1
|
Yang Z, Al-Dalali S, Chen C, Xu B, Luo H, Li P. Effect of inoculating Staphylococcus xylosus and Lactiplantibacillus plantarum on the flavor formation of in-bag dry-aged beef. Int J Food Microbiol 2025; 439:111237. [PMID: 40349464 DOI: 10.1016/j.ijfoodmicro.2025.111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/05/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
This study aimed to investigate the effect of inoculating Staphylococcus xylosus and Lactiplantibacillus plantarum on in-bag dry-aged beef. The volatile compounds and odors of the beef were analyzed through gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and electronic nose (E-nose), respectively. The results showed that the inoculation with both species significantly inhibited the growth of spoilage microorganisms (P < 0.05). The PLS-DA models indicated that the inoculation significantly affected the flavor. Thirty-six key flavor compounds were detected, with aldehydes representing the largest proportion. Off-flavor compounds were also detected, and they exhibited a significant positive correlation with the spoilage microorganisms. Therefore, the inoculation effectively inhibited off-flavor formation by enhancing microbial quality, and Staphylococcus xylosus produced more flavor compounds. In addition, both species inhibited protein oxidation and the generation of volatile base nitrogen, which were beneficial for the flavor development. This study provides valuable information for improving the quality of in-bag dry-aged beef.
Collapse
Affiliation(s)
- Zili Yang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin 541006, People's Republic of China
| | - Conggui Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Baocai Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Huiting Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Peijun Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
2
|
Göçmez EB, İlhak Oİ. Effect of marination with bioprotective culture-containing marinade on Salmonella spp. and Listeria monocytogenes in chicken breast meat. J Food Sci 2025; 90:e70174. [PMID: 40183782 PMCID: PMC11970446 DOI: 10.1111/1750-3841.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
This study investigated the survival of Pseudomonas spp., Salmonella spp., and Listeria monocytogenes in chicken breast meat marinated with a marinade containing bioprotective lactic acid bacteria (Latilactobacillus curvatus, Latilactobacillus sakei, and Lactiplantibacillus plantarum) during storage at 4°C and 8°C. In the first phase, a natural, chemical-free marinade (pH 3.6) was evaluated over 7 days. In this marinade, Pseudomonas spp. did not survive, Salmonella spp. were inactivated within 7 days, L. monocytogenes counts showed negligible reduction, and bioprotective cultures remained stable. In the second phase, chicken breast meat contaminated with Salmonella spp. and L. monocytogenes was divided into control (non-marinated), marinated control (M-C), and marinated with a marinade containing mixture of bioprotective cultures (M-PC). Initial pH values were 5.99 (control), 5.24 (M-C), and 5.32 (M-PC). At 4°C, L. monocytogenes counts in the M-PC group were 4.4 log10 cfu/g lower than the control and 1.4 log10 cfu/g lower than the M-C group on Day 14 (p < 0.05). By Day 14, Pseudomonas spp. counts were 9.4, 7.3, and 5.7 log10 cfu/g in the control, M-C, and M - PC groups, respectively (p < 0.05). At 8°C, Salmonella spp. in the M-PC group fell below 1.0 log10 cfu/g by Day 12, and L. monocytogenes counts were significantly lower than in the M-C group (p < 0.05). Marinating with bioprotective cultures enhanced microbial safety and extended shelf life compared to marinating without them. This approach could offer significant potential for improving the preservation and safety of poultry products. PRACTICAL APPLICATION: Marinated poultry meat, whether prepared domestically by consumers or commercially produced by the poultry meat industry, is widely enjoyed for its flavor and convenience. In this study, bioprotective cultures were incorporated into the marinade as an alternative to chemical preservatives. The findings demonstrate that marinating chicken breast meat with a marinade composed entirely of natural ingredients and enriched with bioprotective cultures not only extends the product's shelf life but also significantly limits the survival of Pseudomonas spp., Salmonella spp. and Listeria monocytogenes. These results suggest that meat products marinated with bioprotective cultures, or ready-to-use marinades containing such cultures, can be effectively developed and marketed by the meat industry to meet consumer demand for safer, long-lasting, and naturally preserved food products.
Collapse
Affiliation(s)
- Enise Begüm Göçmez
- Department of Food Hygiene and Technology, Health Science InstituteBalıkesir UniversityBalıkesirTurkey
| | - Osman İrfan İlhak
- Department of Veterinary Public Health, Faculty of Veterinary MedicineBalıkesir UniversityBalıkesirTurkey
| |
Collapse
|
3
|
Dallaire-Lamontagne M, Lebeuf Y, Saucier L, Vandenberg GW, Lavoie J, Allard Prus JM, Deschamps MH. Optimization of a hatchery residue fermentation process for potential recovery by black soldier fly larvae. Poult Sci 2025; 104:104946. [PMID: 40036934 PMCID: PMC11926703 DOI: 10.1016/j.psj.2025.104946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/10/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
The conventional management of hatchery residues (HR) poses environmental issues and health risks for handlers. This study evaluates the potential of fermentation to reduce pathogens and odors in HR, enabling them to be recovered into feed using black soldier fly. This saprophagous edible insect is valued for its ability to efficiently bioconvert organic residues into high-quality biomass. Due to the low carbohydrate content of HR, whey permeate was added at lactose inclusion levels of 0, 5, 15, 25, and 35% (dry basis) to optimize fermentation. Using a commercial ferment starter culture (0.3%, wet basis), HR were fermented under semi-anaerobic conditions for two weeks. Fermentation metrics, including pH, microbiological loads (total aerobic mesophilic, presumptive lactic acid bacteria, coliforms, Escherichia coli), volatile fatty acids, and volatile organic compounds, were monitored at days 0, 3, 7, and 14. Optimal stabilization was achieved with lactose inclusion of 15 to 35% after 7 days, which reduced pH (<5.3), increased lactic (87.82 mg/g) and acetic (20.28 mg/g) acid production, and decreased coliform and Escherichia coli counts below detection limit (1.7 log cfu/g). The production of compounds associated with unpleasant odors was also limited. The use of a ferment did not result in a greater reduction of coliform counts, the initial loads of lactic acid bacteria (> 7 log cfu/g) being sufficient to initiate spontaneous fermentation. However, ferment was found to be efficient in heated HR. These findings demonstrate the effectiveness of fermentation for stabilizing HR, highlighting its potential for integration into insect bioconversion systems.
Collapse
Affiliation(s)
- Mariève Dallaire-Lamontagne
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Chair of Educational Leadership (CLE) in Primary Production and Processing of Edible Insects, Canada; Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Yolaine Lebeuf
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Chair of Educational Leadership (CLE) in Primary Production and Processing of Edible Insects, Canada; Institute of Nutrition and Functional Foods, Faculty of Agriculture and Food Sciences, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Linda Saucier
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods, Faculty of Agriculture and Food Sciences, Université Laval, Quebec, QC G1V 0A6, Canada; Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Grant W Vandenberg
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Chair of Educational Leadership (CLE) in Primary Production and Processing of Edible Insects, Canada
| | - Jérémy Lavoie
- Couvoir Scott, 1798 Route du Président-Kennedy, Scott, QC G0S 3G0, Canada
| | | | - Marie-Hélène Deschamps
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Chair of Educational Leadership (CLE) in Primary Production and Processing of Edible Insects, Canada; Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
4
|
Luo H, Xu M, Li P. Protective Effect of Lactobacillus plantarum R2 and Lactobacillus sakei B2 on Low-Salt Sliced Sausages Stored at 5 °C. Foods 2024; 13:3960. [PMID: 39683032 DOI: 10.3390/foods13233960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to investigate the protective effects of inoculating Lactobacillus plantarum R2 and Lactobacillus sakei B2 on low-salt sliced chicken sausages during storage at 5 °C. The results demonstrated that L. plantarum R2 inhibited the growth of Pseudomonas fluorescens (p < 0.05). The results of the high-throughput sequencing indicated that the chicken sausage inoculated with L. plantarum R2 improved the microbiological quality of the sample. The levels of thiobarbituric acid reactive substances and carbonyl content of the sausages treated with L. plantarum R2 and L. sakei B2 were lower than those of the control (p < 0.05). L. plantarum R2 exhibited a higher antioxidant activity compared to that of L. sakei B2. Therefore, L. plantarum R2 was found to have the potential to improve physicochemical properties, organoleptic characteristics, and food safety of low-salt sliced cooked chicken sausages.
Collapse
Affiliation(s)
- Huiting Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mei Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Peijun Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
5
|
Melian C, Ploper D, Chehín R, Vignolo G, Castellano P. Impairment of Listeria monocytogenes biofilm developed on industrial surfaces by Latilactobacillus curvatus CRL1579 bacteriocin. Food Microbiol 2024; 121:104491. [PMID: 38637093 DOI: 10.1016/j.fm.2024.104491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 04/20/2024]
Abstract
The effect of lactocin AL705, bacteriocin produced by Latilactobacillus (Lat.) curvatus CRL1579 against Listeria biofilms on stainless steel (SS) and polytetrafluoroethylene (PTFE) coupons at 10 °C was investigated. L. monocytogenes FBUNT showed the greatest adhesion on both surfaces associated to the hydrophobicity of cell surface. Partially purified bacteriocin (800 UA/mL) effectively inhibited L. monocytogenes preformed biofilm through displacement strategy, reducing the pathogen by 5.54 ± 0.26 and 4.74 ± 0.05 log cycles at 3 and 6 days, respectively. The bacteriocin-producer decreased the pathogen biofilm by ∼2.84 log cycles. Control and Bac- treated samples reached cell counts of 7.05 ± 0.18 and 6.79 ± 0.06 log CFU/cm2 after 6 days of incubation. Confocal scanning laser microscopy (CLSM) allowed visualizing the inhibitory effect of lactocin AL705 on L. monocytogenes preformed biofilms under static and hydrodynamic flow conditions. A greater effect of the bacteriocin was found at 3 days independently of the surface matrix and pathogen growth conditions at 10 °C. As a more realistic approach, biofilm displacement strategy under continuous flow conditions showed a significant loss of biomass, mean thickness and substratum coverage of pathogen biofilm. These findings highlight the anti-biofilm capacity of lactocin AL705 and their potential application in food industries.
Collapse
Affiliation(s)
- Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Diego Ploper
- IMMCA (Instituto de Investigación en Medicina Molecular y Celular Aplicada, CONICET-Universidad Nacional de Tucumán-Ministerio de Salud Pública, Gobierno de Tucumán, Pje. Dorrego 1080, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Rosana Chehín
- IMMCA (Instituto de Investigación en Medicina Molecular y Celular Aplicada, CONICET-Universidad Nacional de Tucumán-Ministerio de Salud Pública, Gobierno de Tucumán, Pje. Dorrego 1080, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina.
| |
Collapse
|
6
|
Brugnini G, Rodríguez J, Rodríguez S, Martínez I, Pelaggio R, Rufo C. Effects of Fermentation Temperature, Drying Temperature, Caliber Size, Starter Culture, and Sodium Lactate on Listeria monocytogenes Inactivation During Salami Production. J Food Prot 2024; 87:100286. [PMID: 38697485 DOI: 10.1016/j.jfp.2024.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
The effect of fermentation and drying temperatures, caliber, and sodium lactate on Listeria monocytogenes inactivation was studied in salami, produced in a pilot scale, inoculated with 107 CFU/g of Listeria innocua ATCC® 33090 as a surrogate microorganism for L. monocytogenes. Fermentation temperature varied between 24 and 30°C, drying temperature between 14 and 20°C, caliber between 5.1 and 13.2 cm, and sodium lactate initial concentrations in salamis were 0 and 2%. L. innocua counts, pH and water activity were determined in salamis over time. Sodium lactate (2%) decreased pH drop and Listeria inactivation during fermentation. Baranyi & Roberts equation was used to fit the experimental data and to estimate, for each test condition, inactivation rate (k), initial (Y0), and final counts of L. innocua (YEND). Total inactivation was calculated as Y0 minus YEND (Y0-YEND). Then, using a Box Benkhen experimental design, a quadratic model for k and a two-factor interaction model (2FI) for Y0 - YEND were obtained as functions of fermentation temperature, drying temperature, and caliber size. The models predicted that maximum k and Y0 -YEND, -2.62 ± 0.14 log10 CFU/g/day and 4.5 ± 0.1 log10 CFU/g, respectively, would be obtained fermenting at 30°C and drying at 20°C regardless of caliber. Drying at 14°C allowed Listeria growth until a water activity (aw) of 0.92 was reached. Therefore, if initial Listeria contamination is high (3 log10 CFU/g), drying at low temperatures will compromise product safety.
Collapse
Affiliation(s)
- Giannina Brugnini
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass de Pando y Ruta 8, Uruguay; Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Uruguay.
| | - Jesica Rodríguez
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass de Pando y Ruta 8, Uruguay.
| | - Soledad Rodríguez
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass de Pando y Ruta 8, Uruguay.
| | - Inés Martínez
- Latitud - Fundación LATU, Laboratorio Tecnológico del Uruguay, Avenida Italia 6201, Uruguay.
| | - Ronny Pelaggio
- Latitud - Fundación LATU, Laboratorio Tecnológico del Uruguay, Avenida Italia 6201, Uruguay.
| | - Caterina Rufo
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass de Pando y Ruta 8, Uruguay.
| |
Collapse
|
7
|
Dallaire-Lamontagne M, Lebeuf Y, Allard Prus JM, Vandenberg GW, Saucier L, Deschamps MH. Characterization of hatchery residues for on farm implementation of circular waste management practices. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:305-314. [PMID: 38237406 DOI: 10.1016/j.wasman.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/29/2024]
Abstract
The conventional management of hatchery residues is associated with greenhouse gas and unpleasant odor emissions, the presence of pathogens and high disposal costs for producers. To address these issues, on-farm alternatives like composting, fermentation, and insect valorization are promising approaches. This study aims to characterize hatchery residues and define critical quality thresholds to identify effective processes for their management. Hatchery residue samples were collected bi-monthly over a year (N = 24) and were analyzed for proximate composition (dry matter, ash, energy, crude protein, crude lipid, crude fiber, carbohydrates), pH, color (L*a*b*, Chroma) and microbiological loads (total aerobic mesophilic counts, coliforms, lactic acid bacteria). Volatile fatty acid composition was also measured (N = 8). Significant correlation coefficients were found between TAM and LAB loads and residue characterization (pH, chroma, crude fibers, carbohydrates, and temperature). On a dry matter basis, residues were high in energy (2498 to 5911 cal/g), proteins (21.3 to 49.4 %) and lipids (14.6 to 29.1 %), but low in carbohydrates (0 to 15.3 %) despite temporal fluctuations. Ash content varied widely (8.6 to 49.1 %, dry matter) and is influenced by eggshell content. Microbiological loads were high for total aerobic mesophilic bacteria (6.5 to 9.1 log cfu/g), coliforms (5.4 to 8.5 log cfu/g) and lactic acid bacteria (6.7 to 9.0 log cfu/g). Valorization of hatchery residues on the farm will depends on the optimization of effective upstream stabilization processes. The critical points are discussed according to the valorization potentials that could be implemented on the farm from composting to upcycling by insects.
Collapse
Affiliation(s)
- Mariève Dallaire-Lamontagne
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, 2440 Bd Hochelaga, Québec, QC G1V 0A6, Canada; Chair of Educational Leadership (CLE) in Primary Production and Processing of Edible Insects (CLEIC https://cleic.fsaa.ulaval.ca/en/), Canada; Inscott, 1798 Route du Président-Kennedy, Scott, QC G0S 3G0, Canada.
| | - Yolaine Lebeuf
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, 2440 Bd Hochelaga, Québec, QC G1V 0A6, Canada.
| | - Jean-Michel Allard Prus
- Couvoir Scott Ltée, 1798 Route du Président-Kennedy, Scott, QC G0S 3G0, Canada; Inscott, 1798 Route du Président-Kennedy, Scott, QC G0S 3G0, Canada.
| | - Grant W Vandenberg
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Chair of Educational Leadership (CLE) in Primary Production and Processing of Edible Insects (CLEIC https://cleic.fsaa.ulaval.ca/en/), Canada.
| | - Linda Saucier
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, 2440 Bd Hochelaga, Québec, QC G1V 0A6, Canada; Centre de recherche en infectiologie porcine et avicole (CRIPA), 3200 Sicotte, bureau 3115-4, Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Marie-Hélène Deschamps
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, 2440 Bd Hochelaga, Québec, QC G1V 0A6, Canada; Chair of Educational Leadership (CLE) in Primary Production and Processing of Edible Insects (CLEIC https://cleic.fsaa.ulaval.ca/en/), Canada; Centre de recherche en infectiologie porcine et avicole (CRIPA), 3200 Sicotte, bureau 3115-4, Saint-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
8
|
Waraczewski R, Bartoń M, Stasiak DM, Sołowiej BG. Long-matured cured meats from Poland and Europe compared - An overview. Meat Sci 2023; 206:109336. [PMID: 37716227 DOI: 10.1016/j.meatsci.2023.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
This review aimed to present different varieties of long-matured cured meats, such as cold cuts, sausages, and hams produced in Poland, and compare them with similar European products. Moreover, we briefly presented the impact of meat products on human health. Due to its significant production in Poland, most meat products are made of pork. Polish long-matured, cured meats are nutritious, provide essential amino acids and micronutrients, and are a balanced source of monosaturated fatty acids (MUFAs). We suggest choosing cured Polish meat products matured with probiotics to provide pro-health benefits. Although long-matured sausages are essential and valuable meat products in Poland, they should be consumed moderately as an element of a balanced, diverse diet.
Collapse
Affiliation(s)
- Robert Waraczewski
- Department of Animal Food Technology, University of Life Sciences in Lublin, Skromna 8, 20-704, Poland
| | - Maciej Bartoń
- Department of Animal Food Technology, University of Life Sciences in Lublin, Skromna 8, 20-704, Poland
| | - Dariusz M Stasiak
- Department of Animal Food Technology, University of Life Sciences in Lublin, Skromna 8, 20-704, Poland
| | - Bartosz G Sołowiej
- Department of Animal Food Technology, University of Life Sciences in Lublin, Skromna 8, 20-704, Poland.
| |
Collapse
|
9
|
Ruiz MJ, Sirini NE, Stegmayer MÁ, Soto LP, Zbrun MV, Olivero CR, Werning ML, Acosta FF, Signorini ML, Frizzo LS. Inhibitor activity of Lactiplantibacillus plantarum LP5 on thermotolerant campylobacter with different biofilm-forming capacities. J Appl Microbiol 2023; 134:lxad267. [PMID: 37974052 DOI: 10.1093/jambio/lxad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/20/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
AIMS To evaluate the biofilm-forming capacity of thermotolerant Campylobacter (TC) strains from poultry production and to analyse the inhibitory capacity of Lactiplantibacillus plantarum LP5 against TC on different materials. METHODS AND RESULTS Biofilm-forming capacity by Campylobacter jejuni and Campylobacter coli was analysed by cell adhesion in polystyrene plates. TC were classified as non-biofilm-forming (NBF, 1.3%), weak biofilm-forming (WBF, 68.4%), moderate biofilm-forming (MBF, 27.6%), and strong biofilm-forming (SBF, 2.7%). The inhibitory capacity of L. plantarum LP5 against TC was tested on stainless-steel, nylon, aluminium, and glass disks (treated group) and compared with biofilm-forming TC (control group). Lactiplantibacillus plantarum LP5 was inoculated, and then TC. Biofilm was removed in both experimental groups and TC and LP5 bacterial counts were performed. The L. plantarum LP5 presence reduced the formation of TC biofilm (P < 0.001). The material type and strain category influenced biofilm formation, with stainless-steel and the SBF strain being the material and TC having the highest adhesion (P < 0.001). Lactiplantibacillus plantarum LP5 formed a similar biofilm on all materials (P = 0.823). CONCLUSIONS This trial showed very promising results; L. plantarum LP5 could be incorporated as a bio-protector of TC on different surfaces.
Collapse
Affiliation(s)
- María J Ruiz
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
- Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Centre of the Province of Buenos Aires, Tandil, Buenos Aires 7000, Argentina
| | - Noelí E Sirini
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
| | - María Á Stegmayer
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
| | - Lorena P Soto
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza, Province of Santa Fe S3080, Argentina
| | - María V Zbrun
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
- National Council of Scientific and Technical Research, National Institute of Agricultural Technology EEA Rafaela, Rafaela, Province of Santa Fe S2300, Argentina
| | - Carolina R Olivero
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
| | - María L Werning
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
| | - Federico F Acosta
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
| | - Marcelo L Signorini
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza, Province of Santa Fe S3080, Argentina
- National Council of Scientific and Technical Research, National Institute of Agricultural Technology EEA Rafaela, Rafaela, Province of Santa Fe S2300, Argentina
| | - Laureano S Frizzo
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza, Province of Santa Fe S3080, Argentina
| |
Collapse
|
10
|
Chen G, Li W, Yang Z, Liang Z, Chen S, Qiu Y, Lv X, Ai L, Ni L. Insights into microbial communities and metabolic profiles in the traditional production of the two representative Hongqu rice wines fermented with Gutian Qu and Wuyi Qu based on single-molecule real-time sequencing. Food Res Int 2023; 173:113488. [PMID: 37803808 DOI: 10.1016/j.foodres.2023.113488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/08/2023]
Abstract
Hongqu rice wine, a famous traditional fermented alcoholic beverage, is brewed with traditional Hongqu (mainly including Gutian Qu and Wuyi Qu). This study aimed to compare the microbial communities and metabolic profiles in the traditional brewing of Hongqu rice wines fermented with Gutian Qu and Wuyi Qu. Compared with Hongqu rice wine fermented with Wuyi Qu (WY), Hongqu rice wine fermented with Gutian Qu (GT) exhibited higher levels of biogenic amines. The composition of volatile flavor components of Hongqu rice wine brewed by different fermentation starters (Gutian Qu and Wuyi Qu) was obviously different. Among them, ethyl acetate, isobutanol, 3-methylbutan-1-ol, ethyl decanoate, ethyl palmitate, ethyl oleate, nonanoic acid, 4-ethylguaiacol, 5-pentyldihydro-2(3H)-furanone, ethyl acetate, n-decanoic acid etc. were identified as the characteristic aroma-active compounds between GT and WY. Microbiome analysis based on high-throughput sequencing of full-length 16S rDNA/ITS-5.8S rDNA amplicons revealed that Lactococcus, Leuconostoc, Pseudomonas, Serratia, Enterobacter, Weissella, Saccharomyces, Monascus and Candida were the predominant microbial genera during the traditional production of GT, while Lactococcus, Lactobacillus, Leuconostoc, Enterobacter, Kozakia, Weissella, Klebsiella, Cronobacter, Saccharomyces, Millerozyma, Monascus, Talaromyces and Meyerozyma were the predominant microbial genera in the traditional fermentation of WY. Correlation analysis revealed that Lactobacillus showed significant positive correlations with most of the characteristic volatile flavor components and biogenic amines. Furthermore, bioinformatical analysis based on PICRUSt revealed that microbial enzymes related to biogenic amines synthesis were more abundant in GT than those in WY, and the enzymes responsible for the degradation of biogenic amines were less abundant in GT than those in WY. Collectively, this study provides important scientific data for enhancing the flavor quality of Hongqu rice wine, and lays a solid foundation for the healthy and sustainable development of Hongqu rice wine industry.
Collapse
Affiliation(s)
- Guimei Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Wenlong Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China
| | - Ziyi Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China
| | - Zihua Liang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China
| | - Shiyun Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China
| | - Yijian Qiu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China.
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China.
| |
Collapse
|
11
|
Tang A, Peng B. Diversifying the Flavor of Black Rice Wines through Three Different Regional Xiaoqus in China and Unraveling Their Core Functional Microorganisms. Foods 2023; 12:3576. [PMID: 37835229 PMCID: PMC10572163 DOI: 10.3390/foods12193576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The flavor of black rice wine (BRW) can be diversified by the Xiaoqus, from different regions; however, the functional microbiota that contributes to its flavor remains unclear. Accordingly, this study selected three regional Xiaoqus from Sichuan Dazhu (Q1), Jiangxi Yingtan (Q2), and Hubei Fangxian (Q3) as starters to investigate flavor compounds and microbial communities during BRW brewing. Results indicated that altogether 61 flavor substances were identified, 16 of which were common characteristic flavor compounds (odor activity value > 0.1). Each BRW possessed unique characteristic flavor compounds. O2PLS and Spearman's correlation analysis determined that characteristic flavor compounds of BRW were mainly produced by Saccharomyces cerevisiae, non-Saccharomyces yeasts, and lactic acid bacteria, with the common core functional strains being Wickerhamomyces and Pediococcus, and with their unique core functional strain likely causing a unique characteristic flavor. This study could promote the high-quality development of the black rice wine industry.
Collapse
Affiliation(s)
- Aoxing Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Bangzhu Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
12
|
Lu H, Sun L, Tong S, Jiang F, Chen L, Wang Y. Latilactobacillus curvatus FFZZH5L isolated from pickled cowpea enhanced antioxidant activity in Caenorhabditis elegans by upregulating the level of glutathione S-transferase. Food Funct 2023; 14:8646-8660. [PMID: 37672003 DOI: 10.1039/d3fo03093h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Latilactobacillus curvatus is a potential probiotic that possesses beneficial health properties and fermentation traits; however, the extent of understanding of the antioxidant activities of L. curvatus is limited. This study investigates the antioxidant activities of a new L. curvatus FFZZH5L strain. The strain exhibits broad tolerance to acids, bases and salts and demonstrated good adaption to the gastrointestinal environment, with a survival rate of 45% after 24 h of treatment in artificial gastrointestinal juice. Moreover, L. curvatus FFZZH5L exhibits inhibitory effects on Staphylococcus aureus, with a self-aggregation rate of 34.8% and a co-aggregation rate of 82.2%. In vitro, the DPPH radical scavenging ability and GSH-px enzyme activity of L. curvatus FFZZH5L reach 64.27% and 15.95 U mL-1, respectively. Treatment of C. elegans with L. curvatus FFZZH5L in vivo significantly extended the organism's lifespan. Furthermore, the activity of SOD, GSH-px and T-AOC was increased by 33.6%, 43.4% and 58.3%, respectively. Feeding C. elegans with L. curvatus FFZZH5L decreased the MDA, lipofuscin and ROS levels by 9%-36.4%. L. curvatus FFZZH5L effectively protected C. elegans against juglone-induced oxidative stress damage and led to a significant increase in the organism's survival under heat stress. The RT-qPCR analysis suggests that feeding C. elegans with L. curvatus FFZZH5L upregulates the expression levels of antioxidant-related genes including glutathione S-transferase 4 (gst-4), gst-1, gst-10, sod-3, sod-5, and sod-10 in C. elegans. Our investigation confirms the probiotic and antioxidant properties of L. curvatus, indicating its potential application in functional foods and the pharmaceutical industry.
Collapse
Affiliation(s)
- Hengqian Lu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Liangyin Sun
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Sijia Tong
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Fei Jiang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Liping Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| |
Collapse
|
13
|
Nieto G, Peñalver R, Ortuño C, Hernández JD, Guillén I. Control of the Growth of Listeria monocytogenes in Cooked Ham through Combinations of Natural Ingredients. Foods 2023; 12:3416. [PMID: 37761125 PMCID: PMC10528306 DOI: 10.3390/foods12183416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
In the ready-to-eat food industry, Listeria control is mandatory to ensure the food safety of the products since its presence could cause a disease called listeriosis. The objective of the present study was to carry out a challenge test to verify the efficiency of different combinations of natural antimicrobial ingredients against Listeria monocytogenes to be used in ready-to-eat foods. Six different formulations of cooked ham were prepared: a control formulation and five different formulations. An initial inoculation of 2 log cycles was used in the different products, and the growth of Listeria was monitored at different temperatures and times (4 °C for 17 w and 7 °C for 12 w). Control samples showed a progressive growth, reaching 5-6 log after 3 or 4 weeks. The rest of the samples showed constant counts of Listeria during the entire study. Only samples containing 100 ppm nitrite + 250 PPM ascorbic acid + 0.7% PRS-DV-5 did not control the growth of Listeria at 7 °C after 7 w of storage. The results obtained allowed us to classify the cooked ham prepared using natural ingredient combinations as a "Ready-to-eat food unable to support the growth of L. monocytogenes other than those intended for infants and for special medical purposes".
Collapse
Affiliation(s)
- Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain
| | - Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain
| | - Carmen Ortuño
- Cathedra Biotechnology PROSUR, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain (J.D.H.)
| | - Juan D. Hernández
- Cathedra Biotechnology PROSUR, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain (J.D.H.)
| | - Isidro Guillén
- Cathedra Biotechnology PROSUR, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain (J.D.H.)
| |
Collapse
|
14
|
Meloni MP, Piras F, Siddi G, Sanna R, Lai R, Simbula F, Cabras D, Maurichi M, Asara G, De Santis EPL, Scarano C. Preliminary data on the microbial profile of dry and wet aged bovine meat obtained from different breeds in Sardinia. Ital J Food Saf 2023; 12:11060. [PMID: 37405139 PMCID: PMC10316274 DOI: 10.4081/ijfs.2023.11060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/26/2023] [Indexed: 07/06/2023] Open
Abstract
This study aimed to evaluate the influence of dry and wet aging on microbial profile and physicochemical characteristics of bovine loins obtained from four animals of two different breeds, namely two Friesian cull cows and two Sardo-Bruna bovines. During dry and wet aging aerobic colony count, Enterobacteriaceae, mesophilic lactic acid bacteria, Pseudomonas, molds and yeasts, Salmonella enterica, Listeria monocytogenes and Yersinia enterocolitica, pH and water activity (aw) were determined in meat samples collected from the internal part of the loins. Moreover, the microbial profile was determined with sponge samples taken from the surface of the meat cuts. Samples obtained from Friesian cows were analyzed starting from the first day of the aging period and after 7, 14, and 21 days. Samples obtained from the Sardo Bruna bovines were also analyzed after 28 and 35 days. Wet aging allowed better control of Pseudomonas spp. during storage that showed statistically lower levels (P>0.05) in wet-aged meats with respect to dry-aged meats during aging and particularly at the end of the period (P>0.01) in both cattle breeds. At the end of the experiment (21 days), aerobic colony count and Pseudomonas in Fresian cows' dry-aged meats showed mean levels >8 log, while lactic acid bacteria mean counts >7 log were detected in wet-aged meats of both cattle breeds. In meats submitted to dry aging, pH was significantly higher (P<0.01) with respect to wet-aged meats at all analysis times and in both cattle breeds. Aw showed a stable trend during both dry and wet aging without significant differences. These preliminary results highlight the critical importance of the strict application of good hygiene practices during all stages of production of these particular cuts of meat intended for aging.
Collapse
Affiliation(s)
| | - Francesca Piras
- Veterinary Medicine Department, University of Sassari, Via Vienna 2, 07100, Sassari, Italy. +39.079.229447.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hernandez-Mendoza E, Aida Peña-Ramos E, Juneja VK, Valenzuela-Melendres M, Susana Scheuren-Acevedo M, Osoria M. Optimizing the effects of nisin and nacl to thermal inactivate listeria monocytogenes in ground beef with chipotle sauce during sous-vide processing. J Food Prot 2023; 86:100086. [PMID: 37001815 DOI: 10.1016/j.jfp.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Mild cooking thermal treatments, like sous-vide, can compromise ground meat entrees such as meatballs with chipotle sauce, especially when salt levels are reduced during its preparation. Listeria monocytogenes is a thermoresistant pathogen that can be in ready-to-eat food. On the other hand, nisin, due to its thermal stability, can be a good alternative to aid on the thermal inactivation of L. monocytogenes and ensure meat safety. The objective was to optimize the amount of nisin and salt concentrations to thermally inactivate L. monocytogenes during the sous-vide cooking of ground beef marinated in chipotle sauce, and to generate a predictive model. A four-strain cocktail was prepared and inoculated in ground beef in combination (3:2) with chipotle sauce added with nisin (0-150 IU) and salt (0-2%). After that, meat samples were sous-vide cooked at different temperatures, nisin, and salt concentrations, established by a central composite design. Depending on the levels of these factors, D-values ranged from 49.71 to 0.27 min. A predictive model (p < 0.05) was obtained by response surface, which described that D-values variation was explained by the linear effects of the three factors, the interaction between nisin and temperature, and the quadratic effects of salt and temperature. It was also observed that nisin presented a bactericidal effect while salt presented a protective effect during the thermal inactivation of L. monocytogenes. Adding 120 IU of nisin and 0.4% of salt to the meat product at 63°C temperature can help to ensure food safety by making L. monocytogenes cells more sensitive to the lethal effect of heat. The model developed in this study can be used by food processors for planning and designing effective levels of salt and nisin to thermally inactivate L. monocytogenes in ground beef products marinated with chipotle sauce to ensure their safety.
Collapse
|
16
|
Baillo AA, Cisneros L, Villena J, Vignolo G, Fadda S. Bioprotective Lactic Acid Bacteria and Lactic Acid as a Sustainable Strategy to Combat Escherichia coli O157:H7 in Meat. Foods 2023; 12:foods12020231. [PMID: 36673323 PMCID: PMC9858170 DOI: 10.3390/foods12020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Human infection by Enterohemorrhagic Escherichia coli (EHEC) constitutes a serious threat to public health and a major concern for the meat industry. Presently, consumers require safer/healthier foods with minimal chemical additives, highlighting the need for sustainable solutions to limit and prevent risks. This work evaluated the ability of two antagonistic lactic acid bacteria (LAB) strains, Lactiplantibacillus plantarum CRL681 and Enterococcus mundtii CRL35, and their combination in order to inhibit EHEC in beef (ground and vacuum sealed meat discs) at 8 °C during 72 h. The effect of lower lactic acid (LA) concentrations was evaluated. Meat color was studied along with how LAB strains interfere with the adhesion of Escherichia coli to meat. The results indicated a bacteriostatic effect on EHEC cells when mixed LAB strains were inoculated. However, a bactericidal action due to a synergism between 0.6% LA and LAB occurred, producing undetectable pathogenic cells at 72 h. Color parameters (a*, b* and L*) did not vary in bioprotected meat discs, but they were significantly modified in ground meat after 24 h. In addition, LAB strains hindered EHEC adhesion to meat. The use of both LAB strains plus 0.6% LA, represents a novel, effective and ecofriendly strategy to inactivate EHEC in meat.
Collapse
Affiliation(s)
- Ayelen A. Baillo
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
| | - Lucia Cisneros
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
| | - Julio Villena
- Laboratory of Immunobiotechnology, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
- Correspondence: (J.V.); (S.F.); Tel.: +54-381-4310465 (ext. 196) (S.F.)
| | - Graciela Vignolo
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
| | - Silvina Fadda
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
- Correspondence: (J.V.); (S.F.); Tel.: +54-381-4310465 (ext. 196) (S.F.)
| |
Collapse
|
17
|
Martín I, Barbosa J, Pereira SI, Rodríguez A, Córdoba JJ, Teixeira P. Study of lactic acid bacteria isolated from traditional ripened foods and partial characterization of their bacteriocins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Bacterial communities and volatile organic compounds in traditional fermented salt-free bamboo shoots. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Han J, Dong P, Holman BWB, Yang H, Chen X, Zhu L, Luo X, Mao Y, Zhang Y. Processing interventions for enhanced microbiological safety of beef carcasses and beef products: A review. Crit Rev Food Sci Nutr 2022; 64:2105-2129. [PMID: 36148812 DOI: 10.1080/10408398.2022.2121258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chilled beef is inevitably contaminated with microorganisms, starting from the very beginning of the slaughter line. A lot of studies have aimed to improve meat safety and extend the shelf life of chilled beef, of which some have focused on improving the decontamination effects using traditional decontamination interventions, and others have investigated newer technologies and methods, that offer greater energy efficiency, lower environmental impacts, and better assurances for the decontamination of beef carcasses and cuts. To inform industry, there is an urgent need to review these interventions, analyze the merits and demerits of each technology, and provide insight into 'best practice' to preserve microbial safety and beef quality. In this review, the strategies and procedures used to inhibit the growth of microorganisms on beef, from slaughter to storage, have been critiqued. Critical aspects, where there is a lack of data, have been highlighted to help guide future research. It is also acknowledge that different intervention programs for microbiological safety have different applications, dependent on the initial microbial load, the type of infrastructures, and different stages of beef processing.
Collapse
Affiliation(s)
- Jina Han
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, P. R. China
- National R&D Center for Beef Processing Technology, Tai'an, Shandong, P. R. China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, P. R. China
- National R&D Center for Beef Processing Technology, Tai'an, Shandong, P. R. China
| | - Benjamin W B Holman
- Centre for Red Meat and Sheep Development, NSW Department of Primary Industries, Cowra, New South Wales, Australia
| | - Huixuan Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, P. R. China
- National R&D Center for Beef Processing Technology, Tai'an, Shandong, P. R. China
| | - Xue Chen
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, P. R. China
- National R&D Center for Beef Processing Technology, Tai'an, Shandong, P. R. China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, P. R. China
- National R&D Center for Beef Processing Technology, Tai'an, Shandong, P. R. China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, P. R. China
- National R&D Center for Beef Processing Technology, Tai'an, Shandong, P. R. China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, P. R. China
- National R&D Center for Beef Processing Technology, Tai'an, Shandong, P. R. China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, P. R. China
- National R&D Center for Beef Processing Technology, Tai'an, Shandong, P. R. China
| |
Collapse
|
20
|
To HTA, Chhetri V, Settachaimongkon S, Prakitchaiwattana C. Stress tolerance-Bacillus with a wide spectrum bacteriocin as an alternative approach for food bio-protective culture production. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Cho J, Kim HJ, Kwon JS, Kim HJ, Jang A. Effect of Marination with Black Currant Juice on the Formation of Biogenic Amines in Pork Belly during Refrigerated Storage. Food Sci Anim Resour 2021; 41:763-778. [PMID: 34632397 PMCID: PMC8460335 DOI: 10.5851/kosfa.2021.e34] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
The effect of marination with black currant juice (BCJ) was investigated for
their effects on meat quality and content of biogenic amines (BAs) [putrescine
(PUT), cadaverine (CAD), histamine (HIM), tyramine (TYM), and spermidine (SPD)]
in pork belly during storage at 9°C. BCJ was shown to have antibacterial
activities against Escherichia coli and Pseudomonas
aeruginosa. Additionally, the pH of pork belly marinated with BCJ
(PBB) was significantly lower than that of raw pork belly (RPB) during storage.
No significant difference in microorganisms between RPB and PBB was observed at
day 0 of storage. However, at days 5 and 10 of storage, volatile basic nitrogen
(VBN) was significantly decreased in PBB compared to RPB, and PBB also
demonstrated significantly lower numbers of bacteria associated with spoilage
(Enterobacteriaceae and Pseudomonas spp.) at these time-points.
PBB was also associated with significantly reduced formation of BAs (PUT, CAD,
TYM, and total BAs) compared to RPB at days 5 and 10 of storage. These results
indicated that BCJ can be regarded as a natural additive for improving meat
quality by preventing increased pH, VBN, bacterial spoilage, and inhibiting BAs
formation during refrigerated storage.
Collapse
Affiliation(s)
- Jinwoo Cho
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Hye-Jin Kim
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Ji-Seon Kwon
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Jin Kim
- Poultry Research Institute, National Institute of Animal Science, Pyeongchang 25342, Korea
| | - Aera Jang
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
22
|
Chakraborty S, Dutta H. Use of nature‐derived antimicrobial substances as safe disinfectants and preservatives in food processing industries: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Himjyoti Dutta
- Department of Food Technology Mizoram University Aizawl India
| |
Collapse
|
23
|
Application of Latilactobacillus curvatus into Pickled Shrimp (Litopenaeus Vannamei). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latilactobacillus curvatus has a strong carbohydrate fermentative ability and antibacterial ability. It is considered as a promising probiotic by its excellent fermentation attributes and health advantages. Pickled shrimp derived from the fermentation process is highly appreciated by its unique texture, taste and flavor. However, this product is easily decomposed by spoilage bacteria especially Staphylococcus. This research evaluated the inoculation of L. curvatus (0.1-0.5 %) and different fermentation temperatures (28-30 oC) on the reduction of Staphylococcus aureus, pH and overall acceptance of the pickled shrimp after 6 weeks of fermentation. Results showed that the fermentation process should be conducted at 29 oC with 0.3 % Latilactobacillus curvatus (at initial density 9 log cfu/ml) to reduce pH to 3.70, completely against Staphylococcus aureus, obtain the highest sensory score (8.91).
Collapse
|
24
|
de Castro Santos Melo C, da Silva Freire A, Galdeano MA, da Costa CF, de Oliveira Gonçalves APD, Dias FS, Menezes DR. Probiotic potential of Enterococcus hirae in goat milk and its survival in canine gastrointestinal conditions simulated in vitro. Res Vet Sci 2021; 138:188-195. [PMID: 34171542 DOI: 10.1016/j.rvsc.2021.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
In canine nutrition, the use of goat nutraceutical dairy products is an innovative proposal. Therefore, the objective of this study was to prepare fermented goat milk with probiotic potential in dogs in an in vitro model. A total of 40 lactic acid bacteria (LAB) species were grown, of which 30 were CAP isolates originally from goat milk and 10 were CAN isolates originally from fecal material of newborn dogs. The isolates were selected based on resistance to the simulated canine gastrointestinal condition and acidifying ability. After this preliminary screening, the analyses were performed regarding β-galactosidase and exopolysaccharide formation, diacetyl production, adhesion proteins Mub and mapa, hydrophobicity, DPPH assay, virulence and antibiotic resistance. With these evaluations, four LAB isolates were identified using sequencing of the 16S rRNA gene. These were identified as Enterococcus hirae and were used to produce fermented goat milk. For statistical analysis, the data were analyzed using the Scott-Knott test and also submitted to analysis of variance and the Tukey test (P < 0.05). In the evaluation of goat milk fermented with E. hirae and control, over the 36-day storage period there was a reduction in pH and an increase in acidity, and higher levels of LAB were observed in goat milk fermented with E. hirae. Therefore, both these E. hirae isolates and the fermented goat milk produced showed satisfactory results in vitro, demonstrating probiotic efficiency and food safety for dogs.
Collapse
Affiliation(s)
- Carina de Castro Santos Melo
- Department of Veterinary Sciences in Semiarid, Federal University of Vale do São Francisco (UNIVASF), CEP: 56.300-990 Petrolina, Pernambuco, Brazil
| | | | | | - Camila Fraga da Costa
- Department of Veterinary Sciences in Semiarid, Federal University of Vale do São Francisco (UNIVASF), CEP: 56.300-990 Petrolina, Pernambuco, Brazil.
| | | | - Francesca Silva Dias
- Department of Veterinary Sciences in Semiarid, Federal University of Vale do São Francisco (UNIVASF), CEP: 56.300-990 Petrolina, Pernambuco, Brazil; Department of Veterinary Medicine, UNIVASF, CEP: 56.300-990 Petrolina, Pernambuco, Brazil
| | - Daniel Ribeiro Menezes
- Department of Veterinary Sciences in Semiarid, Federal University of Vale do São Francisco (UNIVASF), CEP: 56.300-990 Petrolina, Pernambuco, Brazil; Department of Veterinary Medicine, UNIVASF, CEP: 56.300-990 Petrolina, Pernambuco, Brazil
| |
Collapse
|
25
|
Meng D, Yang X, Sun X, Cheng L, Fan Z. Application of antimicrobial peptide Mytichitin‐A in pork preservation during refrigerated storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- De‐Mei Meng
- State Key Laboratory of Food Nutrition and Safety Institute of Health Biotechnology College of Food Science and Engineering Tianjin University of Science & Technology Tianjin People’s Republic of China
| | - Xiao‐Min Yang
- State Key Laboratory of Food Nutrition and Safety Institute of Health Biotechnology College of Food Science and Engineering Tianjin University of Science & Technology Tianjin People’s Republic of China
| | - Xue‐Qing Sun
- State Key Laboratory of Food Nutrition and Safety Institute of Health Biotechnology College of Food Science and Engineering Tianjin University of Science & Technology Tianjin People’s Republic of China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business University (BTBU) Beijing People’s Republic of China
| | - Zhen‐Chuan Fan
- State Key Laboratory of Food Nutrition and Safety Institute of Health Biotechnology College of Food Science and Engineering Tianjin University of Science & Technology Tianjin People’s Republic of China
| |
Collapse
|
26
|
Lee H, Shahbaz HM, Yang J, Jo MH, Kim JU, Yoo S, Kim SH, Lee D, Park J. Effect of high pressure processing combined with lactic acid bacteria on the microbial counts and physicochemical properties of uncooked beef patties during refrigerated storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyunah Lee
- Department of Biotechnology Yonsei University Seoul South Korea
| | - Hafiz Muhammad Shahbaz
- Department of Food Science and Human Nutrition University of Veterinary and Animal Sciences Lahore Pakistan
| | - Jaekyung Yang
- Department of Biotechnology Yonsei University Seoul South Korea
| | - Mun Hui Jo
- Department of Biotechnology Yonsei University Seoul South Korea
| | - Jeong Un Kim
- Department of Biotechnology Yonsei University Seoul South Korea
| | - Sungyul Yoo
- Nutrex Technology Co., Ltd. Seongnam South Korea
| | - Sung Han Kim
- Nutrex Technology Co., Ltd. Seongnam South Korea
| | - Dong‐Un Lee
- Department of Food Science and Technology Chung‐Ang University Anseong South Korea
| | - Jiyong Park
- Department of Biotechnology Yonsei University Seoul South Korea
| |
Collapse
|
27
|
Yang Y, Hu W, Xia Y, Mu Z, Tao L, Song X, Zhang H, Ni B, Ai L. Flavor Formation in Chinese Rice Wine (Huangjiu): Impacts of the Flavor-Active Microorganisms, Raw Materials, and Fermentation Technology. Front Microbiol 2020; 11:580247. [PMID: 33281774 PMCID: PMC7691429 DOI: 10.3389/fmicb.2020.580247] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Huangjiu (Chinese rice wine) has been consumed for centuries in Asian countries and is known for its unique flavor and subtle taste. The flavor compounds of Huangjiu are derived from a wide range of sources, such as raw materials, microbial metabolic activities during fermentation, and chemical reactions that occur during aging. Of these sources, microorganisms have the greatest effect on the flavor quality of Huangjiu. To enrich the microbial diversity, Huangjiu is generally fermented under an open environment, as this increases the complexity of its microbial community and flavor compounds. Thus, understanding the formation of flavor compounds in Huangjiu will be beneficial for producing a superior flavored product. In this paper, a critical review of aspects that may affect the formation of Huangjiu flavor compounds is presented. The selection of appropriate raw materials and the improvement of fermentation technologies to promote the flavor quality of Huangjiu are discussed. In addition, the effects of microbial community composition, metabolic function of predominant microorganisms, and dynamics of microbial community on the flavor quality of Huangjiu are examined. This review thus provides a theoretical basis for manipulating the fermentation process by using selected microorganisms to improve the overall flavor quality of Huangjiu.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wuyao Hu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiyong Mu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Leren Tao
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, China
| | - Bin Ni
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
28
|
Chen Y, Yu L, Qiao N, Xiao Y, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Latilactobacillus curvatus: A Candidate Probiotic with Excellent Fermentation Properties and Health Benefits. Foods 2020; 9:E1366. [PMID: 32993033 PMCID: PMC7600897 DOI: 10.3390/foods9101366] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/02/2023] Open
Abstract
Latilactobacillus curvatus is a candidate probiotic that has been included in the list of recommended biological agents for certification by the European Food Safety Authority. According to the published genomic information, L. curvatus has several genes that encode metabolic pathways of carbohydrate utilization. In addition, there are some differences in cell surface complex related genes of L. curvatus from different sources. L. curvatus also has several genes that encode bacteriocin production, which can produce Curvacin A and Sakacin P. Due to its ability to produce bacteriocin, it is often used as a bioprotective agent in fermented meat products, to inhibit the growth of a variety of pathogenic and spoilage bacteria. L. curvatus exerts some probiotic effects, such as mediating the production of IL-10 by dendritic cells through NF-κB and extracellular regulated protein kinases (ERK) signals to relieve colitis in mice. This review is the first summary of the genomic and biological characteristics of L. curvatus. Our knowledge on its role in the food industry and human health is also discussed, with the aim of providing a theoretical basis for the development of applications of L. curvatus.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
| | - Nanzhen Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
29
|
Das A, Chauhan G, Agrawal RK, Das AK, Tomar S, Uddin S, Satyaprakash K, Pateiro M, Lorenzo JM. Characterization of crude extract prepared from Indian curd and its potential as a biopreservative. FOOD SCI TECHNOL INT 2020; 27:313-325. [PMID: 32910706 DOI: 10.1177/1082013220940093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The adverse effects of chemical preservatives used to prevent food spoilage have led to the search for various biopreservatives. Considering this, a study was undertaken to prepare crude extract (CE) from Indian curd (a fermented dairy product) and characterized it in terms of antioxidant and antimicrobial activities against some common food-borne bacteria. The CE exhibited well pronounced antimicrobial activity against Bacillus cereus and Salmonella typhimurium. The minimum inhibitory concentration (MIC) of CE was recorded for 2-fold concentrated solution prepared from a 10-fold stock. The CE exhibited a significantly higher (p < 0.05) antioxidant and antimicrobial activities compared to its fractions. The CE was found to be heat stable (up to 100 ℃ for 30 min) and exhibited a significant (p < 0.05) increase in activity at pH 2-7 and in combination with 2% citric acid solution. Trypsin treatment suggested it to be of proteinaceous in nature. The antibacterial activity of CE remained intact at 4 ℃ for seven days, whereas non-significant (p > 0.05) changes in its activity were noted during storage at -20 ℃ for 30 days. The curd sample used for preparation of CE, when tested for bacteriocin production and subsequent antimicrobial activity, did not show inhibition against S. typhimurium. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis of CE and its fractions revealed multi-banding pattern. By virtue of its bioactivities observed, CE can be explored as a promising food biopreservative.
Collapse
Affiliation(s)
- Annada Das
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Geeta Chauhan
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Ravi K Agrawal
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Serlene Tomar
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Siraj Uddin
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Kaushik Satyaprakash
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| |
Collapse
|
30
|
Ibrahim F, Siddiqui NN, Aman A, Qader SAU, Ansari A. Characterization, Cytotoxic Analysis and Action Mechanism of Antilisterial Bacteriocin Produced by Lactobacillus plantarum Isolated from Cheddar Cheese. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09982-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Comparison of Six Commercial Meat Starter Cultures for the Fermentation of Yellow Mealworm ( Tenebrio molitor) Paste. Microorganisms 2019; 7:microorganisms7110540. [PMID: 31717367 PMCID: PMC6920846 DOI: 10.3390/microorganisms7110540] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, six commercial meat starters, each consisting of a pure strain of a lactic acid-fermenting bacterium (including Lactococcus lactis, Lactobacillus curvatus, L. farciminis, L. plantarum, L. sakei, and Pediococcus acidilactici), were tested for their ability to ferment a paste produced from the yellow mealworm (Tenebrio molitor). During fermentation, microbial counts, pH, and the bacterial community composition were determined. In addition, UPLC-MS was applied to monitor the consumption of glucose and the production of glutamic (Glu) and aspartic (Asp) acid. All tested starters were able to ferment the mealworm paste, judged by a pH reduction from 6.68 to 4.60–4.95 within 72 h. Illumina amplicon sequencing showed that all starters were able to colonize the substrate efficiently. Moreover, the introduction of the starter cultures led to the disappearance of Bacillus and Clostridium species, which were the dominant microorganisms in un-inoculated samples. Of the six cultures tested, Lactobacillus farciminis was most promising as its application resulted in the largest increase (±25 mg/100 g of paste) in the content of free glutamic and aspartic acid. These amino acids are responsible for the appreciated umami flavour in fermented food products and might stimulate the acceptance of insects and their consumption.
Collapse
|
32
|
kumar N, Singh N, Jaryal R, Bhandari C, Singh J, Thakur P, Duhan A. Purification, characterization and antibacterial spectrum of a compound produced by Bacillus cereus MTCC 10072. Arch Microbiol 2019; 201:1195-1205. [DOI: 10.1007/s00203-019-01685-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/14/2019] [Accepted: 05/21/2019] [Indexed: 11/30/2022]
|
33
|
Vasquez Mejía SM, de Francisco A, Sandrin R, da Silva T, Bohrer BM. Effects of the incorporation of β-glucans in chicken breast during storage. Poult Sci 2019; 98:3326-3337. [PMID: 30941405 DOI: 10.3382/ps/pez130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/05/2019] [Indexed: 11/20/2022] Open
Abstract
β-glucans are cereal-derived soluble fiber compounds that elicit health benefits when consumed in amounts of 0.75 g/serving. The use of β-glucans in whole muscle meat products, such as chicken breast, is unexplored and needs clarification at a discovery level. The objective of this study was to evaluate the incorporation of β-glucan in the whole muscle chicken breast and identify changes in physical, chemical, textural, microbiological, and thermal properties during 9 D of aerobic storage at refrigeration temperatures. Treatments were 1) control (no salt or β-glucan added; CON), 2) salt solution (2% NaCl and 0.2% phosphate curing solution; SALT), 3) β-glucan solution (1.5% β-glucan; βG), and 4) combination of salt and β-glucan solutions (2% NaCl, 0.2% phosphate, and 1.5% β-glucan; SALT+βG). The target injection level was 20%, however the average uptake level was 8.15%. Color, pH, shear force, and bacteria count were minimally affected by treatment during the 9 D of aerobic storage at 4°C. Cooking loss (P < 0.01) was greater in CON samples compared to all other treatments indicating the presence of salt or fiber or both improved water retention. The β-glucan concentration in uncooked chicken following injection was 0.125 g/100 g product and 0.133 g/100g product in βG and SALT+βG treatments, respectively. Following cooking, the β-glucan concentration was 0.010 g/100g product and 0.004 g/100g product in βG and SALT+βG treatments, respectively. There was no storage day effect (P = 0.42) for the β-glucan concentration in cooked product, therefore it was assumed that during cooking, β-glucan concentration in whole muscle injected products was lost. Finally, thermal behavior measured with a differential scanning calorimeter indicated that there were only minimal differences, although some significant, among treatments in this study. Overall, the application of β-glucan injection in whole chicken breast was not detrimental to product quality and actually improved water retention levels. However, new methods need to be developed for the incorporation of β-glucan in injected whole muscle meat product so that β-glucan can be retained during and after cooking.
Collapse
Affiliation(s)
- Sandra M Vasquez Mejía
- Departamento de Producción Animal, Universidad Nacional de Colombia, Bogotá D.C, 11001. Colombia.,Department of Food Science, University of Guelph, Guelph, Ontario, N1G-2W1. Canada
| | - Alicia de Francisco
- Department of Food Science and Technology, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88034-001. Brazil
| | - Raceli Sandrin
- Department of Food Science and Technology, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88034-001. Brazil
| | - Tiago da Silva
- Department of Food Science and Technology, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88034-001. Brazil
| | - Benjamin M Bohrer
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G-2W1. Canada
| |
Collapse
|
34
|
Verdi MC, Melian C, Castellano P, Vignolo G, Blanco Massani M. Synergistic antimicrobial effect of lactocin
AL
705 and nisin combined with organic acid salts against
Listeria innocua
7 in broth and a hard cheese. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María Clara Verdi
- Instituto Nacional de Tecnología Industrial (INTI) Av. Gral. Paz 5445 1650 San Martin Argentina
| | - Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA) CONICET Chacabuco 145 4000 Tucumán Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Av. Rivadavia 1917 C1033AAJ Buenos Aires Argentina
| | - Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA) CONICET Chacabuco 145 4000 Tucumán Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Av. Rivadavia 1917 C1033AAJ Buenos Aires Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA) CONICET Chacabuco 145 4000 Tucumán Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Av. Rivadavia 1917 C1033AAJ Buenos Aires Argentina
| | - Mariana Blanco Massani
- Instituto Nacional de Tecnología Industrial (INTI) Av. Gral. Paz 5445 1650 San Martin Argentina
| |
Collapse
|
35
|
Melian C, Segli F, Gonzalez R, Vignolo G, Castellano P. Lactocin AL705 as quorum sensing inhibitor to control
Listeria monocytogenes
biofilm formation. J Appl Microbiol 2019; 127:911-920. [DOI: 10.1111/jam.14348] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/20/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022]
Affiliation(s)
- C. Melian
- Centro de Referencia para Lactobacilos (CERELA) Tucumán Argentina
| | - F. Segli
- Centro de Referencia para Lactobacilos (CERELA) Tucumán Argentina
| | - R. Gonzalez
- Instituto de Nanobiotecnología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Buenos Aires Argentina
| | - G. Vignolo
- Centro de Referencia para Lactobacilos (CERELA) Tucumán Argentina
| | - P. Castellano
- Centro de Referencia para Lactobacilos (CERELA) Tucumán Argentina
| |
Collapse
|
36
|
Huang ZR, Guo WL, Zhou WB, Li L, Xu JX, Hong JL, Liu HP, Zeng F, Bai WD, Liu B, Ni L, Rao PF, Lv XC. Microbial communities and volatile metabolites in different traditional fermentation starters used for Hong Qu glutinous rice wine. Food Res Int 2019; 121:593-603. [DOI: 10.1016/j.foodres.2018.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/04/2018] [Accepted: 12/20/2018] [Indexed: 01/25/2023]
|
37
|
Ben Said L, Gaudreau H, Dallaire L, Tessier M, Fliss I. Bioprotective Culture: A New Generation of Food Additives for the Preservation of Food Quality and Safety. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2019.29175.lbs] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Laila Ben Said
- Nutrition and Functional Foods Institute, Department of Food Science, Université Laval, Québec, Canada
| | - Hélène Gaudreau
- Nutrition and Functional Foods Institute, Department of Food Science, Université Laval, Québec, Canada
| | | | | | - Ismail Fliss
- Nutrition and Functional Foods Institute, Department of Food Science, Université Laval, Québec, Canada
- Ismail Fliss, PhD, is Full Professor, Nutrition and Functional Foods Institute, Department of Food science, Université Laval, G1V 0A6, Québec, Canada. Phone: (418) 656–2131.
| |
Collapse
|
38
|
Casquete R, Fonseca SC, Pinto R, Castro SM, Todorov S, Teixeira P, Vaz-Velho M. Evaluation of the microbiological safety and sensory quality of a sliced cured-smoked pork product with protective cultures addition and modified atmosphere packaging. FOOD SCI TECHNOL INT 2019; 25:327-336. [PMID: 30669863 DOI: 10.1177/1082013219825771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to evaluate the effect of two protective lactic acid bacteria cultures combined with modified atmosphere packaging on the survival/growth of Listeria innocua 2030c (as a surrogate for Listeria monocytogenes) and on sensory attributes of ready-to-eat 'lombo' over storage time. Sliced 'lombo', a traditional cured-smoked pork loin, was inoculated with L. innocua 2030c, Lactobacillus sakei ST153 (isolated from 'salpicão') and BLC35 culture (with Lactobacillus curvatus, Staphylococcus xylosus and Pediococcus acidilactici; CHR Hansen) as protective cultures. Samples were packed in two modified atmosphere packaging conditions (20% CO2/80% N2 and 40% CO2/60% N2) and stored at 5 ℃ for 124 days. Both cultures led to a reduction of 1-2 log CFU/g of L. innocua 2030c after 12 h; however, at the end of storage only Lb. sakei ST153 maintained this antilisterial effect, which was more evident at 40% CO2/60% N2. The influence of cultures addition and modified atmosphere packaging conditions on the sensory characteristics of the product were not significant. Thus, Lb. sakei ST153 combined with modified atmosphere packaging is a strong candidate to be used in a biopreservation strategy maintaining the traditional sensory quality of cured-smoked pork products and increasing their safety with respect to Listeria spp.
Collapse
Affiliation(s)
- Rocío Casquete
- 1 Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Badajoz, Spain.,2 CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Susana C Fonseca
- 3 Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal.,4 Faculty of Sciences, GreenUPorto, LAQV-REQUIMTE, DGAOT, University of Porto, Porto, Portugal
| | - Ricardo Pinto
- 3 Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Sónia M Castro
- 2 CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Svetoslav Todorov
- 5 Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Brasil
| | - Paula Teixeira
- 2 CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Manuela Vaz-Velho
- 3 Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| |
Collapse
|
39
|
Preservation of Meat Products with Bacteriocins Produced by Lactic Acid Bacteria Isolated from Meat. J FOOD QUALITY 2019. [DOI: 10.1155/2019/4726510] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacteriocins are ribosomal-synthesized antimicrobial peptides that inhibit the growing of pathogenic and/or deteriorating bacteria. The most studied bacteriocin-producing microorganisms are lactic acid bacteria (LAB), as they have great potential application in food biopreservation, since the majority have GRAS (Generally Recognized as Safe) status. The LAB-producing bacteriocins and/or bacteriocins produced by these bacteria have been widely studied, with the emphasis on those derived from milk and dairy products. On the other hand, isolates from meat and meat products are less studied. The objective of this review is to address the main characteristics, classification, and mechanism of action of bacteriocins and their use in food, to highlight studies on the isolation of LAB with bacteriocinogenic potential from meat and meat products and also to characterize, purify, and apply these bacteriocins in meat products. In summary, most of the microorganisms studied areLactococcus,Enterococcus,Pediococcus, andLactobacillus, which produce bacteriocins such as nisin, enterocin, pediocin, pentocin, and sakacin, many with the potential for use in food biopreservation.
Collapse
|
40
|
Zhang P, Badoni M, Gänzle M, Yang X. Growth of Carnobacterium spp. isolated from chilled vacuum-packaged meat under relevant acidic conditions. Int J Food Microbiol 2018; 286:120-127. [DOI: 10.1016/j.ijfoodmicro.2018.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/01/2018] [Accepted: 07/27/2018] [Indexed: 01/22/2023]
|
41
|
Huang ZR, Hong JL, Xu JX, Li L, Guo WL, Pan YY, Chen SJ, Bai WD, Rao PF, Ni L, Zhao LN, Liu B, Lv XC. Exploring core functional microbiota responsible for the production of volatile flavour during the traditional brewing of Wuyi Hong Qu glutinous rice wine. Food Microbiol 2018; 76:487-496. [DOI: 10.1016/j.fm.2018.07.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/18/2018] [Accepted: 07/26/2018] [Indexed: 01/13/2023]
|
42
|
|
43
|
Franciosa I, Alessandria V, Dolci P, Rantsiou K, Cocolin L. Sausage fermentation and starter cultures in the era of molecular biology methods. Int J Food Microbiol 2018; 279:26-32. [DOI: 10.1016/j.ijfoodmicro.2018.04.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/02/2023]
|
44
|
Favaro L, Todorov SD. Bacteriocinogenic LAB Strains for Fermented Meat Preservation: Perspectives, Challenges, and Limitations. Probiotics Antimicrob Proteins 2018; 9:444-458. [PMID: 28921417 DOI: 10.1007/s12602-017-9330-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last decades, much research has focused on lactic acid bacteria (LAB) bacteriocins because of their potential as biopreservatives and their action against the growth of spoilage microbes. Meat and fermented meat products are prone to microbial contamination, causing health risks, as well as economic losses in the meat industry. The use of bacteriocin-producing LAB starter or protective cultures is suitable for fermented meats. However, although bacteriocins can be produced during meat processing, their levels are usually much lower than those achieved during in vitro fermentations under optimal environmental conditions. Thus, the direct addition of a bacteriocin food additive would be desirable. Moreover, safety and technological characteristics of the bacteriocinogenic LAB must be considered before their widespread applications. This review describes the perspectives and challenges toward the complete disclosure of new bacteriocins as effective preservatives in the production of safe and "healthy" fermented meat products.
Collapse
Affiliation(s)
- Lorenzo Favaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Svetoslav Dimitrov Todorov
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, 580, Professor Lineu Prestes, 13B, Sao Paulo, SP, 05508-000, Brazil
| |
Collapse
|
45
|
Zommiti M, Almohammed H, Ferchichi M. Purification and Characterization of a Novel Anti-Campylobacter Bacteriocin Produced by Lactobacillus curvatus DN317. Probiotics Antimicrob Proteins 2018; 8:191-201. [PMID: 27812926 DOI: 10.1007/s12602-016-9237-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The lactic acid bacteria (LAB) microbiota of Saudi chicken ceca was determined. From 60 samples, 204 isolates of lactic acid bacteria were obtained. Three isolates produced antimicrobial activities against Campylobacter jejuni, Listeria monocytogenes, and Bacillus subtilis. The isolate DN317, which had the highest activity against Campylobacter jejuni ATCC 33560, was identified as Lactobacillus curvatus (GenBank accession numbers: KX353849 and KX353850). Full inhibitory activity was observed after a 2-h incubation with the supernatant at pH values between 4 and 8. Only 16% of the activity was conserved after a treatment at 121 °C for 15 min. The use of proteinase K, pepsin, chymotrypsin, trypsin, papain, and lysozyme drastically reduced the antimicrobial activity. However, lipase, catalase, and lysozyme had no effect on this activity. The active peptide produced by Lactobacillus curvatus DN317 was purified by precipitation with an 80% saturated ammonium sulfate solution, and two steps of reversed phase HPLC on a C18 column. The molecular weight of this peptide was 4448 Da as determined by MALDI-ToF. N-terminal sequence analysis using Edman degradation revealed 47 amino acid residues (UniProt Knowledgebase accession number C0HK82) revealing homology with the amino acid sequences of sakacin P and curvaticin L442. The antimicrobial activity of the bacteriocin, namely curvaticin DN317, was found to be bacteriostatic against Campylobacter jejuni ATCC 33560. The use of microbial antagonism by LAB is one of the best ways to control microorganisms safely in foods. This result constitutes a reasonable advance in the antimicrobial field because of its potential applications in food technology.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Rue Z. Essafi, 1006, Tunis, Tunisia
| | - Hamdan Almohammed
- Department of Medical Microbiology and Parasitology, College of Medicine, King Faisal University, P.O. Box: 400, Al-Ahsa, 31982, Saudi Arabia
| | - Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Rue Z. Essafi, 1006, Tunis, Tunisia.
- College of Applied Medical Sciences, Clinical Laboratory Department, King Faisal University, P.O. Box: 401, Al-Ahsa, 31982, Saudi Arabia.
| |
Collapse
|
46
|
Gheziel C, Russo P, Arena MP, Spano G, Ouzari HI, Kheroua O, Saidi D, Fiocco D, Kaddouri H, Capozzi V. Evaluating the Probiotic Potential of Lactobacillus plantarum Strains from Algerian Infant Feces: Towards the Design of Probiotic Starter Cultures Tailored for Developing Countries. Probiotics Antimicrob Proteins 2018; 11:113-123. [DOI: 10.1007/s12602-018-9396-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Castellano P, Peña N, Ibarreche MP, Carduza F, Soteras T, Vignolo G. Antilisterial efficacy of Lactobacillus bacteriocins and organic acids on frankfurters. Impact on sensory characteristics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:689-697. [PMID: 29391633 PMCID: PMC5785394 DOI: 10.1007/s13197-017-2979-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
Abstract
Dipping solutions containing bacteriocins produced by Lactobacillus curvatus CRL705 and Lactobacillus sakei CRL1862 (Bact705/1862), nisin and organic acids (lactic acid, LA; acetic acid, AA) were tested alone or in combination against Listeria monocytogenes inoculated by immersion on vacuum-packaged frankfurters stored at 10 °C during 36 days. LA/AA solution (2.5% v/v each) reduced pathogen population by 1.50 log10 CFU/ml during storage. Semi-purified Bact705/1862 prevented L. monocytogenes growth, while nisin was not able to avoid its regrowth after 20 days. The combined addition of Bact705/1862 + LA/AA was the most effective approach for pathogen reduction below detection level from day 6 to final storage. Frankfurters treated with Bact705/1862 + LA/AA compared to fresh-purchased samples did not show significant differences in flavor, juiciness, color intensity and overall preference at 22 days-storage at 5 °C. Meat processors should not only validate the antimicrobial efficacy of combined treatments but also their sensory impact on the product, which is directly related to consumer acceptability.
Collapse
Affiliation(s)
- Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Natalia Peña
- Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, T4000ILC Tucumán, Argentina
| | | | - Fernando Carduza
- Instituto de Tecnología de Alimentos, CIA, INTA, CC 77, B1708WAB Morón, Buenos Aires Argentina
| | - Trinidad Soteras
- Instituto de Tecnología de Alimentos, CIA, INTA, CC 77, B1708WAB Morón, Buenos Aires Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, T4000ILC Tucumán, Argentina
| |
Collapse
|
48
|
Koné AP, Zea JMV, Gagné D, Cinq-Mars D, Guay F, Saucier L. Application of Carnobacterium maltaromaticum as a feed additive for weaned rabbits to improve meat microbial quality and safety. Meat Sci 2018; 135:174-188. [DOI: 10.1016/j.meatsci.2017.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 08/25/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
|
49
|
Zagorec M, Champomier-Vergès MC. Lactobacillus sakei: A Starter for Sausage Fermentation, a Protective Culture for Meat Products. Microorganisms 2017; 5:microorganisms5030056. [PMID: 28878171 PMCID: PMC5620647 DOI: 10.3390/microorganisms5030056] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022] Open
Abstract
Among lactic acid bacteria of meat products, Lactobacillus sakei is certainly the most studied species due to its role in the fermentation of sausage and its prevalence during cold storage of raw meat products. Consequently, the physiology of this bacterium regarding functions involved in growth, survival, and metabolism during meat storage and processing are well known. This species exhibits a wide genomic diversity that can be observed when studying different strains and on which probably rely its multiple facets in meat products: starter, spoiler, or protective culture. The emerging exploration of the microbial ecology of meat products also revealed the multiplicity of bacterial interactions L. sakei has to face and their various consequences on microbial quality and safety at the end of storage.
Collapse
|
50
|
Casquete R, Castro SM, Teixeira P. Evaluation of the Combined Effect of Chitosan and Lactic Acid Bacteria in Alheira(Fermented Meat Sausage) Paste. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.12866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rocío Casquete
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias; Universidad de Extremadura; Badajoz Spain
- CBQF-Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia; Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital; Apartado 2511 4202-401 Porto Portugal
| | - Sonia Marilia Castro
- CBQF-Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia; Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital; Apartado 2511 4202-401 Porto Portugal
| | - Paula Teixeira
- CBQF-Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia; Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital; Apartado 2511 4202-401 Porto Portugal
| |
Collapse
|