1
|
Pir MS, Begar E, Yenisert F, Demirci HC, Korkmaz ME, Karaman A, Tsiropoulou S, Firat-Karalar EN, Blacque OE, Oner SS, Doluca O, Cevik S, Kaplan OI. CilioGenics: an integrated method and database for predicting novel ciliary genes. Nucleic Acids Res 2024; 52:8127-8145. [PMID: 38989623 DOI: 10.1093/nar/gkae554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024] Open
Abstract
Uncovering the full list of human ciliary genes holds enormous promise for the diagnosis of cilia-related human diseases, collectively known as ciliopathies. Currently, genetic diagnoses of many ciliopathies remain incomplete (1-3). While various independent approaches theoretically have the potential to reveal the entire list of ciliary genes, approximately 30% of the genes on the ciliary gene list still stand as ciliary candidates (4,5). These methods, however, have mainly relied on a single strategy to uncover ciliary candidate genes, making the categorization challenging due to variations in quality and distinct capabilities demonstrated by different methodologies. Here, we develop a method called CilioGenics that combines several methodologies (single-cell RNA sequencing, protein-protein interactions (PPIs), comparative genomics, transcription factor (TF) network analysis, and text mining) to predict the ciliary capacity of each human gene. Our combined approach provides a CilioGenics score for every human gene that represents the probability that it will become a ciliary gene. Compared to methods that rely on a single method, CilioGenics performs better in its capacity to predict ciliary genes. Our top 500 gene list includes 258 new ciliary candidates, with 31 validated experimentally by us and others. Users may explore the whole list of human genes and CilioGenics scores on the CilioGenics database (https://ciliogenics.com/).
Collapse
Affiliation(s)
- Mustafa S Pir
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Efe Begar
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Ferhan Yenisert
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Hasan C Demirci
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Mustafa E Korkmaz
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Asli Karaman
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), 34700 Istanbul, Turkiye
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
- School of Medicine, Koç University, Istanbul 34450, Turkiye
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sukru S Oner
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), 34700 Istanbul, Turkiye
- Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkiye
| | - Osman Doluca
- Izmir University of Economics, Faculty of Engineering, Department of Biomedical Engineering, Izmir, Turkiye
| | - Sebiha Cevik
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Oktay I Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| |
Collapse
|
2
|
Khan S, Focșa IO, Budișteanu M, Stoica C, Nedelea F, Bohîlțea L, Caba L, Butnariu L, Pânzaru M, Rusu C, Jurcă C, Chirita-Emandi A, Bănescu C, Abbas W, Sadeghpour A, Baig SM, Bălgrădean M, Davis EE. Exome sequencing in a Romanian Bardet-Biedl syndrome cohort revealed an overabundance of causal BBS12 variants. Am J Med Genet A 2023; 191:2376-2391. [PMID: 37293956 PMCID: PMC10524726 DOI: 10.1002/ajmg.a.63322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Bardet-Biedl syndrome (BBS), is an emblematic ciliopathy hallmarked by pleiotropy, phenotype variability, and extensive genetic heterogeneity. BBS is a rare (~1/140,000 to ~1/160,000 in Europe) autosomal recessive pediatric disorder characterized by retinal degeneration, truncal obesity, polydactyly, cognitive impairment, renal dysfunction, and hypogonadism. Twenty-eight genes involved in ciliary structure or function have been implicated in BBS, and explain the molecular basis for ~75%-80% of individuals. To investigate the mutational spectrum of BBS in Romania, we ascertained a cohort of 24 individuals in 23 families. Following informed consent, we performed proband exome sequencing (ES). We detected 17 different putative disease-causing single nucleotide variants or small insertion-deletions and two pathogenic exon disruptive copy number variants in known BBS genes in 17 pedigrees. The most frequently impacted genes were BBS12 (35%), followed by BBS4, BBS7, and BBS10 (9% each) and BBS1, BBS2, and BBS5 (4% each). Homozygous BBS12 p.Arg355* variants were present in seven pedigrees of both Eastern European and Romani origin. Our data show that although the diagnostic rate of BBS in Romania is likely consistent with other worldwide cohorts (74%), we observed a unique distribution of causal BBS genes, including overrepresentation of BBS12 due to a recurrent nonsense variant, that has implications for regional diagnostics.
Collapse
Affiliation(s)
- Sheraz Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Human Molecular Genetics Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ina Ofelia Focșa
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Cytogenomic Medical Laboratory, Bucharest, Romania
| | - Magdalena Budișteanu
- Psychiatry Research Laboratory, "Prof. Dr. Alexandru Obregia" Clinical Hospital of Psychiatry, Bucharest, Romania
- Medical Genetic Laboratory, "Victor Babeș" National Institute of Pathology, Bucharest, Romania
- Department of Medical Genetics, Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| | - Cristina Stoica
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Pediatrics, Clinical Institute Fundeni, Bucharest, Romania
| | - Florina Nedelea
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Genetics Department, Clinical Hospital Filantropia, Bucharest, Romania
| | | | - Lavinia Caba
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Lăcrămioara Butnariu
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Monica Pânzaru
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Cristina Rusu
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Claudia Jurcă
- Department of Genetics, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Department of Pediatrics, "Dr. Gavril Curteanu" Municipal Clinical Hospital, Oradea, Romania
| | - Adela Chirita-Emandi
- Emergency Hospital for Children Louis Turcanu, Regional Center of Medical Genetics Timis, Timisoara, Romania
- Victor Babes University of Medicine and Pharmacy Timisoara, Department of Microscopic Morphology Genetics, Center for Genomic Medicine, Timisoara, Romania
| | - Claudia Bănescu
- "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, Târgu Mureş, Romania
| | - Wasim Abbas
- Human Molecular Genetics Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Azita Sadeghpour
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
- Duke Precision Medicine Program, Department of Medicine, Division of General Internal Medicine, Duke University Medical Center, Durham, NC, USA
| | - Shahid Mahmood Baig
- Pakistan Science Foundation (PSF), Islamabad, Pakistan
- Department of Biological and Biomedical Sciences, Agha Khan University Karachi, Karachi, Pakistan
| | - Mihaela Bălgrădean
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children "Maria Skłodowska Curie", Bucharest, Romania
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Claus LR, Snoek R, Knoers NVAM, van Eerde AM. Review of genetic testing in kidney disease patients: Diagnostic yield of single nucleotide variants and copy number variations evaluated across and within kidney phenotype groups. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:358-376. [PMID: 36161467 PMCID: PMC9828643 DOI: 10.1002/ajmg.c.31995] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/02/2022] [Accepted: 08/18/2022] [Indexed: 01/29/2023]
Abstract
Genetic kidney disease comprises a diverse group of disorders. These can roughly be divided in the phenotype groups congenital anomalies of the kidney and urinary tract, ciliopathies, glomerulopathies, stone disorders, tubulointerstitial kidney disease, and tubulopathies. Many etiologies can lead to chronic kidney disease that can progress to end-stage kidney disease. Despite each individual disease being rare, together these genetic disorders account for a large proportion of kidney disease cases. With the introduction of massively parallel sequencing, genetic testing has become more accessible, but a comprehensive analysis of the diagnostic yield is lacking. This review gives an overview of the diagnostic yield of genetic testing across and within the full range of kidney disease phenotypes through a systematic literature search that resulted in 115 included articles. Patient, test, and cohort characteristics that can influence the diagnostic yield are highlighted. Detection of copy number variations and their contribution to the diagnostic yield is described for all phenotype groups. Also, the impact of a genetic diagnosis for a patient and family members, which can be diagnostic, therapeutic, and prognostic, is shown through the included articles. This review will allow clinicians to estimate an a priori probability of finding a genetic cause for the kidney disease in their patients.
Collapse
Affiliation(s)
- Laura R. Claus
- Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Rozemarijn Snoek
- Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Nine V. A. M. Knoers
- Department of GeneticsUniversity Medical Center GroningenGroningenThe Netherlands
| | | |
Collapse
|
4
|
Jordan P, Dorval G, Arrondel C, Morinière V, Tournant C, Audrezet MP, Michel-Calemard L, Putoux A, Lesca G, Labalme A, Whalen S, Loeuillet L, Martinovic J, Attie-Bitach T, Bessières B, Schaefer E, Scheidecker S, Lambert L, Beneteau C, Patat O, Boute-Benejean O, Molin A, Guimiot F, Fontanarosa N, Nizon M, Lefebvre M, Jeanpierre C, Saunier S, Heidet L. Targeted next-generation sequencing in a large series of fetuses with severe renal diseases. Hum Mutat 2022; 43:347-361. [PMID: 35005812 DOI: 10.1002/humu.24324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 11/07/2022]
Abstract
We report the screening of a large panel of genes in a series of 100 fetuses (98 families) affected with severe renal defects. Causative variants were identified in 22% of cases, greatly improving genetic counseling. The percentage of variants explaining the phenotype was different according to the type of phenotype. The highest diagnostic yield was found in cases affected with the ciliopathy-like phenotype (11/15 families and, in addition, a single heterozygous or a homozygous Class 3 variant in PKHD1 in three unrelated cases with autosomal recessive polycystic kidney disease). The lowest diagnostic yield was observed in cases with congenital anomalies of the kidney and urinary tract (9/78 families and, in addition, Class 3 variants in GREB1L in three unrelated cases with bilateral renal agenesis). Inheritance was autosomal recessive in nine genes (PKHD1, NPHP3, CEP290, TMEM67, DNAJB11, FRAS1, ACE, AGT, and AGTR1), and autosomal dominant in six genes (PKD1, PKD2, PAX2, EYA1, BICC1, and MYOCD). Finally, we developed an original approach of next-generation sequencing targeted RNA sequencing using the custom capture panel used for the sequencing of DNA, to validate one MYOCD heterozygous splicing variant identified in two male siblings with megabladder and inherited from their healthy mother.
Collapse
Affiliation(s)
- Penelope Jordan
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Guillaume Dorval
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France.,APHP Service de Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Christelle Arrondel
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Vincent Morinière
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Carole Tournant
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Marie-Pierre Audrezet
- Service de Génétique moléculaire, Génétique, Génomique et Biotechnologies, UMR 1078, Hôpital Universitaire de Brest, Brest, France
| | - Laurence Michel-Calemard
- Service Biochimie Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Groupement Hospitalier Est, CBPE, Bron, France
| | - Audrey Putoux
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Gaethan Lesca
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Audrey Labalme
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Sandra Whalen
- APHP UF de Génétique Clinique, Centre de Référence des Anomalies du Développement et Syndromes Malformatifs, APHP, Hôpital Armand Trousseau, ERN ITHACA, Sorbonne Université, Paris, France
| | - Laurence Loeuillet
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Jelena Martinovic
- APHP Service de Fœtopathologie, Hôpital Universitaire Antoine Béclère, Clamart, France
| | - Tania Attie-Bitach
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U 1163, Institut Imagine, Université de Paris, Paris, France
| | - Bettina Bessières
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U 1163, Institut Imagine, Université de Paris, Paris, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Scheidecker
- Service de Génétique Médicale, Institut de Génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laetitia Lambert
- Service de Génétique Médicale, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Claire Beneteau
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Olivier Patat
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Odile Boute-Benejean
- Service de Génétique Médicale, Hôpital Jeanne de Flandre, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Arnaud Molin
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Fabien Guimiot
- APHP Service d'Embryo-Fœtopathologie, Hôpital Universitaire Robert Debré, Paris, France
| | | | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, L'institut Du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Mathilde Lefebvre
- APHP Service de Pathologie fœtale, Hôpital Universitaire Armand Trousseau, Paris, France
| | - Cécile Jeanpierre
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Sophie Saunier
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Laurence Heidet
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France.,APHP Service de Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| |
Collapse
|
5
|
Perea-Romero I, Blanco-Kelly F, Sanchez-Navarro I, Lorda-Sanchez I, Tahsin-Swafiri S, Avila-Fernandez A, Martin-Merida I, Trujillo-Tiebas MJ, Lopez-Rodriguez R, Rodriguez de Alba M, Iancu IF, Romero R, Quinodoz M, Hakonarson H, Garcia-Sandova B, Minguez P, Corton M, Rivolta C, Ayuso C. NGS and phenotypic ontology-based approaches increase the diagnostic yield in syndromic retinal diseases. Hum Genet 2021; 140:1665-1678. [PMID: 34448047 PMCID: PMC8553673 DOI: 10.1007/s00439-021-02343-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Syndromic retinal diseases (SRDs) are a group of complex inherited systemic disorders, with challenging molecular underpinnings and clinical management. Our main goal is to improve clinical and molecular SRDs diagnosis, by applying a structured phenotypic ontology and next-generation sequencing (NGS)-based pipelines. A prospective and retrospective cohort study was performed on 100 probands with an a priori diagnosis of non-Usher SRDs, using available clinical data, including Human Phenotype Ontology annotation, and further classification into seven clinical categories (ciliopathies, specific syndromes and five others). Retrospective molecular diagnosis was assessed using different molecular and bioinformatic methods depending on availability. Subsequently, uncharacterized probands were prospectively screened using other NGS approaches to extend the number of analyzed genes. After phenotypic classification, ciliopathies were the most common SRD (35%). A global characterization rate of 52% was obtained, with six cases incompletely characterized for a gene that partially explained the phenotype. An improved characterization rate was achieved addressing prospective cases (83%) and well-recognizable syndrome (62%) subgroups. The 27% of the fully characterized cases were reclassified into a different clinical category after identification of the disease-causing gene. Clinical-exome sequencing is the most appropriate first-tier approach for prospective cases, whereas whole-exome sequencing and bioinformatic reanalysis increases the diagnosis of uncharacterized retrospective cases to 45%, mostly those with unspecific symptoms. Our study describes a comprehensive approach to SRDs in daily clinical practice and the importance of thorough clinical assessment and selection of the most appropriate molecular test to be used to solve these complex cases and elucidate novel associations.
Collapse
Affiliation(s)
- I Perea-Romero
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - F Blanco-Kelly
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - I Sanchez-Navarro
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - I Lorda-Sanchez
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - S Tahsin-Swafiri
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - A Avila-Fernandez
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - I Martin-Merida
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - M J Trujillo-Tiebas
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - R Lopez-Rodriguez
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - M Rodriguez de Alba
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - I F Iancu
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - R Romero
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - M Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - H Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca Garcia-Sandova
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Ophthalmology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - P Minguez
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - M Corton
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - C Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - C Ayuso
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain. .,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
A CRISPR and high-content imaging assay compliant with ACMG/AMP guidelines for clinical variant interpretation in ciliopathies. Hum Genet 2020; 140:593-607. [PMID: 33095315 PMCID: PMC7981318 DOI: 10.1007/s00439-020-02228-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/14/2020] [Indexed: 11/04/2022]
Abstract
Ciliopathies are a broad range of inherited developmental and degenerative diseases associated with structural or functional defects in motile or primary non-motile cilia. There are around 200 known ciliopathy disease genes and whilst genetic testing can provide an accurate diagnosis, 24–60% of ciliopathy patients who undergo genetic testing do not receive a genetic diagnosis. This is partly because following current guidelines from the American College of Medical Genetics and the Association for Molecular Pathology, it is difficult to provide a confident clinical diagnosis of disease caused by missense or non-coding variants, which account for more than one-third of cases of disease. Mutations in PRPF31 are the second most common cause of the degenerative retinal ciliopathy autosomal dominant retinitis pigmentosa. Here, we present a high-throughput high-content imaging assay providing quantitative measure of effect of missense variants in PRPF31 which meets the recently published criteria for a baseline standard in vitro test for clinical variant interpretation. This assay utilizes a new PRPF31+/– human retinal cell line generated using CRISPR gene editing to provide a stable cell line with significantly fewer cilia in which novel missense variants are expressed and characterised. We show that high-content imaging of cells expressing missense variants in a ciliopathy gene on a null background can allow characterisation of variants according to the cilia phenotype. We hope that this will be a useful tool for clinical characterisation of PRPF31 variants of uncertain significance, and can be extended to variant classification in other ciliopathies.
Collapse
|
7
|
Sallum JMF, Motta FL, Arno G, Porto FBO, Resende RG, Belfort R. Clinical and molecular findings in a cohort of 152 Brazilian severe early onset inherited retinal dystrophy patients. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:728-752. [PMID: 32865313 DOI: 10.1002/ajmg.c.31828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
Leber congenital amaurosis (LCA) and early-onset retinal dystrophy (EORD) are severe inherited retinal dystrophy that can cause deep blindness childhood. They represent 5% of all retinal dystrophies in the world population and about 10% in Brazil. Clinical findings and molecular basis of syndromic and nonsyndromic LCA/EORD in a Brazilian sample (152 patients/137 families) were studied. In this population, 15 genes were found to be related to the phenotype, 38 new variants were detected and four new complex alleles were discovered. Among 123 variants found, the most common were CEP290: c.2991+1655A>G, CRB1: p.Cys948Tyr, and RPGRIP1: exon10-18 deletion.
Collapse
Affiliation(s)
- Juliana Maria Ferraz Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Fabiana Louise Motta
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Fernanda Belga Ottoni Porto
- INRET Clínica e Centro de Pesquisa, Belo Horizonte, Minas Gerais, Brazil.,Centro Oftalmológico de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
8
|
Mary L, Chennen K, Stoetzel C, Antin M, Leuvrey A, Nourisson E, Alanio-Detton E, Antal MC, Attié-Bitach T, Bouvagnet P, Bouvier R, Buenerd A, Clémenson A, Devisme L, Gasser B, Gilbert-Dussardier B, Guimiot F, Khau Van Kien P, Leroy B, Loget P, Martinovic J, Pelluard F, Perez MJ, Petit F, Pinson L, Rooryck-Thambo C, Poch O, Dollfus H, Schaefer E, Muller J. Bardet-Biedl syndrome: Antenatal presentation of forty-five fetuses with biallelic pathogenic variants in known Bardet-Biedl syndrome genes. Clin Genet 2020; 95:384-397. [PMID: 30614526 DOI: 10.1111/cge.13500] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 02/06/2023]
Abstract
Bardet-Biedl syndrome (BBS) is an emblematic ciliopathy associated with retinal dystrophy, obesity, postaxial polydactyly, learning disabilities, hypogonadism and renal dysfunction. Before birth, enlarged/cystic kidneys as well as polydactyly are the hallmark signs of BBS to consider in absence of familial history. However, these findings are not specific to BBS, raising the problem of differential diagnoses and prognosis. Molecular diagnosis during pregnancies remains a timely challenge for this heterogeneous disease (22 known genes). We report here the largest cohort of BBS fetuses to better characterize the antenatal presentation. Prenatal ultrasound (US) and/or autopsy data from 74 fetuses with putative BBS diagnosis were collected out of which molecular diagnosis was established in 51 cases, mainly in BBS genes (45 cases) following the classical gene distribution, but also in other ciliopathy genes (6 cases). Based on this, an updated diagnostic decision tree is proposed. No genotype/phenotype correlation could be established but postaxial polydactyly (82%) and renal cysts (78%) were the most prevalent symptoms. However, autopsy revealed polydactyly that was missed by prenatal US in 55% of the cases. Polydactyly must be carefully looked for in pregnancies with apparently isolated renal anomalies in fetuses.
Collapse
Affiliation(s)
- Laura Mary
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France
| | - Kirsley Chennen
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France.,Complex Systems and Translational Bioinformatics, ICube, University of Strasbourg, CNRS, Illkirch, France
| | - Corinne Stoetzel
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France
| | - Manuela Antin
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne Leuvrey
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elsa Nourisson
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elisabeth Alanio-Detton
- Gynécologie-obstétrique, Centre de Dépistage Anténatal, Hôpital Maison-Blanche, Reims, France
| | - Maria C Antal
- Institut d'Histologie, Icube, Université de Strasbourg, Strasbourg, France.,Service de Pathologie, UF6349 Fœtopathologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Tania Attié-Bitach
- INSERM U1163, Institut IMAGINE, Université Paris Descartes, Paris, France.,Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Patrice Bouvagnet
- Laboratoire de Cardiogénétique, Malformations Cardiaques Congénitale, Hôpitaux Civils de Lyon, France
| | - Raymonde Bouvier
- Département de Pathologie, Centre Hospitalier Est, Hôpitaux Civils de Lyon, Lyon, France
| | - Annie Buenerd
- Département de Pathologie, Centre Hospitalier Est, Hôpitaux Civils de Lyon, Lyon, France
| | - Alix Clémenson
- Service d'Anatomie et Cytologie Pathologiques, CHU de Saint-Etienne, Saint-Étienne, France
| | - Louise Devisme
- Institut d'Anatomo-Pathologie, Centre de Biologie Pathologie, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Bernard Gasser
- Laboratoire de Pathologie, GHR Mulhouse-Sud Alsace, Mulhouse, France
| | - Brigitte Gilbert-Dussardier
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Poitiers, Poitiers, France.,EA3808 - NEUVACOD, Université de Poitiers, Poitiers, France
| | - Fabien Guimiot
- Unité Fonctionnelle de Fœtopathologie, Département de Génétique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Khau Van Kien
- Unité de Génétique Médicale et Cytogénétique, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Brigitte Leroy
- Service d'Anatomie Pathologique, CHI Poissy Saint Germain-en-Laye, Poissy, France
| | - Philippe Loget
- Service d'Anatomie Pathologique, Hôpital Pontchaillou, Université Rennes 1, Rennes, France
| | - Jelena Martinovic
- Unité de Fœtopathologie, Hôpital Antoine Béclère, Assistance Publique-Hôpitaux de Paris, Clamart, France
| | - Fanny Pelluard
- Service d'Anatomie-Cytologie Pathologique, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, Université de Bordeaux, Bordeaux, France
| | - Marie-Josée Perez
- Unité de Fœtopathologie, Service de Génétique Médicale, Centre Hospitalier Universitaire, Montpellier, France
| | - Florence Petit
- Clinique de Génétique Guy Fontaine, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Lucile Pinson
- Département de Génétique Médicale, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France
| | - Caroline Rooryck-Thambo
- Université Bordeaux, MRGM INSERM U1211, CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Olivier Poch
- Complex Systems and Translational Bioinformatics, ICube, University of Strasbourg, CNRS, Illkirch, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France.,Service de Génétique Médicale, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre des Affections Rares en Génétique Ophtalmologique, FSMR SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elise Schaefer
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France.,Service de Génétique Médicale, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean Muller
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
9
|
Etchegaray A, Juarez-Peñalva S, Petracchi F, Igarzabal L. Prenatal genetic considerations in congenital ventriculomegaly and hydrocephalus. Childs Nerv Syst 2020; 36:1645-1660. [PMID: 32006096 DOI: 10.1007/s00381-020-04526-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fetal ventriculomegaly (VM) is a frequent finding in prenatal ultrasound. Rather than a proper diagnosis, VM is a sonographic sign, making prenatal counseling a complex and challenging undertaking. VM can range from severe pathologic processes leading to severe neurodevelopmental delay to normal variants. DISCUSSION A growing number of genetic conditions with different pathophysiological mechanisms, inheritance patterns, and long-term prognosis have been associated both to isolated and complex fetal VM. These include chromosomal abnormalities, copy number variants, and several single gene diseases. In this review, we describe some of the most common genetic conditions associated with fetal VM and provide a simplified diagnostic workflow for the clinician.
Collapse
Affiliation(s)
- Adolfo Etchegaray
- Unidad de Medicina Fetal, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina.
| | - Sofia Juarez-Peñalva
- Unidad de Medicina Fetal, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina
| | | | | |
Collapse
|
10
|
Zhang R, Chen S, Han P, Chen F, Kuang S, Meng Z, Liu J, Sun R, Wang Z, He X, Li Y, Guan Y, Yue Z, Li C, Kumar Dey S, Zhu Y, Banerjee S. Whole exome sequencing identified a homozygous novel variant in CEP290 gene causes Meckel syndrome. J Cell Mol Med 2019; 24:1906-1916. [PMID: 31840411 PMCID: PMC6991682 DOI: 10.1111/jcmm.14887] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/01/2022] Open
Abstract
Meckel syndrome (MKS) is a pre‐ or perinatal multisystemic ciliopathic lethal disorder with an autosomal recessive mode of inheritance. Meckel syndrome is usually manifested with meningo‐occipital encephalocele, polycystic kidney dysplasia, postaxial polydactyly and hepatobiliary ductal plate malformation. Germline variants in CEP290 cause MKS4. In this study, we investigated a 35‐years‐old Chinese female who was 17+1 weeks pregnant. She had a history of adverse pregnancy of having foetus with multiple malformations. We performed ultrasonography and identified the foetus with occipital meningoencephalocele and enlarged cystic dysplastic kidneys. So, she decided to terminate her pregnancy and further genetic molecular analysis was performed. We identified the aborted foetus without postaxial polydactyly. Histological examination of foetal kidney showed cysts in kidney and thinning of the renal cortex with glomerular atrophy. Whole exome sequencing identified a novel homozygous variant (c.2144T>G; p.L715*) in exon 21 of the CEP290 in the foetus. Sanger sequencing confirmed that both the parents of the foetus were carrying this variant in a heterozygous state. This variant was not identified in two elder sisters of the foetus as well as in the 100 healthy individuals. Western blot analysis showed that this variant leads to the formation of truncated CEP290 protein with the molecular weight of 84 KD compared with the wild‐type CEP290 protein of 290 KD. Hence, it is a loss‐of‐function variant. We also found that the mutant cilium appears longer in length than the wild‐type cilium. Our present study reported the first variant of CEP290 associated with MKS4 in Chinese population.
Collapse
Affiliation(s)
- Rui Zhang
- Division of Maternal-Fetal Medicine, Bao'an Women and Children's Hospital, Jinan University, Shenzhen, China
| | - Shaoyun Chen
- Division of Maternal-Fetal Medicine, Bao'an Women and Children's Hospital, Jinan University, Shenzhen, China
| | - Peng Han
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Fangfang Chen
- Department of Pathology, Bao'an Maternity and Child Health Hospital, Shenzhen, China
| | - Shan Kuang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Zhuo Meng
- Division of Maternal-Fetal Medicine, Bao'an Women and Children's Hospital, Jinan University, Shenzhen, China
| | - Junnian Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Ruliang Sun
- Department of Pathology, Bao'an Maternity and Child Health Hospital, Shenzhen, China
| | - Zhiwei Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xiaohong He
- Division of Maternal-Fetal Medicine, Bao'an Women and Children's Hospital, Jinan University, Shenzhen, China
| | - Yong Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yuanning Guan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | | | - Chen Li
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Subrata Kumar Dey
- Department of Biotechnology, Centre for Genetic Studies, School of Biotechnology and Biological Sciences, Maulana Abul Kalam Azad University of Technology (Formerly West Bengal University of Technology), Kolkata, India.,Brainware University, Barasat, India
| | - Yuanfang Zhu
- Division of Maternal-Fetal Medicine, Bao'an Women and Children's Hospital, Jinan University, Shenzhen, China
| | - Santasree Banerjee
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,Brainware University, Barasat, India
| |
Collapse
|
11
|
Manara E, Paolacci S, D’Esposito F, Abeshi A, Ziccardi L, Falsini B, Colombo L, Iarossi G, Pilotta A, Boccone L, Guerri G, Monica M, Marta B, Maltese PE, Buzzonetti L, Rossetti L, Bertelli M. Mutation profile of BBS genes in patients with Bardet-Biedl syndrome: an Italian study. Ital J Pediatr 2019; 45:72. [PMID: 31196119 PMCID: PMC6567512 DOI: 10.1186/s13052-019-0659-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/16/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is a rare inherited multisystemic disorder with autosomal recessive or complex digenic triallelic inheritance. There is currently no treatment for BBS, but some morbidities can be managed. Accurate molecular diagnosis is often crucial for the definition of appropriate patient management and for the development of a potential personalized therapy. METHODS We developed a next-generation-sequencing (NGS) protocol for the screening of the 18 most frequently mutated genes to define the genotype and clarify the mutation spectrum of a cohort of 20 BBS Italian patients. RESULTS We defined the causative variants in 60% of patients; four of those are novel. 33% of patients also harboured variants in additional gene/s, suggesting possible oligogenic inheritance. To explore the function of different genes, we looked for correlations between genotype and phenotype in our cohort. Hypogonadism was more frequently detected in patients with variants in BBSome proteins, while renal abnormalities in patients with variations in BBSome chaperonin genes. CONCLUSIONS NGS is a powerful tool that can help understanding BBS patients' phenotype through the identification of mutations that could explain differences in phenotype severity and could provide insights for the development of targeted therapy. Furthermore, our results support the existence of additional BBS loci yet to be identified.
Collapse
Affiliation(s)
| | | | - Fabiana D’Esposito
- Magi Euregio, Bolzano, Italy
- Imperial College Ophthalmic Research Unit, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, Federico II University, Naples, Italy
| | | | | | - Benedetto Falsini
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Leonardo Colombo
- Department of Ophthalmology, San Paolo Hospital, University of Milan, Milan, Italy
| | - Giancarlo Iarossi
- Department of Ophthalmology, Bambino Gesù IRCCS Children’s Hospital, Rome, Italy
| | - Alba Pilotta
- Special Unit of Auxoendocrinology, Diabetology and Pediatric Genetics, University of Brescia, Spedali Civili di Brescia, Brescia, Italy
| | - Loredana Boccone
- Microcitemic Regional Hospital, Brotzu Hospital, Cagliari, Italy
| | | | - Marica Monica
- Microcitemic Regional Hospital, Brotzu Hospital, Cagliari, Italy
| | - Balzarini Marta
- Microcitemic Regional Hospital, Brotzu Hospital, Cagliari, Italy
| | | | - Luca Buzzonetti
- Department of Ophthalmology, Bambino Gesù IRCCS Children’s Hospital, Rome, Italy
| | - Luca Rossetti
- Department of Ophthalmology, San Paolo Hospital, University of Milan, Milan, Italy
| | | |
Collapse
|
12
|
Wheway G, Mitchison HM. Opportunities and Challenges for Molecular Understanding of Ciliopathies-The 100,000 Genomes Project. Front Genet 2019; 10:127. [PMID: 30915099 PMCID: PMC6421331 DOI: 10.3389/fgene.2019.00127] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/05/2019] [Indexed: 01/11/2023] Open
Abstract
Cilia are highly specialized cellular organelles that serve multiple functions in human development and health. Their central importance in the body is demonstrated by the occurrence of a diverse range of developmental disorders that arise from defects of cilia structure and function, caused by a range of different inherited mutations found in more than 150 different genes. Genetic analysis has rapidly advanced our understanding of the cell biological basis of ciliopathies over the past two decades, with more recent technological advances in genomics rapidly accelerating this progress. The 100,000 Genomes Project was launched in 2012 in the UK to improve diagnosis and future care for individuals affected by rare diseases like ciliopathies, through whole genome sequencing (WGS). In this review we discuss the potential promise and medical impact of WGS for ciliopathies and report on current progress of the 100,000 Genomes Project, reviewing the medical, technical and ethical challenges and opportunities that new, large scale initiatives such as this can offer.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Hannah M. Mitchison
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
13
|
Ridnõi K, Šois M, Vaidla E, Pajusalu S, Kelder L, Reimand T, Õunap K. A prenatally diagnosed case of Meckel-Gruber syndrome with novel compound heterozygous pathogenic variants in the TXNDC15 gene. Mol Genet Genomic Med 2019; 7:e614. [PMID: 30851085 PMCID: PMC6503012 DOI: 10.1002/mgg3.614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/16/2019] [Accepted: 02/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background Meckel–Gruber syndrome (MKS) is a well‐known rare disease that can be detected on prenatal ultrasound. Meckel–Gruber syndrome has very heterogeneous etiology; at least, 17 genes have been described in association with MKS. The characteristic findings in fetuses affected by MKS are encephalocele (usually occipital), postaxial polydactyly, and polycystic dysplastic kidneys. However, the association of the TXNDC15 gene with MKS has been reported only once before in three consanguineous families. Methods We report a new case of MKS diagnosed at 12 + 1 weeks of gestation with typical ultrasound findings, but with novel compound heterozygous pathogenic variants in the TXNDC15 gene identified by whole‐exome sequencing (WES). Results This is the second clinical report supporting TXNDC15 as a novel causative gene of MKS, and the first describing a case in a non‐consanguineous family with causative compound heterozygous mutations. Conclusions Meckel–Gruber syndrome is a very heterogeneous syndrome in terms of the associated causal genes. In the first‐line diagnosis, we used an next‐generation sequencing (NGS)‐based large gene panel, but only 10 MKS genes were available on the platform used. In the case of prenatal ultrasound findings that are highly suggestive of MKS and a negative NGS MKS gene panel, WES should also be performed to not miss rare gene associations.
Collapse
Affiliation(s)
- Konstantin Ridnõi
- Centre for Perinatal Care, Women's Clinic, East-Tallinn Central Hospital, Tallinn, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Marek Šois
- Fetal Ultrasound Screening Centre, Tallinn, Estonia
| | - Eve Vaidla
- United Laboratories, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
| | - Sander Pajusalu
- United Laboratories, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Larissa Kelder
- Centre of Pathology, Diagnostic Clinic, East-Tallinn Central Hospital, Tallinn, Estonia
| | - Tiia Reimand
- United Laboratories, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia.,Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,United Laboratories, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
14
|
Ott T, Kaufmann L, Granzow M, Hinderhofer K, Bartram CR, Theiß S, Seitz A, Paramasivam N, Schulz A, Moog U, Blum M, Evers CM. The Frog Xenopus as a Model to Study Joubert Syndrome: The Case of a Human Patient With Compound Heterozygous Variants in PIBF1. Front Physiol 2019; 10:134. [PMID: 30858804 PMCID: PMC6397843 DOI: 10.3389/fphys.2019.00134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Joubert syndrome (JS) is a congenital autosomal-recessive or—in rare cases–X-linked inherited disease. The diagnostic hallmark of the so-called molar tooth sign describes the morphological manifestation of the mid- and hind-brain in axial brain scans. Affected individuals show delayed development, intellectual disability, ataxia, hyperpnea, sleep apnea, abnormal eye, and tongue movements as well as hypotonia. At the cellular level, JS is associated with the compromised biogenesis of sensory cilia, which identifies JS as a member of the large group of ciliopathies. Here we report on the identification of novel compound heterozygous variants (p.Y503C and p.Q485*) in the centrosomal gene PIBF1 in a patient with JS via trio whole exome sequencing. We have studied the underlying disease mechanism in the frog Xenopus, which offers fast assessment of cilia functions in a number of embryological contexts. Morpholino oligomer (MO) mediated knockdown of the orthologous Xenopus pibf1 gene resulted in defective mucociliary clearance in the larval epidermis, due to reduced cilia numbers and motility on multiciliated cells. To functionally assess patient alleles, mutations were analyzed in the larval skin: the p.Q485* nonsense mutation resulted in a disturbed localization of PIBF1 to the ciliary base. This mutant failed to rescue the ciliation phenotype following knockdown of endogenous pibf1. In contrast, the missense variant p.Y503C resulted in attenuated rescue capacity compared to the wild type allele. Based on these results, we conclude that in the case of this patient, JS is the result of a pathogenic combination of an amorphic and a hypomorphic PIBF1 allele. Our study underscores the versatility of the Xenopus model to study ciliopathies such as JS in a rapid and cost-effective manner, which should render this animal model attractive for future studies of human ciliopathies.
Collapse
Affiliation(s)
- Tim Ott
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Lilian Kaufmann
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Martin Granzow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Claus R Bartram
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Susanne Theiß
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Angelika Seitz
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nagarajan Paramasivam
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angela Schulz
- Genomics & Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Christina M Evers
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
15
|
Guo B, Xiao J, Li L, Wang S, Wang L, Liu S. Clinical study of prenatal ultrasonography combined with T‑box transcription factor 1 as a biomarker for the diagnosis of congenital heart disease. Mol Med Rep 2018; 17:7346-7350. [PMID: 29568912 DOI: 10.3892/mmr.2018.8742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 05/18/2017] [Indexed: 11/05/2022] Open
Abstract
Congenital heart disease (CHD) seriously threatens fetal health. Therefore, prenatal examination to detect deformity is extremely important. The present study aimed to investigate the clinical application value of prenatal ultrasonography combined with molecular biology methods in the diagnosis of fetal CHD. A total of 1,000 pregnant women who had received fetal ultrasonography to examine fetal CHD were enrolled. Ultrasounds were performed for fetal heart examination and diagnosis, mainly on fetal heart position, size, structure and function, and heart valve morphology and function. These indexes were tested again 2 weeks after birth. Blood samples were collected from pregnant women with fetal CHD. Polymerase chain reaction (PCR) and western blotting were performed to detect the association between heart development and T‑box transcription factor 1 (TBX1) expression. The results revealed that 10 fetuses had CHD (1%), of which ultrasound detected 9 cases. The specificity and sensitivity of ultrasounds were 100 and 90%, respectively. Of the 9 cases were identified by prenatal ultrasound screening, including 2 cases had endocardial cushion defect, 1 case had pulmonary stenosis combined with right ventricular dysplasia, 1 case had tetralogy of Fallot combined with a cleft lip and palate, 2 cases had ventricular septal defect, 1 case had a single ventricle defect, 1 case had Ebstein and 1 case had a triatrial heart. One case of ventricular septal defect was missed prior to delivery. PCR and western blotting demonstrated that TBX1 expression may be associated with CHD. Therefore, ultrasonography combined with laboratory examinations represent efficient, economic and safe methods for fetal CHD detection. These methods may be significant to improve the rate of CHD diagnosis, and require further investigation.
Collapse
Affiliation(s)
- Bingcheng Guo
- Department of Ultrasound, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Jing Xiao
- Department of Ultrasound, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Long Li
- Department of Ultrasound, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Shuanglong Wang
- Department of Ultrasound, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Lijuan Wang
- Department of Ultrasound, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Shuyong Liu
- Department of Hand and Foot Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
16
|
Bruechle NO, Steuernagel P, Zerres K, Kurth I, Eggermann T, Knopp C. Uniparental disomy as an unexpected cause of Meckel-Gruber syndrome: report of a case. Pediatr Nephrol 2017. [PMID: 28620746 DOI: 10.1007/s00467-017-3710-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Meckel-Gruber syndrome (MKS, OMIM #607361) is a rare pre- or perinatal lethal autosomal recessive ciliopathy caused by mutations in at least 12 known genes. It has a clinical and genetic overlap with other viable ciliopathies, especially Joubert syndrome and Joubert syndrome-related disorders. MKS is characterized by multicystic kidney dysplasia, central nervous system malformations (usually occipital encephalocele), ductal plate malformation of the liver, and postaxial polydactyly. CASE DIAGNOSIS We identified a homozygous mutation in TMEM67 (MKS3) in a fetus affected by MKS; however, only the mother was a carrier of the respective mutation. Genotyping with polymorphic microsatellite markers and single nucleotide polymorphism (SNP) array revealed a maternal uniparental disomy (UPD) of the entire chromosome 8 (upd(8)mat), harboring TMEM67. CONCLUSIONS This is the first reported case of UPD as a cause of MKS. The possible underlying mechanisms for uniparental disomy (UPD) are reviewed. Even if rare, awareness of UPD and comprehensive work-up in the case of unexpected homozygosity for a recessive mutation is essential for accurate genetic counseling and assessment of the risk of recurrence.
Collapse
Affiliation(s)
- Nadia Ortiz Bruechle
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Institute of Pathology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Peter Steuernagel
- Institute of Human Genetics, Hospital Oldenburg, Rahel-Straus-Straße 10, 26133, Oldenburg, Germany
| | - Klaus Zerres
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Cordula Knopp
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
17
|
Kenny J, Forsythe E, Beales P, Bacchelli C. Toward personalized medicine in Bardet–Biedl syndrome. Per Med 2017; 14:447-456. [DOI: 10.2217/pme-2017-0019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Personalized medicine is becoming routine in the treatment of common diseases such as cancer, but has lagged behind in the field of rare diseases. It is currently in the early stages for the treatment of Bardet–Biedl syndrome. Advances in the understanding of ciliary biology and diagnostic techniques have opened up the prospect of treating BBS in a patient-specific manner. Owing to their structure and function, cilia provide an attractive therapeutic target and genetic therapies are being explored in ciliopathy treatment. Promising avenues include gene therapy, gene editing techniques and splice-correcting and read-through therapies. Targeted drug design has been successful in the treatment of genetic disease and research is underway in the discovery of known and novel drugs to treat Bardet–Biedl syndrome.
Collapse
Affiliation(s)
- Joanna Kenny
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford St, London WC1N 1EH, UK
| | - Elizabeth Forsythe
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford St, London WC1N 1EH, UK
| | - Philip Beales
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford St, London WC1N 1EH, UK
| | - Chiara Bacchelli
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford St, London WC1N 1EH, UK
| |
Collapse
|
18
|
Castro-Sánchez S, Álvarez-Satta M, Tohamy MA, Beltran S, Derdak S, Valverde D. Whole exome sequencing as a diagnostic tool for patients with ciliopathy-like phenotypes. PLoS One 2017; 12:e0183081. [PMID: 28800606 PMCID: PMC5553726 DOI: 10.1371/journal.pone.0183081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ciliopathies are a group of rare disorders characterized by a high genetic and phenotypic variability, which complicates their molecular diagnosis. Hence the need to use the latest powerful approaches to faster identify the genetic defect in these patients. We applied whole exome sequencing to six consanguineous families clinically diagnosed with ciliopathy-like disease, and for which mutations in predominant Bardet-Biedl syndrome (BBS) genes had previously been excluded. Our strategy, based on first applying several filters to ciliary variants and using many of the bioinformatics tools available, allowed us to identify causal mutations in BBS2, ALMS1 and CRB1 genes in four families, thus confirming the molecular diagnosis of ciliopathy. In the remaining two families, after first rejecting the presence of pathogenic variants in common cilia-related genes, we adopted a new filtering strategy combined with prioritisation tools to rank the final candidate genes for each case. Thus, we propose CORO2B, LMO7 and ZNF17 as novel candidate ciliary genes, but further functional studies will be needed to confirm their role. Our data show the usefulness of this strategy to diagnose patients with unclear phenotypes, and therefore the success of applying such technologies to achieve a rapid and reliable molecular diagnosis, improving genetic counselling for these patients. In addition, the described pipeline also highlights the common pitfalls associated to the large volume of data we have to face and the difficulty of assigning a functional role to these changes, hence the importance of designing the most appropriate strategy according to each case.
Collapse
Affiliation(s)
- Sheila Castro-Sánchez
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, Spain
- Research Group of Rare Diseases & Pediatric Medicine, Instituto de Investigación Sanitaria Galicia Sur (IISGS), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Vigo, Spain
- Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia), Universidad de Vigo, Vigo, Spain
| | - María Álvarez-Satta
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, Spain
- Research Group of Rare Diseases & Pediatric Medicine, Instituto de Investigación Sanitaria Galicia Sur (IISGS), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Vigo, Spain
- Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia), Universidad de Vigo, Vigo, Spain
| | - Mohamed A. Tohamy
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, Spain
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sophia Derdak
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Diana Valverde
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, Spain
- Research Group of Rare Diseases & Pediatric Medicine, Instituto de Investigación Sanitaria Galicia Sur (IISGS), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Vigo, Spain
- Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia), Universidad de Vigo, Vigo, Spain
- * E-mail:
| |
Collapse
|
19
|
Vilboux T, Doherty DA, Glass IA, Parisi MA, Phelps IG, Cullinane AR, Zein W, Brooks BP, Heller T, Soldatos A, Oden NL, Yildirimli D, Vemulapalli M, Mullikin JC, Malicdan MCV, Gahl WA, Gunay-Aygun M. Molecular genetic findings and clinical correlations in 100 patients with Joubert syndrome and related disorders prospectively evaluated at a single center. Genet Med 2017; 19:875-882. [PMID: 28125082 PMCID: PMC11528337 DOI: 10.1038/gim.2016.204] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/08/2016] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Joubert syndrome (JS) is a genetically and clinically heterogeneous ciliopathy characterized by distinct cerebellar and brainstem malformations resulting in the diagnostic "molar tooth sign" on brain imaging. To date, more than 30 JS genes have been identified, but these do not account for all patients. METHODS In our cohort of 100 patients with JS from 86 families, we prospectively performed extensive clinical evaluation and provided molecular diagnosis using a targeted 27-gene Molecular Inversion Probes panel followed by whole-exome sequencing (WES). RESULTS We identified the causative gene in 94% of the families; 126 (27 novel) unique potentially pathogenic variants were found in 20 genes, including KIAA0753 and CELSR2, which had not previously been associated with JS. Genotype-phenotype correlation revealed the absence of retinal degeneration in patients with TMEM67, C5orf52, or KIAA0586 variants. Chorioretinal coloboma was associated with a decreased risk for retinal degeneration and increased risk for liver disease. TMEM67 was frequently associated with kidney disease. CONCLUSION In JS, WES significantly increases the yield for molecular diagnosis, which is essential for reproductive counseling and the option of preimplantation and prenatal diagnosis as well as medical management and prognostic counseling for the age-dependent and progressive organ-specific manifestations, including retinal, liver, and kidney disease.Genet Med advance online publication 26 January 2017.
Collapse
Affiliation(s)
- Thierry Vilboux
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Inova Translational Medicine Institute, Falls Church, Virginia, USA
| | - Daniel A. Doherty
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Ian A. Glass
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Melissa A. Parisi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Ian G. Phelps
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andrew R. Cullinane
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Anatomy, Howard University College of Medicine, Washington DC, USA
| | - Wadih Zein
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian P. Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Ariane Soldatos
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Deniz Yildirimli
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Meghana Vemulapalli
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James C. Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - May Christine V. Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - William A. Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Meral Gunay-Aygun
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Pediatrics and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Schoner K, Axt-Fliedner R, Bald R, Fritz B, Kohlhase J, Kohl T, Rehder H. Fetal Pathology of Neural Tube Defects - An Overview of 68 Cases. Geburtshilfe Frauenheilkd 2017; 77:495-507. [PMID: 28579621 DOI: 10.1055/s-0043-103459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 10/19/2022] Open
Abstract
INTRODUCTION The prevalence of neural tube defects worldwide is 1 - 2 per 1000 neonates. Neural tube defects result from a disturbance of neurulation in the 3rd or 4th week of development and thus represent the earliest manifestation of organ malformation. Neural tube defects (NTD) are classified into cranial dysraphism leading to anencephaly or meningoencephalocele and spinal dysraphism with or without meningomyelocele. In isolated form they have multifactorial causes, and the empirical risk of recurrence in Central Europe is 2%. As associated malformations they tend to occur sporadically, and in monogenic syndromes they follow Mendelian inheritance patterns with a high risk of recurrence. PATIENTS Autopsies were performed on 68 fetuses following a prenatal diagnosis of NTD and induced abortion. RESULTS The incidence of NTDs in our autopsied fetuses was 8% and 11% in fetuses with malformations. The percentage of fetuses with anencephaly, encephalocele or spina bifida was 24, 18, and 60%*, respectively. Analysis of the sex distribution showed a female preponderance in cranial dysraphisms but the sex distribution of spina bifida cases was equal. The extent and localization of NTDs varied, with lumbosacral cases clearly predominating. The proportion of isolated, associated and syndromic neural tube defects was 56, 23.5 and 20.6% respectively. In the majority of syndromes, the neural tube defect represented a not previously observed syndromic feature. CONCLUSION The high proportion of NTDs with monogenic background underlines the importance of a syndrome oriented fetal pathology. At the very least it requires a thourough photographic and radiographic documentation of the fetal phenotype to enable the genetic counsellor to identify a syndromic disorder. This is necessary to determine the risk of recurrence, arrange confirming mutation analyses and offer targeted prenatal diagnosis in subsequent pregnancies.
Collapse
Affiliation(s)
- Katharina Schoner
- Institute of Pathology, WG Fetal Pathology, University of Gießen and Marburg, Philipps University of Marburg, Marburg, Germany
| | - Roland Axt-Fliedner
- Department of Prenatal Medicine, University Hospital of Gießen and Marburg, Gießen, Germany
| | - Rainer Bald
- Department of Gynecology and Obstetrics, Klinikum Leverkusen, Leverkusen, Germany
| | - Barbara Fritz
- Center of Human Genetics, University of Gießen and Marburg, Philipps University of Marburg, Marburg, Germany
| | - Juergen Kohlhase
- Praxis for Human Genetics - Center of Preimplantation Genetic Diagnosis, Freiburg, Germany
| | - Thomas Kohl
- German Center for Fetal Surgery & minimal-invasive Therapy, University Hospital of Gießen and Marburg, Gießen, Germany
| | - Helga Rehder
- Institute of Pathology, WG Fetal Pathology, University of Gießen and Marburg, Philipps University of Marburg, Marburg, Germany.,Institute of Medical Genetics, Medical University Vienna, Vienna, Austria
| |
Collapse
|
21
|
Mitchison HM, Valente EM. Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol 2017; 241:294-309. [PMID: 27859258 DOI: 10.1002/path.4843] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
Ciliopathies are inherited human disorders caused by both motile and non-motile cilia dysfunction that form an important and rapidly expanding disease category. Ciliopathies are complex conditions to diagnose, being multisystem disorders characterized by extensive genetic heterogeneity and clinical variability with high levels of lethality. There is marked phenotypic overlap among distinct ciliopathy syndromes that presents a major challenge for their recognition, diagnosis, and clinical management, in addition to posing an on-going task to develop the most appropriate family counselling. The impact of next-generation sequencing and high-throughput technologies in the last decade has significantly improved our understanding of the biological basis of ciliopathy disorders, enhancing our ability to determine the possible reasons for the extensive overlap in their symptoms and genetic aetiologies. Here, we review the diverse functions of cilia in human health and disease and discuss a growing shift away from the classical clinical definitions of ciliopathy syndromes to a more functional categorization. This approach arises from our improved understanding of this unique organelle, revealed through new genetic and cell biological insights into the discrete functioning of subcompartments of the cilium (basal body, transition zone, intraflagellar transport, motility). Mutations affecting these distinct ciliary protein modules can confer different genetic diseases and new clinical classifications are possible to define, according to the nature and extent of organ involvement. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hannah M Mitchison
- Genetics and Genomic Medicine Programme, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Enza Maria Valente
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy.,Neurogenetics Unit, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 00143, Rome, Italy
| |
Collapse
|
22
|
Shaheen R, Szymanska K, Basu B, Patel N, Ewida N, Faqeih E, Al Hashem A, Derar N, Alsharif H, Aldahmesh MA, Alazami AM, Hashem M, Ibrahim N, Abdulwahab FM, Sonbul R, Alkuraya H, Alnemer M, Al Tala S, Al-Husain M, Morsy H, Seidahmed MZ, Meriki N, Al-Owain M, AlShahwan S, Tabarki B, Salih MA, Faquih T, El-Kalioby M, Ueffing M, Boldt K, Logan CV, Parry DA, Al Tassan N, Monies D, Megarbane A, Abouelhoda M, Halees A, Johnson CA, Alkuraya FS. Characterizing the morbid genome of ciliopathies. Genome Biol 2016; 17:242. [PMID: 27894351 PMCID: PMC5126998 DOI: 10.1186/s13059-016-1099-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022] Open
Abstract
Background Ciliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete. Results We applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant model for these genes, we found no significant difference in their “mutation load” beyond the causal variants between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further identified mutations in a novel morbid gene TXNDC15, encoding a thiol isomerase, based on independent loss of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes (TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4, and CELSR2) some of which have established links to ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations, the combined carrier frequency of which accounts for a high disease burden in the study population. Conclusions Our study increases our understanding of the morbid genome of ciliopathies. We also provide the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and other ciliopathies. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1099-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Katarzyna Szymanska
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, LS9 7TF, UK
| | - Basudha Basu
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, LS9 7TF, UK
| | - Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nour Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Amal Al Hashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Nada Derar
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, CA, USA
| | - Hadeel Alsharif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed A Aldahmesh
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous M Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rawda Sonbul
- Department of Pediatrics, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Hisham Alkuraya
- Department of Ophthalmology, Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - Maha Alnemer
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Department of Pediatric, Genetic Unit, Armed Forces Hospital Southern Region, Khamis Mushayt, Saudi Arabia
| | - Muneera Al-Husain
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Heba Morsy
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Neama Meriki
- Department of Obstetrics and Gynecology, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Saad AlShahwan
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Tariq Faquih
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohamed El-Kalioby
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Marius Ueffing
- Division of Experimental Ophthalmology and Medical Bioanalytics, Center for Ophthalmology, Eberhard-Karls University Tübingen, 72076, Tübingen, Germany
| | - Karsten Boldt
- Division of Experimental Ophthalmology and Medical Bioanalytics, Center for Ophthalmology, Eberhard-Karls University Tübingen, 72076, Tübingen, Germany
| | - Clare V Logan
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, LS9 7TF, UK
| | - David A Parry
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, LS9 7TF, UK
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Anason Halees
- Health Information Technology Affairs, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Colin A Johnson
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, LS9 7TF, UK
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
23
|
Oud MM, Lamers IJC, Arts HH. Ciliopathies: Genetics in Pediatric Medicine. J Pediatr Genet 2016; 6:18-29. [PMID: 28180024 DOI: 10.1055/s-0036-1593841] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/08/2016] [Indexed: 12/15/2022]
Abstract
Ciliary disorders, which are also referred to as ciliopathies, are a group of hereditary disorders that result from dysfunctional cilia. The latter are cellular organelles that stick up from the apical plasma membrane. Cilia have important roles in signal transduction and facilitate communications between cells and their surroundings. Ciliary disruption can result in a wide variety of clinically and genetically heterogeneous disorders with overlapping phenotypes. Because cilia occur widespread in our bodies many organs and sensory systems can be affected when they are dysfunctional. Ciliary disorders may be isolated or syndromic, and common features are cystic liver and/or kidney disease, blindness, neural tube defects, brain anomalies and intellectual disability, skeletal abnormalities ranging from polydactyly to abnormally short ribs and limbs, ectodermal defects, obesity, situs inversus, infertility, and recurrent respiratory tract infections. In this review, we summarize the features, frequency, morbidity, and mortality of each of the different ciliopathies that occur in pediatrics. The importance of genetics and the occurrence of genotype-phenotype correlations are indicated, and advances in gene identification are discussed. The use of next-generation sequencing by which a gene panel or all genes can be screened in a single experiment is highlighted as this technology significantly lowered costs and time of the mutation detection process in the past. We discuss the challenges of this new technology and briefly touch upon the use of whole-exome sequencing as a diagnostic test for ciliary disorders. Finally, a perspective on the future of genetics in the context of ciliary disorders is provided.
Collapse
Affiliation(s)
- Machteld M Oud
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ideke J C Lamers
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heleen H Arts
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|