of neuromuscular junction development in Drosophila We demonstrate that the actin filament assembly activity of DAAM plays a negligible role in terminal formation; rather, DAAM is necessary for synaptic microtubule organization. Genetic interaction studies consistently link DAAM with the Wg/Ank2/Futsch module of microtubule regulation and bouton formation. Finally, we provide evidence that DAAM is tightly associated with the synaptic active zone scaffold, and electrophysiological data point to a role in the modulation of synaptic vesicle release. Based on these results, we propose that DAAM is an important cytoskeletal effector element of the Wg/Ank2 pathway involved in the determination of basic synaptic structures, and, additionally, that DAAM may couple the active zone scaffold to the presynaptic cytoskeleton.
Collapse
Affiliation(s)
- Ede Migh
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Torsten Götz
- Institut für Biologie/Genetik and NeuroCure, Freie Universitat Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - István Földi
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Rita Gombos
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Katalin F Medzihradszky
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - József Maléth
- MTA-SZTE Translational Gastroenterology Research Group, Szeged H-6725, Hungary
| | - Péter Hegyi
- MTA-SZTE Translational Gastroenterology Research Group, Szeged H-6725, Hungary
- Institute for Translational Medicine, University of Pecs, Pécs H-7624, Hungary
| | - Stephan Sigrist
- Institut für Biologie/Genetik and NeuroCure, Freie Universitat Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
17
|
Acebron SP, Niehrs C. β-Catenin-Independent Roles of Wnt/LRP6 Signaling. Trends Cell Biol 2016; 26:956-967. [PMID: 27568239 DOI: 10.1016/j.tcb.2016.07.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022]
Abstract
Wnt/LRP6 signaling is best known for the β-catenin-dependent regulation of target genes. However, pathway branches have recently emerged, including Wnt/STOP signaling, which act independently of β-catenin and transcription. We review here the molecular mechanisms underlying β-catenin-independent Wnt/LRP6 signaling cascades and their implications for cell biology, development, and physiology.
Collapse
Affiliation(s)
- Sergio P Acebron
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum (DKFZ)-Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, 69120 Heidelberg, Germany.
| | - Christof Niehrs
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum (DKFZ)-Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, 69120 Heidelberg, Germany; Institute of Molecular Biology, 55128 Mainz, Germany.
| |
Collapse
|
18
|
Bodaleo FJ, Gonzalez-Billault C. The Presynaptic Microtubule Cytoskeleton in Physiological and Pathological Conditions: Lessons from Drosophila Fragile X Syndrome and Hereditary Spastic Paraplegias. Front Mol Neurosci 2016; 9:60. [PMID: 27504085 PMCID: PMC4958632 DOI: 10.3389/fnmol.2016.00060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022] Open
Abstract
The capacity of the nervous system to generate neuronal networks relies on the establishment and maintenance of synaptic contacts. Synapses are composed of functionally different presynaptic and postsynaptic compartments. An appropriate synaptic architecture is required to provide the structural basis that supports synaptic transmission, a process involving changes in cytoskeletal dynamics. Actin microfilaments are the main cytoskeletal components present at both presynaptic and postsynaptic terminals in glutamatergic synapses. However, in the last few years it has been demonstrated that microtubules (MTs) transiently invade dendritic spines, promoting their maturation. Nevertheless, the presence and functions of MTs at the presynaptic site are still a matter of debate. Early electron microscopy (EM) studies revealed that MTs are present in the presynaptic terminals of the central nervous system (CNS) where they interact with synaptic vesicles (SVs) and reach the active zone. These observations have been reproduced by several EM protocols; however, there is empirical heterogeneity in detecting presynaptic MTs, since they appear to be both labile and unstable. Moreover, increasing evidence derived from studies in the fruit fly neuromuscular junction proposes different roles for MTs in regulating presynaptic function in physiological and pathological conditions. In this review, we summarize the main findings that support the presence and roles of MTs at presynaptic terminals, integrating descriptive and biochemical analyses, and studies performed in invertebrate genetic models.
Collapse
Affiliation(s)
- Felipe J Bodaleo
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile; The Buck Institute for Research on Aging, NovatoCA, USA
| |
Collapse
|
19
|
Sugie A, Hakeda-Suzuki S, Suzuki E, Silies M, Shimozono M, Möhl C, Suzuki T, Tavosanis G. Molecular Remodeling of the Presynaptic Active Zone of Drosophila Photoreceptors via Activity-Dependent Feedback. Neuron 2015; 86:711-25. [PMID: 25892303 DOI: 10.1016/j.neuron.2015.03.046] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/10/2015] [Accepted: 03/18/2015] [Indexed: 11/27/2022]
Abstract
Neural activity contributes to the regulation of the properties of synapses in sensory systems, allowing for adjustment to a changing environment. Little is known about how synaptic molecular components are regulated to achieve activity-dependent plasticity at central synapses. Here, we found that after prolonged exposure to natural ambient light the presynaptic active zone in Drosophila photoreceptors undergoes reversible remodeling, including loss of Bruchpilot, DLiprin-α, and DRBP, but not of DSyd-1 or Cacophony. The level of depolarization of the postsynaptic neurons is critical for the light-induced changes in active zone composition in the photoreceptors, indicating the existence of a feedback signal. In search of this signal, we have identified a crucial role of microtubule meshwork organization downstream of the divergent canonical Wnt pathway, potentially via Kinesin-3 Imac. These data reveal that active zone composition can be regulated in vivo and identify the underlying molecular machinery.
Collapse
Affiliation(s)
- Atsushi Sugie
- Dendrite Differentiation, German Center for Neurodegenerative Diseases (DZNE), Bonn 53175, Germany
| | - Satoko Hakeda-Suzuki
- Core Division of Advanced Research, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology (Titech), Yokohama 226-8501, Japan
| | - Emiko Suzuki
- Gene Network Laboratory, National Institute of Genetics and Department of Genetics, SOKENDAI, Mishima 411-8540, Japan
| | - Marion Silies
- European Neuroscience Institute (ENI), 37077 Göttingen, Germany
| | - Mai Shimozono
- Core Division of Advanced Research, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology (Titech), Yokohama 226-8501, Japan
| | - Christoph Möhl
- Image and Data Analysis Facility, German Center for Neurodegenerative Diseases (DZNE), Bonn 53175, Germany
| | - Takashi Suzuki
- Core Division of Advanced Research, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology (Titech), Yokohama 226-8501, Japan.
| | - Gaia Tavosanis
- Dendrite Differentiation, German Center for Neurodegenerative Diseases (DZNE), Bonn 53175, Germany.
| |
Collapse
|
20
|
Wong CO, Chen K, Lin YQ, Chao Y, Duraine L, Lu Z, Yoon WH, Sullivan JM, Broadhead GT, Sumner CJ, Lloyd TE, Macleod GT, Bellen HJ, Venkatachalam K. A TRPV channel in Drosophila motor neurons regulates presynaptic resting Ca2+ levels, synapse growth, and synaptic transmission. Neuron 2014; 84:764-77. [PMID: 25451193 DOI: 10.1016/j.neuron.2014.09.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 12/30/2022]
Abstract
Presynaptic resting Ca(2+) influences synaptic vesicle (SV) release probability. Here, we report that a TRPV channel, Inactive (Iav), maintains presynaptic resting [Ca(2+)] by promoting Ca(2+) release from the endoplasmic reticulum in Drosophila motor neurons, and is required for both synapse development and neurotransmission. We find that Iav activates the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin, which is essential for presynaptic microtubule stabilization at the neuromuscular junction. Thus, loss of Iav induces destabilization of presynaptic microtubules, resulting in diminished synaptic growth. Interestingly, expression of human TRPV1 in Iav-deficient motor neurons rescues these defects. We also show that the absence of Iav causes lower SV release probability and diminished synaptic transmission, whereas Iav overexpression elevates these synaptic parameters. Together, our findings indicate that Iav acts as a key regulator of synaptic development and function by influencing presynaptic resting [Ca(2+)].
Collapse
Affiliation(s)
- Ching-On Wong
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA
| | - Kuchuan Chen
- Graduate Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Yong Qi Lin
- Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Yufang Chao
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA
| | - Lita Duraine
- Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Zhongmin Lu
- Integrative Biology and Neuroscience program, Florida Atlantic University and Max Planck Florida Institute, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Wan Hee Yoon
- Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Jeremy M Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA
| | - Geoffrey T Broadhead
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA
| | - Gregory T Macleod
- Department of Physiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Hugo J Bellen
- Graduate Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA; Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA; Graduate Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA; Graduate Programs in Cell and Regulatory Biology (CRB) and Neuroscience, Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030.
| |
Collapse
|
21
|
Lüchtenborg AM, Solis GP, Egger-Adam D, Koval A, Lin C, Blanchard MG, Kellenberger S, Katanaev VL. Heterotrimeric Go protein links Wnt-Frizzled signaling with ankyrins to regulate the neuronal microtubule cytoskeleton. Development 2014; 141:3399-409. [PMID: 25139856 PMCID: PMC4199127 DOI: 10.1242/dev.106773] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Drosophila neuromuscular junctions (NMJs) represent a powerful model system with which to study glutamatergic synapse formation and remodeling. Several proteins have been implicated in these processes, including components of canonical Wingless (Drosophila Wnt1) signaling and the giant isoforms of the membrane-cytoskeleton linker Ankyrin 2, but possible interconnections and cooperation between these proteins were unknown. Here, we demonstrate that the heterotrimeric G protein Go functions as a transducer of Wingless-Frizzled 2 signaling in the synapse. We identify Ankyrin 2 as a target of Go signaling required for NMJ formation. Moreover, the Go-ankyrin interaction is conserved in the mammalian neurite outgrowth pathway. Without ankyrins, a major switch in the Go-induced neuronal cytoskeleton program is observed, from microtubule-dependent neurite outgrowth to actin-dependent lamellopodial induction. These findings describe a novel mechanism regulating the microtubule cytoskeleton in the nervous system. Our work in Drosophila and mammalian cells suggests that this mechanism might be generally applicable in nervous system development and function.
Collapse
Affiliation(s)
- Anne-Marie Lüchtenborg
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, Lausanne 1005, Switzerland Department of Biology, University of Konstanz, Universitätsstrasse 10, Box 643, Konstanz 78457, Germany
| | - Gonzalo P Solis
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, Lausanne 1005, Switzerland
| | - Diane Egger-Adam
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Box 643, Konstanz 78457, Germany
| | - Alexey Koval
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, Lausanne 1005, Switzerland
| | - Chen Lin
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, Lausanne 1005, Switzerland Department of Biology, University of Konstanz, Universitätsstrasse 10, Box 643, Konstanz 78457, Germany
| | - Maxime G Blanchard
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, Lausanne 1005, Switzerland
| | - Stephan Kellenberger
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, Lausanne 1005, Switzerland
| | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, Lausanne 1005, Switzerland Department of Biology, University of Konstanz, Universitätsstrasse 10, Box 643, Konstanz 78457, Germany
| |
Collapse
|
22
|
A presynaptic role of microtubule-associated protein 1/Futsch in Drosophila: regulation of active zone number and neurotransmitter release. J Neurosci 2014; 34:6759-71. [PMID: 24828631 DOI: 10.1523/jneurosci.4282-13.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Structural microtubule-associated proteins (MAPs), like MAP1, not only control the stability of microtubules, but also interact with postsynaptic proteins in the nervous system. Their presynaptic role has barely been studied. To tackle this question, we used the Drosophila model in which there is only one MAP1 homolog: Futsch, which is expressed at the larval neuromuscular junction, presynaptically only. We show that Futsch regulates neurotransmitter release and active zone density. Importantly, we provide evidence that this role of Futsch is not just the consequence of its microtubule-stabilizing function. Using high-resolution microscopy, we show that Futsch and microtubules are almost systematically present in close proximity to active zones, with Futsch being localized in-between microtubules and active zones. Using proximity ligation assays, we further demonstrate the proximity of Futsch, but not microtubules, to active zone components. Altogether our data are in favor of a model by which Futsch locally stabilizes active zones, by reinforcing their link with the underlying microtubule cytoskeleton.
Collapse
|
23
|
Abstract
Wnt proteins are best known for their profound roles in cell patterning, because they are required for the embryonic development of all animal species studied to date. Besides regulating cell fate, Wnt proteins are gaining increasing recognition for their roles in nervous system development and function. New studies indicate that multiple positive and negative Wnt signaling pathways take place simultaneously during the formation of vertebrate and invertebrate neuromuscular junctions. Although some Wnts are essential for the formation of NMJs, others appear to play a more modulatory role as part of multiple signaling pathways. Here we review the most recent findings regarding the function of Wnts at the NMJ from both vertebrate and invertebrate model systems.
Collapse
Affiliation(s)
- Kate Koles
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, 01605, USA
| | | |
Collapse
|
24
|
Dani N, Broadie K. Glycosylated synaptomatrix regulation of trans-synaptic signaling. Dev Neurobiol 2012; 72:2-21. [PMID: 21509945 DOI: 10.1002/dneu.20891] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Synapse formation is driven by precisely orchestrated intercellular communication between the presynaptic and the postsynaptic cell, involving a cascade of anterograde and retrograde signals. At the neuromuscular junction (NMJ), both neuron and muscle secrete signals into the heavily glycosylated synaptic cleft matrix sandwiched between the two synapsing cells. These signals must necessarily traverse and interact with the extracellular environment, for the ligand-receptor interactions mediating communication to occur. This complex synaptomatrix, rich in glycoproteins and proteoglycans, comprises heterogeneous, compartmentalized domains where specialized glycans modulate trans-synaptic signaling during synaptogenesis and subsequent synapse modulation. The general importance of glycans during development, homeostasis and disease is well established, but this important molecular class has received less study in the nervous system. Glycan modifications are now understood to play functional and modulatory roles as ligands and co-receptors in numerous tissues; however, roles at the synapse are relatively unexplored. We highlight here properties of synaptomatrix glycans and glycan-interacting proteins with key roles in synaptogenesis, with a particular focus on recent advances made in the Drosophila NMJ genetic system. We discuss open questions and interesting new findings driving this investigation of complex, diverse, and largely understudied glycan mechanisms at the synapse.
Collapse
Affiliation(s)
- Neil Dani
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
25
|
Abstract
The cytoskeleton forms the backbone of neuronal architecture, sustaining its form and size, subcellular compartments and cargo logistics. The synaptic cytoskeleton can be categorized in the microtubule-based core cytoskeleton and the cortical membrane skeleton. While central microtubules form the fundamental basis for the construction of elaborate neuronal processes, including axons and synapses, cortical actin filaments are generally considered to function as mediators of synapse dynamics and plasticity. More recently, the submembranous network of spectrin and ankyrin molecules has been involved in the regulation of synaptic stability and maintenance. Disruption of the synaptic cytoskeleton primarily affects the stability and maturation of synapses but also secondarily disturbs neuronal communication. Consequently, a variety of inherited diseases are accompanied by cytoskeletal malfunctions, including spastic paraplegias, spinocerebellar ataxias, and mental retardation. Since the primary reasons for many of these diseases are still unknown model organisms with a conserved repertoire of cytoskeletal elements help to understand the underlying biological mechanisms. The astonishing technical as well as genetic accessibility of synapses in Drosophila has shown that loss of the cytoskeletal architecture leads to axonal transport defects, synaptic maturation deficits, and retraction of synaptic boutons, before synaptic terminals finally detach from their target cells, suggesting that similar processes could be involved in human neuronal diseases.
Collapse
Affiliation(s)
- Bernd Goellner
- Heinrich-Heine-University Düsseldorf, Functional Cell Morphology Lab, Düsseldorf, Germany
| | | |
Collapse
|
26
|
Yang M, Hatton-Ellis E, Simpson P. The kinase Sgg modulates temporal development of macrochaetes in Drosophila by phosphorylation of Scute and Pannier. Development 2011; 139:325-34. [PMID: 22159580 DOI: 10.1242/dev.074260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Evolution of novel structures is often made possible by changes in the timing or spatial expression of genes regulating development. Macrochaetes, large sensory bristles arranged into species-specific stereotypical patterns, are an evolutionary novelty of cyclorraphous flies and are associated with changes in both the temporal and spatial expression of the proneural genes achaete (ac) and scute (sc). Changes in spatial expression are associated with the evolution of cis-regulatory sequences, but it is not known how temporal regulation is achieved. One factor required for ac-sc expression, the expression of which coincides temporally with that of ac-sc in the notum, is Wingless (Wg; also known as Wnt). Wingless downregulates the activity of the serine/threonine kinase Shaggy (Sgg; also known as GSK-3). We demonstrate that Scute is phosphorylated by Sgg on a serine residue and that mutation of this residue results in a form of Sc with heightened proneural activity that can rescue the loss of bristles characteristic of wg mutants. We suggest that the phosphorylated form of Sc has reduced transcriptional activity such that sc is unable to autoregulate, an essential function for the segregation of bristle precursors. Sgg also phosphorylates Pannier, a transcriptional activator of ac-sc, the activity of which is similarly dampened when in the phosphorylated state. Furthermore, we show that Wg signalling does not act directly via a cis-regulatory element of the ac-sc genes. We suggest that temporal control of ac-sc activity in cyclorraphous flies is likely to be regulated by permissive factors and might therefore not be encoded at the level of ac-sc gene sequences.
Collapse
Affiliation(s)
- Mingyao Yang
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | | |
Collapse
|
27
|
Kaiser TS, Neumann D, Heckel DG. Timing the tides: genetic control of diurnal and lunar emergence times is correlated in the marine midge Clunio marinus. BMC Genet 2011; 12:49. [PMID: 21599938 PMCID: PMC3124415 DOI: 10.1186/1471-2156-12-49] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 05/20/2011] [Indexed: 11/27/2022] Open
Abstract
Background The intertidal zone of seacoasts, being affected by the superimposed tidal, diurnal and lunar cycles, is temporally the most complex environment on earth. Many marine organisms exhibit lunar rhythms in reproductive behaviour and some show experimental evidence of endogenous control by a circalunar clock, the molecular and genetic basis of which is unexplored. We examined the genetic control of lunar and diurnal rhythmicity in the marine midge Clunio marinus (Chironomidae, Diptera), a species for which the correct timing of adult emergence is critical in natural populations. Results We crossed two strains of Clunio marinus that differ in the timing of the diurnal and lunar rhythms of emergence. The phenotype distribution of the segregating backcross progeny indicates polygenic control of the lunar emergence rhythm. Diurnal timing of emergence is also under genetic control, and is influenced by two unlinked genes with major effects. Furthermore, the lunar and diurnal timing of emergence is correlated in the backcross generation. We show that both the lunar emergence time and its correlation to the diurnal emergence time are adaptive for the species in its natural environment. Conclusions The correlation implies that the unlinked genes affecting lunar timing and the two unlinked genes affecting diurnal timing could be the same, providing an unexpectedly close interaction of the two clocks. Alternatively, the genes could be genetically linked in a two-by-two fashion, suggesting that evolution has shaped the genetic architecture to stabilize adaptive combinations of lunar and diurnal emergence times by tightening linkage. Our results, the first on genetic control of lunar rhythms, offer a new perspective to explore their molecular clockwork.
Collapse
Affiliation(s)
- Tobias S Kaiser
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| | | | | |
Collapse
|
28
|
Smillie KJ, Cousin MA. The Role of GSK3 in Presynaptic Function. Int J Alzheimers Dis 2011; 2011:263673. [PMID: 21547219 PMCID: PMC3087464 DOI: 10.4061/2011/263673] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/20/2011] [Indexed: 11/20/2022] Open
Abstract
The past ten years of research have identified a number of key roles for glycogen synthase kinase 3 (GSK3) at the synapse. In terms of presynaptic physiology, critical roles for GSK3 have been revealed in the growth and maturation of the nerve terminal and more recently a key role in the control of activity-dependent bulk endocytosis of synaptic vesicles. This paper will summarise the major roles assigned to GSK3 in both immature and mature nerve terminals, the substrates GSK3 phosphorylates to exert its action, and how GSK3 activity is regulated by different presynaptic signalling cascades. The number of essential roles for GSK3, coupled with the numerous signalling cascades all converging to regulate its activity, suggests that GSK3 is a key integrator of multiple inputs to modulate the strength of neurotransmission. Modulation of these pathways may point to potential mechanisms to overcome synaptic failure in neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Karen Janet Smillie
- Membrane Biology Group, Centre for Integrative Physiology, University of Edinburgh, George Square, EH8 9XD, Edinburgh, UK
| | | |
Collapse
|
29
|
LRRK2 kinase regulates synaptic morphology through distinct substrates at the presynaptic and postsynaptic compartments of the Drosophila neuromuscular junction. J Neurosci 2011; 30:16959-69. [PMID: 21159966 DOI: 10.1523/jneurosci.1807-10.2010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are linked to familial as well as sporadic forms of Parkinson's disease (PD), a neurodegenerative disease characterized by dysfunction and degeneration of dopaminergic and other types of neurons. The molecular and cellular mechanisms underlying LRRK2 action remain poorly defined. Here, we show that LRRK2 controls synaptic morphogenesis at the Drosophila neuromuscular junction. Loss of Drosophila LRRK2 results in synaptic overgrowth, whereas overexpression of Drosophila LRRK or human LRRK2 has opposite effects. Alteration of LRRK2 activity also affects neurotransmission. LRRK2 exerts its effects on synaptic morphology by interacting with distinct downstream effectors at the presynaptic and postsynaptic compartments. At the postsynapse, LRRK2 interacts with the previously characterized substrate 4E-BP, an inhibitor of protein synthesis. At the presynapse, LRRK2 phosphorylates and negatively regulates the microtubule (MT)-binding protein Futsch. These results implicate synaptic dysfunction caused by deregulated protein synthesis and aberrant MT dynamics in LRRK2 pathogenesis and offer a new paradigm for understanding and ultimately treating PD.
Collapse
|
30
|
Tymanskyj SR, Lin S, Gordon-Weeks PR. Evolution of the spatial distribution of MAP1B phosphorylation sites in vertebrate neurons. J Anat 2010; 216:692-704. [PMID: 20408908 DOI: 10.1111/j.1469-7580.2010.01228.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The microtubule-associated protein MAP1B has important roles in neural development, particularly in migrating and differentiating neurons. MAP1B is phosphorylated by glycogen synthase kinase 3beta (GSK-3beta) at a site that requires prior phosphorylation by another kinase four amino acid residues downstream of the GSK-3beta site, a so-called primed site, and at non-primed sites that have no such requirement. In developing mammalian neurons, MAP1B phosphorylated by GSK-3beta at primed and non-primed sites is distributed in spatially distinct patterns. Non-primed GSK-3beta-phosphorylated MAP1B sites are only expressed in axons and are present in the form of a gradient that is highest distally, towards the growth cone. In contrast, primed GSK-3beta-phosphorylated MAP1B sites are present throughout the neuron including the somato-dendritic compartment and uniformly throughout the axon. To examine the function of these two sites, we explored the evolutionary conservation of the spatial distribution of GSK-3beta primed and non-primed sites on MAP1B in vertebrate neurons. We immunostained spinal cord sections from embryonic or newly hatched representatives of all of the main vertebrate groups using phospho-specific antibodies to GSK-3beta primed and non-primed sites on MAP1B. This revealed a remarkable evolutionary conservation of the distribution of primed and non-primed GSK-3beta-phosphorylated MAP1B sites in developing vertebrate neurons. By analysing amino acid sequences of MAP1B we found that non-primed GSK-3beta sites are more highly conserved than primed sites throughout the vertebrates, suggesting that the latter evolved later. Finally, distinct distribution patterns of GSK-3beta primed and non-primed sites on MAP1B were preserved in cultured rat embryonic cortical neurons, opening up the possibility of studying the two sites in vitro.
Collapse
Affiliation(s)
- Stephen R Tymanskyj
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | | | | |
Collapse
|
31
|
Wu H, Xiong WC, Mei L. To build a synapse: signaling pathways in neuromuscular junction assembly. Development 2010; 137:1017-33. [PMID: 20215342 DOI: 10.1242/dev.038711] [Citation(s) in RCA: 379] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synapses, as fundamental units of the neural circuitry, enable complex behaviors. The neuromuscular junction (NMJ) is a synapse type that forms between motoneurons and skeletal muscle fibers and that exhibits a high degree of subcellular specialization. Aided by genetic techniques and suitable animal models, studies in the past decade have brought significant progress in identifying NMJ components and assembly mechanisms. This review highlights recent advances in the study of NMJ development, focusing on signaling pathways that are activated by diffusible cues, which shed light on synaptogenesis in the brain and contribute to a better understanding of muscular dystrophy.
Collapse
Affiliation(s)
- Haitao Wu
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
32
|
Ellis JE, Parker L, Cho J, Arora K. Activin signaling functions upstream of Gbb to regulate synaptic growth at the Drosophila neuromuscular junction. Dev Biol 2010; 342:121-33. [PMID: 20346940 DOI: 10.1016/j.ydbio.2010.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 11/20/2022]
Abstract
Activins are members of the TGF-ss superfamily of secreted growth factors that control a diverse array of processes in vertebrates including endocrine function, cell proliferation, differentiation, immune response and wound repair. In Drosophila, the Activin ligand Dawdle (Daw) has been shown to regulate several aspects of neuronal development such as embryonic axonal pathfinding, neuroblast proliferation in the larval brain and growth cone motility in the visual system. Here we identify a novel role for Activin signaling in regulating synaptic growth at the larval neuromuscular junction (NMJ). Mutants for Daw, the Activin type I receptor Baboon (Babo), and the signal transducer dSmad2, display reduced NMJ size suggesting that Daw utilizes a canonical Activin signal-transduction pathway in this context. Additionally, loss of Daw/Babo activity affects microtubule stability, axonal transport and distribution of Futsch, the Drosophila microtubule associated protein 1B (MAP1B) homolog. We find that Babo signaling is required postsynaptically in the muscle, in contrast to the well-characterized retrograde BMP/Gbb signal that is required for synaptic growth and function in presynaptic cells. Finally, we show that the Daw/Babo pathway acts upstream of gbb, and is involved in maintenance of muscle gbb expression, suggesting that Activins regulate NMJ growth by modulating BMP activity through transcriptional regulation of ligand expression.
Collapse
Affiliation(s)
- J E Ellis
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
33
|
Abstract
The synapse is composed of an active zone apposed to a postsynaptic cluster of neurotransmitter receptors. Each Drosophila neuromuscular junction comprises hundreds of such individual release sites apposed to clusters of glutamate receptors. Here, we show that protein phosphatase 2A (PP2A) is required for the development of structurally normal active zones opposite glutamate receptors. When PP2A is inhibited presynaptically, many glutamate receptor clusters are unapposed to Bruchpilot (Brp), an active zone protein required for normal transmitter release. These unapposed receptors are not due to presynaptic retraction of synaptic boutons, since other presynaptic components are still apposed to the entire postsynaptic specialization. Instead, these data suggest that Brp localization is regulated at the level of individual release sites. Live imaging of glutamate receptors demonstrates that this disruption to active zone development is accompanied by abnormal postsynaptic development, with decreased formation of glutamate receptor clusters. Remarkably, inhibition of the serine-threonine kinase GSK-3beta completely suppresses the active zone defect, as well as other synaptic morphology phenotypes associated with inhibition of PP2A. These data suggest that PP2A and GSK-3beta function antagonistically to control active zone development, providing a potential mechanism for regulating synaptic efficacy at a single release site.
Collapse
|
34
|
Abstract
Although WNTs have been long thought of as regulators of cell fate, recent studies highlight their involvement in crucial aspects of synaptic development in the nervous system. Particularly compelling are recent studies of the neuromuscular junction in nematodes, insects, fish and mammals. These studies place WNTs as major determinants of synapse differentiation and neurotransmitter receptor clustering.
Collapse
|
35
|
Miech C, Pauer HU, He X, Schwarz TL. Presynaptic local signaling by a canonical wingless pathway regulates development of the Drosophila neuromuscular junction. J Neurosci 2008; 28:10875-84. [PMID: 18945895 PMCID: PMC2597682 DOI: 10.1523/jneurosci.0164-08.2008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 09/04/2008] [Indexed: 11/21/2022] Open
Abstract
Wnt/wingless signaling contributes to the development of neuronal synapses, including the Drosophila neuromuscular junction. Loss of wg (wingless) function alters the number and structure of boutons at this model synapse. Examining Wnt/wingless signaling mechanisms, we find that a distinct pathway operates presynaptically in the motoneuron and can account for many of the effects of wingless at this synapse. This pathway includes the canonical elements arrow/LRP (low-density lipoprotein receptor-related protein), dishevelled, and the glycogen synthase kinase shaggy (GSK3) and regulates the formation of microtubule loops within synaptic boutons as well as the number of synaptic boutons. This pathway, however, appears to be independent of beta-catenin signaling and the transcriptional regulation that is most frequently downstream of these components. Instead, inhibition of shaggy is likely to act locally. This pathway thus provides a parallel mechanism to the postsynaptic activation of frizzled receptors and indicates that synaptic development results from the bidirectional influence of wingless on both presynaptic and postsynaptic structures via distinct intracellular pathways.
Collapse
Affiliation(s)
- Claudia Miech
- F. M. Kirby Neurobiology Center, Children's Hospital, Boston, Massachusetts 02115
| | - Hans-Ulrich Pauer
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, and
| | - Xi He
- F. M. Kirby Neurobiology Center, Children's Hospital, Boston, Massachusetts 02115
| | - Thomas L. Schwarz
- F. M. Kirby Neurobiology Center, Children's Hospital, Boston, Massachusetts 02115
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
36
|
MAP1 structural organization in Drosophila: in vivo analysis of FUTSCH reveals heavy- and light-chain subunits generated by proteolytic processing at a conserved cleavage site. Biochem J 2008; 414:63-71. [DOI: 10.1042/bj20071449] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The MAP1 (microtubule-associated protein 1) family is a class of microtubule-binding proteins represented by mammalian MAP1A, MAP1B and the recently identified MAP1S. MAP1A and MAP1B are expressed in the nervous system and thought to mediate interactions of the microtubule-based cytoskeleton in neural development and function. The characteristic structural organization of mammalian MAP1s, which are composed of heavy- and light-chain subunits, requires proteolytic cleavage of a precursor polypeptide encoded by the corresponding map1 gene. MAP1 function in Drosophila appears to be fulfilled by a single gene, futsch. Although the futsch gene product is known to share several important functional properties with mammalian MAP1s, whether it adopts the same basic structural organization has not been addressed. Here, we report the identification of a Drosophila MAP1 light chain, LCf, produced by proteolytic cleavage of a futsch-encoded precursor polypeptide, and confirm co-localization and co-assembly of the heavy chain and LCf cleavage products. Furthermore, the in vivo properties of MAP1 proteins were further defined through precise MS identification of a conserved proteolytic cleavage site within the futsch-encoded MAP1 precursor and demonstration of light-chain diversity represented by multiple LCf variants. Taken together, these findings establish conservation of proteolytic processing and structural organization among mammalian and Drosophila MAP1 proteins and are expected to enhance genetic analysis of conserved MAP1 functions within the neuronal cytoskeleton.
Collapse
|
37
|
Ataman B, Ashley J, Gorczyca M, Ramachandran P, Fouquet W, Sigrist SJ, Budnik V. Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling. Neuron 2008; 57:705-18. [PMID: 18341991 DOI: 10.1016/j.neuron.2008.01.026] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 11/26/2007] [Accepted: 01/23/2008] [Indexed: 10/22/2022]
Abstract
Activity-dependent modifications in synapse structure play a key role in synaptic development and plasticity, but the signaling mechanisms involved are poorly understood. We demonstrate that glutamatergic Drosophila neuromuscular junctions undergo rapid changes in synaptic structure and function in response to patterned stimulation. These changes, which depend on transcription and translation, include formation of motile presynaptic filopodia, elaboration of undifferentiated varicosities, and potentiation of spontaneous release frequency. Experiments indicate that a bidirectional Wnt/Wg signaling pathway underlies these changes. Evoked activity induces Wnt1/Wg release from synaptic boutons, which stimulates both a postsynaptic DFz2 nuclear import pathway as well as a presynaptic pathway involving GSK-3beta/Shaggy. Our findings suggest that bidirectional Wg signaling operates downstream of synaptic activity to induce modifications in synaptic structure and function. We propose that activation of the postsynaptic Wg pathway is required for the assembly of the postsynaptic apparatus, while activation of the presynaptic Wg pathway regulates cytoskeletal dynamics.
Collapse
Affiliation(s)
- Bulent Ataman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Lighthouse DV, Buszczak M, Spradling AC. New components of the Drosophila fusome suggest it plays novel roles in signaling and transport. Dev Biol 2008; 317:59-71. [PMID: 18355804 PMCID: PMC2410214 DOI: 10.1016/j.ydbio.2008.02.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/02/2008] [Indexed: 12/18/2022]
Abstract
The fusome plays an essential role in prefollicular germ cell development within insects such as Drosophila melanogaster. Alpha-spectrin and the adducin-like protein Hu-li tai shao (Hts) are required to maintain fusome integrity, synchronize asymmetric cystocyte mitoses, form interconnected 16-cell germline cysts, and specify the initial cell as the oocyte. By screening a library of protein trap lines, we identified 14 new fusome-enriched proteins, including many associated with its characteristic vesicles. Our studies reveal that fusomes change during development and contain recycling endosomal and lysosomal compartments in females but not males. A significant number of fusome components are dispensable, because genetic disruption of tropomodulin, ferritin-1 heavy chain, or scribble, does not alter fusome structure or female fertility. In contrast, rab11 is required to maintain the germline stem cells, and to maintain the vesicle content of the spectrosome, suggesting that the fusome mediates intercellular signals that depend on the recycling endosome.
Collapse
Affiliation(s)
- Daniel V Lighthouse
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
39
|
Adell T, Marsal M, Saló E. Planarian GSK3s are involved in neural regeneration. Dev Genes Evol 2008; 218:89-103. [PMID: 18202849 DOI: 10.1007/s00427-007-0199-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 12/10/2007] [Indexed: 01/18/2023]
Abstract
Glycogen synthase kinase-3 (GSK3) is a key element in several signaling cascades that is known to be involved in both patterning and neuronal organization. It is, therefore, a good candidate to play a role in neural regeneration in planarians. We report the characterization of three GSK3 genes in Schmidtea mediterranea. Phylogenetic analysis shows that Smed-GSK3.1 is highly conserved compared to GSK3 sequences from other species, whereas Smed-GSK3.2 and Smed-GSK3.3 are more divergent. Treatment of regenerating planarians with 1-azakenpaullone, a synthetic GSK3 inhibitor, suggests that planarian GSK3s are essential for normal differentiation and morphogenesis of the nervous system. Cephalic ganglia appear smaller and disconnected in 1-azakenpaullone-treated animals, whereas visual axons are ectopically projected, and the pharynx does not regenerate properly. This phenotype is consistent with a role for Smed-GSK3s in neuronal polarization and axonal growth.
Collapse
Affiliation(s)
- Teresa Adell
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain.
| | | | | |
Collapse
|
40
|
Modulation of the microtubule cytoskeleton: a role for a divergent canonical Wnt pathway. Trends Cell Biol 2007; 17:333-42. [PMID: 17643305 DOI: 10.1016/j.tcb.2007.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/05/2007] [Accepted: 07/02/2007] [Indexed: 12/16/2022]
Abstract
Wnts are signalling molecules implicated in normal development and in disease. Although Wnts can signal through three pathways, the canonical or beta-catenin pathway has been particularly studied because of its crucial role in embryonic patterning and cancer. It is well accepted that canonical Wnt signalling regulates gene expression by modulating the levels of beta-catenin, a co-activator of Tcf/Lef transcription factors. However, a divergent canonical Wnt pathway directly regulates the microtubule cytoskeleton. Interestingly, many components of the pathway are associated with the cytoskeleton and can act locally. Here I discuss recent evidence supporting a direct role for canonical Wnt signalling in microtubule regulation, and how this function sheds a new light into the mechanisms that regulate cell-fate determination and polarization.
Collapse
|
41
|
Speese SD, Budnik V. Wnts: up-and-coming at the synapse. Trends Neurosci 2007; 30:268-75. [PMID: 17467065 PMCID: PMC3499976 DOI: 10.1016/j.tins.2007.04.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/28/2007] [Accepted: 04/16/2007] [Indexed: 12/11/2022]
Abstract
Synaptic development, function and plasticity are highly regulated processes requiring a precise coordination of pre- and postsynaptic events. Recent studies have begun to highlight Wingless-Int (Wnt) signaling as a key player in synapse differentiation and function. Emerging roles of Wnts include the differentiation of synaptic specializations, microtubule dynamics, architecture of synaptic protein organization, modulation of synaptic efficacy and regulation of gene expression. These processes are driven by a variety of Wnt transduction pathways. Combined with a myriad of Wnts and Frizzled receptor family members, these pathways highlight the versatility of Wnt signaling and the potential for combinatorial use of these pathways in different aspects of synapse development and function. The identification of neurons secreting Wnt and those containing molecular components downstream of Frizzled receptors indicates that Wnts can function both as anterograde and retrograde signals. These studies open new avenues for understanding how embryonic morphogens are utilized during the development and function of synaptic networks.
Collapse
Affiliation(s)
- Sean D Speese
- Department of Neurobiology, Aaron Lazare Biomedical Research Building, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01601, USA
| | | |
Collapse
|