1
|
Catalán J, Martínez-Díaz P, Parra A, Bonet S, Yeste M, Roca J, Barranco I, Miró J. Isolation and characterization of extracellular vesicle subsets in donkey seminal plasma. Theriogenology 2025; 244:117501. [PMID: 40412157 DOI: 10.1016/j.theriogenology.2025.117501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/22/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Seminal plasma (SP), a fluid composed of secretions from the male genital tract, is rich in seminal extracellular vesicles (sEVs), nano-sized particles surrounded by a lipid bilayer membrane and loaded with functionally active molecules. Seminal EVs are secreted by functional cells of the male genital tract and play a key role in modulating reproductive processes, including sperm function and immune response in the female genital tract. The aim of this study was to isolate and characterize sEVs from donkey SP for the first time. Nine SP samples were collected from nine healthy and reproductive active donkeys. The SP samples were randomly pooled to create three pools (three SP samples per pool). The SP pools were subjected to differential centrifugation and size-exclusion chromatography to separately isolate two subsets of sEVs: small (S-) and large (L-). Orthogonal characterization of sEV samples was performed according to MISEV 2023 guidelines, including morphology (by cryogenic electron microscopy), concentration (by total protein concentration and total and CFSE positive particles by flow cytometry [FC]), particle size distribution (by dynamic light scattering), purity (by albumin assessment by FC), and specific EV protein markers (tetraspanins CD9, CD63, and CD81, and HSP70 by FC). The results showed that donkey SP is highly enriched in sEVs. Size differences were found between both sEV subsets, with S-sEVs being smaller (∼160 nm) and L-sEVs larger (∼290 nm). Both sEV subsets were positive for the four EV protein markers. However, the percentage of CD81-positive events was higher in S-sEV samples than in L-sEV samples (P < 0.05). This study is the first to isolate and characterize sEVs in donkey SP, demonstrating their heterogeneity and suggesting differences in biogenesis and function between S-sEVs and L-sEVs.
Collapse
Affiliation(s)
- Jaime Catalán
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - Pablo Martínez-Díaz
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain; International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Spain; EV-lab, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Ana Parra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain; International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Spain; EV-lab, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain; International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Spain; EV-lab, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain; International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Spain; EV-lab, Faculty of Veterinary Science, University of Murcia, Murcia, Spain.
| | - Jordi Miró
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
2
|
Esmaeili A, Esmaeili V, Shahverdi A, Eslaminejad MB. Engineered extracellular vesicles: a breakthrough approach to overcoming sperm cryopreservation challenges. Reprod Biol Endocrinol 2025; 23:75. [PMID: 40399922 PMCID: PMC12093887 DOI: 10.1186/s12958-025-01407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025] Open
Abstract
Freezing sperm for artificial insemination (AI) has been common for decades, but this method causes damage to sperm, which affects its viability and fertility. Various strategies have been used to treat sperm cryopreservation complications, but their results are still not satisfactory. The latest approach in this field is using extracellular vesicles (EVs). The role of EVs in reproduction, such as spermatogenesis, sperm capacitation, and fertility has been proven. EVs can deliver proteins, lipids, nucleic acids, and other molecules to the sperm for repair. The EVs carry proteins, lipids, nucleic acids, and other molecules, which could be involved in sperm quality, functionality or fertility. The application of EV derived from animal and human cell sources for cryoinjury treatment indicates the improvement of sperm quality after freeze-thawing. In addition, different EV engineering methods regarding various EV cargos could be more influential for cryopreserved sperm treatment because they could provide EV customized content for delivering to cryoinjured sperm, according to their unique needs to enhance viability and fertility. In this review, first, we reminded the sperm cryopreservation complications, and next explained the conventional and modern strategies for overcoming them. Then, we have pointed out the role of EV in sperm development and the following mentioned the study results of using EV from different cell sources in sperm cryoinjuries repair. Also, we suggested several predisposing molecules (including microRNAs and proteins) for EV engineering to treat sperm cryopreservation complications by indirect engineering procedure, including genetic manipulation and incubation with therapeutic molecules, and direct engineering procedure, including electroporation, sonication, incubation, saponin permeabilization, extrusion, CaCl2-heat shock, and freeze/thawing. Finally, we discussed the limitations of EV application and ethical considerations in this context. In the meantime, despite these limitations, we pointed out the promising potential of the EV engineering strategies to reduce infertility rates by helping to overcome sperm cryopreservation challenges.
Collapse
Affiliation(s)
- Abazar Esmaeili
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahid Esmaeili
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
3
|
Ribas-Maynou J, Parra A, Martínez-Díaz P, Rubio CP, Lucas X, Yeste M, Roca J, Barranco I. Protective role of extracellular vesicles against oxidative DNA damage. Biol Res 2025; 58:14. [PMID: 40075425 PMCID: PMC11905505 DOI: 10.1186/s40659-025-00595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Oxidative stress, a source of genotoxic damage, is often the underlying mechanism in many functional cell disorders. Extracellular vesicles (EVs) have been shown to be key regulators of cellular processes and may be involved in maintaining cellular redox balance. Herein, we aimed to develop a method to assess the effects of EVs on DNA oxidation using porcine seminal plasma extracellular vesicles (sEVs). RESULTS The technique was set using a cell-free plasmid DNA to avoid the bias generated by the uptake of sEVs by sperm cells, employing increasing concentrations of hydrogen peroxide (H2O2) that generate DNA single-strand breaks (SSBs). Because SSBs contain a free 3'-OH end that allow the extension through quantitative PCR, such extension -and therefore the SYBR intensity- showed to be proportional to the amount of SSB. In the next stage, H2O2 was co-incubated with two size-differentiated subpopulations (small and large) of permeabilized and non-permeabilized sEVs to assess whether the intravesicular content (IC) or the surface of sEVs protects the DNA from oxidative damage. Results obtained showed that the surface of small sEVs reduced the incidence of DNA SSBs (P < 0.05), whereas that of large sEVs had no impact on the generation of SSBs (P > 0.05). The IC showed no protective effect against DNA oxidation (P > 0.05). CONCLUSIONS Our results suggest that the surface of small sEVs, including the peripheral corona layer, may exert a protective function against alterations that are originated by oxidative mechanisms. In addition, our in vitro study opens path to detect, localize and quantify the protective effects against oxidation of extracellular vesicles derived from different fluids, elucidating their function in physiopathological states.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
- Unit of Cell Biology and Medical Genetics; Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Ana Parra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Pablo Martínez-Díaz
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Camila Peres Rubio
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (Technosperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain.
- International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain.
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| |
Collapse
|
4
|
Barranco I, Almiñana C, Parra A, Martínez-Diaz P, Lucas X, Bauersachs S, Roca J. RNA profiles differ between small and large extracellular vesicle subsets isolated from porcine seminal plasma. BMC Genomics 2024; 25:1250. [PMID: 39731016 DOI: 10.1186/s12864-024-11167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are essential for cell-to-cell communication because they transport functionally active molecules, including proteins, RNA, and lipids, from secretory cells to nearby or distant target cells. Seminal plasma contains a large number of EVs (sEVs) that are phenotypically heterogeneous. The aim of the present study was to identify the RNA species contained in two subsets of porcine sEVs of different sizes, namely small sEVs (S-sEVs) and large sEVs (L-sEVs). The two subsets of sEVs were isolated from 54 seminal plasma samples by a method combining serial centrifugations, size exclusion chromatography, and ultrafiltration. The sEVs were characterized using an orthogonal approach. Analysis of RNA content and quantification were performed using RNA-seq analysis. RESULTS The two subsets of sEVs had different size distributions (P < 0.001). They also showed differences in concentration, morphology, and specific protein markers (P < 0.05). A total of 735 RNAs were identified and quantified, which included: (1) mRNAs, rRNAs, snoRNAs, snRNAs, tRNAs, other ncRNAs (termed as "all RNAs"), (2) miRNAs and (3) piRNAs. The distribution pattern of these RNA classes differed between S-sEVs and L-sEVs (P < 0.05). More than half of "all RNAs", miRNAs and piRNAs were found to be differentially abundant between S- and L-sEVs (FDR < 0.1%). Among the differentially abundant RNAs, "all RNAs" were more abundant in L- than in S-sEVs, whereas the most of the miRNAs were more abundant in S- than in L-sEVs. Differentially abundant piRNAs were equally distributed between S- and L-sEVs. Some of the all RNAs and miRNAs found to be differentially abundant between S- and L-sEVs were associated with sperm quality and functionality and male fertility success. CONCLUSIONS Small and large sEVs isolated from porcine seminal plasma show quantitative differences in RNA content. These differences would suggest that each sEV subtype exerts different functional activities in the targeted cells, namely spermatozoa and functional cells of the female reproductive tract.
Collapse
Grants
- PID2022-137738NA-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER UE Ministerio de Ciencia e Innovación
- PID2020-113493RB-I00 funded by MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- PID2020-113493RB-I00 funded by MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- PID2020-113493RB-I00 funded by MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Lindau, ZH, Switzerland
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland
| | - Ana Parra
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Pablo Martínez-Diaz
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Lindau, ZH, Switzerland
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain.
| |
Collapse
|
5
|
Chen W, Xie Y, Xu Z, Shang Y, Yang W, Wang P, Wu Z, Cai G, Hong L. Identification and Functional Analysis of miRNAs in Extracellular Vesicles of Semen Plasma from High- and Low-Fertility Boars. Animals (Basel) 2024; 15:40. [PMID: 39794983 PMCID: PMC11718777 DOI: 10.3390/ani15010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Artificial insemination (AI), as an efficient assisted reproduction technology, can help the livestock industry to improve livestock and poultry breeds, optimize production performance and improve reproductive efficiency. AI technology has been widely used in pig production in China, but boar fertility affects the effectiveness of AI, and more and more studies have shown that there are significant differences in the fertility of boars with similar semen quality indicators. Therefore, this study aimed to identify biomarker molecules that indicate the level of boar fertility, which is important for improving the efficiency of AI. In this study, we collected 40 mL of ejaculates per boar used for extracellular vesicle (EV) characterization in 20 boars and identified 53 differentially expressed miRNAs by small RNA sequencing, of which 44 miRNAs were up-regulated in the high-fertility seminal EVs compared with low-fertility seminal EVs, and nine miRNAs were down-regulated. miR-26a was most significantly down-regulated in the high-fertility group compared to the low-fertility group, and it was hypothesized that this miRNA could be used as a biomolecular marker of semen reproductive performance. To further determine the effect of miR-26a on sperm function, we successfully established a miR-26a overexpression model and found that miR-26a reduced sperm viability, motility, acrosome integrity, plasma membrane integrity and ATP levels. Bioinformatics analysis and dual luciferase reporter analysis revealed that miR-26a directly targets High mobility group A1 (HMGA1). In conclusion, miR-26a can be used as a biomarker to identify high and low fertility in boar semen.
Collapse
Affiliation(s)
- Weidong Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (W.C.); (Y.X.); (Y.S.); (W.Y.); (P.W.); (Z.W.)
| | - Yanshe Xie
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (W.C.); (Y.X.); (Y.S.); (W.Y.); (P.W.); (Z.W.)
| | - Zhiqian Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China;
| | - Yijun Shang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (W.C.); (Y.X.); (Y.S.); (W.Y.); (P.W.); (Z.W.)
| | - Wenzheng Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (W.C.); (Y.X.); (Y.S.); (W.Y.); (P.W.); (Z.W.)
| | - Pengyao Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (W.C.); (Y.X.); (Y.S.); (W.Y.); (P.W.); (Z.W.)
| | - Zhenfang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (W.C.); (Y.X.); (Y.S.); (W.Y.); (P.W.); (Z.W.)
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou 510520, China
| | - Gengyuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (W.C.); (Y.X.); (Y.S.); (W.Y.); (P.W.); (Z.W.)
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou 510520, China
- National Regional Gene Bank of Livestock and Poultry (Gene Bank of Guangdong Livestock and Poultry), Guangzhou 510642, China
| | - Linjun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (W.C.); (Y.X.); (Y.S.); (W.Y.); (P.W.); (Z.W.)
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou 510520, China
- National Regional Gene Bank of Livestock and Poultry (Gene Bank of Guangdong Livestock and Poultry), Guangzhou 510642, China
| |
Collapse
|
6
|
Bel Y, Galeano M, Baños-Salmeron M, Andrés-Antón M, Escriche B. Bacillus thuringiensis Cry5, Cry21, App6 and Xpp55 proteins to control Meloidogyne javanica and M. incognita. Appl Microbiol Biotechnol 2024; 108:525. [PMID: 39625663 PMCID: PMC11614921 DOI: 10.1007/s00253-024-13365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
The global imperative to enhance crop protection while preserving the environment has increased interest in the application of biological pesticides. Bacillus thuringiensis (Bt) is a Gram-positive bacterium that can produce nematicidal proteins and accumulate them in parasporal crystals. Root-knot nematodes are obligate root plant parasitic which are distributed worldwide, causing severe damages to the infested plants and, consequently, large yield reductions. In this work, we have evaluated the toxicity of the Bt crystal proteins Cry5, Cry21, App6, and Xpp55 against two root-knot nematodes belonging to the Meloidogyne genus (M. incognita and M. javanica). The results show that all four proteins, when solubilized, were highly toxic for both nematode species. To check the potential of using Bt strains producing nematicidal crystal proteins as biopesticides to control root-knot nematodes in the field, in planta assays were conducted, using two wild Bt strains which produced Cry5 or a combination of App6 and Cry5 proteins. The tests were carried out with cucumber or with tomato plants infested with M. javanica J2, irrigated with spore + cristal mixtures of the respective strains. The results showed that the effectiveness of the nematicidal activity was plant-dependent, as Bt was able to reduce emerged J2 in tomato plants but not in cucumber plants. In addition, the toxicity observed in the in planta assays was much lower than expected, highlighting the difficulty of the proteins supplied as crystals to exert their toxicity. This emphasizes the delivery of the Bt proteins as crucial for its use to control root-knot nematodes. KEY POINTS: • Solubilized Cry5, Cry21, App6 and Xpp55 Bt proteins are toxic to M. javanica. • Cry21 toxicity to M. incognita is similar to that of Cry5, App6, and Xpp55 proteins. • The Cry5 and App6 toxicities on M. javanica after Bt irrigation is crop dependent.
Collapse
Affiliation(s)
- Yolanda Bel
- Institute BIOTECMED/Department of Genetics, University of Valencia, Burjassot, Spain
| | - Magda Galeano
- R&D Department of Koppert España, S.L., Almeria, Spain
| | | | - Miguel Andrés-Antón
- Institute BIOTECMED/Department of Genetics, University of Valencia, Burjassot, Spain
| | - Baltasar Escriche
- Institute BIOTECMED/Department of Genetics, University of Valencia, Burjassot, Spain.
| |
Collapse
|
7
|
Xu Z, Zhang K, Yang Y, Chang H, Wen F, Li X. The role of reproductive tract extracellular vesicles on boar sperm function. Theriogenology 2024; 230:278-284. [PMID: 39357166 DOI: 10.1016/j.theriogenology.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Extracellular vesicles (EVs) are abundant in reproductive tract fluids and serve as important mediators of paracrine communication, influencing the function of gametes. Sperm undergo development in the male reproductive tract and exert their function within the female reproductive tract, engaging in interactions with various types of EVs present throughout the reproductive system. Previous studies have demonstrated that both male and female reproductive tract EVs can impact sperm function by transferring regulatory cargoes to them. Nevertheless, inconsistencies of previous research regarding the effects of EVs on sperm function, coupled with a lack of investigation into the influence of female reproductive tract EVs on sperm fertilization, have left the true role and underlying mechanisms of reproductive tract EVs on sperm function largely unexplored. Given that pigs represent significant economic livestock and serve as an ideal biomedical model for human diseases, this review aims to provide a comprehensive summary of the current knowledge regarding reproductive tract EVs and their influence on boar sperm function, while highlighting their potential roles. We anticipate that this review will facilitate future research on reproductive tract EVs and their impact on sperm function, contributing to improved animal reproductive efficiency and advancements in the treatment of male infertility.
Collapse
Affiliation(s)
- Zhiqian Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Ke Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Youbing Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Huixian Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Fengyun Wen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Xiaoxia Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| |
Collapse
|
8
|
Martínez-Díaz P, Parra A, Montesdeoca M, Barranco I, Roca J. Updating Research on Extracellular Vesicles of the Male Reproductive Tract in Farm Animals: A Systematic Review. Animals (Basel) 2024; 14:3135. [PMID: 39518859 PMCID: PMC11545059 DOI: 10.3390/ani14213135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
This systematic review examined research studies on extracellular vesicles (EVs) of the male reproductive tract in livestock species to summarize the research topics and methodologies used, key findings, and future directions. PubMed and Scopus were searched for time ranges up to 1 September 2024, and 1383 articles were identified. The application of screening and eligibility criteria resulted in the selection of 79 articles focusing on male reproductive EVs in livestock. Porcine and bovine male reproductive EVs were the most studied. A variety of EV isolation techniques were used, with ultracentrifugation being the most common. Characterization of male reproductive EVs in livestock was a weak point, with only 24.05% of the articles characterizing EVs according to MISEV guidelines. Inadequate characterization of EVs compromises the reliability of results. The results of 19 articles that provided a good characterization of EVs showed that male reproductive EVs from livestock species are phenotypically and compositionally heterogeneous. These papers also showed that these EVs would be involved in the regulation of sperm functionality. Research on male reproductive EVs in livestock species remains scarce, and further research is needed, which should include appropriate characterization of EVs and aim to find efficient methods to isolate them and assess their involvement in the functionality of spermatozoa and the cells of the female genital tract.
Collapse
Affiliation(s)
| | | | | | | | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain; (P.M.-D.); (A.P.); (M.M.); (I.B.)
| |
Collapse
|
9
|
Rodriguez-Martinez H, Martinez-Serrano CA, Alvarez-Rodriguez M, Martinez EA, Roca J. Reproductive physiology of the boar: What defines the potential fertility of an ejaculate? Anim Reprod Sci 2024; 269:107476. [PMID: 38664134 DOI: 10.1016/j.anireprosci.2024.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 10/02/2024]
Abstract
Despite decades of research and handling of semen for use in artificial insemination (AI) and other assisted reproductive technologies, 5-10% of selected boar sires are still considered sub-fertile, escaping current assessment methods for sperm quality and resilience to preservation. As end-product, the ejaculate (emitted spermatozoa sequentially exposed to the composite seminal plasma, the SP) ought to define the homeostasis of the testes, the epididymis, and the accessory sexual glands. Yet, linking findings in the ejaculate to sperm production biology and fertility is suboptimal. The present essay critically reviews how the ejaculate of a fertile boar can help us to diagnose both reproductive health and resilience to semen handling, focusing on methods -available and under development- to identify suitable biomarkers for cryotolerance and fertility. Bulk SP, semen proteins and microRNAs (miRNAs) have, albeit linked to sperm function and fertility after AI, failed to enhance reproductive outcomes at commercial level, perhaps for just being components of a complex functional pathway. Hence, focus is now on the interaction sperm-SP, comparing in vivo with ex vivo, and regarding nano-sized lipid bilayer seminal extracellular vesicles (sEVs) as priority. sEVs transport fragile molecules (lipids, proteins, nucleic acids) which, shielded from degradation, mediate cell-to-cell communication with spermatozoa and the female internal genital tract. Such interaction modulates essential reproductive processes, from sperm homeostasis to immunological female tolerance. sEVs can be harvested, characterized, stored, and manipulated, e.g. can be used for andrological diagnosis, selection of breeders, and alternatively be used as additives to improve cryosurvival and fertility.
Collapse
Affiliation(s)
- Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.
| | - Cristina A Martinez-Serrano
- Department of Biotechnology, National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Ctra de la Coruña KM 7,5, Madrid 28040, Spain
| | - Manuel Alvarez-Rodriguez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Ctra de la Coruña KM 7,5, Madrid 28040, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| |
Collapse
|
10
|
Chauhan V, Kashyap P, Chera JS, Pal A, Patel A, Karanwal S, Badrhan S, Josan F, Solanki S, Bhakat M, Datta TK, Kumar R. Differential abundance of microRNAs in seminal plasma extracellular vesicles (EVs) in Sahiwal cattle bull related to male fertility. Front Cell Dev Biol 2024; 12:1473825. [PMID: 39411484 PMCID: PMC11473417 DOI: 10.3389/fcell.2024.1473825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Sahiwal cattle, known for their high milk yield, are propagated through artificial insemination (AI) using male germplasm, largely contingent on semen quality. Spermatozoa, produced in the testes, carry genetic information and molecular signals essential for successful fertilization. Seminal plasma, in addition to sperm, contains nano-sized lipid-bound extracellular vesicles (SP-EVs) that carry key biomolecules, including fertility-related miRNAs, which are essential for bull fertility. The current study focused on miRNA profiling of SP-EVs from high-fertile (HF) and low-fertile (LF) Sahiwal bulls. SP-EVs were isolated using size exclusion chromatography (SEC) and characterized by dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Western blotting detected the EV-specific protein markers TSG101 and CD63. The DLS analysis showed SP-EV sizes of 170-180 nm in HF and 130-140 nm in LF samples. The NTA revealed particle concentrations of 5.76 × 1010 to 5.86 × 1011 particles/mL in HF and 5.31 × 1010 to 2.70 × 1011 particles/mL in LF groups, with no significant differences in size and concentration between HF and LF. High-throughput miRNA sequencing identified 310 miRNAs in SP-EVs from both groups, with 61 upregulated and 119 downregulated in HF bull. Further analysis identified 41 miRNAs with significant fold changes and p-values, including bta-miR-1246, bta-miR-195, bta-miR-339b, and bta-miR-199b, which were analyzed for target gene prediction. Gene Ontology (GO) and KEGG pathway analyses indicated that these miRNAs target genes involved in transcription regulation, ubiquitin-dependent endoplasmic reticulum-associated degradation (ERAD) pathways, and signalling pathways. Functional exploration revealed that these genes play roles in spermatogenesis, motility, acrosome reactions, and inflammatory responses. qPCR analysis showed that bta-miR-195 had 80% higher expression in HF spermatozoa compared to LF, suggesting its association with fertility status (p < 0.05). In conclusion, this study elucidates the miRNA cargoes in SP-EVs as indicators of Sahiwal bull fertility, highlighting bta-miR-195 as a potential fertility factor among the various miRNAs identified.
Collapse
Affiliation(s)
- Vitika Chauhan
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Poonam Kashyap
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Jatinder Singh Chera
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Ankit Pal
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Aditya Patel
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Seema Karanwal
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Shiva Badrhan
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Fanny Josan
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Subhash Solanki
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Mukesh Bhakat
- Livestock Production and Management Division, ICAR- Central Institute of Research on Goat, Mathura, Uttar Pradesh, India
| | | | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
11
|
Badrhan S, Karanwal S, Pal A, Chera JS, Chauhan V, Patel A, Bhakat M, Datta TK, Kumar R. Differential protein repertoires related to sperm function identified in extracellular vesicles (EVs) in seminal plasma of distinct fertility buffalo ( Bubalus bubalis) bulls. Front Cell Dev Biol 2024; 12:1400323. [PMID: 39135778 PMCID: PMC11318068 DOI: 10.3389/fcell.2024.1400323] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Buffalo bulls are backbone of Indian dairy industry, and the quality of semen donating bulls determine the overall production efficiency of dairy farms. Seminal plasma harbor millions of lipid bilayer nanovesicles known as extracellular vesicles (EVs). These EVs carry a heterogenous cargo of essential biomolecules including fertility-associated proteins which contribute to fertilizing potential of spermatozoa. In this study, we explored size, concentration, and complete proteome profiles of SP EVs from two distinct fertility groups to uncover proteins influencing bull fertility. Through Dynamic Light Scattering (DLS) it was found that purified EVs were present in 7-14 size exclusion chromatographic (SEC) fractions with sizes ranging from 146.5 to 258.7 nm in high fertile (HF) and low fertile (LF) bulls. Nanoparticle Tracking Analysis (NTA) confirmed the size of seminal EVs up to 200 nm, and concentrations varying from 2.84 to 6.82 × 1011 and 3.57 to 7.74 × 1011 particles per ml in HF and LF bulls, respectively. No significant difference was observed in size and concentration of seminal EVs between two groups. We identified a total of 1,862 and 1,807 proteins in seminal EVs of HF and LF bulls, respectively using high throughput LC-MS/MS approach. Out of these total proteins, 1,754 proteins were common in both groups and about 87 proteins were highly abundant in HF group while 1,292 were less abundant as compared to LF bulls. Gene ontology (GO) analysis, revealed that highly abundant proteins in HF group were mainly part of the nucleus and involved in nucleosome assembly along with DNA binding. Additionally, highly abundant proteins in EVs of HF group were found to be involved in spermatogenesis, motility, acrosome reaction, capacitation, gamete fusion, and cryotolerance. Two highly abundant proteins, protein disulfide-isomerase A4 and gelsolin, are associated with sperm-oocyte fusion and acrosome reaction, respectively, and their immunolocalization on spermatozoa may indicate that these proteins are transferred through EVs. Our evidences support that proteins in EVs and subsequently their presence on sperm, are strongly associated with sperm functions. Altogether, our investigation indicates that SPEVs possess crucial protein repertoires that are essential for enhancing sperm fertilizing capacity.
Collapse
Affiliation(s)
- Shiva Badrhan
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Seema Karanwal
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Ankit Pal
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Jatinder Singh Chera
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Vitika Chauhan
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Aditya Patel
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Mukesh Bhakat
- ICAR- Central Institute of Research on Goat, Mathura, Uttar Pradesh, India
| | - Tirtha K. Datta
- Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
12
|
Parra A, Barranco I, Martínez-Díaz P, González E, Albóniga OE, Cabrera D, Falcón-Pérez JM, Roca J. Cryogenic electron microscopy reveals morphologically distinct subtypes of extracellular vesicles among porcine ejaculate fractions. Sci Rep 2024; 14:16175. [PMID: 39003421 PMCID: PMC11246463 DOI: 10.1038/s41598-024-67229-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Seminal plasma (SP) is rich in extracellular vesicles (EVs), which are still poorly studied, especially in livestock species. To better understand their functional role in both spermatozoa and endometrial epithelial cells, proper characterization of EVs is an essential step. The objective was to phenotypically characterize porcine seminal EVs (sEVs) using cryogenic electron microscopy (cryo-EM), which allows visualization of EVs in their native state. Porcine ejaculates are released in fractions, each containing SP from different source. This allows characterization sEVs released from various male reproductive tissues. Two experiments were performed, the first with SP from the entire ejaculate (n:6) and the second with SP from three ejaculate fractions (n:15): the first 10 mL of the sperm-rich ejaculate fraction (SRF-P1) with SP mainly from the epididymis, the remainder of the SRF (SRF-P2) with SP mainly from the prostate, and the post-SRF with SP mainly from the seminal vesicles. The sEVs were isolated by size exclusion chromatography and 1840 cryo-EM sEV images were acquired using a Jeol-JEM-2200FS/CR-EM. The size, electron density, complexity, and peripheral corona layer were measured in each sEV using the ImageJ software. The first experiment showed that sEVs were structurally and morphologically heterogeneous, although most (83.1%) were small (less than 200 nm), rounded, and poorly electrodense, and some have a peripheral coronal layer. There were also larger sEVs (16.9%) that were irregularly shaped, more electrodense, and few with a peripheral coronal layer. The second experiment showed that small sEVs were more common in SRF-P1 and SRF-P2, indicating that they originated mainly from the epididymis and prostate. Large sEVs were more abundant in post-SRF, indicating that they originated mainly from seminal vesicles. Porcine sEVs are structurally and morphologically heterogeneous. This would be explained by the diversity of reproductive organs of origin.
Collapse
Affiliation(s)
- Ana Parra
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Pablo Martínez-Díaz
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Esperanza González
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Vizcaya, Spain
| | - Oihane E Albóniga
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Vizcaya, Spain
| | - Diana Cabrera
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Vizcaya, Spain
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Vizcaya, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
- Metabolomics Platform, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain.
| |
Collapse
|
13
|
Martínez-Díaz P, Parra A, Sanchez-López CM, Casas J, Lucas X, Marcilla A, Roca J, Barranco I. Small and Large Extracellular Vesicles of Porcine Seminal Plasma Differ in Lipid Profile. Int J Mol Sci 2024; 25:7492. [PMID: 39000599 PMCID: PMC11242203 DOI: 10.3390/ijms25137492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Seminal plasma contains a heterogeneous population of extracellular vesicles (sEVs) that remains poorly characterized. This study aimed to characterize the lipidomic profile of two subsets of differently sized sEVs, small (S-) and large (L-), isolated from porcine seminal plasma by size-exclusion chromatography and characterized by an orthogonal approach. High-performance liquid chromatography-high-resolution mass spectrometry was used for lipidomic analysis. A total of 157 lipid species from 14 lipid classes of 4 major categories (sphingolipids, glycerophospholipids, glycerolipids, and sterols) were identified. Qualitative differences were limited to two cholesteryl ester species present only in S-sEVs. L-sEVs had higher levels of all quantified lipid classes due to their larger membrane surface area. The distribution pattern was different, especially for sphingomyelins (more in S-sEVs) and ceramides (more in L-sEVs). In conclusion, this study reveals differences in the lipidomic profile of two subsets of porcine sEVs, suggesting that they differ in biogenesis and functionality.
Collapse
Affiliation(s)
- Pablo Martínez-Díaz
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Ana Parra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Christian M Sanchez-López
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, 46100 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, 46100 Valencia, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Institute for Advanced Chemistry (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, 46100 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, 46100 Valencia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
14
|
Barranco I, Spinaci M, Nesci S, Mateo-Otero Y, Baldassarro VA, Algieri C, Bucci D, Roca J. Seminal extracellular vesicles alter porcine in vitro fertilization outcome by modulating sperm metabolism. Theriogenology 2024; 219:167-179. [PMID: 38437767 DOI: 10.1016/j.theriogenology.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Porcine seminal plasma (SP) is loaded with a heterogeneous population of extracellular vesicles (sEVs) that modulate several reproductive-related processes. This study investigated the effect of two sEV subsets, small (S-sEVs) and large (L-sEVs), on porcine in vitro fertilization (IVF). The sEVs were isolated from nine SP pools (five ejaculates/pool) using a size-exclusion chromatography-based procedure and characterized for quantity (total protein), morphology (cryogenic electron microscopy), size distribution (dynamic light scattering), purity and EV-protein markers (flow cytometry; albumin, CD81, HSP90β). The characterization confirmed the existence of two subsets of high purity (low albumin content) sEVs that differed in size (S- and L-sEVs). In vitro fertilization was performed with in vitro matured oocytes and frozen-thawed spermatozoa and the IVF medium was supplemented during gamete coincubation (1 h at 38.5 °C, 5 % CO2 in a humidified atmosphere) with three different concentrations of each sEV subset: 0 (control, without sEVs), 0.1, and 0.2 mg/mL. The first experiment showed that sEVs, regardless of subset and concentration, decreased penetration rates and total IVF efficiency (P < 0.0001). In a subsequent experiment, it was shown that sEVs, regardless of subset and concentration, impaired the ability of spermatozoa to bind to the zona pellucida of oocytes (P < 0.0001). The following experiment showed that sEVs, regardless of the subset, bound to frozen-thawed sperm but not to in vitro matured oocytes, indicating that sEVs would affect sperm functionality but not oocyte functionality. The lack of effect on oocytes was confirmed by incubating sEVs with oocytes prior to IVF, achieving sperm-zona pellucida binding results similar to those of control. In the last experiment, conducted under IVF conditions, sperm functionality was analyzed in terms of tyrosine phosphorylation, acrosome integrity and metabolism. The sEVs, regardless of the subset, did not affect sperm tyrosine phosphorylation or acrosome integrity, but did influence sperm metabolism by decreasing sperm ATP production under capacitating conditions. In conclusion, this study demonstrated that the presence of sEVs on IVF medium impairs IVF outcomes, most likely by altering sperm metabolism.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy; Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Marcella Spinaci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Diego Bucci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy.
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| |
Collapse
|
15
|
Barranco I, Alvarez-Barrientos A, Parra A, Martínez-Díaz P, Lucas X, Roca J. Immunophenotype profile by flow cytometry reveals different subtypes of extracellular vesicles in porcine seminal plasma. Cell Commun Signal 2024; 22:63. [PMID: 38263049 PMCID: PMC10807091 DOI: 10.1186/s12964-024-01485-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Porcine seminal plasma (SP) is endowed with a heterogeneous population of extracellular vesicles (sEVs). This study evaluated the immunophenotypic profile by high-sensitivity flow cytometry of eight sEV subpopulations isolated according to their size (small [S-sEVs] and large [L-sEVs]) from four different SP sources, namely three ejaculate fractions (the first 10 mL of the sperm rich fraction [SRF-P1], the remaining SRF [SRF-P2], and the post-SRF [PSRF]) and entire ejaculate (EE). METHODS Seminal EVs were isolated using a size exclusion chromatography-based protocol from six SP pools (five ejaculates/pool) of each SP source and characterized using complementary approaches including total protein (BCA™assay), particle size distribution (dynamic light scattering), morphology (transmission electron microscopy), and purity (albumin by Western blot). Expression of CD9, CD63, CD81, CD44 and HSP90β was analyzed in all sEV subpopulations by high-sensitivity flow cytometry according to MIFlowCyt-EV guidelines, including an accurate calibration, controls, and discrimination by CFSE-labelling. RESULTS Each sEV subpopulation exhibited a specific immunophenotypic profile. The percentage of sEVs positive for CD9, CD63, CD81 and HSP90β differed between S- and L-sEVs (P < 0.0001). Specifically, the percentage of sEVs positive for CD9 and CD63 was higher and that for CD81 was lower in S- than L-sEVs in the four SP sources. However, the percentage of HSP90β-positive sEVs was lower in S-sEVs than L-sEVs in the SRF-P1 and EE samples. The percentage of sEVs positive for CD9, CD63, and CD44 also differed among the four SP sources (P < 0.0001), being highest in PSRF samples. Notably, virtually all sEV subpopulations expressed CD44 (range: 88.04-98.50%). CONCLUSIONS This study demonstrated the utility of high-sensitivity flow cytometry for sEV immunophenotyping, allowing the identification of distinct sEV subpopulations that may have different cellular origin, cargo, functions, and target cells.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain.
| | | | - Ana Parra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Pablo Martínez-Díaz
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| |
Collapse
|
16
|
Turner N, Abeysinghe P, Flay H, Meier S, Sadowski P, Mitchell MD. SWATH-MS Analysis of Blood Plasma and Circulating Small Extracellular Vesicles Enables Detection of Putative Protein Biomarkers of Fertility in Young and Aged Dairy Cows. J Proteome Res 2023; 22:3580-3595. [PMID: 37830897 DOI: 10.1021/acs.jproteome.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The development of biomarkers of fertility could provide benefits for the genetic improvement of dairy cows. Circulating small extracellular vesicles (sEVs) show promise as diagnostic or prognostic markers since their cargo reflects the metabolic state of the cell of origin; thus, they mirror the physiological status of the host. Here, we employed data-independent acquisition mass spectrometry to survey the plasma and plasma sEV proteomes of two different cohorts of Young (Peripubertal; n = 30) and Aged (Primiparous; n = 20) dairy cows (Bos taurus) of high- and low-genetic merit of fertility and known pregnancy outcomes (ProteomeXchange data set identifier PXD042891). We established predictive models of fertility status with an area under the curve of 0.97 (sEV; p value = 3.302e-07) and 0.95 (plasma; p value = 6.405e-08). Biomarker candidates unique to high-fertility Young cattle had a sensitivity of 0.77 and specificity of 0.67 (*p = 0.0287). Low-fertility biomarker candidates uniquely identified in sEVs from Young and Aged cattle had a sensitivity and specificity of 0.69 and 1.0, respectively (***p = 0.0005). Our bioinformatics pipeline enabled quantification of plasma and circulating sEV proteins associated with fertility phenotype. Further investigations are warranted to validate this research in a larger population, which may lead to improved classification of fertility status in cattle.
Collapse
Affiliation(s)
- Natalie Turner
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), 62 Graham Street, South Brisbane, Queensland 4101, Australia
| | - Pevindu Abeysinghe
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), 62 Graham Street, South Brisbane, Queensland 4101, Australia
| | - Holly Flay
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - Susanne Meier
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - Pawel Sadowski
- Central Analytical Research Facility (CARF), QUT, Gardens Point Campus, 2 George Street, Brisbane City, Queensland 4000, Australia
| | - Murray D Mitchell
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), 62 Graham Street, South Brisbane, Queensland 4101, Australia
| |
Collapse
|
17
|
Vicente-Carrillo A, Álvarez-Rodríguez M, Rodriguez-Martinez H. The Cation/Calcium Channel of Sperm (CatSper): A Common Role Played Despite Inter-Species Variation? Int J Mol Sci 2023; 24:13750. [PMID: 37762052 PMCID: PMC10531172 DOI: 10.3390/ijms241813750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The main cation/calcium channel of spermatozoa (CatSper), first identified in 2001, has been thoroughly studied to elucidate its composition and function, while its distribution among species and sperm sources is yet incomplete. CatSper is composed of several subunits that build a pore-forming calcium channel, mainly activated in vivo in ejaculated sperm cells by intracellular alkalinization and progesterone, as suggested by the in vitro examinations. The CatSper channel relevance is dual: to maintain sperm homeostasis (alongside the plethora of membrane channels present) as well as being involved in pre-fertilization events, such as sperm capacitation, hyperactivation of sperm motility and the acrosome reaction, with remarkable species differences. Interestingly, the observed variations in CatSper localization in the plasma membrane seem to depend on the source of the sperm cells explored (i.e., epididymal or ejaculated, immature or mature, processed or not), the method used for examination and, particularly, on the specificity of the antibodies employed. In addition, despite multiple findings showing the relevance of CatSper in fertilization, few studies have studied CatSper as a biomarker to fine-tune diagnosis of sub-fertility in livestock or even consider its potential to control fertilization in plague animals, a more ethically defensible strategy than implicating CatSper to pharmacologically modify male-related fertility control in humans, pets or wild animals. This review describes inter- and intra-species differences in the localization, structure and function of the CatSper channel, calling for caution when considering its potential manipulation for fertility control or improvement.
Collapse
Affiliation(s)
- Alejandro Vicente-Carrillo
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Manuel Álvarez-Rodríguez
- Department Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | | |
Collapse
|
18
|
Ding X, Zhang D, Ren Q, Hu Y, Wang J, Hao J, Wang H, Zhao X, Wang X, Song C, Du J, Yang F, Zhu H. Identification of a Non-Invasive Urinary Exosomal Biomarker for Diabetic Nephropathy Using Data-Independent Acquisition Proteomics. Int J Mol Sci 2023; 24:13560. [PMID: 37686366 PMCID: PMC10488032 DOI: 10.3390/ijms241713560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetic nephropathy (DN), as the one of most common complications of diabetes, is generally diagnosed based on a longstanding duration, albuminuria, and decreased kidney function. Some patients with the comorbidities of diabetes and other primary renal diseases have similar clinical features to DN, which is defined as non-diabetic renal disease (NDRD). It is necessary to distinguish between DN and NDRD, considering they differ in their pathological characteristics, treatment regimes, and prognosis. Renal biopsy provides a gold standard; however, it is difficult for this to be conducted in all patients. Therefore, it is necessary to discover non-invasive biomarkers that can distinguish between DN and NDRD. In this research, the urinary exosomes were isolated from the midstream morning urine based on ultracentrifugation combined with 0.22 μm membrane filtration. Data-independent acquisition-based quantitative proteomics were used to define the proteome profile of urinary exosomes from DN (n = 12) and NDRD (n = 15) patients diagnosed with renal biopsy and Type 2 diabetes mellitus (T2DM) patients without renal damage (n = 9), as well as healthy people (n = 12). In each sample, 3372 ± 722.1 proteins were identified on average. We isolated 371 urinary exosome proteins that were significantly and differentially expressed between DN and NDRD patients, and bioinformatic analysis revealed them to be mainly enriched in the immune and metabolic pathways. The use of least absolute shrinkage and selection operator (LASSO) logistic regression further identified phytanoyl-CoA dioxygenase domain containing 1 (PHYHD1) as the differential diagnostic biomarker, the efficacy of which was verified with another cohort including eight DN patients, five NDRD patients, seven T2DM patients, and nine healthy people. Additionally, a concentration above 1.203 μg/L was established for DN based on the ELISA method. Furthermore, of the 19 significantly different expressed urinary exosome proteins selected by using the protein-protein interaction network and LASSO logistic regression, 13 of them were significantly related to clinical indicators that could reflect the level of renal function and hyperglycemic management.
Collapse
Affiliation(s)
- Xiaonan Ding
- Department of Nephrology, First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.D.); (D.Z.)
- Medical School of Chinese People’s Liberation Army, Beijing 100853, China
| | - Dong Zhang
- Department of Nephrology, First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.D.); (D.Z.)
| | - Qinqin Ren
- Department of Nephrology, First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.D.); (D.Z.)
| | - Yilan Hu
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jifeng Wang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Hao
- Department of Nephrology, First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.D.); (D.Z.)
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.D.); (D.Z.)
| | - Xiaolin Zhao
- Department of Nephrology, First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.D.); (D.Z.)
| | - Xiaochen Wang
- Department of Nephrology, First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.D.); (D.Z.)
| | - Chenwen Song
- Department of Nephrology, First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.D.); (D.Z.)
| | - Junxia Du
- Department of Nephrology, First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.D.); (D.Z.)
| | - Fuquan Yang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hanyu Zhu
- Department of Nephrology, First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.D.); (D.Z.)
| |
Collapse
|