1
|
Calheiros J, Silva R, Barbosa F, Morais J, Moura SR, Almeida S, Fiorini E, Mulhovo S, Aguiar TQ, Wang T, Ricardo S, Almeida MI, Domingues L, Melo SA, Corbo V, Ferreira MJU, Saraiva L. A first-in-class inhibitor of homologous recombination DNA repair counteracts tumour growth, metastasis and therapeutic resistance in pancreatic cancer. J Exp Clin Cancer Res 2025; 44:129. [PMID: 40275348 PMCID: PMC12020112 DOI: 10.1186/s13046-025-03389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is among the cancer types with poorest prognosis and survival rates primarily due to resistance to standard-of-care therapies, including gemcitabine (GEM) and olaparib. Particularly, wild-type (wt)BRCA tumours, the most prevalent in PDAC, are more resistant to DNA-targeting agents like olaparib, restraining their clinical application. Recently, we disclosed a monoterpene indole alkaloid derivative (BBIT20) as a new inhibitor of homologous recombination (HR) DNA repair with anticancer activity in breast and ovarian cancer. Since inhibition of DNA repair enhances the sensitivity of cancer cells to chemotherapy, we aimed to investigate the anticancer potential of BBIT20 against PDAC, particularly carrying wtBRCA. METHODS In vitro and in vivo PDAC models, particularly human cell lines (including GEM-resistant PDAC cells), patient-derived organoids and xenograft mice of PDAC were used to evaluate the anticancer potential of BBIT20, alone and in combination with GEM or olaparib. Disruption of the BRCA1-BARD1 interaction by BBIT20 was assessed by co-immunoprecipitation, immunofluorescence and yeast two-hybrid assay. RESULTS The potent antiproliferative activity of BBIT20, superior to olaparib, was demonstrated in PDAC cells regardless of BRCA status, by inducing cell cycle arrest, apoptosis, and DNA damage, while downregulating HR. The disruption of DNA double-strand breaks repair by BBIT20 was further reinforced by non-homologous end joining (NHEJ) suppression. The inhibition of BRCA1-BARD1 heterodimer by BBIT20 was demonstrated in PDAC cells and confirmed in a yeast two-hybrid assay. In GEM-resistant PDAC cells, BBIT20 showed potent antiproliferative, anti-migratory and anti-invasive activity, overcoming GEM resistance by inhibiting the multidrug resistance P-glycoprotein, upregulating the intracellular GEM-transporter ENT1, and downregulating GEM resistance-related microRNA-20a and GEM metabolism enzymes as RRM1/2. Furthermore, BBIT20 did not induce resistance in PDAC cells. It inhibited the growth of patient-derived PDAC organoids, by inducing apoptosis, repressing HR, and potentiating olaparib and GEM cytotoxicity. The enhancement of olaparib antitumor activity by BBIT20 was confirmed in xenograft mice of PDAC. Notably, it hindered tumour growth and liver metastasis formation, improving survival of orthotopic xenograft mice of PDAC. Furthermore, its potential as a stroma-targeting agent, reducing fibrotic extracellular matrix and overcoming desmoplasia, associated with an enhancement of immune cell response by depleting PD-L1 expression in tumour tissues, renders BBIT20 even more appealing for combination therapy, particularly with immunotherapy. CONCLUSION These findings underscore the great potential of BBIT20 as a novel multifaceted anticancer drug candidate for PDAC treatment.
Collapse
Grants
- 2020.04613.BD FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior
- 2022.05718.PTDC, 0.54499/LA/P/0008/2020, 10.54499/UIDP/50006/2020, 10.54499/UIDB/50006/2020 FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior
- 2020.06020.BD FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior
- 2022.05718.PTDC, 0.54499/LA/P/0008/2020, 10.54499/UIDP/50006/2020, 10.54499/UIDB/50006/2020 FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior
- 2022.05718.PTDC, 0.54499/LA/P/0008/2020, 10.54499/UIDP/50006/2020, 10.54499/UIDB/50006/2020 FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior
- 2022.05718.PTDC, 0.54499/LA/P/0008/2020, 10.54499/UIDP/50006/2020, 10.54499/UIDB/50006/2020 FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior
- AIRC; IG No 288801 Associazione Italiana Ricerca sul Cancro
- AIRC; IG No 288801 Associazione Italiana Ricerca sul Cancro
- NHI; HHSN26100008 NCI NIH HHS
- National Cancer Institute
Collapse
Affiliation(s)
- Juliana Calheiros
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Rita Silva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Filipa Barbosa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa, 1649-003, Portugal
| | - João Morais
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Sara Reis Moura
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Sofia Almeida
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Elena Fiorini
- Department of Engineering for Innovation Medicine (DIMI), University of Verona, 37134, Verona, Italy
| | - Silva Mulhovo
- Centro de Estudos Moçambicanos e de Etnociências (CEMEC), Faculty of Natural Sciences and Mathematics, Pedagogical University, Maputo, 21402161, Mozambique
| | - Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Tao Wang
- Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Sara Ricardo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy and UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, 4585-116, Portugal
| | - Maria Inês Almeida
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Sonia A Melo
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
- Department of Pathology, Faculty of Medicine University of Porto, Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal
- Porto Comprehensive Cancer Centre (P.CCC) Raquel Seruca, Porto, Portugal
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine (DIMI), University of Verona, 37134, Verona, Italy
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa, 1649-003, Portugal.
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal.
| |
Collapse
|
2
|
Park M, Nam JS, Kim T, Yoon G, Kim S, Lee C, Lee CG, Park S, Bejoymohandas KS, Yang J, Kwon YH, Lee YJ, Seo JK, Min D, Park T, Kwon T. Rational Design of Biocompatible Ir(III) Photosensitizer to Overcome Drug-Resistant Cancer via Oxidative Autophagy Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407236. [PMID: 39540573 PMCID: PMC11727131 DOI: 10.1002/advs.202407236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/25/2024] [Indexed: 11/16/2024]
Abstract
Autophagy is a crucial quality control mechanism that degrades damaged cellular components through lysosomal fusion with autophagosomes. However, elevated autophagy levels can promote drug resistance in cancer cells, enhancing their survival. Downregulation of autophagy through oxidative stress is a clinically promising strategy to counteract drug resistance, yet precise control of oxidative stress in autophagic proteins remains challenging. Here, a molecular design strategy of biocompatible neutral Ir(III) photosensitizers is demonstrated, B2 and B4, for precise reactive oxygen species (ROS) control at lysosomes to inhibit autophagy. The underlying molecular mechanisms for the biocompatibility and lysosome selectivity of Ir(III) complexes are explored by comparing B2 with the cationic or the non-lysosome-targeting analogs. Also, the biological mechanisms for autophagy inhibition via lysosomal oxidation are explored. Proteome analyses reveal significant oxidation of proteins essential for autophagy, including lysosomal and fusion-mediator proteins. These findings are verified in vitro, using mass spectrometry, live cell imaging, and a model SNARE complex. The anti-tumor efficacy of the precise lysosomal oxidation strategy is further validated in vivo with B4, engineered for red light absorbance. This study is expected to inspire the therapeutic use of spatiotemporal ROS control for sophisticated modulation of autophagy.
Collapse
Affiliation(s)
- Mingyu Park
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- X‐dynamic Research CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jung Seung Nam
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- X‐dynamic Research CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Institute for Cancer GeneticsDepartment of Genetics and DevelopmentColumbia University Medical CenterNew YorkNY10032USA
- Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNY10032USA
| | - Taehyun Kim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673Republic of Korea
| | - Gwangsu Yoon
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- X‐dynamic Research CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Seoyoon Kim
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Chaiheon Lee
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- X‐dynamic Research CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Chae Gyu Lee
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Sungjin Park
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673Republic of Korea
| | - Kochan S. Bejoymohandas
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673Republic of Korea
| | - Jihyeon Yang
- Research CenterO2MEDi inc.Ulsan44919Republic of Korea
| | - Yoon Hee Kwon
- Research CenterO2MEDi inc.Ulsan44919Republic of Korea
| | - Yoo Jin Lee
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jeong Kon Seo
- Research CenterO2MEDi inc.Ulsan44919Republic of Korea
| | - Duyoung Min
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Taiho Park
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673Republic of Korea
| | - Tae‐Hyuk Kwon
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- X‐dynamic Research CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Research CenterO2MEDi inc.Ulsan44919Republic of Korea
| |
Collapse
|
3
|
Bano N, Kainat KM, Ansari MI, Pal A, Sarkar S, Sharma PK. Identification of chemoresistance targets in doxorubicin-resistant lung adenocarcinoma cells using LC-MS/MS-based proteomics. J Chemother 2024:1-15. [PMID: 39101797 DOI: 10.1080/1120009x.2024.2385267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Acquired chemoresistance remains a significant challenge in the clinics as most of the treated cancers eventually emerge as hard-to-treat phenotypes. Therefore, identifying chemoresistance targets is highly warranted to manage the disease better. In this study, we employed a label-free LC-MS/MS-based quantitative proteomics analysis to identify potential targets and signaling pathways underlying acquired chemoresistance in a sub-cell line (A549DR) derived from the parental lung adenocarcinoma cells (A549) treated with gradually increasing doses of doxorubicin (DOX). Our proteomics analysis identified 146 upregulated and 129 downregulated targets in A549DR cells. The KEGG pathway and Gene ontology (GO) analysis of differentially expressed upregulated and downregulated proteins showed that most abundant upregulated pathways were related to metabolic pathways, cellular senescence, cell cycle, and p53 signaling. Meanwhile, the downregulated pathways were related to spliceosome, nucleotide metabolism, DNA replication, nucleotide excision repair, and nuclear-cytoplasmic transport. Further, STRING analysis of upregulated biological processes showed a protein-protein interaction (PPI) between CDK1, AKT2, SRC, STAT1, HDAC1, FDXR, FDX1, NPC1, ALDH2, GPx1, CDK4, and B2M, proteins. The identified proteins in this study might be the potential therapeutic targets for mitigating DOX resistance.
Collapse
Affiliation(s)
- Nuzhat Bano
- Food Toxicology Group, Food, Drug & Chemical, Environment, and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - K M Kainat
- Food Toxicology Group, Food, Drug & Chemical, Environment, and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohammad Imran Ansari
- Food Toxicology Group, Food, Drug & Chemical, Environment, and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anjali Pal
- Food Toxicology Group, Food, Drug & Chemical, Environment, and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sana Sarkar
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Food Toxicology Group, Food, Drug & Chemical, Environment, and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Lin Q, Serratore A, Perri J, Roy Chaudhuri T, Qu J, Ma WW, Kandel ES, Straubinger RM. Expression of fibroblast growth factor receptor 1 correlates inversely with the efficacy of single-agent fibroblast growth factor receptor-specific inhibitors in pancreatic cancer. Br J Pharmacol 2024; 181:1383-1403. [PMID: 37994108 PMCID: PMC11909478 DOI: 10.1111/bph.16289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Elevated fibroblast growth factor receptor (FGFR) activity correlates with pancreatic adenocarcinoma (PDAC) progression and poor prognosis. However, its potential as a therapeutic target remains largely unexplored. EXPERIMENTAL APPROACH The mechanisms of action and therapeutic effects of selective pan-FGFR inhibitors (pan-FGFRi) were explored using in vitro and in vivo PDAC models ranging from gemcitabine-sensitive to highly gemcitabine-resistant (GemR). Gain-/loss-of-function investigations were employed to define the role of individual FGFRs in cell proliferation, migration, and treatment response and resistance. RESULTS The pan-FGFRi NVP-BGJ398 significantly inhibited cell proliferation, migration, and invasion, and downregulated key cell survival- and invasiveness markers in multiple PDAC cell lines. Gemcitabine is a standard-of-care for PDAC, but development of resistance to gemcitabine (GemR) compromises its efficacy. Acquired GemR was modelled experimentally by developing highly GemR cells using escalating gemcitabine exposure in vitro and in vivo. FGFRi treatment inhibited GemR cell proliferation, migration, GemR marker expression, and tumour progression. FGFR2 or FGFR3 loss-of-function by shRNA knockdown failed to decrease cell growth, whereas FGFR1 knockdown was lethal. FGFR1 overexpression promoted cell migration more than proliferation, and reduced FGFRi-mediated inhibition of proliferation and migration. Single-agent FGFRi suppressed the viability and growth of multiple patient-derived xenografts inversely with respect to FGFR1 expression, underscoring the influence of FGFR1-dependent tumour responses to FGFRi. Importantly, secondary data analysis showed that PDAC tumours expressed FGFR1 at lower levels than in normal pancreas tissue. CONCLUSIONS AND IMPLICATIONS Single-agent FGFR inhibitors mediate selective, molecularly-targeted suppression of PDAC proliferation, and their effects are greatest in PDAC tumours expressing low-to-moderate levels of FGFR1.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Andrea Serratore
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Jonathan Perri
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Tista Roy Chaudhuri
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Wen Wee Ma
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Robert M Straubinger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
5
|
Kumar V, Sethi B, Staller DW, Shrestha P, Mahato RI. Gemcitabine elaidate and ONC201 combination therapy for inhibiting pancreatic cancer in a KRAS mutated syngeneic mouse model. Cell Death Discov 2024; 10:158. [PMID: 38553450 PMCID: PMC10980688 DOI: 10.1038/s41420-024-01920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Approximately 90% of pancreatic cancer (PC) contain KRAS mutations. Mutated KRAS activates the downstream oncogenic PI3K/AKT and MEK signaling pathways and induces drug resistance. However, targeting both pathways with different drugs can also lead to excessive toxicity. ONC201 is a dual PI3K/AKT and MEK pathway inhibitor with an excellent safety profile that targets death receptor 5 (DR5) to induce apoptosis. Gemcitabine (GEM) is a first-line chemotherapy in PC, but it is metabolically unstable and can be stabilized by a prodrug approach. In this study, phospho-Akt, phospho-mTOR, and phospho-ERK protein expressions were evaluated in patient PDAC-tissues (n = 10). We used lipid-gemcitabine (L_GEM) conjugate, which is more stable and enters the cells by passive diffusion. Further, we evaluated the efficacy of L_GEM and ONC201 in PC cells and "KrasLSL-G12D; p53LoxP; Pdx1-CreER (KPC) triple mutant xenograft tumor-bearing mice. PDAC patient tissues showed significantly higher levels of p-AKT (Ser473), p-ERK (T202/T204), and p-mTOR compared to surrounding non-cancerous tissues. ONC201 in combination with L_GEM, showed a superior inhibitory effect on the growth of MIA PaCa-2 cells. In our in-vivo study, we found that ONC201 and L_GEM combination prevented neoplastic proliferation via AKT/ERK blockade to overcome chemoresistance and increased T-cell tumor surveillance. Simultaneous inhibition of the PI3K/AKT and MEK pathways with ONC201 is an attractive approach to potentiate the effect of GEM. Our findings provide insight into rational-directed precision chemo and immunotherapy therapy in PDAC.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dalton W Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prakash Shrestha
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
6
|
Lin Q, Serratore A, Niu J, Shen S, Roy Chaudhuri T, Ma WW, Qu J, Kandel ES, Straubinger RM. Fibroblast growth factor receptor 1 inhibition suppresses pancreatic cancer chemoresistance and chemotherapy-driven aggressiveness. Drug Resist Updat 2024; 73:101064. [PMID: 38387284 PMCID: PMC11864563 DOI: 10.1016/j.drup.2024.101064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
AIMS Pancreatic ductal adenocarcinoma (PDAC) is often intrinsically-resistant to standard-of-care chemotherapies such as gemcitabine. Acquired gemcitabine resistance (GemR) can arise from treatment of initially-sensitive tumors, and chemotherapy can increase tumor aggressiveness. We investigated the molecular mechanisms of chemoresistance and chemotherapy-driven tumor aggressiveness, which are understood incompletely. METHODS Differential proteomic analysis was employed to investigate chemotherapy-driven chemoresistance drivers and responses of PDAC cells and patient-derived tumor xenografts (PDX) having different chemosensitivities. We also investigated the prognostic value of FGFR1 expression in the efficacy of selective pan-FGFR inhibitor (FGFRi)-gemcitabine combinations. RESULTS Quantitative proteomic analysis of a highly-GemR cell line revealed fibroblast growth factor receptor 1 (FGFR1) as the highest-expressed receptor tyrosine kinase. FGFR1 knockdown or FGFRi co-treatment enhanced gemcitabine efficacy and decreased GemR marker expression, implicating FGFR1 in augmentation of GemR. FGFRi treatment reduced PDX tumor progression and prolonged survival significantly, even in highly-resistant tumors in which neither single-agent showed efficacy. Gemcitabine exacerbated aggressiveness of highly-GemR tumors, based upon proliferation and metastatic markers. Combining FGFRi with gemcitabine or gemcitabine+nab-paclitaxel reversed tumor aggressiveness and progression, and prolonged survival significantly. In multiple PDAC PDXs, FGFR1 expression correlated with intrinsic tumor gemcitabine sensitivity. CONCLUSION FGFR1 drives chemoresistance and tumor aggressiveness, which FGFRi can reverse.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Andrea Serratore
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Jin Niu
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Shichen Shen
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Tista Roy Chaudhuri
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Wen Wee Ma
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jun Qu
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Robert M Straubinger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
7
|
Rasam S, Lin Q, Shen S, Straubinger RM, Qu J. Highly Reproducible Quantitative Proteomics Analysis of Pancreatic Cancer Cells Reveals Proteome-Level Effects of a Novel Combination Drug Therapy That Induces Cancer Cell Death via Metabolic Remodeling and Activation of the Extrinsic Apoptosis Pathway. J Proteome Res 2023; 22:3780-3792. [PMID: 37906173 DOI: 10.1021/acs.jproteome.3c00463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Pancreatic cancer patients have poor survival rates and are frequently treated using gemcitabine (Gem). However, initial tumor sensitivity often gives way to rapid development of resistance. Gem-based drug combinations are employed to increase efficacy and mitigate resistance, but our understanding of molecular-level drug interactions, which could assist in the development of more effective therapeutic regimens, is limited. Global quantitative proteomic analysis could provide novel mechanistic insights into drug combination interactions, but it is challenging to achieve high-quality quantitative proteomics analysis of the large sample sets that are typically required for drug combination studies. Here, we investigated molecular-level temporal interactions of Gem with BGJ398 (infigratinib), a recently approved pan-FGFR inhibitor, in multiple treatment groups (N = 42 samples) using IonStar, a robust large-scale proteomics method that employs well-controlled, ultrahigh-resolution MS1 quantification. A total of 5514 proteins in the sample set were quantified without missing data, requiring >2 unique peptides/protein, <1% protein false discovery rate (FDR), <0.1% peptide FDR, and CV < 10%. Functional analysis of the differentially altered proteins revealed drug-dysregulated processes such as metabolism, apoptosis, and antigen presentation pathways. These changes were validated experimentally using Seahorse metabolic assays and immunoassays. Overall, in-depth analysis of large-scale proteomics data provided novel insights into possible mechanisms by which FGFR inhibitors complement and enhance Gem activity in pancreatic cancers.
Collapse
Affiliation(s)
- Sailee Rasam
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14260, United States
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Qingxiang Lin
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14260, United States
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York 14203, United States
| | - Shichen Shen
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Robert M Straubinger
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York 14203, United States
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14260, United States
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York 14203, United States
| | - Jun Qu
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14260, United States
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York 14203, United States
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14260, United States
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York 14203, United States
| |
Collapse
|
8
|
Ramalhete L, Vigia E, Araújo R, Marques HP. Proteomics-Driven Biomarkers in Pancreatic Cancer. Proteomes 2023; 11:24. [PMID: 37606420 PMCID: PMC10443269 DOI: 10.3390/proteomes11030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Pancreatic cancer is a devastating disease that has a grim prognosis, highlighting the need for improved screening, diagnosis, and treatment strategies. Currently, the sole biomarker for pancreatic ductal adenocarcinoma (PDAC) authorized by the U.S. Food and Drug Administration is CA 19-9, which proves to be the most beneficial in tracking treatment response rather than in early detection. In recent years, proteomics has emerged as a powerful tool for advancing our understanding of pancreatic cancer biology and identifying potential biomarkers and therapeutic targets. This review aims to offer a comprehensive survey of proteomics' current status in pancreatic cancer research, specifically accentuating its applications and its potential to drastically enhance screening, diagnosis, and treatment response. With respect to screening and diagnostic precision, proteomics carries the capacity to augment the sensitivity and specificity of extant screening and diagnostic methodologies. Nonetheless, more research is imperative for validating potential biomarkers and establishing standard procedures for sample preparation and data analysis. Furthermore, proteomics presents opportunities for unveiling new biomarkers and therapeutic targets, as well as fostering the development of personalized treatment strategies based on protein expression patterns associated with treatment response. In conclusion, proteomics holds great promise for advancing our understanding of pancreatic cancer biology and improving patient outcomes. It is essential to maintain momentum in investment and innovation in this arena to unearth more groundbreaking discoveries and transmute them into practical diagnostic and therapeutic strategies in the clinical context.
Collapse
Affiliation(s)
- Luís Ramalhete
- Blood and Transplantation Center of Lisbon—Instituto Português do Sangue e da Transplantação, Alameda das Linhas de Torres, n° 117, 1769-001 Lisbon, Portugal
- Nova Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- iNOVA4Health—Advancing Precision Medicine, RG11: Reno-Vascular Diseases Group, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Emanuel Vigia
- Nova Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centro Hospitalar de Lisboa Central, Department of Hepatobiliopancreatic and Transplantation, 1050-099 Lisbon, Portugal
| | - Rúben Araújo
- Nova Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- CHRC—Comprehensive Health Research Centre, NOVA Medical School, 1150-199 Lisbon, Portugal
| | - Hugo Pinto Marques
- Nova Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centro Hospitalar de Lisboa Central, Department of Hepatobiliopancreatic and Transplantation, 1050-099 Lisbon, Portugal
| |
Collapse
|
9
|
Mahato R, Kumar V, Sethi B, Staller D. Gemcitabine elaidate and ONC201 combination therapy inhibits pancreatic cancer in a KRAS mutated syngeneic mouse model. RESEARCH SQUARE 2023:rs.3.rs-3108907. [PMID: 37503215 PMCID: PMC10371096 DOI: 10.21203/rs.3.rs-3108907/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Approximately 90% of pancreatic cancer (PC) contain KRAS mutations. Mutated KRAS activates the downstream oncogenic PI3K/AKT and MEK signaling pathways and induces drug resistance. However, targeting both pathways with different drugs can also lead to access of toxicity. ONC201 targets DR5 to induce apoptosis in several types of cancers and has an excellent safety profile. ONC201 is also a dual PI3K/AKT and MEK pathways inhibitor. Gemcitabine (GEM) is a first-line chemotherapy in PC, but it is metabolically unstable, which can be stabilized by prodrug approach. Here, we used lipid-gemcitabine (L_GEM) conjugate, which is more stable and enters the cells by passive diffusion. We evaluated the efficacy of L_GEM and ONC201 in PanCan cells, and "KrasLSL-G12D; p53LoxP; Pdx1-CreER (KPC) triple mutant xenograft tumor-bearing mice. ONC201, in combination with L_GEM, showed a superior inhibitory effect on the growth of MIA PaCa-2 cells. ONC201 and L_GEM combination prevented neoplastic proliferation via AKT/ERK blockade, to overcome chemoresistance, and increased T-cell tumor surveillance. Simultaneous inhibition of the PI3K/AKT and MEK pathways with ONC201 is an attractive approach to potentiate GEM. Our findings provide insight into rational-directed precision chemo and immunotherapy therapy in PDAC.
Collapse
|