1
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
2
|
Hussein HA, Nazir MS, Azra N, Qamar Z, Seeni A, Tengku Din TADAA, Abdullah MA. Novel Drug and Gene Delivery System and Imaging Agent Based on Marine Diatom Biosilica Nanoparticles. Mar Drugs 2022; 20:480. [PMID: 36005484 PMCID: PMC9410069 DOI: 10.3390/md20080480] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) have great potential for applications as a drug delivery system (DDS) due to their unique properties such as large pore size, high surface area, biocompatibility, biodegradability, and stable aqueous dispersion. The MSN-mediated DDS can carry chemotherapeutic agents, optical sensors, photothermal agents, short interfering RNA (siRNA), and gene therapeutic agents. The MSN-assisted imaging techniques are applicable in cancer diagnosis. However, their synthesis via a chemical route requires toxic chemicals and is challenging, time-consuming, and energy-intensive, making the process expensive and non-viable. Fortunately, nature has provided a viable alternative material in the form of biosilica from marine resources. In this review, the applications of biosilica nanoparticles synthesized from marine diatoms in the field of drug delivery, biosensing, imaging agents, and regenerative medicine, are highlighted. Insights into the use of biosilica in the field of DDSs are elaborated, with a focus on different strategies to improve the physico-chemical properties with regards to drug loading and release efficiency, targeted delivery, and site-specific binding capacity by surface functionalization. The limitations, as well as the future scope to develop them as potential drug delivery vehicles and imaging agents, in the overall therapeutic management, are discussed.
Collapse
Affiliation(s)
| | - Muhammad Shahid Nazir
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Punjab, Pakistan; (M.S.N.); (N.A.); (Z.Q.)
| | - Nizakat Azra
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Punjab, Pakistan; (M.S.N.); (N.A.); (Z.Q.)
| | - Zeenat Qamar
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Punjab, Pakistan; (M.S.N.); (N.A.); (Z.Q.)
| | - Azman Seeni
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam Campus, Kepala Batas 13050, Malaysia;
| | | | - Mohd Azmuddin Abdullah
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam Campus, Kepala Batas 13050, Malaysia;
- SIBCo Medical and Pharmaceuticals Sdn. Bhd., No. 2, Level 5, Jalan Tengku Ampuan Zabedah, D9/D, Seksyen 9, Shah Alam 40000, Malaysia
| |
Collapse
|
3
|
Antimicrobial Resistance and Inorganic Nanoparticles. Int J Mol Sci 2021; 22:ijms222312890. [PMID: 34884695 PMCID: PMC8657868 DOI: 10.3390/ijms222312890] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/10/2023] Open
Abstract
Antibiotics are being less effective, which leads to high mortality in patients with infections and a high cost for the recovery of health, and the projections that are had for the future are not very encouraging which has led to consider antimicrobial resistance as a global health problem and to be the object of study by researchers. Although resistance to antibiotics occurs naturally, its appearance and spread have been increasing rapidly due to the inappropriate use of antibiotics in recent decades. A bacterium becomes resistant due to the transfer of genes encoding antibiotic resistance. Bacteria constantly mutate; therefore, their defense mechanisms mutate, as well. Nanotechnology plays a key role in antimicrobial resistance due to materials modified at the nanometer scale, allowing large numbers of molecules to assemble to have a dynamic interface. These nanomaterials act as carriers, and their design is mainly focused on introducing the temporal and spatial release of the payload of antibiotics. In addition, they generate new antimicrobial modalities for the bacteria, which are not capable of protecting themselves. So, nanoparticles are an adjunct mechanism to improve drug potency by reducing overall antibiotic exposure. These nanostructures can overcome cell barriers and deliver antibiotics to the cytoplasm to inhibit bacteria. This work aims to give a general vision between the antibiotics, the nanoparticles used as carriers, bacteria resistance, and the possible mechanisms that occur between them.
Collapse
|
4
|
Gupta A, Pandey S, Yadav JS. A Review on Recent Trends in Green Synthesis of Gold Nanoparticles for Tuberculosis. Adv Pharm Bull 2020; 11:10-27. [PMID: 33747849 PMCID: PMC7961233 DOI: 10.34172/apb.2021.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/04/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) is a contagious disease that has affected mankind. The anti-TB treatment has been used from ancient times to control symptoms of this disease but these medications produced some serious side effects. Herbal products have been successfully used for the treatment of TB. Gold is the most biocompatible metal among all available for biomedical purposes so Gold nanoparticles (GNPs) have sought attention as an attractive biosynthesized drug to be studied in recent years for bioscience research. GNPs are used as better catalysts and due to unique small size, physical resemblance to physiological molecules, biocompatibility and non-cytotoxicity extensively used for various applications including drug and gene delivery. Greenly synthesized GNPs have much more potential in different fields because phytoconstituents used in GNP synthesis itself act as reducing and capping agents and produced more stabilized GNPs. This review is devoted to a discussion on GNPs synthesis with herbs for TB. The main focus is on the role of the natural plant bio-molecules involved in the bioreduction of metal salts during the GNPs synthesis with phytoconstituents used as antitubercular agents.
Collapse
Affiliation(s)
- Arti Gupta
- Uka Tarsadia University, Maliba Pharmacy College, Gopal Vidhya Nagar, Bardoli, Gujarat, India
| | - Sonia Pandey
- Uka Tarsadia University, Maliba Pharmacy College, Gopal Vidhya Nagar, Bardoli, Gujarat, India
| | | |
Collapse
|
5
|
Senthilkumar P, Surendran L, Sudhagar B, Ranjith Santhosh Kumar DS. Facile green synthesis of gold nanoparticles from marine algae Gelidiella acerosa and evaluation of its biological Potential. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0284-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Shobha N, Nanda N, Giresha AS, Manjappa P, P S, Dharmappa KK, Nagabhushana BM. Synthesis and characterization of Zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:842-850. [PMID: 30678976 DOI: 10.1016/j.msec.2018.12.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/25/2018] [Accepted: 12/08/2018] [Indexed: 01/25/2023]
Abstract
ZnO nanoparticles have been synthesized using solution combustion technique and its antioxidant, antifungal, anticancer activity was studied. Ricinus communis plant seed extract used as fuel in synthesis by the solution combustion technique. Powder X-ray diffraction (PXRD) demonstrates the arrangement of a crystalline hexagonal stage (ICDD card number 89-1397) with space aggregate P63mc (186) and cell parameters a = b = 3.253, c = 5.213 Å. The normal crystallite measure is 20 nm which is ascertained by Debye - Scherer's formula. The Purity of the sample and metal to oxygen bond development was affirmed by utilizing Fourier transformation infrared (FTIR) spectroscopy and the particle size and shape was confirmed by HRTEM. Antifungal action of ZnO NPs was studied against Aspergillus and Penicillium by well dispersion strategy. The antifungal activity shows that ZnO NPs constitute as an effective fungicidal agent against both Aspergillus (4 ± 0.5 mm) and Penicillium (3 mm ± 0.4 mm) at 30 μg/mL fixation. ZnO nanoparticles were subjected to antioxidant activity. The objective of the study was to analyze the anticancer property of ZnO NPs on MDA-MB 231 cancer cells. To check the efficacy of the synthesized drug ZnO NPs MTT assay was performed, that determines % viability and/or cytotoxicity. IC50 of ZnO NPs in case of MDA-MB-231 breast cancer was 7.103 μg/mL. Anticancer outcome demonstrates that ZnO NPs is active against in MDA-MB-231 cells.
Collapse
Affiliation(s)
- N Shobha
- Department of Chemistry, Maharanis' Science College for Women, Bangalore, Karnataka, 560 001, India; Department Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka, 572 103, India; Department of Chemistry, BMS Engineering college, BMS Academy of Science and Research, Bull temple Road, Bangalore, 560 019, India.
| | - N Nanda
- Department of Chemistry, BMS Engineering college, BMS Academy of Science and Research, Bull temple Road, Bangalore, 560 019, India; Department of Chemistry, BMS College for Women, Bangalore, Karnataka, 560 004, India
| | | | - Praveen Manjappa
- Department of Chemistry, MSRIT, Bangalore, Karnataka, 560 054, India
| | - Sophiya P
- Department of Biochemistry, P.G-Centre, Mangalore University, Kodagu, Karnataka, 571 232, India
| | - K K Dharmappa
- Department of Biochemistry, P.G-Centre, Mangalore University, Kodagu, Karnataka, 571 232, India
| | - B M Nagabhushana
- Department of Chemistry, MSRIT, Bangalore, Karnataka, 560 054, India
| |
Collapse
|
7
|
Mohamed MM, Fouad SA, Elshoky HA, Mohammed GM, Salaheldin TA. Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int J Vet Sci Med 2017; 5:23-29. [PMID: 30255044 PMCID: PMC6137858 DOI: 10.1016/j.ijvsm.2017.02.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/03/2017] [Accepted: 02/13/2017] [Indexed: 01/02/2023] Open
Abstract
Corynebacterium pseudotuberculosis is the etiological agent of chronic caseous lymphadenitis. The bacterium infects goats and sheep causing great economic loss worldwide annually. The present work aims to evaluate the efficiency of gold nanoparticles (AuNPs) and AuNPs – laser combined therapy as antibacterial approaches against C. pseudotuberculosis bacteria in vitro. Gold nanoparticles 25 nm were synthesized by co-precipitation method and characterized by different techniques including; Transmission Electron Microscope (TEM), X-ray Diffraction and Dynamic Light Scattering. Three concentrations of AuNPs (50, 100 and 200 μg/mL) were utilized for estimating the bacterial growth rate and the Minimum Inhibitory Concentration (MIC). The mechanism of interaction between AuNPs and bacteria was evaluated by transmission electron microscopic image analysis. Confocal Laser Scanning Microscopic technique was used to study the cytotoxic action of AuNPs and laser against C. psudotuberculosis. Results revealed that MIC of AuNPs and AuNPs – laser combined therapy were 200 μg/mL and 100 μg/mL respectively. TEM image analysis illustrated that gold nanoparticles penetrated the thick wall of C. psudotuberculosis and accumulated as intracellular agglomerates. Laser light enhanced the antimicrobial activity of gold nanoparticles by at least one fold due to its photo thermal combined effect that might be used as an effective antibacterial approach against C. pseudotuberculosis.
Collapse
Affiliation(s)
- Marwah M Mohamed
- Department of Bacterial Diagnostic Products, Veterinary Serum and Vaccine Research Institute, Egypt
| | - Shereen A Fouad
- Department of Bacterial Diagnostic Products, Veterinary Serum and Vaccine Research Institute, Egypt
| | - Hisham A Elshoky
- Nanotechnology and Advanced Material Central Lab, Agriculture Research Center, Egypt
| | - Gina M Mohammed
- Central Laboratory for Evaluation Veterinary Biologics, Agriculture Research Center, Egypt
| | - Taher A Salaheldin
- Nanotechnology and Advanced Material Central Lab, Agriculture Research Center, Egypt.,Mostafa Elsayed Nanotechnology Research Centre, British University in Egypt, Egypt
| |
Collapse
|
8
|
Salaheldin TA, Husseiny SM, Al-Enizi AM, Elzatahry A, Cowley AH. Evaluation of the Cytotoxic Behavior of Fungal Extracellular Synthesized Ag Nanoparticles Using Confocal Laser Scanning Microscope. Int J Mol Sci 2016; 17:329. [PMID: 26950118 PMCID: PMC4813191 DOI: 10.3390/ijms17030329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 11/25/2022] Open
Abstract
Silver nanoparticles have been synthesized by subjecting a reaction medium to a Fusarium oxysporum biomass at 28 °C for 96 h. The biosynthesized Ag nanoparticles were characterized on the basis of their anticipated peak at 405 nm using UV-Vis-NIR spectroscopy. Structural confirmation was evident from the characteristic X-ray diffraction (XRD) pattern, high-resolution transmission electron Microscopy (HRTEM) and the particle size analyzer. The Ag nanoparticles were of dimension 40 ± 5 nm and spherical in shape. The study mainly focused on using the confocal laser scanning microscope (CLSM) to examine the cytotoxic activities of fungal synthesized Ag nanoparticles on a human breast carcinoma cell line MCF7 cell, which featured remarkable vacuolation, thus indicating a potent cytotoxic activity.
Collapse
Affiliation(s)
- Taher A Salaheldin
- Nanotechnology and Advanced Materials Central Lab, Agriculture Research Center, PO Box 588 Orman, Giza 12619, Egypt.
| | - Sherif M Husseiny
- Faculty of Women for Art, Science & Education, Ain Shams University, PO Box 11757 Alkurba, Cairo 11341, Egypt.
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ahmed Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar.
| | - Alan H Cowley
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
9
|
Wang SJ, Chen CS, Chen LC. Prussian blue nanoparticles as nanocargoes for delivering DNA drugs to cancer cells. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2013; 14:044405. [PMID: 27877590 PMCID: PMC5090316 DOI: 10.1088/1468-6996/14/4/044405] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/17/2013] [Indexed: 05/22/2023]
Abstract
We studied the use of Prussian blue nanoparticles (PBNPs) as novel nanocarriers for sending DNA drugs into cancer cells. 11-mercaptoundecanoic acid (MUA) was used to functionalize the surfaces of PBNPs (nanocubes with an average dimension of 75 nm) for subsequent covalent grafting of a 33-mer DNA drug with a FAM reporter at the 3' end. The PBNPs synthesis and DNA drug conjugation were characterized by transmission electron microscopy (TEM) and Fourier-transform infrared absorption (FTIR), respectively. The drug was a decoy oligodeoxynucleotide (dODN) that inhibits the signal transducer and activator of transcription 3 (STAT3). The DNA-PBNPs drug (dODN@MUA-PBNPs) was delivered into human prostate carcinoma 22rv1 cells by endocytosis in vitro as confirmed by confocal fluorescence microscopy. MTT cell viability assays were carried out to assess the effect of the DNA-PBNPs drug. The results showed that the dODN molecules were successfully conjugated to the MUA modified PBNPs via amide and/or disulfide bond formation and could thus be successfully delivered into the cancer cells. The control experiments showed that the unconjugated dODN molecules were not able to enter the cancer cells no matter whether non-functionalized PBNPs were present or not. It was also found that the DNA-PBNPs drugs were internalized and then distributed homogeneously throughout the cell, including cytoplasmic and nucleic regions, after endocytosis. The cancer cell-killing ability increased with the amount of dODN conjugated on PBNPs and the dosage of DNA-PBNPs drug internalized.
Collapse
Affiliation(s)
| | | | - Lin-Chi Chen
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan, Republic of China
| |
Collapse
|
10
|
Application of nanomedicine in emergency medicine; Point-of-care testing and drug delivery in twenty - first century. ACTA ACUST UNITED AC 2012; 20:26. [PMID: 23351236 PMCID: PMC3555769 DOI: 10.1186/2008-2231-20-26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 01/25/2023]
Abstract
Abstract The application of emerging nanotechnology to the practice of medicine represents a frontier of nanomedicine. Nanomedicine has been defined as a science which emphasizes the use of nanoscale tools in conjunction with background knowledge of the human body for medical diagnosis and treatment. Application of nanomedicine in EM may give EM providers the opportunity to diagnose and treat life-threatening diseases in a shorter period of time. These applications include diagnostic utilities, preventive medicine, targeted pharmacotherapy, and tissue regeneration.
Collapse
|
11
|
Borcan F, Soica CM, Ganta S, Amiji MM, Dehelean CA, Munteanu MF. Synthesis and preliminary in vivo evaluations of polyurethane microstructures for transdermal drug delivery. Chem Cent J 2012; 6:87. [PMID: 22892194 PMCID: PMC3483215 DOI: 10.1186/1752-153x-6-87] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/02/2012] [Indexed: 11/16/2022] Open
Abstract
Background Polymers have been considered as important materials in fabrication of microstructures for various medical purposes including drug delivery. This study evaluates polyurethane as material for hollow microstructures preparation. Results Polyurethane microstructures were obtained by interfacial polyaddition combined with spontaneous emulsification and present slightly acid pH values. Scanning electron microscopy revealed the existence of irregular shapes and agglomerated microstructures. The material is heat resistant up to 280°C. Good results were recorded on murine skin tests in case of polyurethane microstructures based on isophorone diisocyanate. Mesenchymal stem cells viability presents good results for the same sample after 48 hours based on the Alamar Blue test. Conclusions The research revealed the reduced noxiousness of this type of microstructures and consequently the possibility of their use for therapeutic purposes.
Collapse
Affiliation(s)
- Florin Borcan
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd E, Murgu Sq,, Timisoara, 300041, Romania.
| | | | | | | | | | | |
Collapse
|
12
|
Mikael P, Wallace J, Nukavarapu S. Nanotubes for tissue engineering. Nanomedicine (Lond) 2012. [DOI: 10.1533/9780857096449.3.460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Sakamoto JH, van de Ven AL, Godin B, Blanco E, Serda RE, Grattoni A, Ziemys A, Bouamrani A, Hu T, Ranganathan SI, De Rosa E, Martinez JO, Smid CA, Buchanan RM, Lee SY, Srinivasan S, Landry M, Meyn A, Tasciotti E, Liu X, Decuzzi P, Ferrari M. Enabling individualized therapy through nanotechnology. Pharmacol Res 2010; 62:57-89. [PMID: 20045055 DOI: 10.1016/j.phrs.2009.12.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 12/21/2009] [Indexed: 12/13/2022]
Abstract
Individualized medicine is the healthcare strategy that rebukes the idiomatic dogma of 'losing sight of the forest for the trees'. We are entering a new era of healthcare where it is no longer acceptable to develop and market a drug that is effective for only 80% of the patient population. The emergence of "-omic" technologies (e.g. genomics, transcriptomics, proteomics, metabolomics) and advances in systems biology are magnifying the deficiencies of standardized therapy, which often provide little treatment latitude for accommodating patient physiologic idiosyncrasies. A personalized approach to medicine is not a novel concept. Ever since the scientific community began unraveling the mysteries of the genome, the promise of discarding generic treatment regimens in favor of patient-specific therapies became more feasible and realistic. One of the major scientific impediments of this movement towards personalized medicine has been the need for technological enablement. Nanotechnology is projected to play a critical role in patient-specific therapy; however, this transition will depend heavily upon the evolutionary development of a systems biology approach to clinical medicine based upon "-omic" technology analysis and integration. This manuscript provides a forward looking assessment of the promise of nanomedicine as it pertains to individualized medicine and establishes a technology "snapshot" of the current state of nano-based products over a vast array of clinical indications and range of patient specificity. Other issues such as market driven hurdles and regulatory compliance reform are anticipated to "self-correct" in accordance to scientific advancement and healthcare demand. These peripheral, non-scientific concerns are not addressed at length in this manuscript; however they do exist, and their impact to the paradigm shifting healthcare transformation towards individualized medicine will be critical for its success.
Collapse
Affiliation(s)
- Jason H Sakamoto
- The University of Texas Health Science Center, Department of Nanomedicine and Biomedical Engineering, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jain KK. Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract 2008; 17:89-101. [PMID: 18287791 DOI: 10.1159/000112961] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 09/16/2007] [Indexed: 01/06/2023] Open
Abstract
Nanomedicine is the application of nanobiotechnologies to medicine. This article starts with the basics of nanobiotechnology, followed by its applications in molecular diagnostics, nanodiagnostics, and improvements in the discovery, design and delivery of drugs, including nanopharmaceuticals. It will improve biological therapies such as vaccination, cell therapy and gene therapy. Nanobiotechnology forms the basis of many new devices being developed for medicine and surgery such as nanorobots. It has applications in practically every branch of medicine and examples are presented of those concerning cancer (nanooncology), neurological disorders (nanoneurology), cardiovascular disorders (nanocardiology), diseases of bones and joints (nanoorthopedics), diseases of the eye (nanoophthalmology), and infectious diseases. Safety issues of in vivo use of nanomaterials are also discussed. Nanobiotechnology will facilitate the integration of diagnostics with therapeutics and facilitate the development of personalized medicine, i.e. prescription of specific therapeutics best suited for an individual. Many of the developments have already started and within a decade a definite impact will be felt in the practice of medicine.
Collapse
Affiliation(s)
- K K Jain
- PharmaBiotech, Basel, Switzerland.
| |
Collapse
|