1
|
Golan N, Ehrlich D, Bonanno J, O'Brien RF, Murillo M, Kauer SD, Ravindra N, Van Dijk D, Cafferty WB. Anatomical Diversity of the Adult Corticospinal Tract Revealed by Single-Cell Transcriptional Profiling. J Neurosci 2023; 43:7929-7945. [PMID: 37748862 PMCID: PMC10669816 DOI: 10.1523/jneurosci.0811-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/27/2023] Open
Abstract
The corticospinal tract (CST) forms a central part of the voluntary motor apparatus in all mammals. Thus, injury, disease, and subsequent degeneration within this pathway result in chronic irreversible functional deficits. Current strategies to repair the damaged CST are suboptimal in part because of underexplored molecular heterogeneity within the adult tract. Here, we combine spinal retrograde CST tracing with single-cell RNA sequencing (scRNAseq) in adult male and female mice to index corticospinal neuron (CSN) subtypes that differentially innervate the forelimb and hindlimb. We exploit publicly available datasets to confer anatomic specialization among CSNs and show that CSNs segregate not only along the forelimb and hindlimb axis but also by supraspinal axon collateralization. These anatomically defined transcriptional data allow us to use machine learning tools to build classifiers that discriminate between CSNs and cortical layer 2/3 and nonspinally terminating layer 5 neurons in M1 and separately identify limb-specific CSNs. Using these tools, CSN subtypes can be differentially identified to study postnatal patterning of the CST in vivo, leveraged to screen for novel limb-specific axon growth survival and growth activators in vitro, and ultimately exploited to repair the damaged CST after injury and disease.SIGNIFICANCE STATEMENT Therapeutic interventions designed to repair the damaged CST after spinal cord injury have remained functionally suboptimal in part because of an incomplete understanding of the molecular heterogeneity among subclasses of CSNs. Here, we combine spinal retrograde labeling with scRNAseq and annotate a CSN index by the termination pattern of their primary axon in the cervical or lumbar spinal cord and supraspinal collateral terminal fields. Using machine learning we have confirmed the veracity of our CSN gene lists to train classifiers to identify CSNs among all classes of neurons in primary motor cortex to study the development, patterning, homeostasis, and response to injury and disease, and ultimately target streamlined repair strategies to this critical motor pathway.
Collapse
Affiliation(s)
- Noa Golan
- Interdepartmental Neuroscience Program, Yale University School, New Haven, Connecticut 06511
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
| | - Daniel Ehrlich
- Interdepartmental Neuroscience Program, Yale University School, New Haven, Connecticut 06511
- Department of Psychiatry, Yale University School, New Haven, Connecticut 06511
| | - James Bonanno
- Interdepartmental Neuroscience Program, Yale University School, New Haven, Connecticut 06511
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
| | - Rory F O'Brien
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
| | - Matias Murillo
- Interdepartmental Neuroscience Program, Yale University School, New Haven, Connecticut 06511
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
| | - Sierra D Kauer
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
| | - Neal Ravindra
- Department of Internal Medicine, Yale University School, New Haven, Connecticut 06511
- Department of Computer Science, Yale University School, New Haven, Connecticut 06511
| | - David Van Dijk
- Department of Internal Medicine, Yale University School, New Haven, Connecticut 06511
- Department of Computer Science, Yale University School, New Haven, Connecticut 06511
| | - William B Cafferty
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
- Department of Neuroscience, Yale University School, New Haven, Connecticut 06511
| |
Collapse
|
2
|
Wæhler HA, Labba NA, Paulsen RE, Sandve GK, Eskeland R. ANDA: an open-source tool for automated image analysis of in vitro neuronal cells. BMC Neurosci 2023; 24:56. [PMID: 37875799 PMCID: PMC10594822 DOI: 10.1186/s12868-023-00826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Imaging of in vitro neuronal differentiation and measurements of cell morphologies have led to novel insights into neuronal development. Live-cell imaging techniques and large datasets of images have increased the demand for automated pipelines for quantitative analysis of neuronal morphological metrics. RESULTS ANDA is an analysis workflow that quantifies various aspects of neuronal morphology from high-throughput live-cell imaging screens of in vitro neuronal cell types. This tool automates the analysis of neuronal cell numbers, neurite lengths and neurite attachment points. We used chicken, rat, mouse, and human in vitro models for neuronal differentiation and have demonstrated the accuracy, versatility, and efficiency of the tool. CONCLUSIONS ANDA is an open-source tool that is easy to use and capable of automated processing from time-course measurements of neuronal cells. The strength of this pipeline is the capability to analyse high-throughput imaging screens.
Collapse
Affiliation(s)
- Hallvard Austin Wæhler
- Institute of Basic Medical Sciences, Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Blindern, 1112, 0317, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0317, Oslo, Norway
| | - Nils-Anders Labba
- Institute of Basic Medical Sciences, Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Blindern, 1112, 0317, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, 0316, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Ragnhild Eskeland
- Institute of Basic Medical Sciences, Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Blindern, 1112, 0317, Oslo, Norway.
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0317, Oslo, Norway.
| |
Collapse
|
3
|
Sokolov AM, Aurich M, Bordey A. In Utero Electroporated Neurons for Medium-Throughput Screening of Compounds Regulating Neuron Morphology. eNeuro 2023; 10:ENEURO.0160-23.2023. [PMID: 37620147 PMCID: PMC10464655 DOI: 10.1523/eneuro.0160-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Several neurodevelopmental disorders are associated with increased mTOR activity that results in pathogenic neuronal dysmorphogenesis (i.e., soma and dendrite overgrowth), leading to circuit alterations associated with epilepsy and neurologic disabilities. Although an mTOR analog is approved for the treatment of epilepsy in one of these disorders, it has limited efficacy and is associated with a wide range of side effects. There is a need to develop novel agents for the treatment of mTOR-pathway related disorders. Here, we developed a medium-throughput phenotypic assay to test drug efficacy on neurite morphogenesis of mouse neurons in a hyperactive mTOR condition. Our assay involved in utero electroporation (IUE) of a selective population of cortical pyramidal neurons with a plasmid encoding the constitutively active mTOR activator, Rheb, and tdTomato. Labeled neurons from the somatosensory cortex (SSC) were cultured onto 96-well plates and fixed at various days in vitro or following Torin 1 treatment. Automated systems were used for image acquisition and neuron morphologic measurements. We validated our automated approach using traditional manual methods of neuron morphologic assessment. Both automated and manual analyses showed increased neurite length and complexity over time, and decreased neurite overgrowth and soma size with Torin 1. These data validate the accuracy of our automated approach that takes hours compared with weeks when using traditional manual methods. Taken together, this assay can be scaled to screen 32 compounds simultaneously in two weeks, highlighting its robustness and efficiency for medium-throughput screening of candidate therapeutics on a defined population of wild-type or diseased neurons.
Collapse
Affiliation(s)
- Aidan M Sokolov
- Departments of Neurosurgery, and Cellular and Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06520-8082
| | - Mariana Aurich
- Departments of Neurosurgery, and Cellular and Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06520-8082
| | - Angélique Bordey
- Departments of Neurosurgery, and Cellular and Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06520-8082
| |
Collapse
|
4
|
Lear BP, Thompson EAN, Rodriguez K, Arndt ZP, Khullar S, Klosa PC, Lu RJ, Morrow CS, Risgaard R, Peterson ER, Teefy BB, Bhattacharyya A, Sousa AMM, Wang D, Benayoun BA, Moore DL. Age-maintained human neurons demonstrate a developmental loss of intrinsic neurite growth ability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541995. [PMID: 37292613 PMCID: PMC10245848 DOI: 10.1101/2023.05.23.541995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Injury to adult mammalian central nervous system (CNS) axons results in limited regeneration. Rodent studies have revealed a developmental switch in CNS axon regenerative ability, yet whether this is conserved in humans is unknown. Using human fibroblasts from 8 gestational-weeks to 72 years-old, we performed direct reprogramming to transdifferentiate fibroblasts into induced neurons (Fib-iNs), avoiding pluripotency which restores cells to an embryonic state. We found that early gestational Fib-iNs grew longer neurites than all other ages, mirroring the developmental switch in regenerative ability in rodents. RNA-sequencing and screening revealed ARID1A as a developmentally-regulated modifier of neurite growth in human neurons. These data suggest that age-specific epigenetic changes may drive the intrinsic loss of neurite growth ability in human CNS neurons during development. One-Sentence Summary: Directly-reprogrammed human neurons demonstrate a developmental decrease in neurite growth ability.
Collapse
|
5
|
Wæhler HA, Labba NA, Paulsen RE, Sandve GK, Eskeland R. ANDA: An open-source tool for automated image analysis of neuronal differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538564. [PMID: 37162841 PMCID: PMC10168306 DOI: 10.1101/2023.04.27.538564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Imaging of in vitro neuronal differentiation and measurements of cell morphologies has led to novel insights into neuronal development. Live-cell imaging techniques and large datasets of images has increased the demand for automated pipelines for quantitative analysis of neuronal morphological metrics. Results We present ANDA, an analysis workflow for quantification of various aspects of neuronal morphology from high-throughput live-cell imaging screens. This tool automates the analysis of neuronal cell numbers, neurite lengths and neurite attachment points. We used rat, chicken and human in vitro models for neuronal differentiation and have demonstrated the accuracy, versatility, and efficiency of the tool. Conclusions ANDA is an open-source tool that is easy to use and capable of automated processing from time-course measurements of neuronal cells. The strength of this pipeline is the capability to analyse high-throughput imaging screens.
Collapse
Affiliation(s)
- Hallvard Austin Wæhler
- Institute of Basic Medical Sciences, Department of Molecular Medicine, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Nils-Anders Labba
- Institute of Basic Medical Sciences, Department of Molecular Medicine, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Ragnhild Eskeland
- Institute of Basic Medical Sciences, Department of Molecular Medicine, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
6
|
Axonal Regeneration: Underlying Molecular Mechanisms and Potential Therapeutic Targets. Biomedicines 2022; 10:biomedicines10123186. [PMID: 36551942 PMCID: PMC9775075 DOI: 10.3390/biomedicines10123186] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Axons in the peripheral nervous system have the ability to repair themselves after damage, whereas axons in the central nervous system are unable to do so. A common and important characteristic of damage to the spinal cord, brain, and peripheral nerves is the disruption of axonal regrowth. Interestingly, intrinsic growth factors play a significant role in the axonal regeneration of injured nerves. Various factors such as proteomic profile, microtubule stability, ribosomal location, and signalling pathways mark a line between the central and peripheral axons' capacity for self-renewal. Unfortunately, glial scar development, myelin-associated inhibitor molecules, lack of neurotrophic factors, and inflammatory reactions are among the factors that restrict axonal regeneration. Molecular pathways such as cAMP, MAPK, JAK/STAT, ATF3/CREB, BMP/SMAD, AKT/mTORC1/p70S6K, PI3K/AKT, GSK-3β/CLASP, BDNF/Trk, Ras/ERK, integrin/FAK, RhoA/ROCK/LIMK, and POSTN/integrin are activated after nerve injury and are considered significant players in axonal regeneration. In addition to the aforementioned pathways, growth factors, microRNAs, and astrocytes are also commendable participants in regeneration. In this review, we discuss the detailed mechanism of each pathway along with key players that can be potentially valuable targets to help achieve quick axonal healing. We also identify the prospective targets that could help close knowledge gaps in the molecular pathways underlying regeneration and shed light on the creation of more powerful strategies to encourage axonal regeneration after nervous system injury.
Collapse
|
7
|
Sefiani A, Rusyn I, Geoffroy CG. Novel adult cortical neuron processing and screening method illustrates sex- and age-dependent effects of pharmaceutical compounds. Sci Rep 2022; 12:13125. [PMID: 35908049 PMCID: PMC9338961 DOI: 10.1038/s41598-022-17389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases and neurotraumatic injuries are typically age-associated disorders that can reduce neuron survival, neurite outgrowth, and synaptic plasticity leading to loss of cognitive capacity, executive function, and motor control. In pursuit of reducing the loss of said neurological functions, novel compounds are sought that promote neuron viability, neuritogenesis, and/or synaptic plasticity. Current high content in vitro screenings typically use cells that are iPSC-derived, embryonic, or originate from post-natal tissues; however, most patients suffering from neurodegenerative diseases and neurotrauma are of middle-age and older. The chasm in maturity between the neurons used in drug screens and those in a target population is a barrier for translational success of in vitro results. It has been historically challenging to culture adult neurons let alone conduct screenings; therefore, age-appropriate drug screenings have previously not been plausible. We have modified Miltenyi's protocol to increase neuronal yield, neuron purity, and neural viability at a reduced cost to expand our capacity to screen compounds directly in primary adult neurons. To our knowledge, we developed the first morphology-based screening system using adult cortical neurons and the first to incorporate age and sex as biological variables in a screen using adult cortical neurons. By using primary adult cortical neurons from mice that were 4 to 48 weeks old for screening pharmaceutical agents, we have demonstrated age- and sex-dependent effects on neuritogenesis and neuron survival in vitro. Utilizing age- and sex-appropriate in vitro models to find novel compounds increasing neuron survival and neurite outgrowth, made possible by our modified adult neuron processing method, will greatly increase the relevance of in vitro screening for finding neuroprotective compounds.
Collapse
Affiliation(s)
- Arthur Sefiani
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX, 77807, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX, 77807, USA.
| |
Collapse
|
8
|
Kauer SD, Fink KL, Li EHF, Evans BP, Golan N, Cafferty WBJ. Inositol Polyphosphate-5-Phosphatase K ( Inpp5k) Enhances Sprouting of Corticospinal Tract Axons after CNS Trauma. J Neurosci 2022; 42:2190-2204. [PMID: 35135857 PMCID: PMC8936595 DOI: 10.1523/jneurosci.0897-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
Failure of CNS neurons to mount a significant growth response after trauma contributes to chronic functional deficits after spinal cord injury. Activator and repressor screening of embryonic cortical neurons and retinal ganglion cells in vitro and transcriptional profiling of developing CNS neurons harvested in vivo have identified several candidates that stimulate robust axon growth in vitro and in vivo Building on these studies, we sought to identify novel axon growth activators induced in the complex adult CNS environment in vivo We transcriptionally profiled intact sprouting adult corticospinal neurons (CSNs) after contralateral pyramidotomy (PyX) in nogo receptor-1 knock-out mice and found that intact CSNs were enriched in genes in the 3-phosphoinositide degradation pathway, including six 5-phosphatases. We explored whether inositol polyphosphate-5-phosphatase K (Inpp5k) could enhance corticospinal tract (CST) axon growth in preclinical models of acute and chronic CNS trauma. Overexpression of Inpp5k in intact adult CSNs in male and female mice enhanced the sprouting of intact CST terminals after PyX and cortical stroke and sprouting of CST axons after acute and chronic severe thoracic spinal contusion. We show that Inpp5k stimulates axon growth in part by elevating the density of active cofilin in labile growth cones, thus stimulating actin polymerization and enhancing microtubule protrusion into distal filopodia. We identify Inpp5k as a novel CST growth activator capable of driving compensatory axon growth in multiple complex CNS injury environments and underscores the veracity of using in vivo transcriptional screening to identify the next generation of cell-autonomous factors capable of repairing the damaged CNS.SIGNIFICANCE STATEMENT Neurologic recovery is limited after spinal cord injury as CNS neurons are incapable of self-repair post-trauma. In vitro screening strategies exploit the intrinsically high growth capacity of embryonic CNS neurons to identify novel axon growth activators. While promising candidates have been shown to stimulate axon growth in vivo, concomitant functional recovery remains incomplete. We identified Inpp5k as a novel axon growth activator using transcriptional profiling of intact adult corticospinal tract (CST) neurons that had initiated a growth response after pyramidotomy in plasticity sensitized nogo receptor-1-null mice. Here, we show that Inpp5k overexpression can stimulate CST axon growth after pyramidotomy, stroke, and acute and chronic contusion injuries. These data support in vivo screening approaches to identify novel axon growth activators.
Collapse
Affiliation(s)
- Sierra D Kauer
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Kathryn L Fink
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Elizabeth H F Li
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Brian P Evans
- Regeneron Pharmaceuticals, Tarrytown, New York 10591
| | - Noa Golan
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
| | - William B J Cafferty
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
9
|
Optimised techniques for high-throughput screening of differentiated SH-SY5Y cells and application for neurite outgrowth assays. Sci Rep 2021; 11:23935. [PMID: 34907283 PMCID: PMC8671469 DOI: 10.1038/s41598-021-03442-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Neuronal models are a crucial tool in neuroscientific research, helping to elucidate the molecular and cellular processes involved in disorders of the nervous system. Adapting these models to a high-throughput format enables simultaneous screening of multiple agents within a single assay. SH-SY5Y cells have been widely used as a neuronal model, yet commonly in an undifferentiated state that is not representative of mature neurons. Differentiation of the SH-SY5Y cells is a necessary step to obtain cells that express mature neuronal markers. Despite this understanding, the absence of a standardised protocol has limited the use of differentiated SH-SY5Y cells in high-throughput assay formats. Here, we describe techniques to differentiate and re-plate SH-SY5Y cells within a 96-well plate for high-throughput screening. SH-SY5Y cells seeded at an initial density of 2,500 cells/well in a 96-well plate provide sufficient space for neurites to extend, without impacting cell viability. Room temperature pre-incubation for 1 h improved the plating homogeneity within the well and the ability to analyse neurites. We then demonstrated the efficacy of our techniques by optimising it further for neurite outgrowth analysis. The presented methods achieve homogenously distributed differentiated SH-SY5Y cells, useful for researchers using these cells in high-throughput screening assays.
Collapse
|
10
|
Lowell JA, O’Neill N, Danzi MC, Al-Ali H, Bixby JL, Lemmon VP. Phenotypic Screening Following Transcriptomic Deconvolution to Identify Transcription Factors Mediating Axon Growth Induced by a Kinase Inhibitor. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:1337-1354. [PMID: 34218704 PMCID: PMC10509783 DOI: 10.1177/24725552211026270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
After injury to the central nervous system (CNS), both neuron-intrinsic limitations on regenerative responses and inhibitory factors in the injured CNS environment restrict regenerative axon growth. Instances of successful axon regrowth offer opportunities to identify features that differentiate these situations from that of the normal adult CNS. One such opportunity is provided by the kinase inhibitor RO48, which dramatically enhances neurite outgrowth of neurons in vitro and substantially increased contralateral sprouting of corticospinal tract neurons when infused intraventricularly following unilateral pyramidotomy. The authors present here a transcriptomic deconvolution of RO48-associated axon growth, with the goal of identifying transcriptional regulators associated with axon growth in the CNS. Through the use of RNA sequencing (RNA-seq) and transcription factor binding site enrichment analysis, the authors identified a list of transcription factors putatively driving differential gene expression during RO48-induced neurite outgrowth of rat hippocampal neurons in vitro. The 82 transcription factor motifs identified in this way included some with known association to axon growth regulation, such as Jun, Klf4, Myc, Atf4, Stat3, and Nfatc2, and many with no known association to axon growth. A phenotypic loss-of-function screen was carried out to evaluate these transcription factors for their roles in neurite outgrowth; this screen identified several potential outgrowth regulators. Subsequent validation suggests that the Forkhead box (Fox) family transcription factor Foxp2 restricts neurite outgrowth, while FoxO subfamily members Foxo1 and Foxo3a promote neurite outgrowth. The authors' combined transcriptomic-phenotypic screening strategy therefore allowed identification of novel transcriptional regulators of neurite outgrowth downstream of a multitarget kinase inhibitor.
Collapse
Affiliation(s)
- Jeffrey A. Lowell
- Miami Project to Cure Paralysis and University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicholas O’Neill
- Miami Project to Cure Paralysis and University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matt C. Danzi
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hassan Al-Ali
- Miami Project to Cure Paralysis and University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine and Peggy & Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John L. Bixby
- Miami Project to Cure Paralysis and University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vance P. Lemmon
- Miami Project to Cure Paralysis and University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
11
|
Venkatesh I, Mehra V, Wang Z, Simpson MT, Eastwood E, Chakraborty A, Beine Z, Gross D, Cabahug M, Olson G, Blackmore MG. Co-occupancy identifies transcription factor co-operation for axon growth. Nat Commun 2021; 12:2555. [PMID: 33953205 PMCID: PMC8099911 DOI: 10.1038/s41467-021-22828-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription factors (TFs) act as powerful levers to regulate neural physiology and can be targeted to improve cellular responses to injury or disease. Because TFs often depend on cooperative activity, a major challenge is to identify and deploy optimal sets. Here we developed a bioinformatics pipeline, centered on TF co-occupancy of regulatory DNA, and used it to predict factors that potentiate the effects of pro-regenerative Klf6 in vitro. High content screens of neurite outgrowth identified cooperative activity by 12 candidates, and systematic testing in a mouse model of corticospinal tract (CST) damage substantiated three novel instances of pairwise cooperation. Combined Klf6 and Nr5a2 drove the strongest growth, and transcriptional profiling of CST neurons identified Klf6/Nr5a2-responsive gene networks involved in macromolecule biosynthesis and DNA repair. These data identify TF combinations that promote enhanced CST growth, clarify the transcriptional correlates, and provide a bioinformatics approach to detect TF cooperation.
Collapse
Affiliation(s)
- Ishwariya Venkatesh
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| | - Vatsal Mehra
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Zimei Wang
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Matthew T Simpson
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Erik Eastwood
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | | | - Zac Beine
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Derek Gross
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Michael Cabahug
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Greta Olson
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Murray G Blackmore
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| |
Collapse
|
12
|
Corrêa T, Santos-Rebouças CB, Mayndra M, Schinzel A, Riegel M. Shared Neurodevelopmental Perturbations Can Lead to Intellectual Disability in Individuals with Distinct Rare Chromosome Duplications. Genes (Basel) 2021; 12:genes12050632. [PMID: 33922640 PMCID: PMC8146713 DOI: 10.3390/genes12050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Chromosomal duplications are associated with a large group of human diseases that arise mainly from dosage imbalance of genes within the rearrangements. Phenotypes range widely but are often associated with global development delay, intellectual disability, autism spectrum disorders, and multiple congenital abnormalities. How different contiguous genes from a duplicated genomic region interact and dynamically affect the expression of each other remains unclear in most cases. Here, we report a genomic comparative delineation of genes located in duplicated chromosomal regions 8q24.13q24.3, 18p11.32p11.21, and Xq22.3q27.2 in three patients followed up at our genetics service who has the intellectual disability (ID) as a common phenotype. We integrated several genomic data levels by identification of gene content within the duplications, protein-protein interactions, and functional analysis on specific tissues. We found functional relationships among genes from three different duplicated chromosomal regions, reflecting interactions of protein-coding genes and their involvement in common cellular subnetworks. Furthermore, the sharing of common significant biological processes associated with ID has been demonstrated between proteins from the different chromosomal regions. Finally, we elaborated a shared model of pathways directly or indirectly related to the central nervous system (CNS), which could perturb cognitive function and lead to ID in the three duplication conditions.
Collapse
Affiliation(s)
- Thiago Corrêa
- Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul UFRGS, Porto Alegre 91501-970, Brazil;
| | - Cíntia B. Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20511-010, Brazil;
| | - Maytza Mayndra
- Children’s Hospital Jeser Amarante Faria, Joinville 89204-310, Brazil;
| | - Albert Schinzel
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland;
| | - Mariluce Riegel
- Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul UFRGS, Porto Alegre 91501-970, Brazil;
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
- Correspondence:
| |
Collapse
|
13
|
The Life of a Trailing Spouse. J Neurosci 2021; 41:3-10. [PMID: 33408132 DOI: 10.1523/jneurosci.2874-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
In 1981, I published a paper in the first issue of the Journal of Neuroscience with my postdoctoral mentor, Alan Pearlman. It reported a quantitative analysis of the receptive field properties of neurons in reeler mouse visual cortex and the surprising conclusion that although the neuronal somas were strikingly malpositioned, their receptive fields were unchanged. This suggested that in mouse cortex at least, neuronal circuits have very robust systems in place to ensure the proper formation of connections. This had the unintended consequence of transforming me from an electrophysiologist into a cellular and molecular neuroscientist who studied cell adhesion molecules and the molecular mechanisms they use to regulate axon growth. It took me a surprisingly long time to appreciate that your science is driven by the people around you and by the technologies that are locally available. As a professional puzzler, I like all different kinds of puzzles, but the most fun puzzles involve playing with other puzzlers. This is my story of learning how to find like-minded puzzlers to solve riddles about axon growth and regeneration.
Collapse
|
14
|
Kramer AA, Olson GM, Chakraborty A, Blackmore MG. Promotion of corticospinal tract growth by KLF6 requires an injury stimulus and occurs within four weeks of treatment. Exp Neurol 2021; 339:113644. [PMID: 33592210 DOI: 10.1016/j.expneurol.2021.113644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/23/2021] [Accepted: 02/12/2021] [Indexed: 12/01/2022]
Abstract
Axons in the corticospinal tract (CST) display a limited capacity for compensatory sprouting after partial spinal injuries, potentially limiting functional recovery. Forced expression of a developmentally expressed transcription factor, Krüppel-like factor 6 (KLF6), enhances axon sprouting by adult CST neurons. Here, using a pyramidotomy model of injury in adult mice, we confirm KLF6's pro-sprouting properties in spared corticospinal tract neurons and show that this effect depends on an injury stimulus. In addition, we probed the time course of KLF6-triggered sprouting of CST axons and demonstrate a significant enhancement of growth within four weeks of treatment. Finally, we tested whether KLF6-induced sprouting was accompanied by improvements in forelimb function, either singly or when combined with intensive rehabilitation. We found that regardless of rehabilitative training, and despite robust cross-midline sprouting by corticospinal tract axons, treatment with KLF6 produced no significant improvement in forelimb function on either a modified ladder-crossing task or a pellet-retrieval task. These data clarify important details of KLF6's pro-growth properties and indicate that additional interventions or further optimization will be needed to translate this improvement in axon growth into functional gains.
Collapse
Affiliation(s)
- Audra A Kramer
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | - Greta M Olson
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | - Advaita Chakraborty
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | - Murray G Blackmore
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| |
Collapse
|
15
|
Lopez-Silva TL, Cristobal CD, Edwin Lai CS, Leyva-Aranda V, Lee HK, Hartgerink JD. Self-assembling multidomain peptide hydrogels accelerate peripheral nerve regeneration after crush injury. Biomaterials 2021; 265:120401. [PMID: 33002786 PMCID: PMC7669633 DOI: 10.1016/j.biomaterials.2020.120401] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Multidomain peptide (MDP) hydrogels are a class of self-assembling materials that have been shown to elicit beneficial responses for soft tissue regeneration. However, their capacity to promote nervous system regeneration remains unknown. The peripheral nervous system (PNS) substantially recovers after injury, partly due to the abundance of extracellular matrix (ECM) components in its basal lamina. However, severe peripheral nerve injuries that significantly damage the ECM continue to be a major clinical challenge as they occur at a high rate and can be extremely detrimental to patients' quality of life. In this study, a panel of eight MDPs were designed to contain various motifs mimicking extracellular matrix components and growth factors and successfully self-assembled into injectable, nanofibrous hydrogels. Using an in vitro screening system, various lysine based MDPs were found to enhance neurite outgrowth. To test their capacity to promote nerve regeneration in vivo, rat sciatic nerve crush injury was performed with MDP hydrogels injected directly into the injury sites. MDP hydrogels were found to enhance macrophage recruitment to the injury site and degrade efficiently over time. Rats that were injected with the MDP hydrogel K2 and laminin motif-containing MDPs K2-IIKDI and K2-IKVAV were found to have significantly accelerated functional recovery and remyelination compared to those injected with HBSS or other MDPs. These results demonstrate that MDPs enhance neurite outgrowth and promote a multicellular pro-regenerative response in peripheral nerve injury. This study provides important insights into the potential of MDPs as biomaterials for nerve regeneration and other clinical applications.
Collapse
Affiliation(s)
- Tania L Lopez-Silva
- Department of Chemistry and Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Carlo D Cristobal
- Integrative Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Cheuk Sun Edwin Lai
- Department of Chemistry and Bioengineering, Rice University, Houston, TX, 77005, USA
| | | | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
| | - Jeffrey D Hartgerink
- Department of Chemistry and Bioengineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
16
|
Inglis GAS, Zhou Y, Patterson DG, Scharer CD, Han Y, Boss JM, Wen Z, Escayg A. Transcriptomic and epigenomic dynamics associated with development of human iPSC-derived GABAergic interneurons. Hum Mol Genet 2020; 29:2579-2595. [PMID: 32794569 PMCID: PMC7471504 DOI: 10.1093/hmg/ddaa150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022] Open
Abstract
GABAergic interneurons (GINs) are a heterogeneous population of inhibitory neurons that collectively contribute to the maintenance of normal neuronal excitability and network activity. Identification of the genetic regulatory elements and transcription factors that contribute toward GIN function may provide new insight into the pathways underlying proper GIN activity while also indicating potential therapeutic targets for GIN-associated disorders, such as schizophrenia and epilepsy. In this study, we examined the temporal changes in gene expression and chromatin accessibility during GIN development by performing transcriptomic and epigenomic analyses on human induced pluripotent stem cell-derived neurons at 22, 50 and 78 days (D) post-differentiation. We observed 13 221 differentially accessible regions (DARs) of chromatin that associate with temporal changes in gene expression at D78 and D50, relative to D22. We also classified families of transcription factors that are increasingly enriched at DARs during differentiation, indicating regulatory networks that likely drive GIN development. Collectively, these data provide a resource for examining the molecular networks regulating GIN functionality.
Collapse
Affiliation(s)
- George Andrew S Inglis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying Zhou
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yanfei Han
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Wright JJ, Bourke PD. The growth of cognition: Free energy minimization and the embryogenesis of cortical computation. Phys Life Rev 2020; 36:83-99. [PMID: 32527680 DOI: 10.1016/j.plrev.2020.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/30/2022]
Abstract
The assumption that during cortical embryogenesis neurons and synaptic connections are selected to form an ensemble maximising synchronous oscillation explains mesoscopic cortical development, and a mechanism for cortical information processing is implied by consistency with the Free Energy Principle and Dynamic Logic. A heteroclinic network emerges, with stable and unstable fixed points of oscillation corresponding to activity in symmetrically connected, versus asymmetrically connected, sets of neurons. Simulations of growth explain a wide range of anatomical observations for columnar and non-columnar cortex, superficial patch connections, and the organization and dynamic interactions of neurone response properties. An antenatal scaffold is created, upon which postnatal learning can establish continuously ordered neuronal representations, permitting matching of co-synchronous fields in multiple cortical areas to solve optimization problems as in Dynamic Logic. Fast synaptic competition partitions equilibria, minimizing "the curse of dimensionality", while perturbations between imperfectly partitioned synchronous fields, under internal reinforcement, enable the cortex to become adaptively self-directed. As learning progresses variational free energy is minimized and entropy bounded.
Collapse
Affiliation(s)
- J J Wright
- Centre for Brain Research, and Department of Psychological Medicine, School of Medicine, University of Auckland, Auckland, New Zealand.
| | - P D Bourke
- School of Social Sciences, Faculty of Arts, Business, Law and Education, University of Western Australia, Perth, Australia.
| |
Collapse
|
18
|
Moon GJ, Shin M, Kim SR. Upregulation of Neuronal Rheb(S16H) for Hippocampal Protection in the Adult Brain. Int J Mol Sci 2020; 21:E2023. [PMID: 32188096 PMCID: PMC7139780 DOI: 10.3390/ijms21062023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Ras homolog protein enriched in brain (Rheb) is a key activator of mammalian target of rapamycin complex 1 (mTORC1). The activation of mTORC1 by Rheb is associated with various processes such as protein synthesis, neuronal growth, differentiation, axonal regeneration, energy homeostasis, autophagy, and amino acid uptake. In addition, Rheb-mTORC1 signaling plays a crucial role in preventing the neurodegeneration of hippocampal neurons in the adult brain. Increasing evidence suggests that the constitutive activation of Rheb has beneficial effects against neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Our recent studies revealed that adeno-associated virus serotype 1 (AAV1) transduction with Rheb(S16H), a constitutively active form of Rheb, exhibits neuroprotective properties through the induction of various neurotrophic factors, promoting neurotrophic interactions between neurons and astrocytes in the hippocampus of the adult brain. This review provides compelling evidence for the therapeutic potential of AAV1-Rheb(S16H) transduction in the hippocampus of the adult brain by exploring its neuroprotective effects and mechanisms.
Collapse
Affiliation(s)
- Gyeong Joon Moon
- BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Minsang Shin
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea;
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Sang Ryong Kim
- BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
19
|
Martineau FS, Sahu S, Plantier V, Buhler E, Schaller F, Fournier L, Chazal G, Kawasaki H, Represa A, Watrin F, Manent JB. Correct Laminar Positioning in the Neocortex Influences Proper Dendritic and Synaptic Development. Cereb Cortex 2019; 28:2976-2990. [PMID: 29788228 PMCID: PMC6041803 DOI: 10.1093/cercor/bhy113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 01/28/2023] Open
Abstract
The neocortex is a 6-layered laminated structure with a precise anatomical and functional organization ensuring proper function. Laminar positioning of cortical neurons, as determined by termination of neuronal migration, is a key determinant of their ability to assemble into functional circuits. However, the exact contribution of laminar placement to dendrite morphogenesis and synapse formation remains unclear. Here we manipulated the laminar position of cortical neurons by knocking down doublecortin (Dcx), a crucial effector of migration, and show that misplaced neurons fail to properly form dendrites, spines, and functional glutamatergic and GABAergic synapses. We further show that knocking down Dcx in properly positioned neurons induces similar but milder defects, suggesting that the laminar misplacement is the primary cause of altered neuronal development. Thus, the specific laminar environment of their fated layers is crucial for the maturation of cortical neurons, and influences their functional integration into developing cortical circuits.
Collapse
Affiliation(s)
| | - Surajit Sahu
- INMED, Aix-Marseille University, INSERM U901, Marseille, France
| | | | | | | | | | | | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Alfonso Represa
- INMED, Aix-Marseille University, INSERM U901, Marseille, France
| | | | | |
Collapse
|
20
|
Functional Genome-wide Screen Identifies Pathways Restricting Central Nervous System Axonal Regeneration. Cell Rep 2019; 23:415-428. [PMID: 29642001 DOI: 10.1016/j.celrep.2018.03.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/12/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022] Open
Abstract
Axonal regrowth is crucial for recovery from CNS injury but is severely restricted in adult mammals. We used a genome-wide loss-of-function screen for factors limiting axonal regeneration from cerebral cortical neurons in vitro. Knockdown of 16,007 individual genes identified 580 significant phenotypes. These molecules share no significant overlap with those suggested by previous expression profiles. There is enrichment for genes in pathways related to transport, receptor binding, and cytokine signaling, including Socs4 and Ship2. Among transport-regulating proteins, Rab GTPases are prominent. In vivo assessment with C. elegans validates a cell-autonomous restriction of regeneration by Rab27. Mice lacking Rab27b show enhanced retinal ganglion cell axon regeneration after optic nerve crush and greater motor function and raphespinal sprouting after spinal cord trauma. Thus, a comprehensive functional screen reveals multiple pathways restricting axonal regeneration and neurological recovery after injury.
Collapse
|
21
|
Abstract
Permanent disabilities following CNS injuries result from the failure of injured axons to regenerate and rebuild functional connections with their original targets. By contrast, injury to peripheral nerves is followed by robust regeneration, which can lead to recovery of sensory and motor functions. This regenerative response requires the induction of widespread transcriptional and epigenetic changes in injured neurons. Considerable progress has been made in recent years in understanding how peripheral axon injury elicits these widespread changes through the coordinated actions of transcription factors, epigenetic modifiers and, to a lesser extent, microRNAs. Although many questions remain about the interplay between these mechanisms, these new findings provide important insights into the pivotal role of coordinated gene expression and chromatin remodelling in the neuronal response to injury.
Collapse
Affiliation(s)
- Marcus Mahar
- Department of Neuroscience, Hope Center for Neurological Disorders and Center of Regenerative Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Valeria Cavalli
- Department of Neuroscience, Hope Center for Neurological Disorders and Center of Regenerative Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
22
|
Ruhl DA, Bomba-Warczak E, Watson ET, Bradberry MM, Peterson TA, Basu T, Frelka A, Evans CS, Briguglio JS, Basta T, Stowell MHB, Savas JN, Roopra A, Pearce RA, Piper RC, Chapman ER. Synaptotagmin 17 controls neurite outgrowth and synaptic physiology via distinct cellular pathways. Nat Commun 2019; 10:3532. [PMID: 31387992 PMCID: PMC6684635 DOI: 10.1038/s41467-019-11459-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/13/2019] [Indexed: 12/28/2022] Open
Abstract
The synaptotagmin (syt) proteins have been widely studied for their role in regulating fusion of intracellular vesicles with the plasma membrane. Here we report that syt-17, an unusual isoform of unknown function, plays no role in exocytosis, and instead plays multiple roles in intracellular membrane trafficking. Syt-17 is localized to the Golgi complex in hippocampal neurons, where it coordinates import of vesicles from the endoplasmic reticulum to support neurite outgrowth and facilitate axon regrowth after injury. Further, we discovered a second pool of syt-17 on early endosomes in neurites. Loss of syt-17 disrupts endocytic trafficking, resulting in the accumulation of excess postsynaptic AMPA receptors and defective synaptic plasticity. Two distinct pools of syt-17 thus control two crucial, independent membrane trafficking pathways in neurons. Function of syt-17 appears to be one mechanism by which neurons have specialized their secretory and endosomal systems to support the demands of synaptic communication over sprawling neurite arbors. The functional role of synaptotagmin-17 (syt-17) has remained unanswered. In this study, authors demonstrate that syt-17 exists in two distinct pools in hippocampal neurons (Golgi complex and early endosomes), where it served two completely independent functions: controlling neurite outgrowth and synaptic physiology
Collapse
Affiliation(s)
- David A Ruhl
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Ewa Bomba-Warczak
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Emma T Watson
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Mazdak M Bradberry
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Tabitha A Peterson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Trina Basu
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Alyssa Frelka
- Department of Anesthesiology, University of Wisconsin, Madison, WI, 53706, USA
| | - Chantell S Evans
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph S Briguglio
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Tamara Basta
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin, Madison, WI, 53706, USA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
23
|
Verschuuren M, Verstraelen P, García-Díaz Barriga G, Cilissen I, Coninx E, Verslegers M, Larsen PH, Nuydens R, De Vos WH. High-throughput microscopy exposes a pharmacological window in which dual leucine zipper kinase inhibition preserves neuronal network connectivity. Acta Neuropathol Commun 2019; 7:93. [PMID: 31164177 PMCID: PMC6549294 DOI: 10.1186/s40478-019-0741-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
Therapeutic developments for neurodegenerative disorders are redirecting their focus to the mechanisms that contribute to neuronal connectivity and the loss thereof. Using a high-throughput microscopy pipeline that integrates morphological and functional measurements, we found that inhibition of dual leucine zipper kinase (DLK) increased neuronal connectivity in primary cortical cultures. This neuroprotective effect was not only observed in basal conditions but also in cultures depleted from antioxidants and in cultures in which microtubule stability was genetically perturbed. Based on the morphofunctional connectivity signature, we further showed that the effects were limited to a specific dose and time range. Thus, our results illustrate that profiling microscopy images with deep coverage enables sensitive interrogation of neuronal connectivity and allows exposing a pharmacological window for targeted treatments. In doing so, we revealed a broad-spectrum neuroprotective effect of DLK inhibition, which may have relevance to pathological conditions that ar.e associated with compromised neuronal connectivity.
Collapse
|
24
|
Abstract
Traumatic brain and spinal cord injuries cause permanent disability. Although progress has been made in understanding the cellular and molecular mechanisms underlying the pathophysiological changes that affect both structure and function after injury to the brain or spinal cord, there are currently no cures for either condition. This may change with the development and application of multi-layer omics, new sophisticated bioinformatics tools, and cutting-edge imaging techniques. Already, these technical advances, when combined, are revealing an unprecedented number of novel cellular and molecular targets that could be manipulated alone or in combination to repair the injured central nervous system with precision. In this review, we highlight recent advances in applying these new technologies to the study of axon regeneration and rebuilding of injured neural circuitry. We then discuss the challenges ahead to translate results produced by these technologies into clinical application to help improve the lives of individuals who have a brain or spinal cord injury.
Collapse
Affiliation(s)
- Andrea Tedeschi
- Department of Neuroscience and Discovery Themes Initiative, College of Medicine, Ohio State University, Columbus, Ohio, 43210, USA
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, Institute for Behavioral Medicine Research, Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
25
|
Venkatesh I, Mehra V, Wang Z, Califf B, Blackmore MG. Developmental Chromatin Restriction of Pro-Growth Gene Networks Acts as an Epigenetic Barrier to Axon Regeneration in Cortical Neurons. Dev Neurobiol 2018; 78:960-977. [PMID: 29786967 PMCID: PMC6204296 DOI: 10.1002/dneu.22605] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Abstract
Axon regeneration in the central nervous system is prevented in part by a developmental decline in the intrinsic regenerative ability of maturing neurons. This loss of axon growth ability likely reflects widespread changes in gene expression, but the mechanisms that drive this shift remain unclear. Chromatin accessibility has emerged as a key regulatory mechanism in other cellular contexts, raising the possibility that chromatin structure may contribute to the age-dependent loss of regenerative potential. Here we establish an integrated bioinformatic pipeline that combines analysis of developmentally dynamic gene networks with transcription factor regulation and genome-wide maps of chromatin accessibility. When applied to the developing cortex, this pipeline detected overall closure of chromatin in sub-networks of genes associated with axon growth. We next analyzed mature CNS neurons that were supplied with various pro-regenerative transcription factors. Unlike prior results with SOX11 and KLF7, here we found that neither JUN nor an activated form of STAT3 promoted substantial corticospinal tract regeneration. Correspondingly, chromatin accessibility in JUN or STAT3 target genes was substantially lower than in predicted targets of SOX11 and KLF7. Finally, we used the pipeline to predict pioneer factors that could potentially relieve chromatin constraints at growth-associated loci. Overall this integrated analysis substantiates the hypothesis that dynamic chromatin accessibility contributes to the developmental decline in axon growth ability and influences the efficacy of pro-regenerative interventions in the adult, while also pointing toward selected pioneer factors as high-priority candidates for future combinatorial experiments. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
| | - Vatsal Mehra
- Department of Biomedical Sciences, Marquette University, 53201
| | - Zimei Wang
- Department of Biomedical Sciences, Marquette University, 53201
| | | | | |
Collapse
|
26
|
KLF6 and STAT3 co-occupy regulatory DNA and functionally synergize to promote axon growth in CNS neurons. Sci Rep 2018; 8:12565. [PMID: 30135567 PMCID: PMC6105645 DOI: 10.1038/s41598-018-31101-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/10/2018] [Indexed: 11/26/2022] Open
Abstract
The failure of axon regeneration in the CNS limits recovery from damage and disease. Members of the KLF family of transcription factors can exert both positive and negative effects on axon regeneration, but the underlying mechanisms are unclear. Here we show that forced expression of KLF6 promotes axon regeneration by corticospinal tract neurons in the injured spinal cord. RNA sequencing identified 454 genes whose expression changed upon forced KLF6 expression in vitro, including sub-networks that were highly enriched for functions relevant to axon extension including cytoskeleton remodeling, lipid synthesis, and bioenergetics. In addition, promoter analysis predicted a functional interaction between KLF6 and a second transcription factor, STAT3, and genome-wide footprinting using ATAC-Seq data confirmed frequent co-occupancy. Co-expression of the two factors yielded a synergistic elevation of neurite growth in vitro. These data clarify the transcriptional control of axon growth and point the way toward novel interventions to promote CNS regeneration.
Collapse
|
27
|
Lerch JK, Buchser W. Functional Genomics and High Content Screening in the Nervous System. Mol Cell Neurosci 2018; 80:159-160. [PMID: 28413055 DOI: 10.1016/j.mcn.2017.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Jessica K Lerch
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center, The Ohio State University, 460 W 12(th) Ave, 696 Biomedical Research Tower, Columbus, OH, 43210, United States.
| | - William Buchser
- Department of Biology, College of William & Mary, Integrated Science Center 2135 540 Landrum Drive, Williamsburg, VA, 23185, United States.
| |
Collapse
|
28
|
Herman PE, Papatheodorou A, Bryant SA, Waterbury CKM, Herdy JR, Arcese AA, Buxbaum JD, Smith JJ, Morgan JR, Bloom O. Highly conserved molecular pathways, including Wnt signaling, promote functional recovery from spinal cord injury in lampreys. Sci Rep 2018; 8:742. [PMID: 29335507 PMCID: PMC5768751 DOI: 10.1038/s41598-017-18757-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
In mammals, spinal cord injury (SCI) leads to dramatic losses in neurons and synaptic connections, and consequently function. Unlike mammals, lampreys are vertebrates that undergo spontaneous regeneration and achieve functional recovery after SCI. Therefore our goal was to determine the complete transcriptional responses that occur after SCI in lampreys and to identify deeply conserved pathways that promote regeneration. We performed RNA-Seq on lamprey spinal cord and brain throughout the course of functional recovery. We describe complex transcriptional responses in the injured spinal cord, and somewhat surprisingly, also in the brain. Transcriptional responses to SCI in lampreys included transcription factor networks that promote peripheral nerve regeneration in mammals such as Atf3 and Jun. Furthermore, a number of highly conserved axon guidance, extracellular matrix, and proliferation genes were also differentially expressed after SCI in lampreys. Strikingly, ~3% of differentially expressed transcripts belonged to the Wnt pathways. These included members of the Wnt and Frizzled gene families, and genes involved in downstream signaling. Pharmacological inhibition of Wnt signaling inhibited functional recovery, confirming a critical role for this pathway. These data indicate that molecular signals present in mammals are also involved in regeneration in lampreys, supporting translational relevance of the model.
Collapse
Affiliation(s)
- Paige E Herman
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA
| | - Angelos Papatheodorou
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA
| | - Stephanie A Bryant
- University of Kentucky, Department of Biology, Lexington, KY, 40506, USA
| | | | - Joseph R Herdy
- University of Kentucky, Department of Biology, Lexington, KY, 40506, USA
| | - Anthony A Arcese
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA
| | - Joseph D Buxbaum
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, 10029, USA
| | - Jeramiah J Smith
- University of Kentucky, Department of Biology, Lexington, KY, 40506, USA
| | - Jennifer R Morgan
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, 02543, USA.
| | - Ona Bloom
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA.
| |
Collapse
|
29
|
An Image-Based miRNA Screen Identifies miRNA-135s As Regulators of CNS Axon Growth and Regeneration by Targeting Krüppel-like Factor 4. J Neurosci 2017; 38:613-630. [PMID: 29196317 DOI: 10.1523/jneurosci.0662-17.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 01/08/2023] Open
Abstract
During embryonic development, axons extend over long distances to establish functional connections. In contrast, axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing CNS regeneration. Here, we performed one of the first miRNome-wide functional miRNA screens to identify miRNAs with robust effects on axon growth. High-content screening identified miR-135a and miR-135b as potent stimulators of axon growth and cortical neuron migration in vitro and in vivo in male and female mice. Intriguingly, both of these developmental effects of miR-135s relied in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon growth and regeneration. These results prompted us to test the effect of miR-135s on axon regeneration after injury. Our results show that intravitreal application of miR-135s facilitates retinal ganglion cell (RGC) axon regeneration after optic nerve injury in adult mice in part by repressing KLF4. In contrast, depletion of miR-135s further reduced RGC axon regeneration. Together, these data identify a novel neuronal role for miR-135s and the miR-135-KLF4 pathway and highlight the potential of miRNAs as tools for enhancing CNS axon regeneration.SIGNIFICANCE STATEMENT Axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing regeneration. By performing an miRNome-wide functional screen, our studies identify miR-135s as stimulators of axon growth and neuron migration and show that intravitreal application of these miRNAs facilitates CNS axon regeneration after nerve injury in adult mice. Intriguingly, these developmental and regeneration-promoting effects rely in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon regeneration. Our data identify a novel neuronal role for the miR-135-KLF4 pathway and support the idea that miRNAs can be used for enhancing CNS axon regeneration.
Collapse
|
30
|
Identification of Intrinsic Axon Growth Modulators for Intact CNS Neurons after Injury. Cell Rep 2017; 18:2687-2701. [PMID: 28297672 PMCID: PMC5389739 DOI: 10.1016/j.celrep.2017.02.058] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/19/2016] [Accepted: 02/16/2017] [Indexed: 12/28/2022] Open
Abstract
Functional deficits persist after spinal cord injury (SCI) because axons in the adult mammalian central nervous system (CNS) fail to regenerate. However, modest levels of spontaneous functional recovery are typically observed after trauma and are thought to be mediated by the plasticity of intact circuitry. The mechanisms underlying intact circuit plasticity are not delineated. Here, we characterize the in vivo transcriptome of sprouting intact neurons from Ngr1 null mice after partial SCI. We identify the lysophosphatidic acid signaling modulators LPPR1 and LPAR1 as intrinsic axon growth modulators for intact corticospinal motor neurons after adjacent injury. Furthermore, in vivo LPAR1 inhibition or LPPR1 overexpression enhances sprouting of intact corticospinal tract axons and yields greater functional recovery after unilateral brainstem lesion in wild-type mice. Thus, the transcriptional profile of injury-induced sprouting of intact neurons reveals targets for therapeutic enhancement of axon growth initiation and new synapse formation.
Collapse
|
31
|
High Content Screening of Mammalian Primary Cortical Neurons. Methods Mol Biol 2017. [PMID: 29082499 DOI: 10.1007/978-1-4939-7357-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
High Content Screening (HCS) can be used to analyze the morphology of neuronal primary cultures on a large scale. When used in the field of neuronal regeneration this approach allows the screening of hundreds or thousands of perturbagens, such as miRNAs, cDNAs, or compounds, for their ability to induce neuronal growth. One of the most important steps while designing these kinds of experiments is the choice of the correct neuronal model. Testing the correct neuronal type is critical to obtain results that are biologically significant and that can later be translated to a clinical setting. For example, if the goal is identifying possible therapies for Spinal Cord Injury (SCI), a challenging target is the neuronal projection from the motor cortex to the spinal cord, the corticospinal tract. Here, we describe the experimental protocols that can be used to produce primary cortical culture from young rat cortices, electroporate the neurons to study the effect of altered gene expression on neurite growth, and immunostain to measure neurite growth parameters.
Collapse
|
32
|
Liu Y, Li Y, Ren Z, Si W, Li Y, Wei G, Zhao W, Zhou J, Tian Y, Chen D. MicroRNA-125a-3p is involved in early behavioral disorders in stroke-afflicted rats through the regulation of Cadm2. Int J Mol Med 2017; 40:1851-1859. [PMID: 29039453 PMCID: PMC5716446 DOI: 10.3892/ijmm.2017.3179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022] Open
Abstract
Ischemic strokes carry a significant risk of mortality and recurrent vascular events. Recent studies suggest that changes in microRNAs (miRNAs or miRs) may affect the development of the stroke. However, few studies have investigated the role of miRNAs in behavioral disorder in early stroke. In the present study, animal models of middle cerebral artery occlusion (MCAO) are used, as well as a cell model of neurite outgrowth to further investigate the role of miRNAs in targeting synapse-associated proteins expression in early stroke. The authors used miRNA expression microarrays on RNA extracted from the cortex tissue samples from the rats of MCAO and control rats. Reverse transcription-quantitative polymerase chain reaction was conducted to verify the candidate miRNAs discovered by microarray analysis. Data indicated that miR-125a was significantly increased in the cortex of the model of MCAO, which were concomitant with that rats of MCAO at the same age displayed significant behavioral deficits. Bioinformatics analysis predicted the cell adhesion molecule 2 (Cadm2, mRNA) neurite outgrowth-associated protein is targeted by miR-125a. Overexpression of miR-125a reduced the level of Cadm2 expression in PC12 cell injury induced by free-serum. In contrast, inhibition of miR-125a using miR-125a inhibitors significantly resulted in higher levels of Cadm2 expression. In conclusion, miR-125a is involved in the behavioral disorder of animal models of MCAO by regulation of Cadm2.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Anatomy, The Research Center of Integrative Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yunjun Li
- Center of Sanxi Community Health Service, Shenzhen Dapeng District Maternal and Child Health Care Hospital, Shenzhen, Guangdong 518120, P.R. China
| | - Zhenxing Ren
- Department of Anatomy, The Research Center of Integrative Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Wenwen Si
- Department of Anatomy, The Research Center of Integrative Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yiwei Li
- School of Nursing, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Gang Wei
- Research and Development of New Drugs, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Wenguang Zhao
- School of Medical Information Engineering, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jianhong Zhou
- Department of Anatomy, The Research Center of Integrative Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yage Tian
- Department of Anatomy, The Research Center of Integrative Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Integrative Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
33
|
KLF9 and JNK3 Interact to Suppress Axon Regeneration in the Adult CNS. J Neurosci 2017; 37:9632-9644. [PMID: 28871032 DOI: 10.1523/jneurosci.0643-16.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Neurons in the adult mammalian CNS decrease in intrinsic axon growth capacity during development in concert with changes in Krüppel-like transcription factors (KLFs). KLFs regulate axon growth in CNS neurons including retinal ganglion cells (RGCs). Here, we found that knock-down of KLF9, an axon growth suppressor that is normally upregulated 250-fold in RGC development, promotes long-distance optic nerve regeneration in adult rats of both sexes. We identified a novel binding partner, MAPK10/JNK3 kinase, and found that JNK3 (c-Jun N-terminal kinase 3) is critical for KLF9's axon-growth-suppressive activity. Interfering with a JNK3-binding domain or mutating two newly discovered serine phosphorylation acceptor sites, Ser106 and Ser110, effectively abolished KLF9's neurite growth suppression in vitro and promoted axon regeneration in vivo These findings demonstrate a novel, physiologic role for the interaction of KLF9 and JNK3 in regenerative failure in the optic nerve and suggest new therapeutic strategies to promote axon regeneration in the adult CNS.SIGNIFICANCE STATEMENT Injured CNS nerves fail to regenerate spontaneously. Promoting intrinsic axon growth capacity has been a major challenge in the field. Here, we demonstrate that knocking down Krüppel-like transcription factor 9 (KLF9) via shRNA promotes long-distance axon regeneration after optic nerve injury and uncover a novel and important KLF9-JNK3 interaction that contributes to axon growth suppression in vitro and regenerative failure in vivo These studies suggest potential therapeutic approaches to promote axon regeneration in injury and other degenerative diseases in the adult CNS.
Collapse
|
34
|
Can Astrocytes Be a Target for Precision Medicine? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:111-128. [DOI: 10.1007/978-3-319-60733-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
AAV-KLF7 Promotes Descending Propriospinal Neuron Axonal Plasticity after Spinal Cord Injury. Neural Plast 2017; 2017:1621629. [PMID: 28884027 PMCID: PMC5572611 DOI: 10.1155/2017/1621629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/27/2017] [Accepted: 06/12/2017] [Indexed: 01/16/2023] Open
Abstract
DPSN axons mediate and maintain a variety of normal spinal functions. Unsurprisingly, DPSN tracts have been shown to mediate functional recovery following SCI. KLF7 could contribute to CST axon plasticity after spinal cord injury. In the present study, we assessed whether KLF7 could effectively promote DPSN axon regeneration and synapse formation following SCI. An AAV-KLF7 construct was used to overexpress KLF7. In vitro, KLF7 and target proteins were successfully elevated and axonal outgrowth was enhanced. In vivo, young adult C57BL/6 mice received a T10 contusion followed by an AAV-KLF7 injection at the T7–9 levels above the lesion. Five weeks later, overexpression of KLF7 was expressed in DPSN. KLF7 and KLF7 target genes (NGF, TrkA, GAP43, and P0) were detectably increased in the injured spinal cord. Myelin sparring at the lesion site, DPSN axonal regeneration and synapse formation, muscle weight, motor endplate morphology, and functional parameters were all additionally improved by KLF7 treatment. Our findings suggest that KLF7 promotes DPSN axonal plasticity and the formation of synapses with motor neurons at the caudal spinal cord, leading to improved functional recovery and further supporting the potential of AAV-KLF7 as a therapeutic agent for spinal cord injury.
Collapse
|
36
|
Motti D, Lerch JK, Danzi MC, Gans JH, Kuo F, Slepak TI, Bixby JL, Lemmon VP. Identification of miRNAs involved in DRG neurite outgrowth and their putative targets. FEBS Lett 2017; 591:2091-2105. [PMID: 28626869 PMCID: PMC5864114 DOI: 10.1002/1873-3468.12718] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/07/2017] [Accepted: 06/11/2017] [Indexed: 12/14/2022]
Abstract
Peripheral neurons regenerate their axons after injury. Transcriptional regulation by microRNAs (miRNAs) is one possible mechanism controlling regeneration. We profiled miRNA expression in mouse dorsal root ganglion neurons after a sciatic nerve crush, and identified 49 differentially expressed miRNAs. We evaluated the functional role of each miRNA using a phenotypic analysis approach. To predict the targets of the miRNAs we employed RNA-Sequencing and examined transcription at the isoform level. We identify thousands of differentially expressed isoforms and bioinformatically associate the miRNAs that modulate neurite growth with their putative target isoforms to outline a network of regulatory events underlying peripheral nerve regeneration. MiR-298, let-7a, and let-7f enhance neurite growth and target the majority of isoforms in the differentially expressed network.
Collapse
Affiliation(s)
- Dario Motti
- The Miami Project To Cure Paralysis, The University of Miami Miller School of Medicine, Miami, FL
| | - Jessica K. Lerch
- The Department of Neuroscience, The Ohio State University, Columbus, OH
| | - Matt C. Danzi
- The Miami Project To Cure Paralysis, The University of Miami Miller School of Medicine, Miami, FL
| | - Jared H. Gans
- The Miami Project To Cure Paralysis, The University of Miami Miller School of Medicine, Miami, FL
| | - Frank Kuo
- The Miami Project To Cure Paralysis, The University of Miami Miller School of Medicine, Miami, FL
| | - Tatiana I. Slepak
- The Miami Project To Cure Paralysis, The University of Miami Miller School of Medicine, Miami, FL
| | - John L. Bixby
- The Miami Project To Cure Paralysis, The University of Miami Miller School of Medicine, Miami, FL
- The Department of Molecular and Cellular Pharmacology, The University of Miami Miller School of Medicine, Miami, FL
- The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, FL
- The Center for Computational Science, The University of Miami, Miami, FL
| | - Vance P. Lemmon
- The Miami Project To Cure Paralysis, The University of Miami Miller School of Medicine, Miami, FL
- The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, FL
- The Center for Computational Science, The University of Miami, Miami, FL
| |
Collapse
|
37
|
Hill CE. A view from the ending: Axonal dieback and regeneration following SCI. Neurosci Lett 2017; 652:11-24. [DOI: 10.1016/j.neulet.2016.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022]
|
38
|
Rinaldi F, Motti D, Ferraiuolo L, Kaspar BK. High content analysis in amyotrophic lateral sclerosis. Mol Cell Neurosci 2017; 80:180-191. [PMID: 27965018 PMCID: PMC5393940 DOI: 10.1016/j.mcn.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease characterized by the progressive loss of motor neurons. Neurons, astrocytes, oligodendrocytes and microglial cells all undergo pathological modifications in the onset and progression of ALS. A number of genes involved in the etiopathology of the disease have been identified, but a complete understanding of the molecular mechanisms of ALS has yet to be determined. Currently, people affected by ALS have a life expectancy of only two to five years from diagnosis. The search for a treatment has been slow and mostly unsuccessful, leaving patients in desperate need of better therapies. Until recently, most pre-clinical studies utilized the available ALS animal models. In the past years, the development of new protocols for isolation of patient cells and differentiation into relevant cell types has provided new tools to model ALS, potentially more relevant to the disease itself as they directly come from patients. The use of stem cells is showing promise to facilitate ALS research by expanding our understanding of the disease and help to identify potential new therapeutic targets and therapies to help patients. Advancements in high content analysis (HCA) have the power to contribute to move ALS research forward by combining automated image acquisition along with digital image analysis. With modern HCA machines it is possible, in a period of just a few hours, to observe changes in morphology and survival of cells, under the stimulation of hundreds, if not thousands of drugs and compounds. In this article, we will summarize the major molecular and cellular hallmarks of ALS, describe the advancements provided by the in vitro models developed in the last few years, and review the studies that have applied HCA to the ALS field to date.
Collapse
Affiliation(s)
- Federica Rinaldi
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Dario Motti
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura Ferraiuolo
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA; Department of Neuroscience, Sheffield Institute of Translational Neuroscience, University of Sheffield, UK
| | - Brian K Kaspar
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
39
|
Cooper DJ, Zunino G, Bixby JL, Lemmon VP. Phenotypic screening with primary neurons to identify drug targets for regeneration and degeneration. Mol Cell Neurosci 2017; 80:161-169. [PMID: 27444126 PMCID: PMC5243932 DOI: 10.1016/j.mcn.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/04/2016] [Accepted: 07/16/2016] [Indexed: 12/13/2022] Open
Abstract
High-throughput, target-based screening techniques have been utilized extensively for drug discovery in the past several decades. However, the need for more predictive in vitro models of in vivo disease states has generated a shift in strategy towards phenotype-based screens. Phenotype based screens are particularly valuable in studying complex conditions such as CNS injury and degenerative disease, as many factors can contribute to a specific cellular response. In this review, we will discuss different screening frameworks and their relative utility in examining mechanisms of neurodegeneration and axon regrowth, particularly in cell-based in vitro disease models.
Collapse
Affiliation(s)
- Daniel J. Cooper
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| | - Giulia Zunino
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| | - John L. Bixby
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
- Center for Computational Science, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| | - Vance P. Lemmon
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
- Center for Computational Science, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| |
Collapse
|
40
|
Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons. Sci Rep 2017; 7:43765. [PMID: 28256583 PMCID: PMC5335607 DOI: 10.1038/srep43765] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/23/2017] [Indexed: 12/17/2022] Open
Abstract
Gene regulatory networks underlie the long-term changes in cell specification, growth of synaptic connections, and adaptation that occur throughout neonatal and postnatal life. Here we show that the transcriptional response in neurons is exquisitely sensitive to the temporal nature of action potential firing patterns. Neurons were electrically stimulated with the same number of action potentials, but with different inter-burst intervals. We found that these subtle alterations in the timing of action potential firing differentially regulates hundreds of genes, across many functional categories, through the activation or repression of distinct transcriptional networks. Our results demonstrate that the transcriptional response in neurons to environmental stimuli, coded in the pattern of action potential firing, can be very sensitive to the temporal nature of action potential delivery rather than the intensity of stimulation or the total number of action potentials delivered. These data identify temporal kinetics of action potential firing as critical components regulating intracellular signalling pathways and gene expression in neurons to extracellular cues during early development and throughout life.
Collapse
|
41
|
Callif BL, Maunze B, Krueger NL, Simpson MT, Blackmore MG. The application of CRISPR technology to high content screening in primary neurons. Mol Cell Neurosci 2017; 80:170-179. [PMID: 28110021 DOI: 10.1016/j.mcn.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022] Open
Abstract
Axon growth is coordinated by multiple interacting proteins that remain incompletely characterized. High content screening (HCS), in which manipulation of candidate genes is combined with rapid image analysis of phenotypic effects, has emerged as a powerful technique to identify key regulators of axon outgrowth. Here we explore the utility of a genome editing approach referred to as CRISPR (Clustered Regularly Interspersed Palindromic Repeats) for knockout screening in primary neurons. In the CRISPR approach a DNA-cleaving Cas enzyme is guided to genomic target sequences by user-created guide RNA (sgRNA), where it initiates a double-stranded break that ultimately results in frameshift mutation and loss of protein production. Using electroporation of plasmid DNA that co-expresses Cas9 enzyme and sgRNA, we first verified the ability of CRISPR targeting to achieve protein-level knockdown in cultured postnatal cortical neurons. Targeted proteins included NeuN (RbFox3) and PTEN, a well-studied regulator of axon growth. Effective knockdown lagged at least four days behind transfection, but targeted proteins were eventually undetectable by immunohistochemistry in >80% of transfected cells. Consistent with this, anti-PTEN sgRNA produced no changes in neurite outgrowth when assessed three days post-transfection. When week-long cultures were replated, however, PTEN knockdown consistently increased neurite lengths. These CRISPR-mediated PTEN effects were achieved using multi-well transfection and automated phenotypic analysis, indicating the suitability of PTEN as a positive control for future CRISPR-based screening efforts. Combined, these data establish an example of CRISPR-mediated protein knockdown in primary cortical neurons and its compatibility with HCS workflows.
Collapse
Affiliation(s)
- Ben L Callif
- Department of Biomedical Sciences, Marquette University, 53201, USA
| | - Brian Maunze
- Department of Biomedical Sciences, Marquette University, 53201, USA
| | - Nick L Krueger
- Department of Biomedical Sciences, Marquette University, 53201, USA
| | | | | |
Collapse
|
42
|
Hsieh PN, Sweet DR, Fan L, Jain MK. Aging and the Krüppel-like factors. TRENDS IN CELL & MOLECULAR BIOLOGY 2017; 12:1-15. [PMID: 29416266 PMCID: PMC5798252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mammalian Krüppel-like factors (KLFs) are a family of zinc-finger containing transcription factors with diverse patterns of expression and a wide array of cellular functions. While their roles in mammalian physiology are well known, there is a growing appreciation for their roles in modulating the fundamental progression of aging. Here we review the current knowledge of Krüppel-like factors with a focus on their roles in processes regulating aging and age-associated diseases.
Collapse
Affiliation(s)
- Paishiun N. Hsieh
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - David R. Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Liyan Fan
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Mukesh K. Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
43
|
Wang Z, Winsor K, Nienhaus C, Hess E, Blackmore MG. Combined chondroitinase and KLF7 expression reduce net retraction of sensory and CST axons from sites of spinal injury. Neurobiol Dis 2016; 99:24-35. [PMID: 27988344 DOI: 10.1016/j.nbd.2016.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/02/2016] [Accepted: 12/13/2016] [Indexed: 11/26/2022] Open
Abstract
Axon regeneration in the central nervous system is limited both by inhibitory extracellular cues and by an intrinsically low capacity for axon growth in some CNS populations. Chondroitin sulfate proteoglycans (CSPGs) are well-studied inhibitors of axon growth in the CNS, and degradation of CSPGs by chondroitinase has been shown to improve the extension of injured axons. Alternatively, axon growth can be improved by targeting the neuron-intrinsic growth capacity through forced expression of regeneration-associated transcription factors. For example, a transcriptionally active chimera of Krüppel-like Factor 7 (KLF7) and a VP16 domain improves axon growth when expressed in corticospinal tract neurons. Here we tested the hypothesis that combined expression of chondroitinase and VP16-KLF7 would lead to further improvements in axon growth after spinal injury. Chondroitinase was expressed by viral transduction of cells in the spinal cord, while VP16-KLF7 was virally expressed in sensory neurons of the dorsal root ganglia or corticospinal tract (CST) neurons. After transection of the dorsal columns, both chondroitinase and VP16-KLF7 increased the proximity of severed sensory axons to the injury site. Similarly, after complete crush injuries, VP16-KLF7 expression increased the approach of CST axons to the injury site. In neither paradigm however, did single or combined treatment with chondroitinase or VP16-KLF7 enable regenerative growth distal to the injury. These results substantiate a role for CSPG inhibition and low KLF7 activity in determining the net retraction of axons from sites of spinal injury, while suggesting that additional factors act to limit a full regenerative response.
Collapse
Affiliation(s)
- Zimei Wang
- Department of Biomedical Sciences, Marquette University, 53201, USA
| | - Kristen Winsor
- Department of Biomedical Sciences, Marquette University, 53201, USA
| | | | - Evan Hess
- Department of Biomedical Sciences, Marquette University, 53201, USA
| | | |
Collapse
|
44
|
Venkatesh I, Simpson MT, Coley DM, Blackmore MG. Epigenetic profiling reveals a developmental decrease in promoter accessibility during cortical maturation in vivo. NEUROEPIGENETICS 2016; 8:19-26. [PMID: 27990351 PMCID: PMC5159751 DOI: 10.1016/j.nepig.2016.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axon regeneration in adult central nervous system (CNS) is limited in part by a developmental decline in the ability of injured neurons to re-express needed regeneration associated genes (RAGs). Adult CNS neurons may lack appropriate pro-regenerative transcription factors, or may display chromatin structure that restricts transcriptional access to RAGs. Here we performed epigenetic profiling around the promoter regions of key RAGs, and found progressive restriction across a time course of cortical maturation. These data identify a potential intrinsic constraint to axon growth in adult CNS neurons. Neurite outgrowth from cultured postnatal cortical neurons, however, proved insensitive to treatments that improve axon growth in other cell types, including combinatorial overexpression of AP1 factors, overexpression of histone acetyltransferases, and pharmacological inhibitors of histone deacetylases. This insensitivity could be due to intermediate chromatin closure at the time of culture, and highlights important differences in cell culture models used to test potential pro-regenerative interventions.
Collapse
Affiliation(s)
| | | | - Denise M. Coley
- Department of Biomedical Sciences, Marquette University, 53201
| | | |
Collapse
|
45
|
Yang M, Orgah J, Zhu J, Fan G, Han J, Wang X, Zhang B, Zhu Y. Danhong injection attenuates cardiac injury induced by ischemic and reperfused neuronal cells through regulating arginine vasopressin expression and secretion. Brain Res 2016; 1642:516-523. [PMID: 27107944 DOI: 10.1016/j.brainres.2016.04.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022]
Abstract
Ischemic stroke is associated with cardiac myocyte vulnerability through some unknown mechanisms. Arginine vasopressin (AVP) may exert considerable function in the relationship of brain damage and heart failure. Danhong injection (DHI) can protect both stroke and heart failure patients with good efficacy in clinics. The aim of this study is to investigate the mechanism of DHI in heart and brain co-protection effects to determine whether AVP plays key role in this course. In the present study, we found that both the supernatant from oxygen-glucose deprivation (OGD) and reperfused primary rat neuronal cells (PRNCs) and AVP treatment caused significant reduction in cell viability and mitochondrial activity in primary rat cardiac myocytes (RCMs). Besides, DHI had the same protective effects with conivaptan, a dual vasopressin V1A and V2 receptor antagonist, in reducing the RCM damage induced by overdose AVP. DHI significantly decreased the injury of both PRNCs and RCMs. Meanwhile, the AVP level was elevated dramatically in OGD and reperfusion PRNCs, and DHI was able to decrease the AVP expression in the injured PRNCs. Therefore, our present results suggested that OGD and reperfusion PRNCs might induce myocyte injury by elevating the AVP expression in PRNCs. The ability of DHI to reinstate AVP level may be one of the mechanisms of its brain and heart co-protection effects.
Collapse
Affiliation(s)
- Mingzhu Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, 220 Dongting Road, Tianjin 300457, China
| | - John Orgah
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, 220 Dongting Road, Tianjin 300457, China
| | - Jie Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, 220 Dongting Road, Tianjin 300457, China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Jihong Han
- State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin 300071, China
| | - Xiaoying Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, 220 Dongting Road, Tianjin 300457, China; Neuroscience Program, Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02135, USA
| | - Boli Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, 220 Dongting Road, Tianjin 300457, China; Molecular Cardiology Research Institute, Tufts Medical Center and Tufts University School of Medicine, 750 Washington Street, Boston, MA 02111, USA.
| |
Collapse
|
46
|
Mehta ST, Luo X, Park KK, Bixby JL, Lemmon VP. Hyperactivated Stat3 boosts axon regeneration in the CNS. Exp Neurol 2016; 280:115-20. [PMID: 27060489 DOI: 10.1016/j.expneurol.2016.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
Axonal regeneration after spinal cord injury (SCI) is intrinsically and extrinsically inhibited by multiple factors. One major factor contributing to intrinsic regeneration failure is the inability of mature neurons in the central nervous system (CNS) to activate regeneration-associated transcription factors (TFs) post-injury. A prior study identified TFs overexpressed in neurons of the peripheral nervous system (PNS) compared to the CNS; some of these could be involved in the ability of PNS neurons to regenerate. Of these, signal transducer and activator of transcription 3 (STAT3), as well its downstream regeneration-associated targets, showed a significant upregulation in PNS neurons relative to CNS neurons, and a constitutively active variant of Stat3 (Stat3CA) promoted neurite growth when expressed in cerebellar neurons (Lerch et al., 2012; Smith et al., 2011). To further enhance STAT3's neurite outgrowth enhancing activity, Stat3CA was fused with a viral activation domain (VP16). VP16 hyperactivates TFs by recruiting transcriptional co-factors to the DNA binding domain (Hirai et al., 2010). Overexpression of this VP16-Stat3CA chimera in primary cortical neurons led to a significant increase of neurite outgrowth as well as Stat3 transcriptional activity in vitro. Furthermore, in vivo transduction of retinal ganglion cells (RGCs) with AAV constructs expressing VP16-Stat3CA resulted in regeneration of optic nerve axons after injury, to a greater degree than for those expressing Stat3CA alone. These findings confirm and extend the concept that overexpression of hyperactivated transcription factors identified as functioning in PNS regeneration can promote axon regeneration in the CNS.
Collapse
Affiliation(s)
- Saloni T Mehta
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Xueting Luo
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, 200080, China.
| | - Kevin K Park
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - John L Bixby
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
47
|
Fink KL, Cafferty WBJ. Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury. Neurotherapeutics 2016; 13:370-81. [PMID: 26846379 PMCID: PMC4824020 DOI: 10.1007/s13311-016-0422-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neurons have a limited capacity to regenerate in the adult central nervous system (CNS). The inability of damaged axons to re-establish original circuits results in permanent functional impairment after spinal cord injury (SCI). Despite abortive regeneration of axotomized CNS neurons, limited spontaneous recovery of motor function emerges after partial SCI in humans and experimental rodent models of SCI. It is hypothesized that this spontaneous functional recovery is the result of the reorganization of descending motor pathways spared by the injury, suggesting that plasticity of intact circuits is a potent alternative conduit to enhance functional recovery after SCI. In support of this hypothesis, several studies have shown that after unilateral corticospinal tract (CST) lesion (unilateral pyramidotomy), the intact CST functionally sprouts into the denervated side of the spinal cord. Furthermore, pharmacologic and genetic methods that enhance the intrinsic growth capacity of adult neurons or block extracellular growth inhibitors are effective at significantly enhancing intact CST reorganization and recovery of motor function. Owing to its importance in controlling fine motor behavior in primates, the CST is the most widely studied descending motor pathway; however, additional studies in rodents have shown that plasticity within other spared descending motor pathways, including the rubrospinal tract, raphespinal tract, and reticulospinal tract, can also result in restoration of function after incomplete SCI. Identifying the molecular mechanisms that drive plasticity within intact circuits is crucial in developing novel, potent, and specific therapeutics to restore function after SCI. In this review we discuss the evidence supporting a focus on exploring the capacity of intact motor circuits to functionally repair the damaged CNS after SCI.
Collapse
Affiliation(s)
- Kathren L Fink
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - William B J Cafferty
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
48
|
Krishnan B, Scott MT, Pollandt S, Schroeder B, Kurosky A, Shinnick-Gallagher P. Fear potentiated startle increases phospholipase D (PLD) expression/activity and PLD-linked metabotropic glutamate receptor mediated post-tetanic potentiation in rat amygdala. Neurobiol Learn Mem 2016; 128:65-79. [PMID: 26748024 PMCID: PMC4744522 DOI: 10.1016/j.nlm.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/08/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022]
Abstract
Long-term memory (LTM) of fear stores activity dependent modifications that include changes in amygdala signaling. Previously, we identified an enhanced probability of release of glutamate mediated signaling to be important in rat fear potentiated startle (FPS), a well-established translational behavioral measure of fear. Here, we investigated short- and long-term synaptic plasticity in FPS involving metabotropic glutamate receptors (mGluRs) and associated downstream proteomic changes in the thalamic-lateral amygdala pathway (Th-LA). Aldolase A, an inhibitor of phospholipase D (PLD), expression was reduced, concurrent with significantly elevated PLD protein expression. Blocking the PLD-mGluR signaling significantly reduced PLD activity. While transmitter release probability increased in FPS, PLD-mGluR agonist and antagonist actions were occluded. In the unpaired group (UNP), blocking the PLD-mGluR increased while activating the receptor decreased transmitter release probability, consistent with decreased synaptic potentials during tetanic stimulation. FPS Post-tetanic potentiation (PTP) immediately following long-term potentiation (LTP) induction was significantly increased. Blocking PLD-mGluR signaling prevented PTP and reduced cumulative PTP probability but not LTP maintenance in both groups. These effects are similar to those mediated through mGluR7, which is co-immunoprecipitated with PLD in FPS. Lastly, blocking mGluR-PLD in the rat amygdala was sufficient to prevent behavioral expression of fear memory. Thus, our study in the Th-LA pathway provides the first evidence for PLD as an important target of mGluR signaling in amygdala fear-associated memory. Importantly, the PLD-mGluR provides a novel therapeutic target for treating maladaptive fear memories in posttraumatic stress and anxiety disorders.
Collapse
MESH Headings
- Amygdala/enzymology
- Amygdala/physiology
- Animals
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Cyclopropanes/pharmacology
- Electric Stimulation
- Excitatory Postsynaptic Potentials/drug effects
- Fear/drug effects
- Fear/physiology
- Fructose-Bisphosphate Aldolase/metabolism
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Long-Term Potentiation/drug effects
- Male
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Neural Pathways/drug effects
- Neural Pathways/physiology
- Phospholipase D/antagonists & inhibitors
- Phospholipase D/metabolism
- Phospholipase D/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Metabotropic Glutamate/agonists
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/physiology
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Thalamus/physiology
Collapse
Affiliation(s)
- Balaji Krishnan
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States; UTMB Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States.
| | - Michael T Scott
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sebastian Pollandt
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Bradley Schroeder
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Alexander Kurosky
- UTMB NHLBI Proteomics Center, Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | | |
Collapse
|
49
|
Al-Ali H, Beckerman SR, Bixby JL, Lemmon VP. In vitro models of axon regeneration. Exp Neurol 2016; 287:423-434. [PMID: 26826447 DOI: 10.1016/j.expneurol.2016.01.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 12/31/2022]
Abstract
A variety of in vitro models have been developed to understand the mechanisms underlying the regenerative failure of central nervous system (CNS) axons, and to guide pre-clinical development of regeneration-promoting therapeutics. These range from single-cell based assays that typically focus on molecular mechanisms to organotypic assays that aim to recapitulate in vivo behavior. By utilizing a combination of models, researchers can balance the speed, convenience, and mechanistic resolution of simpler models with the biological relevance of more complex models. This review will discuss a number of models that have been used to build our understanding of the molecular mechanisms of CNS axon regeneration.
Collapse
Affiliation(s)
- Hassan Al-Ali
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Samuel R Beckerman
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - John L Bixby
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
50
|
Abstract
UNLABELLED Understanding why adult CNS neurons fail to regenerate their axons following injury remains a central challenge of neuroscience research. A more complete appreciation of the biological mechanisms shaping the injured nervous system is a crucial prerequisite for the development of robust therapies to promote neural repair. Historically, the identification of regeneration associated signaling pathways has been impeded by the limitations of available genetic and molecular tools. As we progress into an era in which the high-throughput interrogation of gene expression is commonplace and our knowledge base of interactome data is rapidly expanding, we can now begin to assemble a more comprehensive view of the complex biology governing axon regeneration. Here, we highlight current and ongoing work featuring transcriptomic approaches toward the discovery of novel molecular mechanisms that can be manipulated to promote neural repair. SIGNIFICANCE STATEMENT Transcriptional profiling is a powerful technique with broad applications in the field of neuroscience. Recent advances such as single-cell transcriptomics, CNS cell type-specific and developmental stage-specific expression libraries are rapidly enhancing the power of transcriptomics for neuroscience applications. However, extracting biologically meaningful information from large transcriptomic datasets remains a formidable challenge. This mini-symposium will highlight current work using transcriptomic approaches to identify regulatory networks in the injured nervous system. We will discuss analytical strategies for transcriptomics data, the significance of noncoding RNA networks, and the utility of multiomic data integration. Though the studies featured here specifically focus on neural repair, the approaches highlighted in this mini-symposium will be of broad interest and utility to neuroscientists working in diverse areas of the field.
Collapse
|