1
|
Asahina R, Takahashi M, Takano H, Yao R, Abe M, Goshima Y, Ohshima T. The role of CRMP4 in LPS-induced neuroinflammation. Brain Res 2024:149094. [PMID: 38914219 DOI: 10.1016/j.brainres.2024.149094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Neuroinflammation has been gaining attention as one of the potential causes of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis in recent years. The suppression of excessive proinflammatory responses is expected to be a target for the treatment and prevention of neurodegenerative diseases. Collapsin response mediator protein 4 (CRMP4) is involved in cytoskeleton-associated axonal guidance in the developing brain. Recently, the involvement of CRMP4 in several pathological conditions, including inflammation induced by lipopolysaccharide (LPS), a widely used inflammatory molecule, has been reported. However, the role of CRMP4 in LPS-induced inflammation in vivo remains largely unknown. In this study, we generated microglia-specific CRMP4 knockout mice for the first time and examined the role of CRMP4 in an LPS-induced brain inflammation model. We found that microglia after LPS injection in substantia nigra was significantly reduced in Crmp4-/- mice compared to Crmp4+/+mice. The increased expression of IL-10 in striatum samples was downregulated in Crmp4-/- mice. A significant reduction in Iba1 expression was also observed in microglia-specific Crmp4 knockout mice compared with that in control mice. In contrast, the expression of IL-10 did not change in these mice, whereas arginase 1 (Arg1) expression was significantly suppressed. These results demonstrate the involvement of CRMP4 in LPS-induced inflammation in vivo, that CRMP4 suppresses microglial proliferation in a cell-autonomous manner.
Collapse
Affiliation(s)
- Ryo Asahina
- Departent of Life Science and Medical Bioscience, Waseda University, Japan
| | - Miyuki Takahashi
- Departent of Life Science and Medical Bioscience, Waseda University, Japan
| | - Hiroshi Takano
- Department of Cell Biology, The Cancer Institute of JFCR, Japan
| | - Ryoji Yao
- Department of Cell Biology, The Cancer Institute of JFCR, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Toshio Ohshima
- Departent of Life Science and Medical Bioscience, Waseda University, Japan.
| |
Collapse
|
2
|
Yang R, Zhang Y, Kang J, Zhang C, Ning B. Chondroitin Sulfate Proteoglycans Revisited: Its Mechanism of Generation and Action for Spinal Cord Injury. Aging Dis 2024; 15:153-168. [PMID: 37307832 PMCID: PMC10796098 DOI: 10.14336/ad.2023.0512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/12/2023] [Indexed: 06/14/2023] Open
Abstract
Reactive astrocytes (RAs) produce chondroitin sulfate proteoglycans (CSPGs) in large quantities after spinal cord injury (SCI) and inhibit axon regeneration through the Rho-associated protein kinase (ROCK) pathway. However, the mechanism of producing CSPGs by RAs and their roles in other aspects are often overlooked. In recent years, novel generation mechanisms and functions of CSPGs have gradually emerged. Extracellular traps (ETs), a new recently discovered phenomenon in SCI, can promote secondary injury. ETs are released by neutrophils and microglia, which activate astrocytes to produce CSPGs after SCI. CSPGs inhibit axon regeneration and play an important role in regulating inflammation as well as cell migration and differentiation; some of these regulations are beneficial. The current review summarized the process of ET-activated RAs to generate CSPGs at the cellular signaling pathway level. Moreover, the roles of CSPGs in inhibiting axon regeneration, regulating inflammation, and regulating cell migration and differentiation were discussed. Finally, based on the above process, novel potential therapeutic targets were proposed to eliminate the adverse effects of CSPGs.
Collapse
Affiliation(s)
- Rui Yang
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jianning Kang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ce Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bin Ning
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
3
|
Hu J, Shangguan J, Askar P, Xu J, Sun H, Zhou S, Zhu C, Su W, Gu Y. Decellularization alters the unfavorable regenerative adverse microenvironment of the injured spinal cord to support neurite outgrowth. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:934. [PMID: 36172103 PMCID: PMC9511201 DOI: 10.21037/atm-22-3969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022]
Abstract
Background Acellular tissue has been transplanted into the injury site as an external microenvironment to intervene with imbalance microenvironment that occurs after spinal cord injury (SCI) and stimulating axonal regeneration, although the mechanism is unclear. Given decellularization is the key means to obtain acellular tissues, we speculated changes in the internal components of tissue caused by decellularization may be the key reason why acellular tissues affect remodeling of the microenvironment. Methods Complete spinal cord crush in a mouse model was established, and the dynamic of extracellular matrix (ECM) expression and distribution during SCI was studied with immunohistochemistry (IHC). Normal spinal cord (NSC) and 14-day injury spinal cord (ISC) were obtained to prepare the decellularized NSC (DNSC) and decellularized ISC (DISC) through a well-designed decellularization method, and the decellularization effects were evaluated by residual DNA content determination, hematoxylin and eosin staining (H&E), and IHC. Rat dorsal root ganglia (DRG) were co-cultured with NSC, ISC, DNSC, and DISC to evaluate their effect on neurite outgrowth. Furthermore, the mechanisms by which decellularized tissue promotes axonal growth were explored with proteomics analysis of the protein components and function of 14-day ISC and DISC. Results We found the expression of the four main ECM components (collagen type I and IV, fibronectin, and laminin) gradually increased with the progression of SCI compared to NSC, peaking at 14 days of injury then slightly decreasing at 21 days, and the distribution of the four ECM proteins in the ISC also changed dynamically. H&E staining, residual DNA content determination, and IHC showed decellularization removed cellular components and preserved an intact ECM. The results of co-cultured DRG with NSCs, ISCs, DNSCs, and DISCs showed DNSCs and DISCs had a stronger ability in supporting neurite outgrowth than NSC and ISC. We found through proteomics that decellularization could remove proteins associated with inflammatory responses, scarring, and other pathological factors, while completely retaining the ECM proteins. Conclusions Taken together, our findings demonstrate decellularization can optimize the imbalanced microenvironment after SCI by removing components that inhibit spinal cord regeneration, providing a theoretical basis for clinical application of acellular tissue transplantation to repair SCI.
Collapse
Affiliation(s)
- Junxia Hu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jianghong Shangguan
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Parizat Askar
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jinghui Xu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Hualin Sun
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Changlai Zhu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Wenfeng Su
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
4
|
Chu YH, Liao WC, Ho YJ, Huang CH, Tseng TJ, Liu CH. Targeting Chondroitin Sulfate Reduces Invasiveness of Glioma Cells by Suppressing CD44 and Integrin β1 Expression. Cells 2021; 10:3594. [PMID: 34944101 PMCID: PMC8700349 DOI: 10.3390/cells10123594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022] Open
Abstract
Chondroitin sulfate (CS) is a major component of the extracellular matrix found to be abnormally accumulated in several types of cancer tissues. Previous studies have indicated that CS synthases and modification enzymes are frequently elevated in human gliomas and are associated with poor prognosis. However, the underlying mechanisms of CS in cancer progression and approaches for interrupting its functions in cancer cells remain largely unexplored. Here, we have found that CS was significantly enriched surrounding the vasculature in a subset of glioma tissues, which was akin to the perivascular niche for cancer-initiating cells. Silencing or overexpression of the major CS synthase, chondroitin sulfate synthase 1 (CHSY1), significantly regulated the glioma cell invasive phenotypes and modulated integrin expression. Furthermore, we identified CD44 as a crucial chondroitin sulfate proteoglycan (CSPG) that was modified by CHSY1 on glioma cells, and the suppression of CS formation on CD44 by silencing the CHSY1-inhibited interaction between CD44 and integrin β1 on the adhesion complex. Moreover, we tested the CS-specific binding peptide, resulting in the suppression of glioma cell mobility in a fashion similar to that observed upon the silencing of CHSY1. In addition, the peptide demonstrated significant affinity to CD44, promoted CD44 degradation, and suppressed integrin β1 expression in glioma cells. Overall, this study proposes a potential regulatory loop between CS, CD44, and integrin β1 in glioma cells, and highlights the importance of CS in CD44 stability. Furthermore, the targeting of CS by specific binding peptides has potential as a novel therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Yin-Hung Chu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-H.C.); (W.-C.L.); (C.-H.H.); (T.-J.T.)
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-H.C.); (W.-C.L.); (C.-H.H.); (T.-J.T.)
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University, Taichung 402306, Taiwan;
| | - Chih-Hsien Huang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-H.C.); (W.-C.L.); (C.-H.H.); (T.-J.T.)
| | - To-Jung Tseng
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-H.C.); (W.-C.L.); (C.-H.H.); (T.-J.T.)
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-H.C.); (W.-C.L.); (C.-H.H.); (T.-J.T.)
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| |
Collapse
|
5
|
Sami A, Selzer ME, Li S. Advances in the Signaling Pathways Downstream of Glial-Scar Axon Growth Inhibitors. Front Cell Neurosci 2020; 14:174. [PMID: 32714150 PMCID: PMC7346763 DOI: 10.3389/fncel.2020.00174] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Axon growth inhibitors generated by reactive glial scars play an important role in failure of axon regeneration after CNS injury in mature mammals. Among the inhibitory factors, chondroitin sulfate proteoglycans (CSPGs) are potent suppressors of axon regeneration and are important molecular targets for designing effective therapies for traumatic brain injury or spinal cord injury (SCI). CSPGs bind with high affinity to several transmembrane receptors, including two members of the leukocyte common antigen related (LAR) subfamily of receptor protein tyrosine phosphatases (RPTPs). Recent studies demonstrate that multiple intracellular signaling pathways downstream of these two RPTPs mediate the growth-inhibitory actions of CSPGs. A better understanding of these signaling pathways may facilitate development of new and effective therapies for CNS disorders characterized by axonal disconnections. This review will focus on recent advances in the downstream signaling pathways of scar-mediated inhibition and their potential as the molecular targets for CNS repair.
Collapse
Affiliation(s)
- Armin Sami
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Nakamura F, Ohshima T, Goshima Y. Collapsin Response Mediator Proteins: Their Biological Functions and Pathophysiology in Neuronal Development and Regeneration. Front Cell Neurosci 2020; 14:188. [PMID: 32655376 PMCID: PMC7325199 DOI: 10.3389/fncel.2020.00188] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs), which consist of five homologous cytosolic proteins, are one of the major phosphoproteins in the developing nervous system. The prominent feature of the CRMP family proteins is a new class of microtubule-associated proteins that play important roles in the whole process of developing the nervous system, such as axon guidance, synapse maturation, cell migration, and even in adult brain function. The CRMP C-terminal region is subjected to posttranslational modifications such as phosphorylation, which, in turn, regulates the interaction between the CRMPs and various kinds of proteins including receptors, ion channels, cytoskeletal proteins, and motor proteins. The gene-knockout of the CRMP family proteins produces different phenotypes, thereby showing distinct roles of all CRMP family proteins. Also, the phenotypic analysis of a non-phosphorylated form of CRMP2-knockin mouse model, and studies of pharmacological responses to CRMP-related drugs suggest that the phosphorylation/dephosphorylation process plays a pivotal role in pathophysiology in neuronal development, regeneration, and neurodegenerative disorders, thus showing CRMPs as promising target molecules for therapeutic intervention.
Collapse
Affiliation(s)
- Fumio Nakamura
- Department of Biochemistry, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
7
|
Girouard MP, Simas T, Hua L, Morquette B, Khazaei MR, Unsain N, Johnstone AD, Rambaldi I, Sanz RL, Di Raddo ME, Gamage KK, Yong Y, Willis DE, Verge VMK, Barker PA, Deppmann C, Fournier AE. Collapsin Response Mediator Protein 4 (CRMP4) Facilitates Wallerian Degeneration and Axon Regeneration following Sciatic Nerve Injury. eNeuro 2020; 7:ENEURO.0479-19.2020. [PMID: 32001550 PMCID: PMC7053045 DOI: 10.1523/eneuro.0479-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/29/2022] Open
Abstract
In contrast to neurons in the CNS, damaged neurons from the peripheral nervous system (PNS) regenerate, but this process can be slow and imperfect. Successful regeneration is orchestrated by cytoskeletal reorganization at the tip of the proximal axon segment and cytoskeletal disassembly of the distal segment. Collapsin response mediator protein 4 (CRMP4) is a cytosolic phospho-protein that regulates the actin and microtubule cytoskeleton. During development, CRMP4 promotes growth cone formation and dendrite development. Paradoxically, in the adult CNS, CRMP4 impedes axon regeneration. Here, we investigated the involvement of CRMP4 in peripheral nerve injury in male and female Crmp4-/- mice following sciatic nerve injury. We find that sensory axon regeneration and Wallerian degeneration are impaired in Crmp4-/- mice following sciatic nerve injury. In vitro analysis of dissociated dorsal root ganglion (DRG) neurons from Crmp4-/- mice revealed that CRMP4 functions in the proximal axon segment to promote the regrowth of severed DRG neurons and in the distal axon segment where it facilitates Wallerian degeneration through calpain-dependent formation of harmful CRMP4 fragments. These findings reveal an interesting dual role for CRMP4 in proximal and distal axon segments of injured sensory neurons that coordinately facilitate PNS axon regeneration.
Collapse
Affiliation(s)
- Marie-Pier Girouard
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Tristan Simas
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Luyang Hua
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Barbara Morquette
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Mohamad R Khazaei
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Nicolas Unsain
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 5016 Córdoba, Argentina
| | - Aaron D Johnstone
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Isabel Rambaldi
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Ricardo L Sanz
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | | | - Kanchana K Gamage
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903
| | - Yu Yong
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903
| | - Dianna E Willis
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
- Burke Institute, Weill Cornell Medicine, White Plains, New York 10605
| | - Valerie M K Verge
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan-CMSNRC, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Philip A Barker
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | | | - Alyson E Fournier
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| |
Collapse
|
8
|
Moutal A, White KA, Chefdeville A, Laufmann RN, Vitiello PF, Feinstein D, Weimer JM, Khanna R. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions. Mol Neurobiol 2019; 56:6736-6755. [PMID: 30915713 PMCID: PMC6728212 DOI: 10.1007/s12035-019-1568-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are a family of ubiquitously expressed, homologous phosphoproteins best known for coordinating cytoskeletal formation and regulating cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. These functions are tightly regulated by post-translational modifications including phosphorylation, SUMOylation, oxidation, and O-GlcNAcylation. While CRMP2's physiological functions rely mostly on its non-phosphorylated state, dysregulation of CRMP2 phosphorylation and SUMOylation has been reported to be involved in the pathophysiology of multiple diseases including cancer, chronic pain, spinal cord injury, neurofibromatosis type 1, and others. Here, we provide a consolidated update on what is known about CRMP2 signaling and function, first focusing on axonal growth and neuronal polarity, then illustrating the link between dysregulated CRMP2 post-translational modifications and diseases. We additionally discuss the roles of CRMP2 in non-neuronal cells, both in the CNS and regions of the periphery. Finally, we offer thoughts on the therapeutic implications of modulating CRMP2 function in a variety of diseases.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Rachel N Laufmann
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Peter F Vitiello
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Douglas Feinstein
- Department of Veterans Affairs, Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jill M Weimer
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA.
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA.
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
9
|
Wang C, Gong Z, Huang X, Wang J, Xia K, Ying L, Shu J, Yu C, Zhou X, Li F, Liang C, Chen Q. An injectable heparin-Laponite hydrogel bridge FGF4 for spinal cord injury by stabilizing microtubule and improving mitochondrial function. Am J Cancer Res 2019; 9:7016-7032. [PMID: 31660084 PMCID: PMC6815951 DOI: 10.7150/thno.37601] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale: Spinal cord injury (SCI) remains a critical clinical challenge. The controlled release of FGF4, a novel neuroprotective factor, from a versatile Laponite hydrogel to the injured site was a promising strategy to promote axon regeneration and motor functional recovery after SCI. Methods: Characterization of Laponite, Laponite/Heparin (Lap/Hep) and Laponite/Heparin loaded with FGF4 (Lap/Hep@FGF4) hydrogels were measured by rheometer. Multiple comprehensive evaluations were used to detect motor functional recovery and the axonal rehabilitation after Lap/Hep@FGF4 treatment in vivo (SCI rat model). Moreover, microtubule dynamic and energy transportation, which regulated axonal regeneration was evaluated by Lap/Hep@FGF4 gel in vitro (primary neuron). Results: FGF4 released from Lap/Hep gel locally achieves strong protection and regeneration after SCI. The Lap/Hep@FGF4 group revealed remarkable motor functional recovery and axonal regrowth after SCI through suppressing inflammatory reaction, increasing remyelination and reducing glial/fibrotic scars. Furthermore, the underlying mechanism of axonal rehabilitation were demonstrated via enhancing microtubule stability and regulating mitochondrial localization after Lap/Hep@FGF4 treatment. Conclusion: This promising sustained release system provides a synergistic effective approach to enhance recovery after SCI underlying a novel mechanism of axonal rehabilitation, and shows a translational prospect for the clinical treatment of SCI.
Collapse
|
10
|
Plexina2 and CRMP2 Signaling Complex Is Activated by Nogo-A-Liganded Ngr1 to Restrict Corticospinal Axon Sprouting after Trauma. J Neurosci 2019; 39:3204-3216. [PMID: 30804090 DOI: 10.1523/jneurosci.2996-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/17/2019] [Indexed: 01/01/2023] Open
Abstract
After brain or spinal cord trauma, interaction of Nogo-A with neuronal NgR1 limits regenerative axonal sprouting and functional recovery. Cellular signaling by lipid-anchored NgR1 requires a coreceptor but the relevant partner in vivo is not clear. Here, we examined proteins enriched in NgR1 immunoprecipitates by Nogo-A exposure, identifying CRMP2, a cytosolic protein implicated in axon growth inhibition by Semaphorin/Plexin complexes. The Nogo-A-induced association of NgR1 with CRMP2 requires PlexinA2 as a coreceptor. Non-neuronal cells expressing both NgR1 and PlexinA2, but not either protein alone, contract upon Nogo-A exposure. Inhibition of cortical axon regeneration by Nogo-A depends on a NgR1/PlexinA2 genetic interaction because double-heterozygous NgR1+/-, PlexinA2+/- neurons, but not single-heterozygote neurons, are rescued from Nogo-A inhibition. NgR1 and PlexinA2 also interact genetically in vivo to restrict corticospinal sprouting in mouse cervical spinal cord after unilateral pyramidotomy. Greater post-injury sprouting in NgR1+/-, PlexinA2+/- mice supports enhanced neurological recovery of a mixed female and male double-heterozygous cohort. Thus, a NgR1/PlexinA2/CRMP2 ternary complex limits neural repair after adult mammalian CNS trauma.SIGNIFICANCE STATEMENT Several decades of molecular research have suggested that developmental regulation of axon growth is distinct in most regards from titration of axonal regenerative growth after adult CNS trauma. Among adult CNS pathways, the oligodendrocyte Nogo-A inhibition of growth through NgR1 is thought to have little molecular relationship to axonal guidance mechanisms active embryonically. Here, biochemical analysis of NgR1 function uncovered a physical complex with CRMP cytoplasmic mediators, and this led to appreciation of a role for PlexinA2 in concert with NgR1 after adult trauma. The data extend molecular understanding of neural repair after CNS trauma and link it to developmental processes.
Collapse
|
11
|
Wang Q, Zhang H, Xu H, Zhao Y, Li Z, Li J, Wang H, Zhuge D, Guo X, Xu H, Jones S, Li X, Jia X, Xiao J. Novel multi-drug delivery hydrogel using scar-homing liposomes improves spinal cord injury repair. Am J Cancer Res 2018; 8:4429-4446. [PMID: 30214630 PMCID: PMC6134929 DOI: 10.7150/thno.26717] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022] Open
Abstract
Proper selection and effective delivery of combination drugs targeting multiple pathophysiological pathways key to spinal cord injury (SCI) hold promise to address the thus far scarce clinical therapeutics for improving recovery after SCI. In this study, we aim to develop a clinically feasible way for targeted delivery of multiple drugs with different physiochemical properties to the SCI site, detail the underlying mechanism of neural recovery, and detect any synergistic effect related to combination therapy. Methods: Liposomes (LIP) modified with a scar-targeted tetrapeptide (cysteine-alanine-glutamine-lysine, CAQK) were first constructed to simultaneously encapsulate docetaxel (DTX) and brain-derived neurotrophic factor (BDNF) and then were further added into a thermosensitive heparin-modified poloxamer hydrogel (HP) with affinity-bound acidic fibroblast growth factor (aFGF-HP) for local administration into the SCI site (CAQK-LIP-GFs/DTX@HP) in a rat model. In vivo fluorescence imaging was used to examine the specificity of CAQK-LIP-GFs/DTX binding to the injured site. Multiple comprehensive evaluations including biotin dextran amine anterograde tracing and magnetic resonance imaging were used to detect any synergistic effects and the underlying mechanisms of CAQK-LIP-GFs/DTX@HP both in vivo (rat SCI model) and in vitro (primary neuron). Results: The multiple drugs were effectively delivered to the injured site. The combined application of GFs and DTX supported neuro-regeneration by improving neuronal survival and plasticity, rendering a more permissive extracellular matrix environment with improved regeneration potential. In addition, our combination therapy promoted axonal regeneration via moderation of microtubule function and mitochondrial transport along the regenerating axon. Conclusion: This novel multifunctional therapeutic strategy with a scar-homing delivery system may offer promising translational prospects for the clinical treatment of SCI.
Collapse
|
12
|
Tsutiya A, Nakano Y, Hansen-Kiss E, Kelly B, Nishihara M, Goshima Y, Corsmeier D, White P, Herman GE, Ohtani-Kaneko R. Human CRMP4 mutation and disrupted Crmp4 expression in mice are associated with ASD characteristics and sexual dimorphism. Sci Rep 2017; 7:16812. [PMID: 29196732 PMCID: PMC5711804 DOI: 10.1038/s41598-017-16782-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 11/17/2017] [Indexed: 01/09/2023] Open
Abstract
Autism spectrum disorders (ASD) are more common among boys than girls. The mechanisms responsible for ASD symptoms and their sex differences remain mostly unclear. We previously identified collapsin response mediator protein 4 (CRMP4) as a protein exhibiting sex-different expression during sexual differentiation of the hypothalamic sexually dimorphic nucleus. This study investigated the relationship between the sex-different development of autistic features and CRMP4 deficiency. Whole-exome sequencing detected a de novo variant (S541Y) of CRMP4 in a male ASD patient. The expression of mutated mouse CRMP4 S540Y, which is homologous to human CRMP4 S541Y, in cultured hippocampal neurons derived from Crmp4-knockout (KO) mice had increased dendritic branching, compared to those transfected with wild-type (WT) Crmp4, indicating that this mutation results in altered CRMP4 function in neurons. Crmp4-KO mice showed decreased social interaction and several alterations of sensory responses. Most of these changes were more severe in male Crmp4-KO mice than in females. The mRNA expression levels of some genes related to neurotransmission and cell adhesion were altered in the brain of Crmp4-KO mice, mostly in a gender-dependent manner. These results indicate a functional link between a case-specific, rare variant of one gene, Crmp4, and several characteristics of ASD, including sexual differences.
Collapse
Affiliation(s)
- Atsuhiro Tsutiya
- Institute of Life Innovation Studies, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Yui Nakano
- Graduate School of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Emily Hansen-Kiss
- The Institute for Genomic Medicine, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, 43205, USA
| | - Benjamin Kelly
- The Institute for Genomic Medicine, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, 43205, USA
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa Ward, Yokohama, 236-0004, Japan
| | - Don Corsmeier
- The Institute for Genomic Medicine, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, 43205, USA
| | - Peter White
- The Institute for Genomic Medicine, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, 43205, USA
| | - Gail E Herman
- The Institute for Genomic Medicine, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, 43205, USA
| | - Ritsuko Ohtani-Kaneko
- Institute of Life Innovation Studies, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan.
- Graduate School of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan.
- Research Center for Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan.
| |
Collapse
|
13
|
Neuronal-Glial Interactions Maintain Chronic Neuropathic Pain after Spinal Cord Injury. Neural Plast 2017; 2017:2480689. [PMID: 28951789 PMCID: PMC5603132 DOI: 10.1155/2017/2480689] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 02/01/2023] Open
Abstract
The hyperactive state of sensory neurons in the spinal cord enhances pain transmission. Spinal glial cells have also been implicated in enhanced excitability of spinal dorsal horn neurons, resulting in pain amplification and distortions. Traumatic injuries of the neural system such as spinal cord injury (SCI) induce neuronal hyperactivity and glial activation, causing maladaptive synaptic plasticity in the spinal cord. Recent studies demonstrate that SCI causes persistent glial activation with concomitant neuronal hyperactivity, thus providing the substrate for central neuropathic pain. Hyperactive sensory neurons and activated glial cells increase intracellular and extracellular glutamate, neuropeptides, adenosine triphosphates, proinflammatory cytokines, and reactive oxygen species concentrations, all of which enhance pain transmission. In addition, hyperactive sensory neurons and glial cells overexpress receptors and ion channels that maintain this enhanced pain transmission. Therefore, post-SCI neuronal-glial interactions create maladaptive synaptic circuits and activate intracellular signaling events that permanently contribute to enhanced neuropathic pain. In this review, we describe how hyperactivity of sensory neurons contributes to the maintenance of chronic neuropathic pain via neuronal-glial interactions following SCI.
Collapse
|
14
|
Takaya R, Nagai J, Piao W, Niisato E, Nakabayashi T, Yamazaki Y, Nakamura F, Yamashita N, Kolattukudy P, Goshima Y, Ohshima T. CRMP1 and CRMP4 are required for proper orientation of dendrites of cerebral pyramidal neurons in the developing mouse brain. Brain Res 2017; 1655:161-167. [PMID: 27836492 DOI: 10.1016/j.brainres.2016.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 11/25/2022]
Abstract
Neural circuit formation is a critical process in brain development. Axon guidance molecules, their receptors, and intracellular mediators are important to establish neural circuits. Collapsin response mediator proteins (CRMPs) are known intercellular mediators of a number of repulsive guidance molecules. Studies of mutant mice suggest roles of CRMPs in dendrite development. However, molecular mechanisms of CRMP-mediated dendritic development remain to elucidate. In this study, we show abnormal orientation of basal dendrites (extension to deeper side) of layer V pyramidal neurons in the cerebral cortex of CRMP4-/- mice. Moreover, we observed severe abnormality in orientation of the basal dendrites of these neurons in double knockout of CRMP1 and 4, suggesting redundant functions of these two genes. Redundant gene functions were also observed in proximal bifurcation phenotype in apical dendrites of hippocampal CA1 pyramidal neurons. These results indicate that CRMP1 and CRMP4 regulate proper orientation of the basal dendrites of layer V neurons in the cerebral cortex.
Collapse
Affiliation(s)
- Ryosuke Takaya
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Jun Nagai
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan
| | - Wenfui Piao
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Emi Niisato
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Takeru Nakabayashi
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuki Yamazaki
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Fumio Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Naoya Yamashita
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Papachan Kolattukudy
- Biomolecular Science Center, University of Central Florida, Biomolecular Science, Orlando, FL 32816, USA
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
15
|
Nagai J, Baba R, Ohshima T. CRMPs Function in Neurons and Glial Cells: Potential Therapeutic Targets for Neurodegenerative Diseases and CNS Injury. Mol Neurobiol 2016; 54:4243-4256. [PMID: 27339876 DOI: 10.1007/s12035-016-0005-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
Neurodegeneration in the adult mammalian central nervous system (CNS) is fundamentally accelerated by its intrinsic neuronal mechanisms, including its poor regenerative capacity and potent extrinsic inhibitory factors. Thus, the treatment of neurodegenerative diseases faces many obstacles. The degenerative processes, consisting of axonal/dendritic structural disruption, abnormal axonal transport, release of extracellular factors, and inflammation, are often controlled by the cytoskeleton. From this perspective, regulators of the cytoskeleton could potentially be a therapeutic target for neurodegenerative diseases and CNS injury. Collapsin response mediator proteins (CRMPs) are known to regulate the assembly of cytoskeletal proteins in neurons, as well as control axonal growth and neural circuit formation. Recent studies have provided some novel insights into the roles of CRMPs in several inhibitory signaling pathways of neurodegeneration, in addition to its functions in neurological disorders and CNS repair. Here, we summarize the roles of CRMPs in axon regeneration and its emerging functions in non-neuronal cells, especially in inflammatory responses. We also discuss the direct and indirect targeting of CRMPs as a novel therapeutic strategy for neurological diseases.
Collapse
Affiliation(s)
- Jun Nagai
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho Shinjuku-ku, Tokyo, 162-8480, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Rina Baba
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|