1
|
Saha R, Wüstner LS, Chakraborty D, Anunu R, Mandel S, Hazra JD, Kriebel M, Volkmer H, Kaphzan H, Richter-Levin G. Intra-BLA alteration of interneurons' modulation of activity in rats, reveals a dissociation between effects on anxiety symptoms and extinction learning. Neurobiol Stress 2024; 33:100681. [PMID: 39512628 PMCID: PMC11541825 DOI: 10.1016/j.ynstr.2024.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
The basolateral amygdala (BLA) is a dynamic brain region involved in emotional experiences and subject to long-term plasticity. The BLA also modulates activity, plasticity, and related behaviors associated with other brain regions, including the mPFC and hippocampus. Accordingly, intra-BLA plasticity can be expected to alter both BLA-dependent behaviors and behaviors mediated by other brain regions. Lasting intra-BLA plasticity may be considered a form of metaplasticity, since it will affect subsequent plasticity and response to challenges later on. Activity within the BLA is tightly modulated by GABAergic interneurons, and thus inducing lasting alteration of GABAergic modulation of principal neurons may have an impactful metaplastic effect on BLA functioning. Previously, we demonstrated that intra-BLA knockdown (KD) of neurofascin (NF) reduced GABAergic synapses exclusively at the axon initial segment (AIS). Here, by reducing the expression of the tyrosine kinase receptor ephrin A7 (EphA7), we selectively impaired the modulatory function of a different subpopulation of interneurons, specifically targeting the soma and proximal dendrites of principal neurons. This perturbation induced an expected reduction in the spontaneous inhibitory synaptic input and an increase in the excitatory spontaneous synaptic activity, most probably due to the reduction of inhibitory tone. Moreover, this increased synaptic activity was followed by a reduction in intrinsic excitability. While intra-BLA NF-KD resulted in impaired extinction learning, without increased symptoms of anxiety, intra-BLA reduction of EphA7 expression resulted in increased symptoms of anxiety, as measured in the elevated plus maze, but without affecting fear conditioning or extinction learning. These results confirm the role of the BLA and intra-BLA metaplasticity in stress-induced increased anxiety symptoms and in impaired fear extinction learning but reveals a difference in intra-BLA mechanisms involved. The results also confirm the contribution of GABAergic interneurons to these effects but indicate selective roles for different subpopulations of intra-BLA interneurons.
Collapse
Affiliation(s)
- Rinki Saha
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Lisa-Sophie Wüstner
- Dept. Molecular Biology, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Darpan Chakraborty
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Rachel Anunu
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Silvia Mandel
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Joyeeta Dutta Hazra
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Martin Kriebel
- Dept. Molecular Biology, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Hansjuergen Volkmer
- Dept. Molecular Biology, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
- Psychology Department, University of Haifa, 3498838, Haifa, Israel
| |
Collapse
|
2
|
Wüstner LS, Beuter S, Kriebel M, Volkmer H. Dissection of signaling pathways regulating TrkB-dependent gephyrin clustering. Front Mol Neurosci 2024; 17:1480820. [PMID: 39534513 PMCID: PMC11556255 DOI: 10.3389/fnmol.2024.1480820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction The TrkB receptor is known for its role in regulating excitatory neuronal plasticity. However, accumulating evidence over the past decade has highlighted the involvement of TrkB in regulating inhibitory synapse stability and plasticity, particularly through regulation of the inhibitory scaffold protein gephyrin, although with contradicting results. Methods In this study, we extended on these findings by overexpressing rat TrkB mutants deficient in either Shc-or PLCγ-dependent signaling, as well as a kinase-dead mutant, to dissect the contributions of specific TrkB-dependent signaling pathways to gephyrin clustering. Results Our results demonstrate that TrkB signaling is required for gephyrin clustering on the perisomatic area of granule cells in the dentate gyrus in vivo. To further investigate, we expressed TrkB wild-type and mutants in hippocampal neurons in vitro. Discussion Under basal conditions, TrkB-Shc signaling was important for the reduction of gephyrin cluster size, while TrkB-PLCγ signaling accounts for gephyrin clustering specifically at synaptic sites. Concomitant, impaired PLCγ signaling was associated with disinhibition of transduced neurons. Moreover, chemically induced inhibitory long-term potentiation (chem iLTP) depended on TrkB signaling and the activation of both Shc and PLCγ pathways. Conclusion Our findings suggest a complex, pathway-specific regulation of TrkB-dependent gephyrin clustering, both under basal conditions and during chem iLTP.
Collapse
Affiliation(s)
- Lisa-Sophie Wüstner
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Simone Beuter
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Martin Kriebel
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Hansjürgen Volkmer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Carricaburu E, Benner O, Burlingham SR, Dos Santos Passos C, Hobaugh N, Karr CH, Chanda S. Gephyrin promotes autonomous assembly and synaptic localization of GABAergic postsynaptic components without presynaptic GABA release. Proc Natl Acad Sci U S A 2024; 121:e2315100121. [PMID: 38889143 PMCID: PMC11214061 DOI: 10.1073/pnas.2315100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Synapses containing γ-aminobutyric acid (GABA) constitute the primary centers for inhibitory neurotransmission in our nervous system. It is unclear how these synaptic structures form and align their postsynaptic machineries with presynaptic terminals. Here, we monitored the cellular distribution of several GABAergic postsynaptic proteins in a purely glutamatergic neuronal culture derived from human stem cells, which virtually lacks any vesicular GABA release. We found that several GABAA receptor (GABAAR) subunits, postsynaptic scaffolds, and major cell-adhesion molecules can reliably coaggregate and colocalize at even GABA-deficient subsynaptic domains, but remain physically segregated from glutamatergic counterparts. Genetic deletions of both Gephyrin and a Gephyrin-associated guanosine di- or triphosphate (GDP/GTP) exchange factor Collybistin severely disrupted the coassembly of these postsynaptic compositions and their proper apposition with presynaptic inputs. Gephyrin-GABAAR clusters, developed in the absence of GABA transmission, could be subsequently activated and even potentiated by delayed supply of vesicular GABA. Thus, molecular organization of GABAergic postsynapses can initiate via a GABA-independent but Gephyrin-dependent intrinsic mechanism.
Collapse
Affiliation(s)
- Etta Carricaburu
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Orion Benner
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Scott R. Burlingham
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | | | - Natalia Hobaugh
- Biological Sciences Division, University of Chicago, Chicago, IL60637
| | - Charles H. Karr
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Soham Chanda
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
- Molecular, Cellular and Integrated Neurosciences Program, Colorado State University, Fort Collins, CO80523
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
4
|
Bragg-Gonzalo L, Aguilera A, González-Arias C, De León Reyes NS, Sánchez-Cruz A, Carballeira P, Leroy F, Perea G, Nieto M. Early cortical GABAergic interneurons determine the projection patterns of L4 excitatory neurons. SCIENCE ADVANCES 2024; 10:eadj9911. [PMID: 38728406 PMCID: PMC11086621 DOI: 10.1126/sciadv.adj9911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
During cerebral cortex development, excitatory pyramidal neurons (PNs) establish specific projection patterns while receiving inputs from GABAergic inhibitory interneurons (INs). Whether these inhibitory inputs can shape PNs' projection patterns is, however, unknown. While layer 4 (L4) PNs of the primary somatosensory (S1) cortex are all born as long-range callosal projection neurons (CPNs), most of them acquire local connectivity upon activity-dependent elimination of their interhemispheric axons during postnatal development. Here, we demonstrate that precise developmental regulation of inhibition is key for the retraction of S1L4 PNs' callosal projections. Ablation of somatostatin INs leads to premature inhibition from parvalbumin INs onto S1L4 PNs and prevents them from acquiring their barrel-restricted local connectivity pattern. As a result, adult S1L4 PNs retain interhemispheric projections responding to tactile stimuli, and the mice lose whisker-based texture discrimination. Overall, we show that temporally ordered IN activity during development is key to shaping local ipsilateral S1L4 PNs' projection pattern, which is required for fine somatosensory processing.
Collapse
Affiliation(s)
- Lorena Bragg-Gonzalo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Alfonso Aguilera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Candela González-Arias
- Functional and Systems Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | - Noelia S. De León Reyes
- Instituto de Neurociencias (CSIC-UMH), Av. Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain
| | - Alonso Sánchez-Cruz
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Paula Carballeira
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Félix Leroy
- Instituto de Neurociencias (CSIC-UMH), Av. Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain
| | - Gertrudis Perea
- Functional and Systems Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | - Marta Nieto
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
5
|
Lee JM, Choi YJ, Yoo MC, Yeo SG. Central Facial Nervous System Biomolecules Involved in Peripheral Facial Nerve Injury Responses and Potential Therapeutic Strategies. Antioxidants (Basel) 2023; 12:antiox12051036. [PMID: 37237902 DOI: 10.3390/antiox12051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Peripheral facial nerve injury leads to changes in the expression of various neuroactive substances that affect nerve cell damage, survival, growth, and regeneration. In the case of peripheral facial nerve damage, the injury directly affects the peripheral nerves and induces changes in the central nervous system (CNS) through various factors, but the substances involved in these changes in the CNS are not well understood. The objective of this review is to investigate the biomolecules involved in peripheral facial nerve damage so as to gain insight into the mechanisms and limitations of targeting the CNS after such damage and identify potential facial nerve treatment strategies. To this end, we searched PubMed using keywords and exclusion criteria and selected 29 eligible experimental studies. Our analysis summarizes basic experimental studies on changes in the CNS following peripheral facial nerve damage, focusing on biomolecules that increase or decrease in the CNS and/or those involved in the damage, and reviews various approaches for treating facial nerve injury. By establishing the biomolecules in the CNS that change after peripheral nerve damage, we can expect to identify factors that play an important role in functional recovery from facial nerve damage. Accordingly, this review could represent a significant step toward developing treatment strategies for peripheral facial palsy.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - You Jung Choi
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
7
|
Spectrin-beta 2 facilitates the selective accumulation of GABA A receptors at somatodendritic synapses. Commun Biol 2023; 6:11. [PMID: 36604600 PMCID: PMC9816108 DOI: 10.1038/s42003-022-04381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Fast synaptic inhibition is dependent on targeting specific GABAAR subtypes to dendritic and axon initial segment (AIS) synapses. Synaptic GABAARs are typically assembled from α1-3, β and γ subunits. Here, we isolate distinct GABAARs from the brain and interrogate their composition using quantitative proteomics. We show that α2-containing receptors co-assemble with α1 subunits, whereas α1 receptors can form GABAARs with α1 as the sole α subunit. We demonstrate that α1 and α2 subunit-containing receptors co-purify with distinct spectrin isoforms; cytoskeletal proteins that link transmembrane proteins to the cytoskeleton. β2-spectrin was preferentially associated with α1-containing GABAARs at dendritic synapses, while β4-spectrin was associated with α2-containing GABAARs at AIS synapses. Ablating β2-spectrin expression reduced dendritic and AIS synapses containing α1 but increased the number of synapses containing α2, which altered phasic inhibition. Thus, we demonstrate a role for spectrins in the synapse-specific targeting of GABAARs, determining the efficacy of fast neuronal inhibition.
Collapse
|
8
|
Guzikowski NJ, Kavalali ET. Nano-organization of spontaneous GABAergic transmission directs its autonomous function in neuronal signaling. Cell Rep 2022; 40:111172. [PMID: 35947950 PMCID: PMC9392417 DOI: 10.1016/j.celrep.2022.111172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/12/2022] [Accepted: 07/15/2022] [Indexed: 01/04/2023] Open
Abstract
Earlier studies delineated the precise arrangement of proteins that drive neurotransmitter release and postsynaptic signaling at excitatory synapses. However, spatial organization of neurotransmission at inhibitory synapses remains unclear. Here, we took advantage of the molecularly specific interaction of antimalarial artemisinins and the inhibitory synapse scaffold protein, gephyrin, to probe the functional organization of gamma-aminobutyric acid A receptor (GABAAR)-mediated neurotransmission in central synapses. Short-term application of artemisinins severely contracts the size and density of gephyrin and GABAaR γ2 subunit clusters. This size contraction elicits a neuronal activity-independent increase in Bdnf expression due to a specific reduction in GABAergic spontaneous, but not evoked, neurotransmission. The same functional effect could be mimicked by disruption of microtubules that link gephyrin to the neuronal cytoskeleton. These results suggest that the GABAergic postsynaptic apparatus possesses a concentric center-surround organization, where the periphery of gephyrin clusters selectively maintains spontaneous GABAergic neurotransmission facilitating its autonomous function regulating Bdnf expression.
Collapse
Affiliation(s)
- Natalie J. Guzikowski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA,Lead contact,Correspondence:
| |
Collapse
|
9
|
Khayenko V, Schulte C, Reis SL, Avraham O, Schietroma C, Worschech R, Nordblom NF, Kachler S, Villmann C, Heinze KG, Schlosser A, Schueler‐Furman O, Tovote P, Specht CG, Maric HM. A Versatile Synthetic Affinity Probe Reveals Inhibitory Synapse Ultrastructure and Brain Connectivity**. Angew Chem Int Ed Engl 2022; 61:e202202078. [PMID: 35421279 PMCID: PMC9400903 DOI: 10.1002/anie.202202078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/10/2022]
Abstract
Visualization of inhibitory synapses requires protocol tailoring for different sample types and imaging techniques, and usually relies on genetic manipulation or the use of antibodies that underperform in tissue immunofluorescence. Starting from an endogenous ligand of gephyrin, a universal marker of the inhibitory synapse, we developed a short peptidic binder and dimerized it, significantly increasing affinity and selectivity. We further tailored fluorophores to the binder, yielding “Sylite”—a probe with outstanding signal‐to‐background ratio that outperforms antibodies in tissue staining with rapid and efficient penetration, mitigation of staining artifacts, and simplified handling. In super‐resolution microscopy Sylite precisely localizes the inhibitory synapse and enables nanoscale measurements. Sylite profiles inhibitory inputs and synapse sizes of excitatory and inhibitory neurons in the midbrain and combined with complimentary tracing techniques reveals the synaptic connectivity.
Collapse
Affiliation(s)
- Vladimir Khayenko
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Clemens Schulte
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Sara L. Reis
- Institute of Clinical Neurobiology University Hospital Versbacher Str. 5 97078 Wuerzburg Germany
| | - Orly Avraham
- Department of Microbiology and Molecular Genetics Institute for Medical Research Israel-Canada the Hebrew University Hadassah Medical School Jerusalem 91120 Israel
| | | | - Rafael Worschech
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Noah F. Nordblom
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Sonja Kachler
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology University Hospital Versbacher Str. 5 97078 Wuerzburg Germany
| | - Katrin G. Heinze
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Andreas Schlosser
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Ora Schueler‐Furman
- Department of Microbiology and Molecular Genetics Institute for Medical Research Israel-Canada the Hebrew University Hadassah Medical School Jerusalem 91120 Israel
| | - Philip Tovote
- Institute of Clinical Neurobiology University Hospital Versbacher Str. 5 97078 Wuerzburg Germany
- Center of Mental Health University of Wuerzburg Margarete-Höppel-Platz 1 97080 Wuerzburg Germany
| | - Christian G. Specht
- Diseases and Hormones of the Nervous System (DHNS) Inserm U1195 Université Paris-Saclay 80 rue du Général Leclerc 94276 Le Kremlin-Bicêtre France
| | - Hans M. Maric
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| |
Collapse
|
10
|
Zeltser G, Sukhanov IM, Nevorotin AJ. MMM - The molecular model of memory. J Theor Biol 2022; 549:111219. [PMID: 35810778 DOI: 10.1016/j.jtbi.2022.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
Identifying mechanisms underlying neurons ability to process information including acquisition, storage, and retrieval plays an important role in the understanding of the different types of memory, pathogenesis of many neurological diseases affecting memory and therapeutic target discovery. However, the traditional understanding of the mechanisms of memory associated with the electrical signals having a unique combination of frequency and amplitude does not answer the question how the memories can survive for life-long periods of time, while exposed to synaptic noise. Recent evidence suggests that, apart from neuronal circuits, a diversity of the molecular memory (MM) carriers, are essential for memory performance. The molecular model of memory (MMM) is proposed, according to which each item of incoming information (the elementary memory item - eMI) is encoded by both circuitries, with the unique for a given MI electrical parameters, and also the MM carriers, unique by its molecular composition. While operating as the carriers of incoming information, the MMs, are functioning within the neuron plasma membrane. Inactive (latent) initially, during acquisition each of the eMIs is activated to become a virtual copy of some real fact or events bygone. This activation is accompanied by the considerable remodeling of the MM molecule associated with the resonance effect.
Collapse
Affiliation(s)
| | - Ilya M Sukhanov
- Lab. Behavioral Pharmacology, Dept. Psychopharmacology, Valdman Institute of Pharmacology, I.P. Pavlov Medical University, Leo Tolstoi Street 6/8, St. Petersburg 197022, The Russian Federation
| | - Alexey J Nevorotin
- Laboratory of Electron Microscopy, I.P. Pavlov Medical University, Leo Tolstoi Street 6/8, St. Petersburg 197022, The Russian Federation
| |
Collapse
|
11
|
George S, Chiou TT, Kanamalla K, De Blas AL. Recruitment of Plasma Membrane GABA-A Receptors by Submembranous Gephyrin/Collybistin Clusters. Cell Mol Neurobiol 2022; 42:1585-1604. [PMID: 33547626 PMCID: PMC11421751 DOI: 10.1007/s10571-021-01050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/23/2021] [Indexed: 11/29/2022]
Abstract
It has been shown that subunit composition is the main determinant of the synaptic or extrasynaptic localization of GABAA receptors (GABAARs). Synaptic and extrasynaptic GABAARs are involved in phasic and tonic inhibition, respectively. It has been proposed that synaptic GABAARs bind to the postsynaptic gephyrin/collybistin (Geph/CB) lattice, but not the typically extrasynaptic GABAARs. Nevertheless, there are no studies of the direct binding of various types of GABAARs with the submembranous Geph/CB lattice in the absence of other synaptic proteins, some of which are known to interact with GABAARs. We have reconstituted GABAARs of various subunit compositions, together with the Geph/CB scaffold, in HEK293 cells, and have investigated the recruitment of surface GABAARs by submembranous Geph/CB clusters. Results show that the typically synaptic α1β3γ2 GABAARs were trapped by submembranous Geph/CB clusters. The α5β3γ2 GABAARs, which are both synaptic and extrasynaptic, were also trapped by Geph/CB clusters. Extrasynaptic α4β3δ GABAARs consistently showed little or no trapping by the Geph/CB clusters. However, the extrasynaptic α6β3δ, α1β3, α6β3 (and less α4β3) GABAARs were highly trapped by the Geph/CB clusters. AMPA and NMDA glutamate receptors were not trapped. The results suggest: (I) in the absence of other synaptic molecules, the Geph/CB lattice has the capacity to trap not only synaptic but also several typically extrasynaptic GABAARs; (II) the Geph/CB lattice is important but does not play a decisive role in the synaptic localization of GABAARs; and (III) in neurons there must be mechanisms preventing the trapping of several typically extrasynaptic GABAARs by the postsynaptic Geph/CB lattice.
Collapse
Affiliation(s)
- Shanu George
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Tzu-Ting Chiou
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Karthik Kanamalla
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA.
| |
Collapse
|
12
|
Complex regulation of Gephyrin splicing is a determinant of inhibitory postsynaptic diversity. Nat Commun 2022; 13:3507. [PMID: 35717442 PMCID: PMC9206673 DOI: 10.1038/s41467-022-31264-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/10/2022] [Indexed: 01/05/2023] Open
Abstract
Gephyrin (GPHN) regulates the clustering of postsynaptic components at inhibitory synapses and is involved in pathophysiology of neuropsychiatric disorders. Here, we uncover an extensive diversity of GPHN transcripts that are tightly controlled by splicing during mouse and human brain development. Proteomic analysis reveals at least a hundred isoforms of GPHN incorporated at inhibitory Glycine and gamma-aminobutyric acid A receptors containing synapses. They exhibit different localization and postsynaptic clustering properties, and altering the expression level of one isoform is sufficient to affect the number, size, and density of inhibitory synapses in cerebellar Purkinje cells. Furthermore, we discovered that splicing defects reported in neuropsychiatric disorders are carried by multiple alternative GPHN transcripts, demonstrating the need for a thorough analysis of the GPHN transcriptome in patients. Overall, we show that alternative splicing of GPHN is an important genetic variation to consider in neurological diseases and a determinant of the diversity of postsynaptic inhibitory synapses. The protein gephyrin is involved in organizing synapses. Here, the authors show how different transcripts of gephyrin form and regulate inhibitory synapses.
Collapse
|
13
|
Khayenko V, Schulte C, Reis SL, Avraham O, Schietroma C, Worschech R, Nordblom NF, Kachler S, Villmann C, Heinze KG, Schlosser A, Schueler-Furman O, Tovote P, Specht CG, Maric HM. A Versatile Synthetic Affinity Probe Reveals Inhibitory Synapse Ultrastructure and Brain Connectivity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vladimir Khayenko
- University of Wurzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center Josef-Schneider-Strasse. 2 97080 Würzburg GERMANY
| | - Clemens Schulte
- University of Wurzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center Josef-Schneider-Strasse. 2 97080 Würzburg GERMANY
| | - Sara L. Reis
- University Hospital Wurzburg: Universitatsklinikum Wurzburg Clinical Neurobiology Versbacherstr.5 97078 Würzburg GERMANY
| | - Orly Avraham
- The Hebrew University of Jerusalem Microbiology and Molecular Genetics ISRAEL
| | | | - Rafael Worschech
- University of Wurzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Noah F. Nordblom
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Sonja Kachler
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Carmen Villmann
- University Hospital Wurzburg: Universitatsklinikum Wurzburg Clinical Neurobiology GERMANY
| | - Katrin G. Heinze
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Andreas Schlosser
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center Rudolf Virchow Zentrum Gebäude D15Josef-Schneider-Strasse 2 97080 Würzburg GERMANY
| | - Ora Schueler-Furman
- The Hebrew University of Jerusalem Microbiology and Molecular Genetics ISRAEL
| | - Philip Tovote
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Clinical Neurobiology GERMANY
| | - Christian G. Specht
- INSERM U1195: Maladies et hormones du systeme nerveux NSERM U1195: Maladies et hormones du systeme nerveux FRANCE
| | - Hans Michael Maric
- University of Würzburg Biotechnology and Biophysics Rudolf Virchow Zentrum Gebäude D15Josef-Schneider-Strasse 2 97080 Würzburg GERMANY
| |
Collapse
|
14
|
Al Awabdh S, Donneger F, Goutierre M, Séveno M, Vigy O, Weinzettl P, Russeau M, Moutkine I, Lévi S, Marin P, Poncer JC. Gephyrin Interacts with the K-Cl Cotransporter KCC2 to Regulate Its Surface Expression and Function in Cortical Neurons. J Neurosci 2022; 42:166-182. [PMID: 34810232 PMCID: PMC8802937 DOI: 10.1523/jneurosci.2926-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/31/2021] [Accepted: 10/17/2021] [Indexed: 11/21/2022] Open
Abstract
The K+-Cl- cotransporter KCC2, encoded by the Slc12a5 gene, is a neuron-specific chloride extruder that tunes the strength and polarity of GABAA receptor-mediated transmission. In addition to its canonical ion transport function, KCC2 also regulates spinogenesis and excitatory synaptic function through interaction with a variety of molecular partners. KCC2 is enriched in the vicinity of both glutamatergic and GABAergic synapses, the activity of which in turn regulates its membrane stability and function. KCC2 interaction with the submembrane actin cytoskeleton via 4.1N is known to control its anchoring near glutamatergic synapses on dendritic spines. However, the molecular determinants of KCC2 clustering near GABAergic synapses remain unknown. Here, we used proteomics to identify novel KCC2 interacting proteins in the adult rat neocortex. We identified both known and novel candidate KCC2 partners, including some involved in neuronal development and synaptic transmission. These include gephyrin, the main scaffolding molecule at GABAergic synapses. Gephyrin interaction with endogenous KCC2 was confirmed by immunoprecipitation from rat neocortical extracts. We showed that gephyrin stabilizes plasmalemmal KCC2 and promotes its clustering in hippocampal neurons, mostly but not exclusively near GABAergic synapses, thereby controlling KCC2-mediated chloride extrusion. This study identifies gephyrin as a novel KCC2 anchoring molecule that regulates its membrane expression and function in cortical neurons.SIGNIFICANCE STATEMENT Fast synaptic inhibition in the brain is mediated by chloride-permeable GABAA receptors (GABAARs) and therefore relies on transmembrane chloride gradients. In neurons, these gradients are primarily maintained by the K/Cl cotransporter KCC2. Therefore, understanding the mechanisms controlling KCC2 expression and function is crucial to understand its physiological regulation and rescue its function in the pathology. KCC2 function depends on its membrane expression and clustering, but the underlying mechanisms remain unknown. We describe the interaction between KCC2 and gephyrin, the main scaffolding protein at inhibitory synapses. We show that gephyrin controls plasmalemmal KCC2 clustering and that loss of gephyrin compromises KCC2 function. Our data suggest functional units comprising GABAARs, gephyrin, and KCC2 act to regulate synaptic GABA signaling.
Collapse
Affiliation(s)
- Sana Al Awabdh
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Florian Donneger
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Marie Goutierre
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Martial Séveno
- BCM, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Oana Vigy
- IGF, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Pauline Weinzettl
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
- Institute of Biotechnology, University of Applied Sciences, Krems, Austria
| | - Marion Russeau
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Imane Moutkine
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Philippe Marin
- IGF, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| |
Collapse
|
15
|
Macha A, Liebsch F, Fricke S, Hetsch F, Neuser F, Johannes L, Kress V, Djémié T, Santamaria-Araujo JA, Vilain C, Aeby A, Van Bogaert P, Dejanovic B, Weckhuysen S, Meier JC, Schwarz G. Bi-allelic gephyrin variants impair GABAergic inhibition in a patient with epileptic encephalopathy. Hum Mol Genet 2021; 31:901-913. [PMID: 34617111 DOI: 10.1093/hmg/ddab298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/12/2022] Open
Abstract
Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition is linked to epilepsy. Gephyrin (Geph) is the principal scaffolding protein at inhibitory synapses and is essential for postsynaptic clustering of glycine (GlyRs) and GABA type A receptors (GABAARs). Consequently, gephyrin is crucial for maintaining the relationship between excitation and inhibition in normal brain function and mutations in the gephyrin gene (GPHN) are associated with neurodevelopmental disorders and epilepsy. We identified bi-allelic variants in the GPHN gene, namely the missense mutation c.1264G > A and splice acceptor variant c.1315-2A > G, in a patient with developmental and epileptic encephalopathy (DEE). We demonstrate that the splice acceptor variant leads to nonsense-mediated mRNA decay (NMD). Furthermore, the missense variant (D422N) alters gephyrin structure, as examined by analytical size exclusion chromatography and CD-spectroscopy, thus leading to reduced receptor clustering and sensitivity towards calpain-mediated cleavage. Additionally, both alterations contribute to an observed reduction of inhibitory signal transmission in neurons, which likely contributes to the pathological encephalopathy.
Collapse
Affiliation(s)
- Arthur Macha
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Filip Liebsch
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Steffen Fricke
- Division Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Institute for Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Florian Hetsch
- Division Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Franziska Neuser
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Lena Johannes
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Vanessa Kress
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Tania Djémié
- Applied & Translational Neurogenomics Group, VIB-Center for Molecular Genetics, VIB, Antwerp, Belgium
| | - Jose A Santamaria-Araujo
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Alec Aeby
- Pediatric Neurology, Queen Fabiola Children Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Patrick Van Bogaert
- Departement of Pediatric Neurology, CHU d'Angers, and Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers, France
| | - Borislav Dejanovic
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB-Center for Molecular Genetics, VIB, Antwerp, Belgium.,Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium.,Neurology Department, University Hospital Antwerp, Antwerp, Belgium
| | - Jochen C Meier
- Division Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Axonal CB1 Receptors Mediate Inhibitory Bouton Formation via cAMP Increase and PKA. J Neurosci 2021; 41:8279-8296. [PMID: 34413209 DOI: 10.1523/jneurosci.0851-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/25/2021] [Indexed: 12/11/2022] Open
Abstract
Experience-dependent formation and removal of inhibitory synapses are essential throughout life. For instance, GABAergic synapses are removed to facilitate learning, and strong excitatory activity is accompanied by the formation of inhibitory synapses to maintain coordination between excitation and inhibition. We recently discovered that active dendrites trigger the growth of inhibitory synapses via CB1 receptor-mediated endocannabinoid signaling, but the underlying mechanism remained unclear. Using two-photon microscopy to monitor the formation of individual inhibitory boutons in hippocampal organotypic slices from mice (both sexes), we found that CB1 receptor activation mediated the formation of inhibitory boutons and promoted their subsequent stabilization. Inhibitory bouton formation did not require neuronal activity and was independent of Gi/o-protein signaling, but was directly induced by elevating cAMP levels using forskolin and by activating Gs-proteins using DREADDs. Blocking PKA activity prevented CB1 receptor-mediated inhibitory bouton formation. Our findings reveal that axonal CB1 receptors signal via unconventional downstream pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels. Our results demonstrate an unexpected role for axonal CB1 receptors in axon-specific, and context-dependent, inhibitory synapse formation.SIGNIFICANCE STATEMENT Coordination between excitation and inhibition is required for proper brain function throughout life. It was previously shown that new inhibitory synapses can be formed in response to strong excitation to maintain this coordination, and this was mediated by endocannabinoid signaling via CB1 receptors. As activation of CB1 receptors generally results in the suppression of synaptic transmission, it remained unclear how CB1 receptors can mediate the formation of inhibitory synapses. Here we show that CB1 receptors on inhibitory axons signal via unconventional intracellular pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels and requires PKA activity. Our findings point to a central role for axonal cAMP signaling in activity-dependent inhibitory synapse formation.
Collapse
|
17
|
Selective Overexpression of Collybistin in Mouse Hippocampal Pyramidal Cells Enhances GABAergic Neurotransmission and Protects against PTZ-Induced Seizures. eNeuro 2021; 8:ENEURO.0561-20.2021. [PMID: 34083383 PMCID: PMC8281261 DOI: 10.1523/eneuro.0561-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/02/2021] [Accepted: 05/23/2021] [Indexed: 11/21/2022] Open
Abstract
Collybistin (CB) is a rho guanine exchange factor found at GABAergic and glycinergic postsynapses that interacts with the inhibitory scaffold protein, gephyrin, and induces accumulation of gephyrin and GABA type-A receptors (GABAARs) to the postsynapse. We have previously reported that the isoform without the src homology 3 (SH3) domain, CBSH3-, is particularly active in enhancing the GABAergic postsynapse in both cultured hippocampal neurons as well as in cortical pyramidal neurons after chronic in vivo expression in in utero electroporated (IUE) rats. Deficiency of CB in knock-out (KO) mice results in absence of gephyrin and gephyrin-dependent GABAARs at postsynaptic sites in several brain regions, including hippocampus. In the present study, we have generated an adeno-associated virus (AAV) that expresses CBSH3- in a cre-dependent manner. Using male and female VGLUT1-IRES-cre or VGAT-IRES-cre mice, we explore the effect of overexpression of CBSH3- in hippocampal pyramidal cells or hippocampal interneurons. The results show that: (1) the accumulation of gephyrin and GABAARs at inhibitory postsynapses in hippocampal pyramidal neurons or interneurons can be enhanced by CBSH3- overexpression; (2) overexpression of CBSH3- in hippocampal pyramidal cells can enhance the strength of inhibitory neurotransmission; and (3) these enhanced inhibitory synapses provide protection against pentylenetetrazole (PTZ)-induced seizures. The results indicate that this AAV vector carrying CBSH3- can be used for in vivo enhancement of GABAergic synaptic transmission in selected target neurons in the brain.
Collapse
|
18
|
Bai G, Wang Y, Zhang M. Gephyrin-mediated formation of inhibitory postsynaptic density sheet via phase separation. Cell Res 2021; 31:312-325. [PMID: 33139925 PMCID: PMC8027005 DOI: 10.1038/s41422-020-00433-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/14/2020] [Indexed: 01/30/2023] Open
Abstract
Inhibitory synapses are also known as symmetric synapses due to their lack of prominent postsynaptic densities (PSDs) under a conventional electron microscope (EM). Recent cryo-EM tomography studies indicated that inhibitory synapses also contain PSDs, albeit with a rather thin sheet-like structure. It is not known how such inhibitory PSD (iPSD) sheet might form. Here, we demonstrate that the key inhibitory synapse scaffold protein gephyrin, when in complex with either glycine or GABAA receptors, spontaneously forms highly condensed molecular assemblies via phase separation both in solution and on supported membrane bilayers. Multivalent and specific interactions between the dimeric E-domain of gephyrin and the glycine/GABAA receptor multimer are essential for the iPSD condensate formation. Gephyrin alone does not form condensates. The linker between the G- and E-domains of gephyrin inhibits the iPSD condensate formation via autoinhibition. Phosphorylation of specific residues in the linker or binding of target proteins such as dynein light chain to the linker domain regulates gephyrin-mediated glycine/GABAA receptor clustering. Thus, analogous to excitatory PSDs, iPSDs are also formed by phase separation-mediated condensation of scaffold protein/neurotransmitter receptor complexes.
Collapse
Affiliation(s)
- Guanhua Bai
- grid.24515.370000 0004 1937 1450Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Yu Wang
- grid.24515.370000 0004 1937 1450Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Mingjie Zhang
- grid.24515.370000 0004 1937 1450Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China ,grid.24515.370000 0004 1937 1450Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
19
|
George S, Bear J, Taylor MJ, Kanamalla K, Fekete CD, Chiou TT, Miralles CP, Papadopoulos T, De Blas AL. Collybistin SH3-protein isoforms are expressed in the rat brain promoting gephyrin and GABA-A receptor clustering at GABAergic synapses. J Neurochem 2021; 157:1032-1051. [PMID: 33316079 DOI: 10.1111/jnc.15270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 01/21/2023]
Abstract
Collybistin (CB) is a guanine nucleotide exchange factor (GEF) selectively localized at GABAergic and glycinergic postsynapses. Analysis of mRNA shows that several isoforms of collybistin are expressed in the brain. Some of the isoforms have a SH3 domain (CBSH3+) and some have no SH3 domain (CBSH3-). The CBSH3+ mRNAs are predominantly expressed over CBSH3-. However, in an immunoblot study of mouse brain homogenates, only CBSH3+ protein isoforms were detected, proposing that CBSH3- protein might not be expressed in the brain. The expression or lack of expression of CBSH3- protein is an important issue because CBSH3- has a strong effect in promoting the postsynaptic clustering of gephyrin and GABA-A receptors (GABAA Rs). Moreover CBSH3- is constitutively active; therefore lower expression of CBSH3- protein might play a relatively stronger functional role than the more abundant but self-inhibited CBSH3+ isoforms, which need to be activated. We are now showing that: (a) CBSH3- protein is expressed in the brain; (b) parvalbumin positive (PV+) interneurons show higher expression of CBSH3- protein than other neurons; (c) CBSH3- is associated with GABAergic synapses in various regions of the brain and (d) knocking down CBSH3- in hippocampal neurons decreases the synaptic clustering of gephyrin and GABAA Rs. The results show that CBSH3- protein is expressed in the brain and that it plays a significant role in the size regulation of the GABAergic postsynapse.
Collapse
Affiliation(s)
- Shanu George
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - John Bear
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Michael J Taylor
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Karthik Kanamalla
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Christopher D Fekete
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Tzu-Ting Chiou
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Celia P Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | | | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
20
|
McEachern EP, Coley AA, Yang SS, Gao WJ. PSD-95 deficiency alters GABAergic inhibition in the prefrontal cortex. Neuropharmacology 2020; 179:108277. [PMID: 32818520 PMCID: PMC7572776 DOI: 10.1016/j.neuropharm.2020.108277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/01/2022]
Abstract
Postsynaptic Density Protein-95 (PSD-95) is a major scaffolding protein in the excitatory synapses in the brain and a critical regulator of synaptic maturation for NMDA and AMPA receptors. PSD-95 deficiency has been linked to cognitive and learning deficits implicated in neurodevelopmental disorders such as autism and schizophrenia. Previous studies have shown that PSD-95 deficiency causes a significant reduction in the excitatory response in the hippocampus. However, little is known about whether PSD-95 deficiency will affect gamma-aminobutyric acid (GABA)ergic inhibitory synapses. Using a PSD-95 transgenic mouse model (PSD-95+/-), we studied how PSD-95 deficiency affects GABAA receptor expression and function in the medial prefrontal cortex (mPFC) during adolescence. Our results showed a significant increase in the GABAA receptor subunit α1. Correspondingly, there are increases in the frequency and amplitude in spontaneous inhibitory postsynaptic currents (sIPSCs) in pyramidal neurons in the mPFC of PSD-95+/- mice, along with a significant increase in evoked IPSCs, leading to a dramatic shift in the excitatory-to-inhibitory balance in PSD-95 deficient mice. Furthermore, PSD-95 deficiency promotes inhibitory synapse function via upregulation and trafficking of NLGN2 and reduced GSK3β activity through tyr-216 phosphorylation. Our study provides novel insights on the effects of GABAergic transmission in the mPFC due to PSD-95 deficiency and its potential link with cognitive and learning deficits associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Erin P McEachern
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Austin A Coley
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
21
|
Pizzarelli R, Griguoli M, Zacchi P, Petrini EM, Barberis A, Cattaneo A, Cherubini E. Tuning GABAergic Inhibition: Gephyrin Molecular Organization and Functions. Neuroscience 2020; 439:125-136. [PMID: 31356900 PMCID: PMC7351109 DOI: 10.1016/j.neuroscience.2019.07.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/15/2023]
Abstract
To be highly reliable, synaptic transmission needs postsynaptic receptors (Rs) in precise apposition to the presynaptic release sites. At inhibitory synapses, the postsynaptic protein gephyrin self-assembles to form a scaffold that anchors glycine and GABAARs to the cytoskeleton, thus ensuring the accurate accumulation of postsynaptic receptors at the right place. This protein undergoes several post-translational modifications which control protein-protein interaction and downstream signaling pathways. In addition, through the constant exchange of scaffolding elements and receptors in and out of synapses, gephyrin dynamically regulates synaptic strength and plasticity. The aim of the present review is to highlight recent findings on the functional role of gephyrin at GABAergic inhibitory synapses. We will discuss different approaches used to interfere with gephyrin in order to unveil its function. In addition, we will focus on the impact of gephyrin structure and distribution at the nanoscale level on the functional properties of inhibitory synapses as well as the implications of this scaffold protein in synaptic plasticity processes. Finally, we will emphasize how gephyrin genetic mutations or alterations in protein expression levels are implicated in several neuropathological disorders, including autism spectrum disorders, schizophrenia, temporal lobe epilepsy and Alzheimer's disease, all associated with severe deficits of GABAergic signaling. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Rocco Pizzarelli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy
| | - Marilena Griguoli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Enrica Maria Petrini
- Fondazione Istituto Italiano di Tecnologia (IIT), Department of Neuroscience and Brain Technologies, Plasticity of inhibitory networks Unit, Genoa, Italy
| | - Andrea Barberis
- Fondazione Istituto Italiano di Tecnologia (IIT), Department of Neuroscience and Brain Technologies, Plasticity of inhibitory networks Unit, Genoa, Italy
| | - Antonino Cattaneo
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy; Scuola Normale Superiore, Pisa, Italy
| | - Enrico Cherubini
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy; Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.
| |
Collapse
|
22
|
Silva J, Shao AS, Shen Y, Davies DL, Olsen RW, Holschneider DP, Shao XM, Liang J. Modulation of Hippocampal GABAergic Neurotransmission and Gephyrin Levels by Dihydromyricetin Improves Anxiety. Front Pharmacol 2020; 11:1008. [PMID: 32742262 PMCID: PMC7364153 DOI: 10.3389/fphar.2020.01008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Anxiety disorders are the most common mental illness in the U.S. and are estimated to consume one-third of the country’s mental health spending. Although anxiolytic therapies are available, many patients exhibit treatment-resistance, relapse, or substantial side effects. An urgent need exists to explore the underlying mechanisms of chronic anxiety and to develop alternative therapies. Presently, we identified dihydromyricetin (DHM), a flavonoid that has anxiolytic properties in a mouse model of isolation-induced anxiety. Socially isolated mice demonstrated increased anxiety levels and reduced exploratory behavior measured by elevated plus-maze and open-field tests. Socially isolated mice showed impaired GABAergic neurotransmission, including reduction in GABAA receptor-mediated extrasynaptic tonic currents, as well as amplitude and frequency of miniature inhibitory postsynaptic currents measured by whole-cell patch-clamp recordings from hippocampal slices. Furthermore, intracellular ATP levels and gephyrin expression decreased in anxious animals. DHM treatment restored ATP and gephyrin expression, GABAergic transmission and synaptic function, as well as decreased anxiety-like behavior. Our findings indicate broader roles for DHM in anxiolysis, GABAergic neurotransmission, and synaptic function. Collectively, our data suggest that reduction in intracellular ATP and gephyrin contribute to the development of anxiety, and represent novel treatment targets. DHM is a potential candidate for pharmacotherapy for anxiety disorders.
Collapse
Affiliation(s)
- Joshua Silva
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA, United States
| | - Amy S Shao
- Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yi Shen
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA, United States
| | - Richard W Olsen
- Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Daniel P Holschneider
- Psychiatry and The Behavioral Sciences, University of Southern California, Los Angeles, CA, United States
| | - Xuesi M Shao
- Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jing Liang
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA, United States
| |
Collapse
|
23
|
Simultaneous Live Imaging of Multiple Endogenous Proteins Reveals a Mechanism for Alzheimer's-Related Plasticity Impairment. Cell Rep 2020; 27:658-665.e4. [PMID: 30995464 DOI: 10.1016/j.celrep.2019.03.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/17/2018] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
CaMKIIα is a central mediator of bidirectional synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). To study how CaMKIIα movement during plasticity is affected by soluble amyloid-β peptide oligomers (Aβ), we used FingR intrabodies to simultaneously image endogenous CaMKIIα and markers for excitatory versus inhibitory synapses in live neurons. Aβ blocks LTP-stimulus-induced CaMKIIα accumulation at excitatory synapses. This block requires CaMKII activity, is dose and time dependent, and also occurs at synapses without detectable Aβ; it is specific to LTP, as CaMKIIα accumulation at inhibitory synapses during LTD is not reduced. As CaMKII movement to excitatory synapses is required for normal LTP, its impairment can mechanistically explain Aβ-induced impairment of LTP. CaMKII movement during LTP requires binding to the NMDA receptor, and Aβ induces internalization of NMDA receptors. However, surprisingly, this internalization does not cause the block in CaMKIIα movement and is observed for extrasynaptic, but not synaptic, NMDA receptors.
Collapse
|
24
|
Kosaka Y, Yafuso T, Shimizu-Okabe C, Kim J, Kobayashi S, Okura N, Ando H, Okabe A, Takayama C. Development and persistence of neuropathic pain through microglial activation and KCC2 decreasing after mouse tibial nerve injury. Brain Res 2020; 1733:146718. [PMID: 32045595 DOI: 10.1016/j.brainres.2020.146718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
Abstract
Gamma-amino butyric acid (GABA) is an inhibitory neurotransmitter in the mature brain, but is excitatory during development and after motor nerve injury. This difference in GABAergic action depends on the intracellular chloride ion concentration ([Cl-]i), primarily regulated by potassium chloride co-transporter 2 (KCC2). To reveal precise processes of the neuropathic pain through changes in GABAergic action, we prepared tibial nerve ligation and severance models using male mice, and examined temporal relationships amongst changes in (1) the mechanical withdrawal threshold in the sural nerve area, (2) localization of the molecules involved in GABAergic transmission and its upstream signaling in the dorsal horn, and (3) histology of the tibial nerve. In the ligation model, tibial nerve degeneration disappeared by day 56, but mechanical allodynia, reduced KCC2 localization, and increased microglia density remained until day 90. Microglia density was higher in the tibial zone than the sural zone before day 21, but this result was inverted after day 28. In contrast, in the severance model, all above changes were detected until day 28, but were simultaneously and significantly recovered by day 90. These results suggested that in male mice, allodynia may be caused by reduced GABAergic synaptic inhibition, resulting from elevated [Cl-]i after the reduction of KCC2 by activated microglia. Furthermore, our results suggested that factors from degenerating nerve terminals may diffuse into the sural zone, whereby they induced the development of allodynia in the sural nerve area, while other factors in the sural zone may mediate persistent allodynia through the same pathway.
Collapse
Affiliation(s)
- Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Tsukasa Yafuso
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Jeongtae Kim
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Hironobu Ando
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Akihito Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka 803-0835, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan.
| |
Collapse
|
25
|
Bessières B, Jia M, Travaglia A, Alberini CM. Developmental changes in plasticity, synaptic, glia, and connectivity protein levels in rat basolateral amygdala. ACTA ACUST UNITED AC 2019; 26:436-448. [PMID: 31615855 PMCID: PMC6796789 DOI: 10.1101/lm.049866.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023]
Abstract
The basolateral complex of amygdala (BLA) processes emotionally arousing aversive and rewarding experiences. The BLA is critical for acquisition and storage of threat-based memories and the modulation of the consolidation of arousing explicit memories, that is, the memories that are encoded and stored by the medial temporal lobe. In addition, in conjunction with the medial prefrontal cortex (mPFC), the BLA plays an important role in fear memory extinction. The BLA develops relatively early in life, but little is known about the molecular changes that accompany its development. Here, we quantified relative basal expression levels of sets of plasticity, synaptic, glia, and connectivity proteins in the rat BLA at various developmental ages: postnatal day 17 (PN17, infants), PN24 (juveniles), and PN80 (young adults). We found that the levels of activation markers of brain plasticity, including phosphorylation of CREB at Ser133, CamKIIα at Thr286, pERK1/pERK2 at Thr202/Tyr204, and GluA1 at Ser831 and Ser845, were significantly higher in infant and juvenile compared with adult brain. In contrast, age increase was accompanied by a significant augmentation in the levels of proteins that mark synaptogenesis and synapse maturation, such as synaptophysin, PSD95, SynCAM, GAD65, GAD67, and GluN2A/GluN2B ratio. Finally, we observed significant age-associated changes in structural markers, including MAP2, MBP, and MAG, suggesting that the structural connectivity of the BLA increases over time. The biological differences in the BLA between developmental ages compared with adulthood suggest the need for caution in extrapolating conclusions based on BLA-related brain plasticity and behavioral studies conducted at different developmental stages.
Collapse
Affiliation(s)
- Benjamin Bessières
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Margaret Jia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Alessio Travaglia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
26
|
Jia M, Travaglia A, Pollonini G, Fedele G, Alberini CM. Developmental changes in plasticity, synaptic, glia, and connectivity protein levels in rat medial prefrontal cortex. ACTA ACUST UNITED AC 2018; 25:533-543. [PMID: 30224556 PMCID: PMC6149953 DOI: 10.1101/lm.047753.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022]
Abstract
The medial prefrontal cortex (mPFC) plays a critical role in complex brain functions including decision-making, integration of emotional, and cognitive aspects in memory processing and memory consolidation. Because relatively little is known about the molecular mechanisms underlying its development, we quantified rat mPFC basal expression levels of sets of plasticity, synaptic, glia, and connectivity proteins at different developmental ages. Specifically, we compared the mPFC of rats at postnatal day 17 (PN17), when they are still unable to express long-term contextual and spatial memories, to rat mPFC at PN24, when they have acquired the ability of long-term memory expression and finally to the mPFC of adult rats. We found that, with increased age, there are remarkable and significant decreases in markers of cell activation and significant increases in proteins that mark synaptogenesis and synapse maturation. Furthermore, we found significant changes in structural markers over the ages, suggesting that structural connectivity of the mPFC increases over time. Finally, the substantial biological difference in mPFC at different ages suggest caution in extrapolating conclusions from brain plasticity studies conducted at different developmental stages.
Collapse
Affiliation(s)
- Margaret Jia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Alessio Travaglia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Gabriella Pollonini
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Giuseppe Fedele
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
27
|
Kim J, Kobayashi S, Shimizu-Okabe C, Okabe A, Moon C, Shin T, Takayama C. Changes in the expression and localization of signaling molecules in mouse facial motor neurons during regeneration of facial nerves. J Chem Neuroanat 2018; 88:13-21. [PMID: 29113945 DOI: 10.1016/j.jchemneu.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 11/20/2022]
Abstract
After injury, peripheral axons usually re-extend toward their target, and neuronal functions recover. Previous studies have reported that expression of various molecules are transiently altered in motor neurons after nerve injury, but the time course of these changes and their relationship with functional recovery have not been clearly demonstrated. We used the mouse facial nerve transection and suturing model, and examined the changes in expression of five molecules, choline acetyl transferase (ChAT), galanin, calcitonin gene-related protein (CGRP), gephyrin, and potassium chloride co-transporter 2 (KCC2) in the facial motor neurons after surgery until recovery. Number of ChAT-positive neurons was markedly decreased at days 3 and 7, and recovered to the normal level by day 60, when facial motor functions recovered. Localization of two neuropeptides, CGRP and galanin, was increased in the perikarya and axons during regeneration, and returned to the normal levels by days 60 and 28, respectively. Expression of two postsynaptic elements of γ-amino butyric acid synapses, gephyrin and KCC2, was decreased at days 3 and 7, and recovered by day 60. These results suggest that ChAT, CGRP, and KCC2 may be objective indicators of regeneration, and altering their expression may be related to the functional recovery and axonal re-extension.
Collapse
Affiliation(s)
- Jeongtae Kim
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan; Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, South Korea
| | - Shiori Kobayashi
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Akihito Okabe
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Taekyun Shin
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, South Korea
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.
| |
Collapse
|
28
|
Activity-Dependent Inhibitory Synapse Scaling Is Determined by Gephyrin Phosphorylation and Subsequent Regulation of GABA A Receptor Diffusion. eNeuro 2018; 5:eN-NWR-0203-17. [PMID: 29379879 PMCID: PMC5780843 DOI: 10.1523/eneuro.0203-17.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Synaptic plasticity relies on the rapid changes in neurotransmitter receptor number at postsynaptic sites. Using superresolution photoactivatable localization microscopy imaging and quantum dot-based single-particle tracking in rat hippocampal cultured neurons, we investigated whether the phosphorylation status of the main scaffolding protein gephyrin influenced the organization of the gephyrin scaffold and GABAA receptor (GABAAR) membrane dynamics. We found that gephyrin phosphorylation regulates gephyrin microdomain compaction. Extracellular signal-regulated kinase 1/2 and glycogen synthase kinase 3β (GSK3β) signaling alter the gephyrin scaffold mesh differentially. Differences in scaffold organization similarly affected the diffusion of synaptic GABAARs, suggesting reduced gephyrin receptor-binding properties. In the context of synaptic scaling, our results identify a novel role of the GSK3β signaling pathway in the activity-dependent regulation of extrasynaptic receptor surface trafficking and GSK3β, protein kinase A, and calcium/calmodulin-dependent protein kinase IIα pathways in facilitating adaptations of synaptic receptors.
Collapse
|
29
|
Fekete CD, Goz RU, Dinallo S, Miralles CP, Chiou TT, Bear J, Fiondella CG, LoTurco JJ, De Blas AL. In vivo transgenic expression of collybistin in neurons of the rat cerebral cortex. J Comp Neurol 2016; 525:1291-1311. [PMID: 27804142 DOI: 10.1002/cne.24137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 01/12/2023]
Abstract
Collybistin (CB) is a guanine nucleotide exchange factor selectively localized to γ-aminobutyric acid (GABA)ergic and glycinergic postsynapses. Active CB interacts with gephyrin, inducing the submembranous clustering and the postsynaptic accumulation of gephyrin, which is a scaffold protein that recruits GABAA receptors (GABAA Rs) at the postsynapse. CB is expressed with or without a src homology 3 (SH3) domain. We have previously reported the effects on GABAergic synapses of the acute overexpression of CBSH3- or CBSH3+ in cultured hippocampal (HP) neurons. In the present communication, we are studying the effects on GABAergic synapses after chronic in vivo transgenic expression of CB2SH3- or CB2SH3+ in neurons of the adult rat cerebral cortex. The embryonic precursors of these cortical neurons were in utero electroporated with CBSH3- or CBSH3+ DNAs, migrated to the appropriate cortical layer, and became integrated in cortical circuits. The results show that: 1) the strength of inhibitory synapses in vivo can be enhanced by increasing the expression of CB in neurons; and 2) there are significant differences in the results between in vivo and in culture studies. J. Comp. Neurol. 525:1291-1311, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christopher D Fekete
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Roman U Goz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Sean Dinallo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Celia P Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Tzu-Ting Chiou
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - John Bear
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Christopher G Fiondella
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Joseph J LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| |
Collapse
|
30
|
Ghosh H, Auguadri L, Battaglia S, Simone Thirouin Z, Zemoura K, Messner S, Acuña MA, Wildner H, Yévenes GE, Dieter A, Kawasaki H, O Hottiger M, Zeilhofer HU, Fritschy JM, Tyagarajan SK. Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission. Nat Commun 2016; 7:13365. [PMID: 27819299 PMCID: PMC5103071 DOI: 10.1038/ncomms13365] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 09/26/2016] [Indexed: 11/18/2022] Open
Abstract
GABAA receptors (GABAARs) mediate the majority of fast inhibitory neurotransmission in the brain via synergistic association with the postsynaptic scaffolding protein gephyrin and its interaction partners. However, unlike their counterparts at glutamatergic synapses, gephyrin and its binding partners lack canonical protein interaction motifs; hence, the molecular basis for gephyrin scaffolding has remained unclear. In this study, we identify and characterize two new posttranslational modifications of gephyrin, SUMOylation and acetylation. We demonstrate that crosstalk between SUMOylation, acetylation and phosphorylation pathways regulates gephyrin scaffolding. Pharmacological intervention of SUMO pathway or transgenic expression of SUMOylation-deficient gephyrin variants rescued gephyrin clustering in CA1 or neocortical neurons of Gabra2-null mice, which otherwise lack gephyrin clusters, indicating that gephyrin SUMO modification is an essential determinant for scaffolding at GABAergic synapses. Together, our results demonstrate that concerted modifications on a protein scaffold by evolutionarily conserved yet functionally diverse signalling pathways facilitate GABAergic transmission. Gephyrin is a cytoplasmic scaffolding protein that selectively forms postsynaptic scaffolds at GABAergic and glycinergic synapses. Here the authors characterize regulatory mechanisms determining gephyrin scaffolding and GABAA receptor synaptic transmission that involve acetylation, SUMOylation and phosphorylation.
Collapse
Affiliation(s)
- Himanish Ghosh
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Luca Auguadri
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Sereina Battaglia
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Zahra Simone Thirouin
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Khaled Zemoura
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Simon Messner
- Department of Molecular Mechanisms of Disease, University of Zurich, CH 8057 Zurich, Switzerland
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Gonzalo E Yévenes
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Andrea Dieter
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Hiroshi Kawasaki
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, CH 8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland.,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, CH 8093 Zurich, Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| |
Collapse
|
31
|
Regulation of GABAergic synapse development by postsynaptic membrane proteins. Brain Res Bull 2016; 129:30-42. [PMID: 27453545 DOI: 10.1016/j.brainresbull.2016.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023]
Abstract
In the adult mammalian brain, GABAergic neurotransmission provides the majority of synaptic inhibition that balances glutamatergic excitatory drive and thereby controls neuronal output. It is generally accepted that synaptogenesis is initiated through highly specific protein-protein interactions mediated by membrane proteins expressed in developing presynaptic terminals and postsynaptic membranes. Accumulating studies have uncovered a number of membrane proteins that regulate different aspects of GABAergic synapse development. In this review, we summarize recent advances in understanding of GABAergic synapse development with a focus on postsynaptic membrane molecules, including receptors, synaptogenic cell adhesion molecules and immunoglobulin superfamily proteins.
Collapse
|
32
|
Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells. Sci Rep 2016; 6:29710. [PMID: 27405707 PMCID: PMC4942821 DOI: 10.1038/srep29710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/21/2016] [Indexed: 01/12/2023] Open
Abstract
Neuronal transmission is regulated by the local circuitry which is composed of principal neurons targeted at different subcellular compartments by a variety of interneurons. However, mechanisms that contribute to the subcellular localisation and maintenance of GABAergic interneuron terminals are poorly understood. Stabilization of GABAergic synapses depends on clustering of the postsynaptic scaffolding protein gephyrin and its interaction with the guanine nucleotide exchange factor collybistin. Lentiviral knockdown experiments in adult rats indicated that the receptor tyrosine kinase EphA7 is required for the stabilisation of basket cell terminals on proximal dendritic and somatic compartments of granular cells of the dentate gyrus. EphA7 deficiency and concomitant destabilisation of GABAergic synapses correlated with impaired long-term potentiation and reduced hippocampal learning. Reduced GABAergic innervation may be explained by an impact of EphA7 on gephyrin clustering. Overexpression or ephrin stimulation of EphA7 induced gephyrin clustering dependent on the mechanistic target of rapamycin (mTOR) which is an interaction partner of gephyrin. Gephyrin interactions with mTOR become released after mTOR activation while enhanced interaction with the guanine nucleotide exchange factor collybistin was observed in parallel. In conclusion, EphA7 regulates gephyrin clustering and the maintenance of inhibitory synaptic connectivity via mTOR signalling.
Collapse
|
33
|
An E3-ligase-based method for ablating inhibitory synapses. Nat Methods 2016; 13:673-8. [PMID: 27271196 PMCID: PMC5312699 DOI: 10.1038/nmeth.3894] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/09/2016] [Indexed: 01/08/2023]
Abstract
Although neuronal activity can be modulated using a variety of techniques, there are currently few methods for controlling neuronal connectivity. We introduce a tool (GFE3) that mediates the fast, specific and reversible elimination of inhibitory synaptic inputs onto genetically determined neurons. GFE3 is a fusion between an E3 ligase, which mediates the ubiquitination and rapid degradation of proteins, and a recombinant, antibody-like protein (FingR) that binds to gephyrin. Expression of GFE3 leads to a strong and specific reduction of gephyrin in culture or in vivo and to a substantial decrease in phasic inhibition onto cells that express GFE3. By temporarily expressing GFE3 we showed that inhibitory synapses regrow following ablation. Thus, we have created a simple, reversible method for modulating inhibitory synaptic input onto genetically determined cells.
Collapse
|
34
|
Pangratz-Fuehrer S, Sieghart W, Rudolph U, Parada I, Huguenard JR. Early postnatal switch in GABAA receptor α-subunits in the reticular thalamic nucleus. J Neurophysiol 2015; 115:1183-95. [PMID: 26631150 DOI: 10.1152/jn.00905.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/02/2015] [Indexed: 01/25/2023] Open
Abstract
The GABAergic neurons of the thalamic reticular nucleus (nRt) provide the primary source of inhibition within the thalamus. Using physiology, pharmacology, and immunohistochemistry in mice, we characterized postsynaptic developmental changes in these inhibitory projection neurons. First, at postnatal days 3-5 (P3-5), inhibitory postsynaptic currents (IPSCs) decayed very slowly, followed by a biphasic developmental progression, becoming faster at P6-8 and then slower again at P9-11 before stabilizing in a mature form around P12. Second, the pharmacological profile of GABA(A) receptor (GABA(A)R)-mediated IPSCs differed between neonatal and mature nRt neurons, and this was accompanied by reciprocal changes in α3 (late) and α5 (early) subunit expression in nRt. Zolpidem, selective for α1- and α3-containing GABA(A)Rs, augmented only mature IPSCs, whereas clonazepam enhanced IPSCs at all stages. This effect was blocked by the α5-specific inverse agonist L-655,708, but only in immature neurons. In α3(H126R) mice, in which α3-subunits were mutated to become benzodiazepine insensitive, IPSCs were enhanced compared with those in wild-type animals in early development. Third, tonic GABA(A)R activation in nRt is age dependent and more prominent in immature neurons, which correlates with early expression of α5-containing GABA(A)Rs. Thus neonatal nRt neurons show relatively high expression of α5-subunits, which contributes to both slow synaptic and tonic extrasynaptic inhibition. The postnatal switch in GABA(A)R subunits from α5 to α3 could facilitate spontaneous network activity in nRt that occurs at this developmental time point and which is proposed to play a role in early circuit development.
Collapse
Affiliation(s)
- Susanne Pangratz-Fuehrer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Werner Sieghart
- Brain Research Institute Vienna, University of Vienna, Vienna, Austria; and
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Mailman Research Center, Harvard Medical School, Belmont, Massachusetts
| | - Isabel Parada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California;
| |
Collapse
|
35
|
Arama J, Abitbol K, Goffin D, Fuchs C, Sihra TS, Thomson AM, Jovanovic JN. GABAA receptor activity shapes the formation of inhibitory synapses between developing medium spiny neurons. Front Cell Neurosci 2015; 9:290. [PMID: 26300728 PMCID: PMC4526800 DOI: 10.3389/fncel.2015.00290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/15/2015] [Indexed: 11/30/2022] Open
Abstract
Basal ganglia play an essential role in motor coordination and cognitive functions. The GABAergic medium spiny neurons (MSNs) account for ~95% of all the neurons in this brain region. Central to the normal functioning of MSNs is integration of synaptic activity arriving from the glutamatergic corticostriatal and thalamostriatal afferents, with synaptic inhibition mediated by local interneurons and MSN axon collaterals. In this study we have investigated how the specific types of GABAergic synapses between the MSNs develop over time, and how the activity of GABAA receptors (GABAARs) influences this development. Isolated embryonic (E17) MSNs form a homogenous population in vitro and display spontaneous synaptic activity and functional properties similar to their in vivo counterparts. In dual whole-cell recordings of synaptically connected pairs of MSNs, action potential (AP)-activated synaptic events were detected between 7 and 14 days in vitro (DIV), which coincided with the shift in GABAAR operation from depolarization to hyperpolarization, as detected indirectly by intracellular calcium imaging. In parallel, the predominant subtypes of inhibitory synapses, which innervate dendrites of MSNs and contain GABAAR α1 or α2 subunits, underwent distinct changes in the size of postsynaptic clusters, with α1 becoming smaller and α2 larger over time, while both the percentage and the size of mixed α1/α2-postsynaptic clusters were increased. When activity of GABAARs was under chronic blockade between 4–7 DIV, the structural properties of these synapses remained unchanged. In contrast, chronic inhibition of GABAARs between 7–14 DIV led to reduction in size of α1- and α1/α2-postsynaptic clusters and a concomitant increase in number and size of α2-postsynaptic clusters. Thus, the main subtypes of GABAergic synapses formed by MSNs are regulated by GABAAR activity, but in opposite directions, and thus appear to be driven by different molecular mechanisms.
Collapse
Affiliation(s)
- Jessica Arama
- UCL School of Pharmacy, University College London London, UK
| | - Karine Abitbol
- UCL School of Pharmacy, University College London London, UK
| | - Darren Goffin
- UCL School of Pharmacy, University College London London, UK
| | - Celine Fuchs
- UCL School of Pharmacy, University College London London, UK
| | - Talvinder S Sihra
- Neuroscience, Physiology and Pharmacology, UCL Division of Biosciences, University College London London, UK
| | - Alex M Thomson
- UCL School of Pharmacy, University College London London, UK
| | | |
Collapse
|
36
|
Costa JT, Mele M, Baptista MS, Gomes JR, Ruscher K, Nobre RJ, de Almeida LP, Wieloch T, Duarte CB. Gephyrin Cleavage in In Vitro Brain Ischemia Decreases GABAA Receptor Clustering and Contributes to Neuronal Death. Mol Neurobiol 2015; 53:3513-3527. [PMID: 26093381 DOI: 10.1007/s12035-015-9283-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/02/2015] [Indexed: 02/01/2023]
Abstract
GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the central nervous system, and changes in GABAergic neurotransmission modulate the activity of neuronal networks. Gephyrin is a scaffold protein responsible for the traffic and synaptic anchoring of GABAA receptors (GABAAR); therefore, changes in gephyrin expression and oligomerization may affect the activity of GABAergic synapses. In this work, we investigated the changes in gephyrin protein levels during brain ischemia and in excitotoxic conditions, which may affect synaptic clustering of GABAAR. We found that gephyrin is cleaved by calpains following excitotoxic stimulation of hippocampal neurons with glutamate, as well as after intrahippocampal injection of kainate, giving rise to a stable cleavage product. Gephyrin cleavage was also observed in cultured hippocampal neurons subjected to transient oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia, and after transient middle cerebral artery occlusion (MCAO) in mice, a model of focal brain ischemia. Furthermore, a truncated form of gephyrin decreased the synaptic clustering of the protein, reduced the synaptic pool of GABAAR containing γ2 subunits and upregulated OGD-induced cell death in hippocampal cultures. Our results show that excitotoxicity and brain ischemia downregulate full-length gephyrin with a concomitant generation of truncated products, which affect synaptic clustering of GABAAR and cell death.
Collapse
Affiliation(s)
- João T Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, 3030-789, Portugal
| | - Márcio S Baptista
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - João R Gomes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Rui J Nobre
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, 3030-789, Portugal
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, 3004-517, Coimbra, Portugal. .,Center for Neuroscience and Cell Biology, Faculty of Medicine, Polo I, Rua Larga, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
37
|
Fekete CD, Chiou TT, Miralles CP, Harris RS, Fiondella CG, Loturco JJ, De Blas AL. In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex: Differential effects on GABAergic synapses and neuronal migration. J Comp Neurol 2015; 523:1359-78. [PMID: 25565602 DOI: 10.1002/cne.23740] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/02/2015] [Accepted: 01/02/2015] [Indexed: 01/08/2023]
Abstract
We studied the effect of clonal overexpression of neuroligin 3 (NL3) or neuroligin 2 (NL2) in the adult rat cerebral cortex following in utero electroporation (IUEP) at embryonic stage E14. Overexpression of NL3 leads to a large increase in vesicular gamma-aminobutyric acid (GABA) transporter (vGAT) and glutamic acid decarboxylase (GAD)65 in the GABAergic contacts that the overexpressing neurons receive. Overexpression of NL2 produced a similar effect but to a lesser extent. In contrast, overexpression of NL3 or NL2 after IUEP does not affect vesicular glutamate transporter 1 (vGlut1) in the glutamatergic contacts that the NL3 or NL2-overexpressing neurons receive. The NL3 or NL2-overexpressing neurons do not show increased innervation by parvalbumin-containing GABAergic terminals or increased parvalbumin in the same terminals that show increased vGAT. These results indicate that the observed increase in vGAT and GAD65 is not due to increased GABAergic innervation but to increased expression of vGAT and GAD65 in the GABAergic contacts that NL3 or NL2-overexpressing neurons receive. The majority of bright vGAT puncta contacting the NL3-overexpressing neurons have no gephyrin juxtaposed to them, indicating that many of these contacts are nonsynaptic. This contrasts with the majority of the NL2-overexpressing neurons, which show plenty of synaptic gephyrin clusters juxtaposed to vGAT. Besides having an effect on GABAergic contacts, overexpression of NL3 interferes with the neuronal radial migration, in the cerebral cortex, of the neurons overexpressing NL3.
Collapse
Affiliation(s)
- Christopher D Fekete
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | | | | | | | | | | | | |
Collapse
|
38
|
Pinto JGA, Jones DG, Williams CK, Murphy KM. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex. Front Neural Circuits 2015; 9:3. [PMID: 25729353 PMCID: PMC4325922 DOI: 10.3389/fncir.2015.00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/08/2015] [Indexed: 11/23/2022] Open
Abstract
Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (<1 year) when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the 1 year or 2 of life. A multidimensional analysis (principle component analysis) showed that most of the variance was captured by the sum of the four synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic.
Collapse
Affiliation(s)
- Joshua G A Pinto
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University Hamilton, ON, Canada
| | | | - C Kate Williams
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University Hamilton, ON, Canada
| | - Kathryn M Murphy
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University Hamilton, ON, Canada ; Psychology, Neuroscience and Behavior, McMaster University Hamilton, ON, Canada
| |
Collapse
|
39
|
Abstract
Effective traumatic brain injury (TBI) therapeutics remains stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development because it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Finally, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for patients with TBI.
Collapse
Affiliation(s)
- Pavel N. Lizhnyak
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Andrew K. Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
40
|
Pro-brain-derived neurotrophic factor inhibits GABAergic neurotransmission by activating endocytosis and repression of GABAA receptors. J Neurosci 2015; 34:13516-34. [PMID: 25274828 DOI: 10.1523/jneurosci.2069-14.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GABA is the canonical inhibitory neurotransmitter in the CNS. This inhibitory action is largely mediated by GABA type A receptors (GABAARs). Among the many factors controlling GABAergic transmission, brain-derived neurotrophic factor (BDNF) appears to play a major role in regulating synaptic inhibition. Recent findings have demonstrated that BDNF can be released as a precursor (proBDNF). Although the role of mature BDNF on GABAergic synaptogenesis and maintenance has been well studied, an important question still unanswered is whether secreted proBDNF might affect GABAergic neurotransmission. Here, we have used 14 d in vitro primary culture of hippocampal neurons and ex vivo preparations from rats to study the function of proBDNF in regulation of GABAAR trafficking and activity. We demonstrate that proBDNF impairs GABAergic transmission by the activation of two distinct pathways: (1) a RhoA-Rock-PTEN pathway that decreases the phosphorylation levels of GABAAR, thus affecting receptor function and triggering endocytosis and degradation of internalized receptors, and (2) a JAK-STAT-ICER pathway leading to the repression of GABAARs synthesis. These effects lead to the diminution of GABAergic synapses and are correlated with a decrease in GABAergic synaptic currents. These results revealed new functions for proBDNF-p75 neurotrophin receptor signaling pathway in the control of the efficacy of GABAergic synaptic activity by regulating the trafficking and synthesis of GABAARs at inhibitory synapses.
Collapse
|
41
|
Smith KR, Davenport EC, Wei J, Li X, Pathania M, Vaccaro V, Yan Z, Kittler JT. GIT1 and βPIX are essential for GABA(A) receptor synaptic stability and inhibitory neurotransmission. Cell Rep 2014; 9:298-310. [PMID: 25284783 PMCID: PMC4536293 DOI: 10.1016/j.celrep.2014.08.061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/28/2014] [Accepted: 08/23/2014] [Indexed: 12/18/2022] Open
Abstract
Effective inhibitory synaptic transmission requires efficient stabilization of GABAA receptors (GABAARs) at synapses, which is essential for maintaining the correct excitatory-inhibitory balance in the brain. However, the signaling mechanisms that locally regulate synaptic GABAAR membrane dynamics remain poorly understood. Using a combination of molecular, imaging, and electrophysiological approaches, we delineate a GIT1/βPIX/Rac1/PAK signaling pathway that modulates F-actin and is important for maintaining surface GABAAR levels, inhibitory synapse integrity, and synapse strength. We show that GIT1 and βPIX are required for synaptic GABAAR surface stability through the activity of the GTPase Rac1 and downstream effector PAK. Manipulating this pathway using RNAi, dominant-negative and pharmacological approaches leads to a disruption of GABAAR clustering and decrease in the strength of synaptic inhibition. Thus, the GIT1/βPIX/Rac1/PAK pathway plays a crucial role in regulating GABAAR synaptic stability and hence inhibitory synaptic transmission with important implications for inhibitory plasticity and information processing in the brain. GIT1 and βPIX are present at inhibitory synapses and complex with GABAARs GIT1 and βPIX are important for GABAAR clustering and inhibitory transmission Rac1 and PAK activity is required for stabilization of GABAARs at synapses A GIT1/βPIX/Rac1/PAK pathway is required for inhibitory synaptic transmission
Collapse
Affiliation(s)
- Katharine R Smith
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elizabeth C Davenport
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jing Wei
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Xiangning Li
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Manavendra Pathania
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Victoria Vaccaro
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
42
|
Petrini EM, Barberis A. Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity. Front Cell Neurosci 2014; 8:300. [PMID: 25294987 PMCID: PMC4171989 DOI: 10.3389/fncel.2014.00300] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022] Open
Abstract
The plasticity of inhibitory transmission is expected to play a key role in the modulation of neuronal excitability and network function. Over the last two decades, the investigation of the determinants of inhibitory synaptic plasticity has allowed distinguishing presynaptic and postsynaptic mechanisms. While there has been a remarkable progress in the characterization of presynaptically-expressed plasticity of inhibition, the postsynaptic mechanisms of inhibitory long-term synaptic plasticity only begin to be unraveled. At postsynaptic level, the expression of inhibitory synaptic plasticity involves the rearrangement of the postsynaptic molecular components of the GABAergic synapse, including GABAA receptors, scaffold proteins and structural molecules. This implies a dynamic modulation of receptor intracellular trafficking and receptor surface lateral diffusion, along with regulation of the availability and distribution of scaffold proteins. This Review will focus on the mechanisms of the multifaceted molecular reorganization of the inhibitory synapse during postsynaptic plasticity, with special emphasis on the key role of protein dynamics to ensure prompt and reliable activity-dependent adjustments of synaptic strength.
Collapse
Affiliation(s)
- Enrica Maria Petrini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| | - Andrea Barberis
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| |
Collapse
|
43
|
Jin H, Chiou TT, Serwanski DR, Miralles CP, Pinal N, De Blas AL. Ring finger protein 34 (RNF34) interacts with and promotes γ-aminobutyric acid type-A receptor degradation via ubiquitination of the γ2 subunit. J Biol Chem 2014; 289:29420-36. [PMID: 25193658 DOI: 10.1074/jbc.m114.603068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have found that the large intracellular loop of the γ2 GABAA receptor (R) subunit (γ2IL) interacts with RNF34 (an E3 ubiquitin ligase), as shown by yeast two-hybrid and in vitro pulldown assays. In brain extracts, RNF34 co-immunoprecipitates with assembled GABAARs. In co-transfected HEK293 cells, RNF34 reduces the expression of the γ2 GABAAR subunit by increasing the ratio of ubiquitinated/nonubiquitinated γ2. Mutating several lysines of the γ2IL into arginines makes the γ2 subunit resistant to RNF34-induced degradation. RNF34 also reduces the expression of the γ2 subunit when α1 and β3 subunits are co-assembled with γ2. This effect is partially reversed by leupeptin or MG132, indicating that both the lysosomal and proteasomal degradation pathways are involved. Immunofluorescence of cultured hippocampal neurons shows that RNF34 forms clusters and that a subset of these clusters is associated with GABAergic synapses. This association is also observed in the intact rat brain by electron microscopy immunocytochemistry. RNF34 is not expressed until the 2nd postnatal week of rat brain development, being highly expressed in some interneurons. Overexpression of RNF34 in hippocampal neurons decreases the density of γ2 GABAAR clusters and the number of GABAergic contacts that these neurons receive. Knocking down endogenous RNF34 with shRNA leads to increased γ2 GABAAR cluster density and GABAergic innervation. The results indicate that RNF34 regulates postsynaptic γ2-GABAAR clustering and GABAergic synaptic innervation by interacting with and ubiquitinating the γ2-GABAAR subunit promoting GABAAR degradation.
Collapse
Affiliation(s)
- Hongbing Jin
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Tzu-Ting Chiou
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - David R Serwanski
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Celia P Miralles
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Noelia Pinal
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Angel L De Blas
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
44
|
Brain-derived neurotrophic factor promotes gephyrin protein expression and GABAA receptor clustering in immature cultured hippocampal cells. Neurochem Int 2014; 72:14-21. [PMID: 24747341 DOI: 10.1016/j.neuint.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/31/2022]
Abstract
Fast synaptic inhibition in the adult brain is largely mediated by GABAA receptors (GABAAR). GABAAR are anchored to synaptic sites by gephyrin, a scaffolding protein that appears to be assembled as a hexagonal lattice beneath the plasma membrane. Brain derived neurotrophic factor (BDNF) alters the clustering and synaptic distribution of GABAAR but mechanisms behind this regulation are just starting to emerge. The current study was aimed to examine if BDNF alters the protein levels and/or clustering of gephyrin and to investigate whether the modulation of gephyrin is accompanied by changes in the distribution and/or clustering of GABAAR. Exogenous application of BDNF to immature neuronal cultures from rat hippocampus increased the protein levels and clustering of gephyrin. BDNF also augmented the association of gephyrin with GABAAR and promoted the formation of GABAAR clusters. Together, these observations indicate that BDNF might regulate the assembly of GABAergic synapses by promoting the association of GABAAR with gephyrin.
Collapse
|
45
|
Ebel J, Beuter S, Wuchter J, Kriebel M, Volkmer H. Organisation and Control of Neuronal Connectivity and Myelination by Cell Adhesion Molecule Neurofascin. ADVANCES IN NEUROBIOLOGY 2014; 8:231-47. [DOI: 10.1007/978-1-4614-8090-7_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA(A) receptors. J Neurosci 2013; 33:15879-93. [PMID: 24089494 DOI: 10.1523/jneurosci.0530-13.2013] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inflammation has been implicated in the progression of neurological disease, yet precisely how inflammation affects neuronal function remains unclear. Tumor necrosis factor-α (TNFα) is a proinflammatory cytokine that regulates synapse function by controlling neurotransmitter receptor trafficking and homeostatic synaptic plasticity. Here we characterize the mechanisms through which TNFα regulates inhibitory synapse function in mature rat and mouse hippocampal neurons. Acute application of TNFα induces a rapid and persistent decrease of inhibitory synaptic strength and downregulation of cell-surface levels of GABA(A)Rs containing α1, α2, β2/3, and γ2 subunits. We show that trafficking of GABA(A)Rs in response to TNFα is mediated by neuronally expressed TNF receptor 1 and requires activation of p38 MAPK, phosphatidylinositol 3-kinase, protein phosphatase 1 (PP1), and dynamin GTPase. Furthermore, TNFα enhances the association of PP1 with GABA(A)R β3 subunits and dephosphorylates a site on β3 known to regulate phospho-dependent interactions with the endocytic machinery. Conversely, we find that calcineurin and PP2A are not essential components of the signaling pathway and that clustering of the scaffolding protein gephyrin is only reduced after the initial receptor endocytosis. Together, these findings demonstrate a distinct mechanism of regulated GABA(A)R endocytosis that may contribute to the disruption of circuit homeostasis under neuroinflammatory conditions.
Collapse
|
47
|
Carver CM, Reddy DS. Neurosteroid interactions with synaptic and extrasynaptic GABA(A) receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology (Berl) 2013; 230:151-88. [PMID: 24071826 PMCID: PMC3832254 DOI: 10.1007/s00213-013-3276-5] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/29/2013] [Indexed: 12/25/2022]
Abstract
RATIONALE Neurosteroids are steroids synthesized within the brain with rapid effects on neuronal excitability. Allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are three widely explored prototype endogenous neurosteroids. They have very different targets and functions compared to conventional steroid hormones. Neuronal γ-aminobutyric acid (GABA) type A (GABA(A)) receptors are one of the prime molecular targets of neurosteroids. OBJECTIVE This review provides a critical appraisal of recent advances in the pharmacology of endogenous neurosteroids that interact with GABA(A) receptors in the brain. Neurosteroids possess distinct, characteristic effects on the membrane potential and current conductance of the neuron, mainly via potentiation of GABA(A) receptors at low concentrations and direct activation of receptor chloride channel at higher concentrations. The GABA(A) receptor mediates two types of inhibition, now characterized as synaptic (phasic) and extrasynaptic (tonic) inhibition. Synaptic release of GABA results in the activation of low-affinity γ2-containing synaptic receptors, while high-affinity δ-containing extrasynaptic receptors are persistently activated by the ambient GABA present in the extracellular fluid. Neurosteroids are potent positive allosteric modulators of synaptic and extrasynaptic GABA(A) receptors and therefore enhance both phasic and tonic inhibition. Tonic inhibition is specifically more sensitive to neurosteroids. The resulting tonic conductance generates a form of shunting inhibition that controls neuronal network excitability, seizure susceptibility, and behavior. CONCLUSION The growing understanding of the mechanisms of neurosteroid regulation of the structure and function of the synaptic and extrasynaptic GABA(A) receptors provides many opportunities to create improved therapies for sleep, anxiety, stress, epilepsy, and other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Chase Matthew Carver
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, 2008 Medical Research and Education Building, 8447 State Highway 47, Bryan, TX, 77807-3260, USA
| | | |
Collapse
|
48
|
Mou L, Dias BG, Gosnell H, Ressler KJ. Gephyrin plays a key role in BDNF-dependent regulation of amygdala surface GABAARs. Neuroscience 2013; 255:33-44. [PMID: 24096136 DOI: 10.1016/j.neuroscience.2013.09.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is critically involved in synaptic plasticity and neurotransmission. Our lab has previously found that BDNF activation of neurotrophic tyrosine kinase, receptor, type 2 (TrkB) is required for fear memory formation and that GABAA receptor (GABAAR) subunits and the GABAA clustering protein gephyrin are dynamically regulated during fear memory consolidation. We hypothesize that TrkB-dependent internalization of GABAARs may partially underlie a transient period of amygdala hyperactivation during fear memory consolidation. We have previously reported that BDNF modulates GABAAR α1 subunit sequestration in cultured hippocampal and amygdala neurons by differential phosphorylation pathways. At present, no studies have investigated the regulation of gephyrin and GABAAR α1 subunits following BDNF activation in the amygdala. In this study, we confirm the association of GABAAR α1 and γ2 subunits with gephyrin on mouse amygdala neurons by coimmunoprecipitation and immunocytochemistry. We then demonstrate that rapid BDNF treatment, as well as suppression of gephyrin protein levels on amygdala neurons, induced sequestration of surface α1 subunits. Further, we find that rapid exposure of BDNF to primary amygdala cultures produced decreases in gephyrin levels, whereas longer exposure resulted in an eventual increase. While total α1 subunit levels remained unchanged, gephyrin was downregulated in whole cell homogenates, but enhanced in complexes with GABAARs. Our data with anisomycin suggest that BDNF may rapidly induce gephyrin protein degradation, with subsequent gephyrin synthesis occurring. Together, these findings suggest that gephyrin may be a key factor in BDNF-dependent GABAAR regulation in the amygdala. This work may inform future studies aimed at elucidating the pathways connecting BDNF, GABAA systems, gephyrin, and their role in underlying amygdala-dependent learning.
Collapse
Affiliation(s)
- L Mou
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | | | |
Collapse
|
49
|
Kratovac S, Corbin JG. Developmental changes in expression of inhibitory neuronal proteins in the Fragile X Syndrome mouse basolateral amygdala. Brain Res 2013; 1537:69-78. [PMID: 24008143 DOI: 10.1016/j.brainres.2013.08.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/11/2022]
Abstract
In humans, Fragile X Syndrome (FXS) is characterized by enhanced fear, hyperactivity, social anxiety, and, in a subset of individuals, autism. Many of the emotional and social deficits point to defects in the amygdala. We have previously shown defects in inhibitory neuron drive onto excitatory projection neurons in the basolateral amygdala (BLA) of juvenile Fmr1(-/y) knockout (KO) mice. Using pharmacological approaches, we have also previously revealed dynamic functional deficits in α1, α2, and α3 subunit-containing GABAA receptors (GABAARs α1, α2, and α3) during early postnatal development. In this study, we sought to determine whether these defects in GABAAR function are accompanied by changes in protein expression of GABAARs α1, α2, and α3 and the post-synaptic GABAAR-clustering protein gephyrin. Interestingly, we found that while the expression of these proteins did not significantly differ between wildtype (WT) and KO mice at each time point, the timing of developmental expression of GABAAR α1, α2, and gephyrin was altered. Collectively, these data reveal novel defects in inhibitory synapse protein expression during critical periods of early postnatal development that could contribute to observed inhibitory neurotransmission deficits in the KO mouse BLA.
Collapse
Affiliation(s)
- Sebila Kratovac
- Center for Neuroscience Research, Children's National Medical Center, 111 Michigan Ave., Washington DC 20010, USA; Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
50
|
González MI. The possible role of GABAA receptors and gephyrin in epileptogenesis. Front Cell Neurosci 2013; 7:113. [PMID: 23885234 PMCID: PMC3717475 DOI: 10.3389/fncel.2013.00113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/26/2013] [Indexed: 12/29/2022] Open
Abstract
The term epileptogenesis refers to a dynamic alteration in neuronal excitability that promotes the appearance of spontaneous seizures. Temporal lobe epilepsy, the most common type of acquired epilepsy, often develops after an insult to the brain such as trauma, febrile seizures, encephalitis, or status epilepticus. During the pre-epileptic state (also referred as latent or silent period) there is a plethora of molecular, biochemical, and structural changes that lead to the generation of recurrent spontaneous seizures (or epilepsy). The specific contribution of these alterations to epilepsy development is unclear, but a loss of inhibition has been associated with the increased excitability detected in the latent period. A rapid increase in neuronal hyperexcitability could be due, at least in part, to a decline in the number of physiologically active GABAA receptors (GABAAR). Altered expression of scaffolding proteins involved in the trafficking and anchoring of GABAAR could directly impact the stability of GABAergic synapses and promote a deficiency in inhibitory neurotransmission. Uncovering the molecular mechanisms operating during epileptogenesis and its possible impact on the regulation of GABAAR and scaffolding proteins may offer new targets to prevent the development of epilepsy.
Collapse
Affiliation(s)
- Marco I González
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|