1
|
Shi H, Zeng B, Wei Q, Yuan Z, Peng J, Zhang P, Liu T, Zeng T. Immuno-PCR: A high-sensitivity approach for biomarker analysis. Clin Chim Acta 2025; 573:120289. [PMID: 40209974 DOI: 10.1016/j.cca.2025.120289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
The integration of immunology and molecular biology, Immuno-Polymerase Chain Reaction, ie, Immuno-PCR, (iPCR), is an innovative cutting-edge detection strategy that holds significant promise for the identification of pathophysiologic biomarkers present at very low concentration or those inherently unstable. iPCR, known for superior sensitivity and specificity, has proven valuable in early disease diagnosis, monitoring and prognosis. This review summarizes the current applications of iPCR in detecting various disease biomarkers including those related to cancer, infection, autoimmune, cardiovascular, and neurological disease. We introduce the principle, advantages and limitations, specific applications, and clinical significance of iPCR, thereby promoting the widespread application of this technology in disease diagnosis. This technology facilitates early detection and intervention, enhances patient outcomes and survival rates, and is a valuable reference for future research and applications.
Collapse
Affiliation(s)
- Hansen Shi
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Biyun Zeng
- School of Medical Technology, Guangdong Medical University, Dongguan 523808 Guangdong, China
| | - Qiping Wei
- Department of Medical Laboratory, Guangzhou Yuehai Hospital, Guangzhou, Guangdong, China
| | - Zhu Yuan
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingjie Peng
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Peijun Zhang
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China; Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Tao Zeng
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
2
|
Radomirović M, Gligorijević N, Rajković A. Immuno-PCR in the Analysis of Food Contaminants. Int J Mol Sci 2025; 26:3091. [PMID: 40243808 PMCID: PMC11988550 DOI: 10.3390/ijms26073091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Food safety is a significant issue of global concern. Consumer safety and government regulations drive the need for the accurate analysis of food contaminants, residues and other chemical constituents of concern. Traditional methods for the detection of food contaminants often present challenges, including lengthy processing times and food matrix interference; they often require expensive equipment, skilled personnel or have limitations in sensitivity or specificity. Developing novel analytical methods that are sensitive, specific, accurate and rapid is therefore crucial for ensuring food safety and the protection of consumers. The immuno-polymerase chain reaction (IPCR) method offers a promising solution in the analysis of food contaminants by combining the specificity of conventional immunological methods with the exponential sensitivity of PCR amplification. This review evaluates the current state of IPCR methods, describes a variety of existing IPCR formats and explores their application in the analysis of food contaminants, including pathogenic bacteria and their toxins, viruses, mycotoxins, allergens, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, phthalic acid esters, pesticides, antibiotics and other food contaminants. Depending on the type of analyte, either sandwich or competitive format IPCR methods are predominantly used. This review also examines limitations of current IPCR methods and explores potential advancements for future implementation in the field of food safety.
Collapse
Affiliation(s)
- Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade—Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Center for Chemistry, University of Belgrade—Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Andreja Rajković
- Ghent University, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Campus Coupure, Coupure Links 653, 9000 Ghent, Belgium
- Ghent University Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Republic of Korea
- University of Belgrade—Faculty of Agriculture, Department of Food Safety and Quality Management, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
3
|
Zhang X, Diao Z, Ma H, Xie X, Wang Y, Liu X, Yuan X, Zhu F. Multi-class organic pollutants in PM 2.5 in mixed area of Shanghai: Levels, sources and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166352. [PMID: 37598962 DOI: 10.1016/j.scitotenv.2023.166352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
The occurrence of 25 multi-class pollutants comprising phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), and synthetic musks (SMs) were studied in PM2.5 samples collected at an industrial/commercial/residential/traffic mixed area in Shanghai during four seasons. During the whole period, a slight exceedance of the PM2.5 annual limit was observed, with an average of 36.8 μg/m3, and PAEs were the most predominant, accounting for >70 % of the studied organic pollutants in PM2.5, followed by PAHs and SMs. Statistically significant differences were observed for the concentrations of PM2.5, PAEs, PAHs, and SMs in winter and summer. This seasonal variation could be derived from anthropogenic activities and atmospheric dynamics. Principal component analysis (PCA) and PAHs ratios suggested a mixed source mainly derived from vehicle emissions and industrial processes. Moreover, gaseous pollutants were also accounted for, indicating the emission of PAHs might accompany the NO2 emission process. Finally, inhalation of PM2.5-bound organic pollutants for carcinogenic and non-carcinogenic risks were estimated as average values for each season, showing outside the safe levels in autumn and winter in some cases, suggesting that new policies should be to developed to reduce their emissions and protect human health in this area.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Zishan Diao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Hui Ma
- Minhang Environmental Monitoring Station of Shanghai, Shanghai 201199, PR China; Environmental Monitoring Station of Pudong New District, Shanghai 200135, PR China
| | - Xiaomin Xie
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Ying Wang
- Minhang Environmental Monitoring Station of Shanghai, Shanghai 201199, PR China
| | - Xinyu Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Fanping Zhu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
4
|
Chuang KJ, Dong MR, Laishram P, Hong GB. Colorimetric Detection of Acenaphthene and Naphthalene Using Functionalized Gold Nanoparticles. Int J Mol Sci 2023; 24:ijms24076635. [PMID: 37047607 PMCID: PMC10095492 DOI: 10.3390/ijms24076635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Polycyclic aromatic hydrocarbons are a class of chemicals that occur naturally. They generally demonstrate a high degree of critical toxicity towards humans. Acenaphthene and naphthalene contain compounds that are commonly found in the environment as compared to other PAHs. Consequently, a reliable method of detecting PAHs is crucial for the monitoring of water quality. A colorimetric method based on sodium nitrite-functionalized gold nanoparticles was developed in this study for acenaphthene and naphthalene detection. Different functionalized parameters are determined for the optimization of assay conditions. A linear relationship was found in the analyte concentration range of 0.1–10 ppm with the limit of detection for acenaphthene and naphthalene being 0.046 ppm and 0.0015 ppm, respectively, under the optimized assay conditions. The method’s recovery rate for actual samples falls within the range of 98.4–103.0%. In selective and anti-interference tests, the presence of cations and anions has minimal impact on the detection of the analyte. The colorimetric detection method proposed in this study effectively determines the presence of the analyte in real water samples and has a high recovery rate.
Collapse
Affiliation(s)
- Kai-Jen Chuang
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Meng-Ru Dong
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Purnima Laishram
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Gui-Bing Hong
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| |
Collapse
|
5
|
Methodological aspects of Universal immuno-PCR on standard tubes. Anal Biochem 2019; 570:56-61. [DOI: 10.1016/j.ab.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 11/20/2022]
|
6
|
Abud JE, Santamaría CG, Luque EH, Rodriguez HA. Development of a quantitative immuno-polymerase chain reaction assay to detect and quantify low levels of human thyroid stimulating hormone. Anal Biochem 2017; 539:134-143. [PMID: 29111317 DOI: 10.1016/j.ab.2017.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
Abstract
In the present study, we developed both a conventional enzyme-linked immunosorbent assay (ELISA) and a highly sensitive immuno-polymerase chain reaction (IPCR) assay specific for detection of human thyroid stimulating hormone (hTSH). Several anti-hTSH monoclonal antibodies (MAbs) were generated using hybridoma technology. Two pairs of MAbs (B-4 and B-9) were rationally selected and the optimal assay conditions of sandwich ELISAs were established. The ELISA prototypes were evaluated with standards calibrated with WHO 2nd International Reference Preparation for hTSH and in comparison with a commercial ELISA Kit. Although the limit of detection (LOD) was 0.1 μIU/ml in all cases, B-9-ELISA showed an analytical performance similar to commercial ELISA Kit. Therefore, we selected the B-9 ELISA to develop a hTSH-IPCR assay applying an "Universal-IPCR" format in standard PCR tubes without pretreatment. The signal amplification was achieved through the interaction between the biotinylated detection MAb and mono-biotinylated DNA probe pre-self-assembled with neutravidin. The hTSH-IPCR assay showed a significant increase in terms of the slope definition of sensitivity in low levels range. Our results support the potential of IPCR technique for being applied in clinical diagnosis of thyroid states.
Collapse
Affiliation(s)
- J E Abud
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Ciudad Universitaria, Paraje El Pozo s/n, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - C G Santamaría
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Ciudad Universitaria, Paraje El Pozo s/n, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - E H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Ciudad Universitaria, Paraje El Pozo s/n, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - H A Rodriguez
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Ciudad Universitaria, Paraje El Pozo s/n, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina.
| |
Collapse
|
7
|
Abud JE, Luque EH, Ramos JG, Rodriguez HA. Production of monoclonal antibodies and development of a quantitative immuno-polymerase chain reaction assay to detect and quantify recombinant Glutathione S-transferase. Protein Expr Purif 2017; 135:16-23. [PMID: 28458052 DOI: 10.1016/j.pep.2017.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 12/26/2022]
Abstract
GST-tagged proteins are important tools for the production of recombinant proteins. Removal of GST tag from its fusion protein, frequently by harsh chemical treatments or proteolytic methods, is often required. Thus, the monitoring of the proteins in tag-free form requires a significant effort to determine the remnants of GST during purification process. In the present study, we developed both a conventional enzyme-linked immunosorbent assay (ELISA) and an immuno-polymerase chain reaction (IPCR) assay, both specific for detection of recombinant GST (rGST). rGST was expressed in Escherichia coli JM109, using a pGEX4T-3 vector, and several anti-rGST monoclonal antibodies were generated using hybridoma technology. Two of these were rationally selected as capture and detection antibodies, allowing the development of a sandwich ELISA with a limit of detection (LOD) of 0.01 μg/ml. To develop the rGST-IPCR assay, we selected "Universal-IPCR" format, comprising the biotin-avidin binding as the coupling system. In addition, the rGST-IPCR was developed in standard PCR tubes, and the surface adsorption of antibodies on PCR tubes, the optimal neutravidin concentrations, the generation of a reporter DNA and the concentration effect were studied and determined. Under optimized assay conditions, the rGST-IPCR assay provided a 100-fold increase in the LOD as well as an expanded working range, in comparison with rGST-ELISA. The proposed method exhibited great potentiality for application in several fields in which measurement of very low levels of GST is necessary, and might provide a model for other IPCR assays.
Collapse
Affiliation(s)
- J E Abud
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Ciudad Universitaria, Paraje El Pozo s/n, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - E H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Ciudad Universitaria, Paraje El Pozo s/n, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - J G Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Ciudad Universitaria, Paraje El Pozo s/n, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - H A Rodriguez
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Ciudad Universitaria, Paraje El Pozo s/n, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina.
| |
Collapse
|
8
|
Anti-idiotypic VHH phage display-mediated immuno-PCR for ultrasensitive determination of mycotoxin zearalenone in cereals. Talanta 2016; 147:410-5. [DOI: 10.1016/j.talanta.2015.09.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 01/17/2023]
|
9
|
Chen Y, Zhu Z, Yu Y. Novel methodologies in analysis of small molecule biomarkers and living cells. Tumour Biol 2014; 35:9469-77. [PMID: 25119591 DOI: 10.1007/s13277-014-2439-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/04/2014] [Indexed: 12/28/2022] Open
Abstract
Enzyme-linked immuno-sorbent assay (ELISA) is widely used for biomarker detection. A good biomarker can distinguish patients from healthy or benign diseases. However, the ELISA method is not suitable for small molecule or trace substance detection. Along with the development of new technologies, an increasing level of biomaterials, especially small molecules, will be identified as novel biomarkers. Quantitative immuno-PCR, chromatography-mass spectrometry, and nucleic acid aptamer are emerging methodologies for detection of small molecule biomarkers, even in living cells. In this review, we focus on these novel technologies and their potential for small molecule biomarkers and living cell analysis.
Collapse
Affiliation(s)
- Yinan Chen
- Department of Surgery, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Ruijin er Road, No. 197, 200025, Shanghai, China
| | | | | |
Collapse
|
10
|
Nong RY, Gu J, Darmanis S, Kamali-Moghaddam M, Landegren U. DNA-assisted protein detection technologies. Expert Rev Proteomics 2014; 9:21-32. [DOI: 10.1586/epr.11.78] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
CdTe Nanoparticles Labeled with Anti-Fluorethene Antibody and Fluorescent Immunoassay of Fluoranthene in Water Samples. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.3724/sp.j.1096.2010.00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Amperometric Immunosensor Based on Layer-by-layer Assembly of Thiourea and Nano-gold Particles on Gold Electrode for Determination of Naphthalene. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.3724/sp.j.1096.2010.00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
YE QY, ZHUANG HS, WANG QE, ZHANG JY, ZHOU C. Fluorescent Immunoassay of Fluoranthene in Water Samples with CdTe Nanoparticles Labeled with Anti-fluorethene-antibody. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1016/s1872-2040(09)60031-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
ZHANG Y, ZHUANG HS. Amperometric Immunosensor Based on Layer-by-layer Assembly of Thiourea and Nano-gold Particles on Gold Electrode for Determination of Naphthalene. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1016/s1872-2040(09)60021-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Ye Q, Zhuang H, Zhou C, Wang Q. Real-time fluorescent quantitative immuno-PCR method for determination of fluoranthene in water samples with a molecular beacon. J Environ Sci (China) 2010; 22:796-800. [PMID: 20608519 DOI: 10.1016/s1001-0742(09)60179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A reliable and sensitive competitive real-time fluorescent quantitative immuno-PCR (RTFQ-IPCR) assay using a molecular beacon was developed for the determination of trace fluoranthene (FL) in the environment. Under optimized assay conditions, FL can be determined in the concentration range from 1 fg/mL to 100 ng/mL, withy = 0.194x + 7.859, and a correlation coefficient of 0.967 was identified, with a detection limit of 0.6 fg/mL. Environmental water samples were successfully analyzed, recovery was between 90% and 116%, with intra-day relative standard deviation (RSD) of 6.7%-12.8% and inter-day RSD of 8.4%-15.2%. The results obtained from RTFQ-IPCR were confirmed by ELISA, showing good accuracy and suitability to analyze FL in field samples. As a highly sensitive method, the molecular beacon-based RTFQ-IPCR is acceptable and promising for providing reliable test results to make environmental decisions.
Collapse
Affiliation(s)
- Qiyan Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | | | | | | |
Collapse
|