1
|
Meier P, Legrand AJ, Adam D, Silke J. Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity. Nat Rev Cancer 2024; 24:299-315. [PMID: 38454135 DOI: 10.1038/s41568-024-00674-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Most metastatic cancers remain incurable due to the emergence of apoptosis-resistant clones, fuelled by intratumour heterogeneity and tumour evolution. To improve treatment, therapies should not only kill cancer cells but also activate the immune system against the tumour to eliminate any residual cancer cells that survive treatment. While current cancer therapies rely heavily on apoptosis - a largely immunologically silent form of cell death - there is growing interest in harnessing immunogenic forms of cell death such as necroptosis. Unlike apoptosis, necroptosis generates second messengers that act on immune cells in the tumour microenvironment, alerting them of danger. This lytic form of cell death optimizes the provision of antigens and adjuvanticity for immune cells, potentially boosting anticancer treatment approaches by combining cellular suicide and immune response approaches. In this Review, we discuss the mechanisms of necroptosis and how it activates antigen-presenting cells, drives cross-priming of CD8+ T cells and induces antitumour immune responses. We also examine the opportunities and potential drawbacks of such strategies for exposing cancer cells to immunological attacks.
Collapse
Affiliation(s)
- Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| | - Arnaud J Legrand
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Chang YC, Gao Y, Lee JY, Peng YJ, Langen J, Chang KT. Identification of secretory autophagy as a mechanism modulating activity-induced synaptic remodeling. Proc Natl Acad Sci U S A 2024; 121:e2315958121. [PMID: 38588427 PMCID: PMC11032469 DOI: 10.1073/pnas.2315958121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
The ability of neurons to rapidly remodel their synaptic structure and strength in response to neuronal activity is highly conserved across species and crucial for complex brain functions. However, mechanisms required to elicit and coordinate the acute, activity-dependent structural changes across synapses are not well understood, as neurodevelopment and structural plasticity are tightly linked. Here, using an RNAi screen in Drosophila against genes affecting nervous system functions in humans, we uncouple cellular processes important for synaptic plasticity and synapse development. We find mutations associated with neurodegenerative and mental health disorders are 2-times more likely to affect activity-induced synaptic remodeling than synapse development. We report that while both synapse development and activity-induced synaptic remodeling at the fly NMJ require macroautophagy (hereafter referred to as autophagy), bifurcation in the autophagy pathway differentially impacts development and synaptic plasticity. We demonstrate that neuronal activity enhances autophagy activation but diminishes degradative autophagy, thereby driving the pathway towards autophagy-based secretion. Presynaptic knockdown of Snap29, Sec22, or Rab8, proteins implicated in the secretory autophagy pathway, is sufficient to abolish activity-induced synaptic remodeling. This study uncovers secretory autophagy as a transsynaptic signaling mechanism modulating synaptic plasticity.
Collapse
Affiliation(s)
- Yen-Ching Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Yuan Gao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Joo Yeun Lee
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Yi-Jheng Peng
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Jennifer Langen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Karen T. Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| |
Collapse
|
3
|
Historical perspective and progress on protein ubiquitination at glutamatergic synapses. Neuropharmacology 2021; 196:108690. [PMID: 34197891 DOI: 10.1016/j.neuropharm.2021.108690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Transcription-translation coupling leads to the production of proteins that are key for controlling essential neuronal processes that include neuronal development and changes in synaptic strength. Although these events have been a prevailing theme in neuroscience, the regulation of proteins via posttranslational signaling pathways are equally relevant for these neuronal processes. Ubiquitin is one type of posttranslational modification that covalently attaches to its targets/substrates. Ubiquitination of proteins play a key role in multiple signaling pathways, the predominant being removal of its substrates by a large molecular machine called the proteasome. Here, I review 40 years of progress on ubiquitination in the nervous system at glutamatergic synapses focusing on axon pathfinding, synapse formation, presynaptic release, dendritic spine formation, and regulation of postsynaptic glutamate receptors. Finally, I elucidate emerging themes in ubiquitin biology that may challenge our current understanding of ubiquitin signaling in the nervous system.
Collapse
|
4
|
Wu X, Zhou Y, Huang Z, Cai M, Shu Y, Zeng C, Feng L, Xiao B, Zhan Q. The study of microtubule dynamics and stability at the postsynaptic density in a rat pilocarpine model of temporal lobe epilepsy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:863. [PMID: 32793707 DOI: 10.21037/atm-19-4636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The recurrence and drug resistance of temporal lobe epilepsy (TLE) has been ceaselessly challenging scientists and epilepsy experts. There has been an accumulation of evidence linking the dysregulation of postsynaptic proteins etiology and the pathology of epilepsy. For example, NMDA receptors, AMPA receptors, and metabotropic glutamate receptors (mGluRs). Furthermore, our earlier proteomic analysis proved there to be differential expressions of cytoskeletons like microtubules among rat groups. These differential expressions were shown in TLE-spontaneous recurrent seizures (TLE-SRS), TLE without SRS (TLE-NSRS) and control groups. Therefore, we aimed to understand how the microtubule system of the hippocampal postsynaptic density (PSD) regulates the development of TLE. Methods In this study, a pilocarpine-induced Sprague-Dawley rat TLE model were used, and Western blot, Nissl staining, and the immunoelectron microscopic method were utilized to determine the dynamic change of microtubules (α- and β-tubulin) in PSD and the extent of hippocampal neuron loss respectively in acute SE, and latent and chronic (spontaneous seizures) periods. Animal models were then stereotactically treated using colchicine, a microtubule depolymerizer, and paclitaxel, a microtubule polymerization agent, after each animal's acute SE period so as to further explore the function of PSD microtubules. Results Our study revealed 3 principal findings. One, both α- and β-tubulin were decreased from the 3rd to the 30th day (lowest at the 7th day) in the seizure group compared with the controls. Two, both α- and β-tubulin were found to be more downregulated in the TLE-SRS and the TLE-NSRS group than in the control group (especially in the TLE-SRS group). The same trend was also noticed for hippocampal neuron loss. Three, the paclitaxel lowered the chronic SRS rate and increased the expression of PSD β-tubulin in the hippocampus. Conclusions Altogether, these results indicate that the microtubule system of PSD may play an essential role in the development and recurrence of epilepsy, and it may be used as a new target for the prevention and treatment of this refractory disease.
Collapse
Affiliation(s)
- Xiaomei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhou
- Department of Neurology, The First Hospital of Changsha, Changsha, China
| | - Zhiling Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingfei Cai
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Shu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Zhan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Cell Clearing Systems Bridging Neuro-Immunity and Synaptic Plasticity. Int J Mol Sci 2019; 20:ijms20092197. [PMID: 31060234 PMCID: PMC6538995 DOI: 10.3390/ijms20092197] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, functional interconnections emerged between synaptic transmission, inflammatory/immune mediators, and central nervous system (CNS) (patho)-physiology. Such interconnections rose up to a level that involves synaptic plasticity, both concerning its molecular mechanisms and the clinical outcomes related to its behavioral abnormalities. Within this context, synaptic plasticity, apart from being modulated by classic CNS molecules, is strongly affected by the immune system, and vice versa. This is not surprising, given the common molecular pathways that operate at the cross-road between the CNS and immune system. When searching for a common pathway bridging neuro-immune and synaptic dysregulations, the two major cell-clearing cell clearing systems, namely the ubiquitin proteasome system (UPS) and autophagy, take center stage. In fact, just like is happening for the turnover of key proteins involved in neurotransmitter release, antigen processing within both peripheral and CNS-resident antigen presenting cells is carried out by UPS and autophagy. Recent evidence unravelling the functional cross-talk between the cell-clearing pathways challenged the traditional concept of autophagy and UPS as independent systems. In fact, autophagy and UPS are simultaneously affected in a variety of CNS disorders where synaptic and inflammatory/immune alterations concur. In this review, we discuss the role of autophagy and UPS in bridging synaptic plasticity with neuro-immunity, while posing a special emphasis on their interactions, which may be key to defining the role of immunity in synaptic plasticity in health and disease.
Collapse
|
6
|
Ibañez-Vega J, Del Valle Batalla F, Saez JJ, Soza A, Yuseff MI. Proteasome Dependent Actin Remodeling Facilitates Antigen Extraction at the Immune Synapse of B Cells. Front Immunol 2019; 10:225. [PMID: 30873155 PMCID: PMC6401660 DOI: 10.3389/fimmu.2019.00225] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Engagement of the B cell receptor (BCR) with surface-tethered antigens leads to the formation of an immune synapse (IS), where cell signaling and antigen uptake are tightly coordinated. Centrosome re-orientation to the immune synapse has emerged as a critical regulatory step to guide the local recruitment and secretion of lysosomes, which can facilitate the extraction of immobilized antigens. This process is coupled to actin remodeling at the centrosome and at the immune synapse, which is crucial to promote cell polarity. How B cells balance both pools of actin cytoskeleton to achieve a polarized phenotype during the formation of an immune synapse is not fully understood. Here, we reveal that B cells rely on proteasome activity to achieve this task. The proteasome is a multi-catalytic protease that degrades cytosolic and nuclear proteins and its dysfunction is associated with diseases, such as cancer and autoimmunity. Our results show that resting B cells contain an active proteasome pool at the centrosome, which is required for efficient actin clearance at this level. As a result of proteasome inhibition, activated B cells do not deplete actin at the centrosome and are unable to separate the centrosome from the nucleus and thus display impaired polarity. Consequently, lysosome recruitment to the immune synapse, antigen extraction and presentation are severely compromised in B cells with diminished proteasome activity. Additionally, we found that proteasome inhibition leads to impaired actin remodeling at the immune synapse, where B cells display defective spreading responses and distribution of key signaling molecules at the synaptic membrane. Overall, our results reveal a new role for the proteasome in regulating the immune synapse of B cells, where the intracellular compartmentalization of proteasome activity controls cytoskeleton remodeling between the centrosome and synapse, with functional repercussions in antigen extraction and presentation.
Collapse
Affiliation(s)
- Jorge Ibañez-Vega
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Del Valle Batalla
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan José Saez
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria-Isabel Yuseff
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Kroes RA, Nilsson CL. Towards the Molecular Foundations of Glutamatergic-targeted Antidepressants. Curr Neuropharmacol 2017; 15:35-46. [PMID: 26955966 PMCID: PMC5327457 DOI: 10.2174/1570159x14666160309114740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/08/2015] [Accepted: 01/30/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Depression affects over 120 million individuals of all ages and is the leading cause of disability worldwide. The lack of objective diagnostic criteria, together with the heterogeneity of the depressive disorder itself, makes it challenging to develop effective therapies. The accumulation of preclinical data over the past 20 years derived from a multitude of models using many divergent approaches, has fueled the resurgence of interest in targeting glutamatergic neurotransmission for the treatment of major depression. OBJECTIVE The emergence of mechanistic studies are advancing our understanding of the molecular underpinnings of depression. While clearly far from complete and conclusive, they offer the potential to lead to the rational design of more specific therapeutic strategies and the development of safer and more effective rapid acting, long lasting antidepressants. METHODS The development of comprehensive omics-based approaches to the dysregulation of synaptic transmission and plasticity that underlies the core pathophysiology of MDD are reviewed to illustrate the fundamental elements. RESULTS This review frames the rationale for the conceptualization of depression as a "pathway disease". As such, it culminates in the call for the development of novel state-of-the-art "-omics approaches" and neurosystems biological techniques necessary to advance our understanding of spatiotemporal interactions associated with targeting glutamatergic-triggered signaling in the CNS. CONCLUSION These technologies will enable the development of novel psychiatric medications specifically targeted to impact specific, critical intracellular networks in a more focused manner and have the potential to offer new dimensions in the area of translational neuropsychiatry.
Collapse
Affiliation(s)
- Roger A. Kroes
- Naurex, Inc., 1801 Maple Street, Evanston, Illinois 60201, United States
| | - Carol L. Nilsson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-1074, United States
| |
Collapse
|
8
|
Valdez C, Scroggs R, Chassen R, Reiter LT. Variation in Dube3a expression affects neurotransmission at the Drosophila neuromuscular junction. Biol Open 2015; 4:776-82. [PMID: 25948754 PMCID: PMC4571101 DOI: 10.1242/bio.20148045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Changes in UBE3A expression levels in neurons can cause neurogenetic disorders ranging from Angelman syndrome (AS) (decreased levels) to autism (increased levels). Here we investigated the effects on neuronal function of varying UBE3A levels using the Drosophila neuromuscular junction as a model for both of these neurogenetic disorders. Stimulations that evoked excitatory junction potentials (EJPs) at 1 Hz intermittently failed to evoke EJPs at 15 Hz in a significantly higher proportion of Dube3a over-expressors using the pan neuronal GAL4 driver C155-GAL4 (C155-GAL4>UAS-Dube3a) relative to controls (C155>+ alone). However, in the Dube3a over-expressing larval neurons with no failures, there was no difference in EJP amplitude at the beginning of the train, or the rate of decrease in EJP amplitude over the course of the train compared to controls. In the absence of tetrodotoxin (TTX), spontaneous EJPs were observed in significantly more C155-GAL4>UAS-Dube3a larva compared to controls. In the presence of TTX, spontaneous and evoked EJPs were completely blocked and mEJP amplitude and frequency did not differ among genotypes. These data suggest that over-expression of wild type Dube3a, but not a ubiquitination defective Dube3a-C/A protein, compromises the ability of motor neuron axons to support closely spaced trains of action potentials, while at the same time increasing excitability. EJPs evoked at 15 Hz in the absence of Dube3a (Dube3a15b homozygous mutant larvae) decayed more rapidly over the course of 30 stimulations compared to w1118 controls, and Dube3a15b larval muscles had significantly more negative resting membrane potentials (RMP). However, these results could not be recapitulated using RNAi knockdown of Dube3a in muscle or neurons alone, suggesting more global developmental defects contribute to this phenotype. These data suggest that reduced UBE3A expression levels may cause global changes that affect RMP and neurotransmitter release from motorneurons at the neuromuscular junction. Similar affects of under- and over-expression of UBE3A on membrane potential and synaptic transmission may underlie the synaptic plasticity defects observed in both AS and autism.
Collapse
Affiliation(s)
- Colleen Valdez
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 415, Memphis, TN 38163, USA
| | - Reese Scroggs
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 515, Memphis, TN 38163, USA
| | - Rachel Chassen
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 415, Memphis, TN 38163, USA
| | - Lawrence T Reiter
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 415, Memphis, TN 38163, USA Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 515, Memphis, TN 38163, USA
| |
Collapse
|
9
|
Brusco J, Haas K. Interactions between mitochondria and the transcription factor myocyte enhancer factor 2 (MEF2) regulate neuronal structural and functional plasticity and metaplasticity. J Physiol 2015; 593:3471-81. [PMID: 25581818 DOI: 10.1113/jphysiol.2014.282459] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022] Open
Abstract
The classical view of mitochondria as housekeeping organelles acting in the background to simply maintain cellular energy demands has been challenged by mounting evidence of their direct and active participation in synaptic plasticity in neurons. Time-lapse imaging has revealed that mitochondria are motile in dendrites, with their localization and fusion and fission events regulated by synaptic activity. The positioning of mitochondria directly influences function of nearby synapses through multiple pathways including control over local concentrations of ATP, Ca(2+) and reactive oxygen species. Recent studies have also shown that mitochondrial protein cascades, classically associated with apoptosis, are involved in neural plasticity in healthy cells. These findings link mitochondria to the plasticity- and metaplasticity-associated activity-dependent transcription factor myocyte enhancer factor 2 (MEF2), further repositioning mitochondria as potential command centres for regulation of synaptic plasticity. Intriguingly, MEF2 and mitochondrial functions appear to be intricately intertwined, as MEF2 is a target of mitochondrial apoptotic caspases and, in turn, MEF2 regulates mitochondrial genome transcription essential for production of superoxidase and hydrogen peroxidase. Here, we review evidence supporting mitochondria as central organelles controlling the spatiotemporal expression of neuronal plasticity, and attempt to disentangle the MEF2-mitochondria relationship mediating these functions.
Collapse
Affiliation(s)
- Janaina Brusco
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T2B5
| | - Kurt Haas
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T2B5
| |
Collapse
|
10
|
Robinson SW, Nugent ML, Dinsdale D, Steinert JR. Prion protein facilitates synaptic vesicle release by enhancing release probability. Hum Mol Genet 2014; 23:4581-96. [PMID: 24722203 PMCID: PMC4119408 DOI: 10.1093/hmg/ddu171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cellular prion protein (PrP(C)) has been implicated in several neurodegenerative diseases as a result of protein misfolding. In humans, prion disease occurs typically with a sporadic origin where uncharacterized mechanisms induce spontaneous PrP(C) misfolding leading to neurotoxic PrP-scrapie formation (PrP(SC)). The consequences of misfolded PrP(C) signalling are well characterized but little is known about the physiological roles of PrP(C) and its involvement in disease. Here we investigated wild-type PrP(C) signalling in synaptic function as well as the effects of a disease-relevant mutation within PrP(C) (proline-to-leucine mutation at codon 101). Expression of wild-type PrP(C) at the Drosophila neuromuscular junction leads to enhanced synaptic responses as detected in larger miniature synaptic currents which are caused by enlarged presynaptic vesicles. The expression of the mutated PrP(C) leads to reduction of both parameters compared with wild-type PrP(C). Wild-type PrP(C) enhances synaptic release probability and quantal content but reduces the size of the ready-releasable vesicle pool. Partially, these changes are not detectable following expression of the mutant PrP(C). A behavioural test revealed that expression of either protein caused an increase in locomotor activities consistent with enhanced synaptic release and stronger muscle contractions. Both proteins were sensitive to proteinase digestion. These data uncover new functions of wild-type PrP(C) at the synapse with a disease-relevant mutation in PrP(C) leading to diminished functional phenotypes. Thus, our data present essential new information possibly related to prion pathogenesis in which a functional synaptic role of PrP(C) is compromised due to its advanced conversion into PrP(SC) thereby creating a lack-of-function scenario.
Collapse
Affiliation(s)
- Susan W Robinson
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Marie L Nugent
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - David Dinsdale
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Joern R Steinert
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
11
|
Wise A, Schatoff E, Flores J, Hua SY, Ueda A, Wu CF, Venkatesh T. Drosophila-Cdh1 (Rap/Fzr) a regulatory subunit of APC/C is required for synaptic morphology, synaptic transmission and locomotion. Int J Dev Neurosci 2013; 31:624-33. [PMID: 23933137 DOI: 10.1016/j.ijdevneu.2013.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/24/2013] [Accepted: 07/17/2013] [Indexed: 01/12/2023] Open
Abstract
The assembly of functional synapses requires the orchestration of the synthesis and degradation of a multitude of proteins. Protein degradation and modification by the conserved ubiquitination pathway has emerged as a key cellular regulatory mechanism during nervous system development and function (Kwabe and Brose, 2011). The anaphase promoting complex/cyclosome (APC/C) is a multi-subunit ubiquitin ligase complex primarily characterized for its role in the regulation of mitosis (Peters, 2002). In recent years, a role for APC/C in nervous system development and function has been rapidly emerging (Stegmuller and Bonni, 2005; Li et al., 2008). In the mammalian central nervous system the activator subunit, APC/C-Cdh1, has been shown to be a regulator of axon growth and dendrite morphogenesis (Konishi et al., 2004). In the Drosophila peripheral nervous system (PNS), APC2, a ligase subunit of the APC/C complex has been shown to regulate synaptic bouton size and activity (van Roessel et al., 2004). To investigate the role of APC/C-Cdh1 at the synapse we examined loss-of-function mutants of Rap/Fzr (Retina aberrant in pattern/Fizzy related), a Drosophila homolog of the mammalian Cdh1 during the development of the larval neuromuscular junction in Drosophila. Our cell biological, ultrastructural, electrophysiological, and behavioral data showed that rap/fzr loss-of-function mutations lead to changes in synaptic structure and function as well as locomotion defects. Data presented here show changes in size and morphology of synaptic boutons, and, muscle tissue organization. Electrophysiological experiments show that loss-of-function mutants exhibit increased frequency of spontaneous miniature synaptic potentials, indicating a higher rate of spontaneous synaptic vesicle fusion events. In addition, larval locomotion and peristaltic movement were also impaired. These findings suggest a role for Drosophila APC/C-Cdh1 mediated ubiquitination in regulating synaptic morphology, function and integrity of muscle structure in the peripheral nervous system.
Collapse
Affiliation(s)
- Alexandria Wise
- Department of Biology, City College of New York, and The Graduate Center of CUNY, New York, NY 10031, United States; Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| | | | | | | | | | | | | |
Collapse
|
12
|
On eukaryotic intelligence: signaling system's guidance in the evolution of multicellular organization. Biosystems 2013; 114:8-24. [PMID: 23850535 DOI: 10.1016/j.biosystems.2013.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 06/28/2013] [Accepted: 06/30/2013] [Indexed: 12/11/2022]
Abstract
Communication with the environment is an essential characteristic of the living cell, even more when considering the origins and evolution of multicellularity. A number of changes and tinkering inventions were necessary in the evolutionary transition between prokaryotic and eukaryotic cells, which finally made possible the appearance of genuine multicellular organisms. In the study of this process, however, the transformations experimented by signaling systems themselves have been rarely object of analysis, obscured by other more conspicuous biological traits: incorporation of mitochondria, segregated nucleus, introns/exons, flagellum, membrane systems, etc. Herein a discussion of the main avenues of change from prokaryotic to eukaryotic signaling systems and a review of the signaling resources and strategies underlying multicellularity will be attempted. In the expansion of prokaryotic signaling systems, four main systemic resources were incorporated: molecular tools for detection of solutes, molecular tools for detection of solvent (Donnan effect), the apparatuses of cell-cycle control, and the combined system endocytosis/cytoskeleton. The multiple kinds of enlarged, mixed pathways that emerged made possible the eukaryotic revolution in morphological and physiological complexity. The massive incorporation of processing resources of electro-molecular nature, derived from the osmotic tools counteracting the Donnan effect, made also possible the organization of a computational tissue with huge information processing capabilities: the nervous system. In the central nervous systems of vertebrates, and particularly in humans, neurons have achieved both the highest level of molecular-signaling complexity and the highest degree of information-processing adaptability. Theoretically, it can be argued that there has been an accelerated pace of evolutionary change in eukaryotic signaling systems, beyond the other general novelties introduced by eukaryotic cells in their handling of DNA processes. Under signaling system's guidance, the whole processes of transcription, alternative splicing, mobile elements, and other elements of domain recombination have become closely intertwined and have propelled the differentiation capabilities of multicellular tissues and morphologies. An amazing variety of signaling and self-construction strategies have emerged out from the basic eukaryotic design of multicellular complexity, in millions and millions of new species evolved. This design can also be seen abstractly as a new kind of quasi-universal problem-solving 'engine' implemented at the biomolecular scale-providing the fundamentals of eukaryotic 'intelligence'. Analyzing in depth the problem-solving intelligence of eukaryotic cells would help to establish an integrative panorama of their information processing organization, and of their capability to handle the morphological and physiological complexity associated. Whether an informational updating of the venerable "cell theory" is feasible or not, becomes, at the time being - right in the middle of the massive data deluge/revolution from omic disciplines - a matter to careful consider.
Collapse
|
13
|
Tian X, Wu C. The role of ubiquitin-mediated pathways in regulating synaptic development, axonal degeneration and regeneration: insights from fly and worm. J Physiol 2013; 591:3133-43. [PMID: 23613532 DOI: 10.1113/jphysiol.2012.247940] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The covalent attachment of the 76 amino acid peptide ubiquitin to target proteins is a rapid and reversible modification that regulates protein stability, activity and localization. As such, it is a potent mechanism for sculpting the synapse. Recent studies from two genetic model organisms, Caenorhabditis elegans and Drosophila, have provided mounting evidence that ubiquitin-mediated pathways play important roles in controlling the presynaptic size, synaptic elimination and stabilization, synaptic transmission, postsynaptic receptor abundance, axonal degeneration and regeneration. While the data supporting the requirement of ubiquitination/deubiquitination for normal synaptic development and repair are compelling, detailed analyses of signalling events up- and downstream of these ubiquitin modifications are often challenging. This article summarizes the related research conducted in worms and flies and provides insight into the fundamental questions facing this field.
Collapse
Affiliation(s)
- Xiaolin Tian
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
14
|
Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell 2013; 151:1581-94. [PMID: 23260144 DOI: 10.1016/j.cell.2012.11.040] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 08/29/2012] [Accepted: 11/20/2012] [Indexed: 01/19/2023]
Abstract
The activity-dependent transcription factor myocyte enhancer factor 2 (MEF2) induces excitatory synapse elimination in mouse neurons, which requires fragile X mental retardation protein (FMRP), an RNA-binding protein implicated in human cognitive dysfunction and autism. We report here that protocadherin 10 (Pcdh10), an autism-spectrum disorders gene, is necessary for this process. MEF2 and FMRP cooperatively regulate the expression of Pcdh10. Upon MEF2 activation, PSD-95 is ubiquitinated by the ubiquitin E3 ligase murine double minute 2 (Mdm2) and then binds to Pcdh10, which links it to the proteasome for degradation. Blockade of the Pcdh10-proteasome interaction inhibits MEF2-induced PSD-95 degradation and synapse elimination. In FMRP-lacking neurons, elevated protein levels of eukaryotic translation elongation factor 1 α (EF1α), an Mdm2-interacting protein and FMRP target mRNA, sequester Mdm2 and prevent MEF2-induced PSD-95 ubiquitination and synapse elimination. Together, our findings reveal roles for multiple autism-linked genes in activity-dependent synapse elimination.
Collapse
|
15
|
Proteasome inhibition leads to early loss of synaptic proteins in neuronal culture. J Neural Transm (Vienna) 2012; 119:1467-76. [PMID: 22592936 DOI: 10.1007/s00702-012-0816-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/20/2012] [Indexed: 12/20/2022]
Abstract
A dysfunctional ubiquitin proteasome system may be a mediating factor of disease progression in Lewy body dementia (LBD). The effects of proteasome inhibition using lactacystin and epoxomicin in primary neuronal culture were studied to assess the validity of this model to reflect the cortical pathology of LBD. Treatment of primary cortical neurons with 5 μM lactacystin for 24 h led to a 38 % reduction in the levels of β-III-tubulin (p < 0.05), a 48 % reduction in the levels of synaptophysin (p < 0.05) and a 74 % reduction in the levels of drebrin (p < 0.01), when compared to controls. Results for epoxomicin were similar. The loss of neuronal protein occurred prior to any loss of mitochondrial activity or cell death. The results are reflective of the loss of synapses and the synaptic changes observed in LBD, which may be an early event in the neurodegeneration of LBD. The similarities with the pathological changes in LBD highlight the possibility that this model can potentially provide a platform to test novel treatments.
Collapse
|
16
|
Synaptic protein degradation in memory reorganization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:221-40. [PMID: 22351058 DOI: 10.1007/978-3-7091-0932-8_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a ubiquitous, major pathway of protein degradation that is involved in most cellular processes by regulating the abundance of certain proteins. Accumulating evidence indicates a role for the UPS in specific functions of neurons. In this chapter, we first introduce the role of the UPS in neuronal function and the mechanism of UPS regulation following synaptic activity. Then, we focus on the recently revealed, distinct role of the UPS in the destabilization of a reactivated memory. Finally, we discuss the physiological role of this destabilization process. The reactivated memory may undergo modification from the initial memory depending on the context in which the memory is reactivated, which we will term memory reorganization. We will introduce the role of the protein degradation-dependent destabilization process for memory reorganization and suggest a hypothetical model combining the recent findings.
Collapse
|
17
|
Lin A, Hou Q, Jarzylo L, Amato S, Gilbert J, Shang F, Man HY. Nedd4-mediated AMPA receptor ubiquitination regulates receptor turnover and trafficking. J Neurochem 2011; 119:27-39. [PMID: 21338354 PMCID: PMC3110981 DOI: 10.1111/j.1471-4159.2011.07221.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
α-Amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) are the primary mediators of excitatory synaptic transmission in the brain. Alterations in AMPAR localization and turnover have been considered critical mechanisms underpinning synaptic plasticity and higher brain functions, but the molecular processes that control AMPAR trafficking and stability are still not fully understood. Here, we report that mammalian AMPARs are subject to ubiquitination in neurons and in transfected heterologous cells. Ubiquitination facilitates AMPAR endocytosis, leading to a reduction in AMPAR cell-surface localization and total receptor abundance. Mutation of lysine residues to arginine residues at the glutamate receptor subunit 1 (GluA1) C-terminus dramatically reduces GluA1 ubiquitination and abolishes ubiquitin-dependent GluA1 internalization and degradation, indicating that the lysine residues, particularly K868, are sites of ubiquitination. We also find that the E3 ligase neural precursor cell expressed, developmentally down-regulated 4 (Nedd4) is enriched in synaptosomes and co-localizes and associates with AMPARs in neurons. Nedd4 expression leads to AMPAR ubiquitination, leading to reduced AMPAR surface expression and suppressed excitatory synaptic transmission. Conversely, knockdown of Nedd4 by specific siRNAs abolishes AMPAR ubiquitination. These data indicate that Nedd4 is the E3 ubiquitin ligase responsible for AMPAR ubiquitination, a modification that regulates multiple aspects of AMPAR molecular biology including trafficking, localization and stability.
Collapse
Affiliation(s)
- Amy Lin
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | - Qingming Hou
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | - Larissa Jarzylo
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | - Steve Amato
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | - James Gilbert
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | - Fu Shang
- Laboratory for Nutrition and Vision Research, Tufts University, Boston, Massachusetts 02111, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| |
Collapse
|
18
|
Long AA, Mahapatra CT, Woodruff EA, Rohrbough J, Leung HT, Shino S, An L, Doerge RW, Metzstein MM, Pak WL, Broadie K. The nonsense-mediated decay pathway maintains synapse architecture and synaptic vesicle cycle efficacy. J Cell Sci 2010; 123:3303-15. [PMID: 20826458 DOI: 10.1242/jcs.069468] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A systematic Drosophila forward genetic screen for photoreceptor synaptic transmission mutants identified no-on-and-no-off transient C (nonC) based on loss of retinal synaptic responses to light stimulation. The cloned gene encodes phosphatidylinositol-3-kinase-like kinase (PIKK) Smg1, a regulatory kinase of the nonsense-mediated decay (NMD) pathway. The Smg proteins act in an mRNA quality control surveillance mechanism to selectively degrade transcripts containing premature stop codons, thereby preventing the translation of truncated proteins with dominant-negative or deleterious gain-of-function activities. At the neuromuscular junction (NMJ) synapse, an extended allelic series of Smg1 mutants show impaired structural architecture, with decreased terminal arbor size, branching and synaptic bouton number. Functionally, loss of Smg1 results in a ~50% reduction in basal neurotransmission strength, as well as progressive transmission fatigue and greatly impaired synaptic vesicle recycling during high-frequency stimulation. Mutation of other NMD pathways genes (Upf2 and Smg6) similarly impairs neurotransmission and synaptic vesicle cycling. These findings suggest that the NMD pathway acts to regulate proper mRNA translation to safeguard synapse morphology and maintain the efficacy of synaptic function.
Collapse
Affiliation(s)
- A Ashleigh Long
- Department of Biological Sciences, Vanderbilt Brain Institute, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Guenin L, Raharijaona M, Houlgatte R, Baba-Aissa F. Expression profiling of prospero in the Drosophila larval chemosensory organ: Between growth and outgrowth. BMC Genomics 2010; 11:47. [PMID: 20085633 PMCID: PMC2826315 DOI: 10.1186/1471-2164-11-47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 01/19/2010] [Indexed: 11/11/2022] Open
Abstract
Background The antenno-maxilary complex (AMC) forms the chemosensory system of the Drosophila larva and is involved in gustatory and olfactory perception. We have previously shown that a mutant allele of the homeodomain transcription factor Prospero (prosVoila1, V1), presents several developmental defects including abnormal growth and altered taste responses. In addition, many neural tracts connecting the AMC to the central nervous system (CNS) were affected. Our earlier reports on larval AMC did not argue in favour of a role of pros in cell fate decision, but strongly suggested that pros could be involved in the control of other aspect of neuronal development. In order to identify these functions, we used microarray analysis of larval AMC and CNS tissue isolated from the wild type, and three other previously characterised prospero alleles, including the V1 mutant, considered as a null allele for the AMC. Results A total of 17 samples were first analysed with hierarchical clustering. To determine those genes affected by loss of pros function, we calculated a discriminating score reflecting the differential expression between V1 mutant and other pros alleles. We identified a total of 64 genes in the AMC. Additional manual annotation using all the computed information on the attributed role of these genes in the Drosophila larvae nervous system, enabled us to identify one functional category of potential Prospero target genes known to be involved in neurite outgrowth, synaptic transmission and more specifically in neuronal connectivity remodelling. The second category of genes found to be differentially expressed between the null mutant AMC and the other alleles concerned the development of the sensory organs and more particularly the larval olfactory system. Surprisingly, a third category emerged from our analyses and suggests an association of pros with the genes that regulate autophagy, growth and insulin pathways. Interestingly, EGFR and Notch pathways were represented in all of these three functional categories. We now propose that Pros could perform all of these different functions through the modulation of these two antagonistic and synergic pathways. Conclusions The current data contribute to the clarification of the prospero function in the larval AMC and show that pros regulates different function in larvae as compared to those controlled by this gene in embryos. In the future, the possible mechanism by which Pros could achieve its function in the AMC will be explored in detail.
Collapse
Affiliation(s)
- Laure Guenin
- Université de Bourgogne, Facultés des Sciences, Unité Mixte de Recherche 5548 Associée au Centre National de la Recherche Scientifique, 6, Bd Gabriel, 21 000 Dijon, France
| | | | | | | |
Collapse
|
20
|
Abstract
Neurons are highly specialized cells whose connectivity at synapses subserves rapid information transfer in the brain. Proper information processing, learning, and memory storage in the brain requires continuous remodeling of synaptic networks. Such remodeling includes synapse formation, elimination, synaptic protein turnover, and changes in synaptic transmission. An emergent mechanism for regulating synapse function is posttranslational modification through the ubiquitin pathway at the postsynaptic membrane. Here, we discuss recent findings implicating ubiquitination and protein degradation in postsynaptic function and plasticity. We describe postsynaptic ubiquitination pathways and their role in brain development, neuronal physiology, and brain disorders.
Collapse
Affiliation(s)
- Angela M. Mabb
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Michael D. Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
21
|
Djakovic SN, Schwarz LA, Barylko B, DeMartino GN, Patrick GN. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J Biol Chem 2009; 284:26655-65. [PMID: 19638347 PMCID: PMC2785353 DOI: 10.1074/jbc.m109.021956] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/25/2009] [Indexed: 11/06/2022] Open
Abstract
Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-D-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation.
Collapse
Affiliation(s)
- Stevan N. Djakovic
- From the Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347 and
| | - Lindsay A. Schwarz
- From the Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347 and
| | | | - George N. DeMartino
- the Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390–9040
| | - Gentry N. Patrick
- From the Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347 and
| |
Collapse
|
22
|
|
23
|
Zhang D, Hou Q, Wang M, Lin A, Jarzylo L, Navis A, Raissi A, Liu F, Man HY. Na,K-ATPase activity regulates AMPA receptor turnover through proteasome-mediated proteolysis. J Neurosci 2009; 29:4498-511. [PMID: 19357275 PMCID: PMC2680442 DOI: 10.1523/jneurosci.6094-08.2009] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/27/2009] [Accepted: 03/09/2009] [Indexed: 02/07/2023] Open
Abstract
Neuronal activity largely depends on two key components on the membrane: the Na,K-ATPase (NKA) that maintains the ion gradients and sets the foundation of excitability, and the ionotropic glutamatergic AMPA receptors (AMPARs) through which sodium influx forms the driving force for excitation. Because the frequent sodium transients from glutamate receptor activity need to be efficiently extruded, a functional coupling between NKA and AMPARs should be a necessary cellular device for synapse physiology. We show that NKA is enriched at synapses and associates with AMPARs. NKA dysfunction induces a rapid reduction in AMPAR cell-surface expression as well as total protein abundance, leading to a long-lasting depression in synaptic transmission. AMPAR proteolysis requires sodium influx, proteasomal activity and receptor internalization. These data elucidate a novel mechanism by which NKA regulates AMPAR turnover and thereby synaptic strength and brain function.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Biology, Boston University, Boston, Massachusetts 02215, and
| | - Qingming Hou
- Department of Biology, Boston University, Boston, Massachusetts 02215, and
| | - Min Wang
- Department of Neuroscience, Centre for Addiction and Mental Health, Clarke Division, University of Toronto, Toronto, Ontario, Canada M5T 1R8
| | - Amy Lin
- Department of Biology, Boston University, Boston, Massachusetts 02215, and
| | - Larissa Jarzylo
- Department of Biology, Boston University, Boston, Massachusetts 02215, and
| | - Allison Navis
- Department of Biology, Boston University, Boston, Massachusetts 02215, and
| | - Aram Raissi
- Department of Biology, Boston University, Boston, Massachusetts 02215, and
| | - Fang Liu
- Department of Neuroscience, Centre for Addiction and Mental Health, Clarke Division, University of Toronto, Toronto, Ontario, Canada M5T 1R8
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, Massachusetts 02215, and
| |
Collapse
|
24
|
Ding M, Shen K. The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases. Bioessays 2008; 30:1075-83. [PMID: 18937340 PMCID: PMC3095215 DOI: 10.1002/bies.20843] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ubiquitin proteasome system is a potent regulatory mechanism used to control protein stability in numerous cellular processes, including neural development. Many neurodegenerative diseases are featured by the accumulation of UPS-associated proteins, suggesting the UPS dysfunction may be crucial for pathogenesis. Recent experiments have highlighted the UPS as a key player during synaptic development. Here we summarize recent discoveries centered on the role of the UPS in synapse remodeling and draw attention to the potential link between the synaptic UPS dysfunction and the pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mei Ding
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | | |
Collapse
|
25
|
Haas KF, Broadie K. Roles of ubiquitination at the synapse. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:495-506. [PMID: 18222124 PMCID: PMC2668815 DOI: 10.1016/j.bbagrm.2007.12.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/19/2007] [Accepted: 12/27/2007] [Indexed: 12/13/2022]
Abstract
The ubiquitin proteasome system (UPS) was first described as a mechanism for protein degradation more than three decades ago, but the critical roles of the UPS in regulating neuronal synapses have only recently begun to be revealed. Targeted ubiquitination of synaptic proteins affects multiple facets of the synapse throughout its life cycle; from synaptogenesis and synapse elimination to activity-dependent synaptic plasticity and remodeling. The recent identification of specific UPS molecular pathways that act locally at the synapse illustrates the exquisite specificity of ubiquitination in regulating synaptic protein trafficking and degradation events. Synaptic activity has also been shown to determine the subcellular distribution and composition of the proteasome, providing additional mechanisms for locally regulating synaptic protein degradation. Together these advances reveal that tight control of protein turnover plays a conserved, central role in establishing and modulating synapses in neural circuits.
Collapse
Affiliation(s)
- Kevin F. Haas
- Department of Neurology, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| |
Collapse
|