1
|
Bakky MAH, Tran NT, Zhang M, Wang S, Zhang Y, Li S. Synergistic effects of butyrate-producing bacteria (Clostridium senegalense I5 or Paraclostridium benzoelyticum G5) and Gracilaria lemaneiformis-originated polysaccharides on the growth and immunity of rabbitfish. Int J Biol Macromol 2025; 291:138683. [PMID: 39672402 DOI: 10.1016/j.ijbiomac.2024.138683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
This study evaluated the synergistic effects of dietary butyrate-producing bacteria (Clostridium senegalense I5 (I5) and Paraclostridium benzoelyticum G5 (G5) and Gracilaria lemaneiformis-derived polysaccharide (GLP) in rabbitfish (Siganus canaliculatus). Both bacterial strains demonstrated high susceptibility to most antibiotics, salt tolerance up to 6.5 %, pH tolerance ranging from 2 to 10, and strong auto-aggregation abilities. In a 60-day feeding trial, rabbitfish were fed either commercial pelleted feed (CPF) as a control, or CPF supplemented with 0.10 % GLP and 107 cfu of G5 (GPb), or 0.10 % GLP and 107 cfu of I5 (GCs). GCs significantly improved growth and feed utilization compared to other diets (P < 0.05), while both GPb and GCs improved intestinal health, and digestive enzyme activity (amylase and lipase). Additionally, both GPb and GCs increased the activity of immune-related enzymes and total antioxidant capacity, while reducing malondialdehyde levels (P < 0.05). Transcriptomic analysis of liver tissue revealed differential gene expression in immune-related pathways for GCs and GPb. Fish fed GCs and GPb diets exhibited enhanced resistance against Vibrio parahaemolyticus compared to controls (P < 0.05). These findings suggest the potential of synbiotics involving I5 or G5 and GLP to improve growth, immune response, intestinal health, and disease resistance in rabbitfish, providing valuable insights for rabbitfish aquaculture.
Collapse
Affiliation(s)
- Md Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
2
|
Li MX, Yang SS, Ding J, Ding MQ, He L, Xing DF, Criddle CS, Benbow ME, Ren NQ, Wu WM. Cockroach Blaptica dubia biodegrades polystyrene plastics: Insights for superior ability, microbiome and host genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135756. [PMID: 39255668 DOI: 10.1016/j.jhazmat.2024.135756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
The report demonstrated that a member of cockroach family, Blaptica dubia (Blattodea: Blaberidae) biodegraded commercial polystyrene (PS) plastics with Mn of 20.3 kDa and Mw of 284.9 kDa. The cockroaches digested up to 46.6 % of ingested PS within 24 h. The biodegradation was confirmed by the 13C isotopic shift of the residual PS in feces versus pristine PS (Δ δ13C of 2.28 ‰), reduction of molecular weight and formation of oxidative functional groups in the residual PS. Further tests found that B.dubia cockroaches degraded all eight high purity PS microplastics with low to ultra-high molecular weights (MW) at 0.88, 1.20, 3.92, 9.55, 62.5, 90.9, 524.0, and 1040 kDa, respectively, with superior biodegradation ability. PS depolymerization/biodegradation pattern was MW-dependent. Ingestion of PS shifted gut microbial communities and elevated abundances of plastic-degrading bacterial genes. Genomic, transcriptomic and metabolite analyses indicated that both gut microbes and cockroach host contributed to digestive enzymatic degradation. PS plastic diet promoted a highly cooperative model of gut digestive system. Weighted gene co-expression network analysis revealed different PS degradation patterns with distinct MW profiles in B. dubia. These results have provided strong evidences of plastic-degrading ability of cockroaches or Blaberidae family and new understanding of insect and their microbe mediated biodegradation of plastics.
Collapse
Affiliation(s)
- Mei-Xi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA
| | - Mark Eric Benbow
- Department of Entomology and Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI 48824, USA
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Borgonovi TF, Fugaban JII, Bucheli JEV, Casarotti SN, Holzapfel WH, Todorov SD, Penna ALB. Dual Role of Probiotic Lactic Acid Bacteria Cultures for Fermentation and Control Pathogenic Bacteria in Fruit-Enriched Fermented Milk. Probiotics Antimicrob Proteins 2024; 16:1801-1816. [PMID: 37572214 DOI: 10.1007/s12602-023-10135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
The food industry has been developing new products with health benefits, extended shelf life, and without chemical preservation. Bacteriocin-producing lactic acid bacteria (LAB) strains have been evaluated for food fermentation to prevent contamination and increase shelf life. In this study, potentially probiotic LAB strains, Lactiplantibacillus (Lb.) plantarum ST8Sh, Lacticaseibacillus (Lb.) casei SJRP38, and commercial starter Streptococcus (St.) thermophilus ST080, were evaluated for their production of antimicrobial compounds, lactic acid and enzyme production, carbohydrate assimilation, and susceptibility to antibiotics. The characterization of antimicrobial compounds, the proteolytic activity, and its inhibitory property against Listeria (List.) monocytogenes and Staphylococcus (Staph.) spp. was evaluated in buriti and passion fruit-supplemented fermented milk formulations (FMF) produced with LAB strains. Lb. plantarum ST8Sh was found to inhibit List. monocytogenes through bacteriocin production and produced both L(+) and D(-) lactic acid isomers, while Lb. casei SJRP38 mainly produced L(+) lactic acid. The carbohydrate assimilation profiles were compatible with those usually found in LAB. The potentially probiotic strains were susceptible to streptomycin and tobramycin, while Lb. plantarum ST8Sh was also susceptible to ciprofloxacin. All FMF produced high amounts of L(+) lactic acid and the viability of total lactobacilli remained higher than 8.5 log CFU/mL during monitored storage period. Staph. aureus ATCC 43300 in fermented milk with passion fruit pulp (FMFP) and fermented milk with buriti pulp (FMB), and Staph. epidermidis KACC 13234 in all formulations were completely inhibited after 14 days of storage. The combination of Lb. plantarum ST8Sh and Lb. casei SJRP38 and fruit pulps can provide increased safety and shelf-life for fermented products, and natural food preservation meets the trends of the food market.
Collapse
Affiliation(s)
- Taís Fernanda Borgonovi
- Department of Food Engineering and Technology, São Paulo State University (UNESP), São José Do Rio Preto, SP, 15054-000, Brazil
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Joanna Ivy Irorita Fugaban
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jorge Enrique Vazquez Bucheli
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Sabrina Neves Casarotti
- Faculty of Health Sciences, Federal University of Rondonópolis (UFR), Rondonópolis, MT, 78736-900, Brazil
| | - Wilhelm Heinrich Holzapfel
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Ana Lucia Barretto Penna
- Department of Food Engineering and Technology, São Paulo State University (UNESP), São José Do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
4
|
Nissen L, Spisni E, Spigarelli R, Casciano F, Valerii MC, Fabbri E, Fabbri D, Zulfiqar H, Coralli I, Gianotti A. Single exposure of food-derived polyethylene and polystyrene microplastics profoundly affects gut microbiome in an in vitro colon model. ENVIRONMENT INTERNATIONAL 2024; 190:108884. [PMID: 39004044 DOI: 10.1016/j.envint.2024.108884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Microplastics (MPs) are widespread contaminants highly persistent in the environment and present in matrices to which humans are extensively exposed, including food and beverages. MP ingestion occurs in adults and children and is becoming an emerging public health issue. The gastrointestinal system is the most exposed to MP contamination, which can alter its physiology starting from changes in the microbiome. This study investigates by an omic approach the impact of a single intake of a mixture of polyethylene (PE) and polystyrene (PS) MPs on the ecology and metabolic activity of the colon microbiota of healthy volunteers, in an in vitro intestinal model. PE and PS MPs were pooled together in a homogeneous mix, digested with the INFOGEST system, and fermented with MICODE (multi-unit in vitro colon model) at loads that by literature correspond to the possible intake of food-derived MPs of a single meal. Results demonstrated that MPs induced an opportunistic bacteria overgrowth (Enterobacteriaceae, Desulfovibrio spp., Clostridium group I and Atopobium - Collinsella group) and a contextual reduction on abundances of all the beneficial taxa analyzed, with the sole exception of Lactobacillales. This microbiota shift was consistent with the changes recorded in the bacterial metabolic activity.
Collapse
Affiliation(s)
- Lorenzo Nissen
- DiSTAL - Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60 47521, Cesena, Italy; CIRI - Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60 47521, Cesena, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, Bologna 40100, Italy.
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Science, Alma Mater Studiorum University of Bologna, Via Selmi 3 40126, Bologna, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, Bologna 40100, Italy.
| | - Renato Spigarelli
- Department of Biological, Geological and Environmental Science, Alma Mater Studiorum University of Bologna, Via Selmi 3 40126, Bologna, Italy.
| | - Flavia Casciano
- DiSTAL - Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60 47521, Cesena, Italy; CIRI - Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60 47521, Cesena, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, Bologna 40100, Italy.
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Science, Alma Mater Studiorum University of Bologna, Via Selmi 3 40126, Bologna, Italy.
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Science, Alma Mater Studiorum University of Bologna, Via Selmi 3 40126, Bologna, Italy.
| | - Daniele Fabbri
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Tecnopolo di Rimini, via Dario Campana 71 47922, Rimini, Italy.
| | - Hira Zulfiqar
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Tecnopolo di Rimini, via Dario Campana 71 47922, Rimini, Italy.
| | - Irene Coralli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Tecnopolo di Rimini, via Dario Campana 71 47922, Rimini, Italy.
| | - Andrea Gianotti
- DiSTAL - Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60 47521, Cesena, Italy; CIRI - Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60 47521, Cesena, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, Bologna 40100, Italy.
| |
Collapse
|
5
|
Melian C, Ploper D, Chehín R, Vignolo G, Castellano P. Impairment of Listeria monocytogenes biofilm developed on industrial surfaces by Latilactobacillus curvatus CRL1579 bacteriocin. Food Microbiol 2024; 121:104491. [PMID: 38637093 DOI: 10.1016/j.fm.2024.104491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 04/20/2024]
Abstract
The effect of lactocin AL705, bacteriocin produced by Latilactobacillus (Lat.) curvatus CRL1579 against Listeria biofilms on stainless steel (SS) and polytetrafluoroethylene (PTFE) coupons at 10 °C was investigated. L. monocytogenes FBUNT showed the greatest adhesion on both surfaces associated to the hydrophobicity of cell surface. Partially purified bacteriocin (800 UA/mL) effectively inhibited L. monocytogenes preformed biofilm through displacement strategy, reducing the pathogen by 5.54 ± 0.26 and 4.74 ± 0.05 log cycles at 3 and 6 days, respectively. The bacteriocin-producer decreased the pathogen biofilm by ∼2.84 log cycles. Control and Bac- treated samples reached cell counts of 7.05 ± 0.18 and 6.79 ± 0.06 log CFU/cm2 after 6 days of incubation. Confocal scanning laser microscopy (CLSM) allowed visualizing the inhibitory effect of lactocin AL705 on L. monocytogenes preformed biofilms under static and hydrodynamic flow conditions. A greater effect of the bacteriocin was found at 3 days independently of the surface matrix and pathogen growth conditions at 10 °C. As a more realistic approach, biofilm displacement strategy under continuous flow conditions showed a significant loss of biomass, mean thickness and substratum coverage of pathogen biofilm. These findings highlight the anti-biofilm capacity of lactocin AL705 and their potential application in food industries.
Collapse
Affiliation(s)
- Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Diego Ploper
- IMMCA (Instituto de Investigación en Medicina Molecular y Celular Aplicada, CONICET-Universidad Nacional de Tucumán-Ministerio de Salud Pública, Gobierno de Tucumán, Pje. Dorrego 1080, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Rosana Chehín
- IMMCA (Instituto de Investigación en Medicina Molecular y Celular Aplicada, CONICET-Universidad Nacional de Tucumán-Ministerio de Salud Pública, Gobierno de Tucumán, Pje. Dorrego 1080, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina.
| |
Collapse
|
6
|
Lima JMS, Carneiro KO, Pinto UM, Todorov SD. Bacteriocinogenic anti-listerial properties and safety assessment of Enterococcus faecium and Lactococcus garvieae strains isolated from Brazilian artisanal cheesemaking environment. J Appl Microbiol 2024; 135:lxae159. [PMID: 38925659 DOI: 10.1093/jambio/lxae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
AIMS This study aimed to prospect and isolate lactic acid bacteria (LAB) from an artisanal cheese production environment, to assess their safety, and to explore their bacteriocinogenic potential against Listeria monocytogenes. METHODS AND RESULTS Samples were collected from surfaces of an artisanal-cheese production facility and after rep-PCR and 16S rRNA sequencing analysis, selected strains were identified as to be belonging to Lactococcus garvieae (1 strain) and Enterococcus faecium (14 isolates, grouped into three clusters) associated with different environments (worktables, cheese mold, ripening wooden shelves). All of them presented bacteriocinogenic potential against L. monocytogenes ATCC 7644 and were confirmed as safe (γ-hemolytic, not presenting antibiotic resistance, no mucus degradation properties, and no proteolytic or gelatinase enzyme activity). Additionally, cell growth, acidification and bacteriocins production kinetics, bacteriocin stability in relation to different temperatures, pH, and chemicals were evaluated. According to performed PCR analysis all studied strains generated positive evidence for the presence of entA and entP genes (for production of enterocins A and enterocins P, respectively). However, pediocin PA-1 associated gene was recorded only in DNA obtained from E. faecium ST02JL and Lc. garvieae ST04JL. CONCLUSIONS It is worth considering the application of these safe LAB or their bacteriocins in situ as an alternative means of controlling L. monocytogenes in cheese production environments, either alone or in combination with other antimicrobials.
Collapse
Affiliation(s)
- João Marcos Scafuro Lima
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Kayque Ordonho Carneiro
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Uelinton Manoel Pinto
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| |
Collapse
|
7
|
Grujović MŽ, Marković KG, Morais S, Semedo-Lemsaddek T. Unveiling the Potential of Lactic Acid Bacteria from Serbian Goat Cheese. Foods 2024; 13:2065. [PMID: 38998570 PMCID: PMC11241559 DOI: 10.3390/foods13132065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to unleash the potential of indigenous lactic acid bacteria (LAB) originating from traditionally made Serbian goat cheese. Following the isolation and identification of the LAB, the safety aspects of the isolates were evaluated through tests for hemolytic activity and antibiotic sensitivity. The selected isolates were then tested for various technological properties, including growth in methylene blue, proteolytic activity, acidification, curd formation ability in both pure and enriched goat milk, diacetyl production, antagonistic potential against other LAB, and biofilm formation ability. The results indicated that Lactococcus spp., Lacticaseibacillus spp., and Lactiplantibacillus spp. did not exhibit α or β hemolysis, while enterococci displayed α hemolysis. A higher number of isolates demonstrated sensitivity to ampicillin, tetracycline, and streptomycin, while sensitivity to gentamicin and vancomycin was strain-dependent. Based on the evaluation of technological properties, Lacticaseibacillus paracasei M-1 and Lactiplantibacillus plantarum C7-7, C7-8, and C14-5 showed promising characteristics. Additionally, Lactococcus lactis subsp. lactis strains C0-14 and C21-8 emerged as promising candidates with notable technological properties. Notably, certain indigenous strains LAB exhibit promising technological properties and safety profiles. These characteristics make them suitable candidates for use as starter or adjunct cultures in goat's milk cheese production, potentially enhancing the quality and safety of the cheese as well as hygiene practices among small-scale dairy producers.
Collapse
Affiliation(s)
- Mirjana Ž. Grujović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34 000 Kragujevac, Serbia
| | - Katarina G. Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34 000 Kragujevac, Serbia
| | - Susana Morais
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Teresa Semedo-Lemsaddek
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
8
|
EL-Sayed AIM, El-Borai AM, Akl SH, EL-Aassar SA, Abdel-Latif MS. Identification of Lactobacillus strains from human mother milk and cottage cheese revealed potential probiotic properties with enzymatic activity. Sci Rep 2022; 12:22522. [PMID: 36581674 PMCID: PMC9800376 DOI: 10.1038/s41598-022-27003-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
The main attempt of this study is to isolate, determine potential probiotic properties and enzyme production of some lactic acid bacteria (LAB). Among all isolates, two LAB strains isolated from human mother milk and cottage cheese revealed antimicrobial activity against some tested pathogenic strains. Both isolates inhibited all the tested pathogens except Escherichia coli. The two isolates were identified by morphological, biochemical properties and then by 16S rRNA gene sequencing technique as Lactobacillus acidophilus SAM1 and Lactiplantibacillus plantarum SAM2. Potential probiotic characters were investigated. Both strains survived in relatively low pH and high bile concentrations and were able to grow at 0.5% of pancreatin concentrations. Their growth decreased by increasing phenol from 0.2% till 0.5%. Both strains did not show hemolytic activity. Coaggregation potential was exhibited by the two strains against Staphylococcus aureus and Candida albicans. Hydrophobicity of Lactobacillus acidophilus SAM1 and Lactiplantibacillus plantarum SAM2, with ethyl acetate; were 88.1% and 82.8%, respectively. Lactobacillus acidophilus SAM1 was susceptible to Ampicillin, Penicillin, Erythromycin, Ciprofloxacin and Tetracycline; on the contrary, it resists Vancomycin and Cefoxitin; while Lactiplantibacillus plantarum SAM2 resists all tested antibiotics. Maximum growth was achieved using glucose as a carbon source and yeast extract as nitrogen source for both strains; however, glucose is the most preferred carbon source for microorganisms and it prevents the uptake of carbon from other sources like yeast by catabolite repression mechanism. Lactobacillus acidophilus SAM1 produces lipase enzyme, while Lactiplantibacillus plantarum SAM2 produces amylase and protease.
Collapse
Affiliation(s)
- Abeer I. M. EL-Sayed
- grid.449014.c0000 0004 0583 5330Botany and Microbiology Department, Faculty of Science, Damanhour University, El-Beheira, Egypt
| | - Aliaa M. El-Borai
- grid.7155.60000 0001 2260 6941Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Sara H. Akl
- grid.442603.70000 0004 0377 4159Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Samy A. EL-Aassar
- grid.7155.60000 0001 2260 6941Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S. Abdel-Latif
- grid.442603.70000 0004 0377 4159Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
9
|
Systematic approach to select lactic acid bacteria from spontaneously fermented milk able to fight Listeria monocytogens and Staphylococcus aureus. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Lei W, Hao L, You S, Yao H, Liu C, Zhou H. Partial purification and application of a bacteriocin produced by probiotic Lactococcus lactis C15 isolated from raw milk. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Antibiofilm and Antiquorum Sensing Potential of Lactiplantibacillus plantarum Z057 against Vibrio parahaemolyticus. Foods 2022; 11:foods11152230. [PMID: 35892815 PMCID: PMC9332848 DOI: 10.3390/foods11152230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Vibrio parahaemolyticus is a widespread foodborne pathogen that causes serious seafood-borne gastrointestinal infections. Biofilm and quorum sensing (QS) are critical in regulating these infections. In this study, first, the ability of Lactiplantibacillus plantarum Z057 to compete, exclude, and displace V. parahaemolyticus biofilm was evaluated. Then, the inhibitory effects of L. plantarum Z057 extract (Z057-E) on V. parahaemolyticus biofilm and QS were explored from the aspects of biofilm biomass, metabolic activity, physicochemical properties, extracellular polymer matrix content, QS signal AI-2 activity, biofilm microstructure, and the expression levels of biofilm and QS-related genes. Results showed that L. plantarum Z057 effectively inhibited biofilm formation of V. parahaemolyticus and interfered with the adhesion of V. parahaemolyticus on the carrier surface. In addition, the Z057-E could significantly reduce the biofilm biomass, metabolic activity, hydrophobicity, auto-aggregation ability, swimming and swarming migration diameter, AI-2 activity, extracellular polysaccharide (EPS), and extracellular protein content of V. parahaemolyticus. Fluorescence microscope and scanning electron microscope (SEM) images demonstrated that the Z057-E could efficiently inactivate the living cells, destroy the dense and complete biofilm architectures, and reduce the essential component of the extracellular polymer matrix. Real-time fluorescence quantitative PCR revealed that the Z057-E treatment down-regulated the expression of flagellum synthesis-related genes (flaA, flgM), EPS, and extracellular protein synthesis-related genes (cpsA, cpsQ, cpsR, ompW), QS-related genes (luxS, aphA, opaR), and hemolysin secretion-related genes (toxS, toxR) of V. parahaemolyticus. Thus, our results suggested that L. plantarum Z057 could represent an alternative biocontrol strategy against foodborne pathogens with anti-adhesive, antibiofilm, and antiquorum sensing activities.
Collapse
|
12
|
Improving the Viability of Probiotics under Harsh Conditions by the Formation of Biofilm on Electrospun Nanofiber Mat. Foods 2022; 11:foods11091203. [PMID: 35563925 PMCID: PMC9102203 DOI: 10.3390/foods11091203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
For improving probiotics’ survivability under harsh conditions, this study used Lactiplantibacillus plantarum GIM1.648 as a model microorganism to investigate its ability to produce biofilms on electrospun ethyl cellulose nanofiber mats. SEM observations confirmed that biofilm was successfully formed on the nanofibers, with the latter being an excellent scaffold material. The optimal cultivation conditions for biofilm formation were MRS medium without Tween 80, a culture time of 36 h, a temperature of 30 °C, a pH of 6.5, and an inoculum concentration of 1% (v/v). The sessile cells in the biofilm exhibited improved gastrointestinal and thermal tolerance compared to the planktonic cells. Additionally, the RT-qPCR assay indicated that the luxS gene played a crucial role in biofilm formation, with its relative expression level being 8.7-fold higher compared to the planktonic cells. In conclusion, biofilm formation on electrospun nanofiber mat has great potential for improving the viability of probiotic cells under harsh conditions.
Collapse
|
13
|
Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Padgett C, Bailey C, Gancel F, Drider D. Protective Effects of Novel Lactobacillaceae Strains Isolated from Chicken Caeca against Necrotic Enteritis Infection: In Vitro and In Vivo Evidences. Microorganisms 2022; 10:152. [PMID: 35056601 PMCID: PMC8780607 DOI: 10.3390/microorganisms10010152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
The present study aimed to show the benefits of novel lactic acid bacteria (LAB) strains isolated from the caeca of healthy chickens. These novel strains, identified as Limosilactobacillus reuteri and Ligilactobacillus salivarius, displayed high levels of lactic acid production, capability of biofilm formation, high aggregation and adhesion scores, and significant survival rates under conditions mimicking the chicken gastrointestinal tract (GIT). In addition, these novel Lactobacillaceae isolates were neither hemolytic nor cytotoxic. In vivo trials were able to establish their ability to reduce necrotic enteritis. Notably, a significant weight gain was registered, on day 10 of treatment, in the group of chickens fed with a mixture of L. reuteri ICVB416 and L. salivarius ICVB430 strains, as compared with the control group. This group has also shown a reduced number of lesions in the gut compared with other infected chicken groups. This study provides in vitro and in vivo evidence supporting the benefits of these novel Lactobacillaceae isolates for their use in poultry livestock as protective cultures to control the bacterial necrotic enteritis (NE) Clostridium perfringens.
Collapse
Affiliation(s)
- Nuria Vieco-Saiz
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (N.V.-S.); (Y.B.); (F.G.)
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (N.V.-S.); (Y.B.); (F.G.)
| | - Ruth Raspoet
- Phileo Lesaffre Animal Care, 137 Rue Gabriel Péri, F-59700 Marcq-en-Barœul, France; (R.R.); (E.A.)
| | - Eric Auclair
- Phileo Lesaffre Animal Care, 137 Rue Gabriel Péri, F-59700 Marcq-en-Barœul, France; (R.R.); (E.A.)
| | - Connor Padgett
- Phileo by Lesaffre, 7475 W Main St., Milwaukee, WI 53214, USA;
- Department of Poultry Science, Texas A&M University, 101 Kleberg Center, 2472 TAMU, College Station, TX 77845, USA;
| | - Christopher Bailey
- Department of Poultry Science, Texas A&M University, 101 Kleberg Center, 2472 TAMU, College Station, TX 77845, USA;
| | - Frédérique Gancel
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (N.V.-S.); (Y.B.); (F.G.)
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (N.V.-S.); (Y.B.); (F.G.)
| |
Collapse
|
14
|
Shi S, Dong J, Cheng X, Hu J, Liu Y, He G, Zhang J, Yu H, Liu J, Zhou D. Biological characteristics and whole-genome analysis of the potential probiotic, Lactobacillus reuteri S5. Lett Appl Microbiol 2022; 74:593-603. [PMID: 35014712 DOI: 10.1111/lam.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022]
Abstract
Lactic acid bacteria are microorganisms used for probiotic purposes and form major parts of human and mammalian intestinal microbiota, exerting important health-promoting effects on the host. Here, we evaluated L. reuteri strain S5 isolated from the intestines of healthy white feather broilers. L. reuteri S5 grew best after 20 h of incubation in MRS medium. Lactic acid production was 1.42 mmol L-1 at 24 h, which was well tolerated. Activities of T-AOC, GSH-Px and T-SOD in the cell-free fermentation supernatant of L. reuteri S5 were higher than those in the bacteria, and the strain showed good hydrophobicity in vitro. The dominant carbon and nitrogen sources of L. reuteri S5 were glucose and soybean meal. A high-quality complete genome map of L. reuteri S5 was obtained using a Pacbio nanopore third-generation sequencing platform. The results showed that L. reuteri S5 possesses a complete primary metabolic pathway, encoding the main functional enzymes of the glycolysis pathway and pentose phosphate pathway. The genome contains genes encoding antioxidants and conferring tolerance to inorganic salt ions, acids and bile salts. This study shows that L. reuteri S5 is a probiotic strain with excellent probiotic characteristics and has great potential for the development of feed additives to promote animal health.
Collapse
Affiliation(s)
- Shuiqin Shi
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Jinsheng Dong
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Xu Cheng
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Jie Hu
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Yannan Liu
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Guanyu He
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Jingjing Zhang
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Hao Yu
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Jia Liu
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| | - Duoqi Zhou
- School of Life Sciences and Anhui Key Laboratory of biodiversity research and ecological protection in Southwest Anhui, Anqing Normal University, Anqing, 246133, P. R. China
| |
Collapse
|
15
|
Gupta M, Pattanaik AK, Singh A, Sharma S, Jadhav SE, Kumar A, Verma AK. Functional and probiotic characterization of Ligilactobacillus salivarius CPN60 isolated from calf faeces and its appraisal in rats. J Biosci Bioeng 2021; 132:575-584. [PMID: 34600807 DOI: 10.1016/j.jbiosc.2021.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Emerging concern about the emergence of antimicrobial resistance has limited the use of antibiotics in calves. Hence, there is a need to find suitable alternatives to antibiotics to manage gastrointestinal infections in neonatal calves. The objective of the present study was to develop a probiotic of calf-origin for its potential application in calf nutrition. Accordingly, 69 lactic acid bacteria (LAB) strains were isolated from faeces of newborn calves, out of which 10 strains were short-listed for further in vitro testing based on the aggregation time and cell surface hydrophobicity. The results of acid-, bile- and phenol-tolerance tests indicated that out of the ten strains, the isolate CPN60 had better resistance to these adverse conditions likely to be encountered in the gastrointestinal tract. The isolate also showed an optimal ability to produce biofilm. Further assessments reiterated its superiority in terms of co-aggregation and antagonistic activity against pathogenic strains of Escherichia coli. Subsequently, the isolate was identified through 16S rRNA sequencing and sequence homology and designated as Ligilactobacillus salivarius CPN60. The candidate probiotic was evaluated in vivo using 48 male (5 weeks old) Wistar rats, divided into two equal groups viz. control (CON) and probiotic (PRO). During the 4-weeks feeding trial, the PRO group rats were gavaged with one mL culture of L. salivarius CPN60 equivalent to 108 CFU/rat. The in vivo trial results indicated better nutrient utilization efficiency and growth performance (p < 0.001) of the PRO group of rats. The probiotic supplementation improved the faecal concentration of lactate (p < 0.001) and individual as well as total short-chain fatty acids (p < 0.001) production. The cell-mediated immune response, assessed as a delayed-type hypersensitivity reaction to phytohaemagglutinin-P, was improved (p < 0.001) in PRO compared to the CON rats. It is concluded that the calf-origin probiotic L. salivarius CPN60, in addition to possessing all the in vitro functional attributes of a candidate probiotic, also has desirable potential for its future use in young calves to promote gut health and immunity.
Collapse
Affiliation(s)
- Mokshata Gupta
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Ashok Kumar Pattanaik
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India.
| | - Asmita Singh
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Shalini Sharma
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Sunil Ekanath Jadhav
- Centre for Advanced Faculty Training, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Avneesh Kumar
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Ashok Kumar Verma
- Centre for Advanced Faculty Training, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| |
Collapse
|
16
|
Steinberg RS, Silva LCSE, de Souza MR, Reis RB, Bicalho AF, Nunes JPS, Dias AAM, Nicoli JR, Neumann E, Nunes ÁC. Prospecting of potentially probiotic lactic acid bacteria from bovine mammary ecosystem: imminent partners from bacteriotherapy against bovine mastitis. Int Microbiol 2021; 25:189-206. [PMID: 34498226 DOI: 10.1007/s10123-021-00209-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
Mastitis is one of the most important causes of loss of cattle production, burdening producers due to the increased cost of milk production and decreased herd productivity. The development of alternative methods for the treatment and prevention of mastitis other than traditional chemical antibiotic therapy needs to be implemented to meet international pressures to reduce the use of these drugs and promote the elimination of multiresistant microbial strains from the environment. Treatment with probiotic bacteria or yeast strains offers a possible strategy for the control of mastitis. The objective of this work was to isolate, identify, and characterize lactic bacteria from milk and the intramammary duct of Gyr, Guzerat, Girolando 1/2, and Holstein cattle breeds from Brazil. Samples of 115 cows were taken, a total of 192 bacteria isolates belonging to 30 species were obtained, and 81 were selected to evaluate their probiotic potential in in vitro characterization tests. In general, bacteria isolated from the mammary gland have low autoaggregation, cell surface hydrophobicity, and co-aggregation with mastitis etiological bacteria Staphylococcus aureus and Escherichia coli. Also, they have biofilm assembly capacity, inability to produce exopolysaccharides, high production of H2O2, and strong antagonism against mastitis pathogens. Ten lactic bacteria isolates were used in co-culture with human MDA-MB-231 breast epithelial cells to assess their adhesion capacity and impairment of the S. aureus invasion. Our results, therefore, contribute to the future production of new prevention and treatment tools for bovine mastitis.
Collapse
Affiliation(s)
- Raphael S Steinberg
- Instituto Federal de Educação Ciência e Tecnologia de Minas Gerais, Campus Bambuí, Rodovia Bambuí/Medeiros - km 05, Caixa Postal 05, Bambuí, MG, 38900-000, Brazil.
| | - Lilian C Silva E Silva
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo R de Souza
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ronaldo B Reis
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriano F Bicalho
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João P S Nunes
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriana A M Dias
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Álvaro C Nunes
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
Scillato M, Spitale A, Mongelli G, Privitera GF, Mangano K, Cianci A, Stefani S, Santagati M. Antimicrobial properties of Lactobacillus cell-free supernatants against multidrug-resistant urogenital pathogens. Microbiologyopen 2021; 10:e1173. [PMID: 33970542 PMCID: PMC8483400 DOI: 10.1002/mbo3.1173] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/23/2023] Open
Abstract
The healthy vaginal microbiota is dominated by Lactobacillus spp., which provide an important critical line of defense against pathogens, as well as giving beneficial effects to the host. We characterized L. gasseri 1A‐TV, L. fermentum 18A‐TV, and L. crispatus 35A‐TV, from the vaginal microbiota of healthy premenopausal women, for their potential probiotic activities. The antimicrobial effects of the 3 strains and their combination against clinical urogenital bacteria were evaluated together with the activities of their metabolites produced by cell‐free supernatants (CFSs). Their beneficial properties in terms of ability to interfere with vaginal pathogens (co‐aggregation, adhesion to HeLa cells, biofilm formation) and antimicrobial activity mediated by CFSs were assessed against multidrug urogenital pathogens (S. agalactiae, E. coli, KPC‐producing K. pneumoniae, S. aureus, E. faecium VRE, E. faecalis, P. aeruginosa, P. mirabilis, P. vulgaris, C. albicans, C. glabrata). The Lactobacilli tested exhibited an extraordinary ability to interfere and co‐aggregate with urogenital pathogens, except for Candida spp., as well as to adhere to HeLa cells and to produce biofilm in the Lactobacillus combination. Lactobacillus CFSs and their combination revealed a strong bactericidal effect on the multidrug resistant indicator strains tested, except for E. faecium and E. faecalis. The antimicrobial activity was maintained after heat treatment but decreased after enzymatic treatment. All Lactobacilli showed lactic dehydrogenase activity and production of D‐ and L‐lactic acid isomers on Lactobacillus CFSs, while only 1A‐TV and 35A‐TV released hydrogen peroxide and carried helveticin J and acidocin A bacteriocins. These results suggest that they can be employed as a new vaginal probiotic formulation and bio‐therapeutic preparation against urogenital infections. Further, in vivo studies are needed to evaluate human health benefits in clinical situations.
Collapse
Affiliation(s)
- Marina Scillato
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, Catania, Italy
| | - Ambra Spitale
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, Catania, Italy
| | - Gino Mongelli
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, Catania, Italy
| | - Grete Francesca Privitera
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinical, and General Pathology Section, University of Catania, Catania, Italy
| | - Antonio Cianci
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, Catania, Italy
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, Catania, Italy
| |
Collapse
|
18
|
Shi S, Cheng B, Gu B, Sheng T, Tu J, Shao Y, Qi K, Zhou D. Evaluation of the probiotic and functional potential of Lactobacillus agilis 32 isolated from pig manure. Lett Appl Microbiol 2021; 73:9-19. [PMID: 33098675 DOI: 10.1111/lam.13422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Escherichia coli is a symbiotic bacterium in humans and animals and an important pathogen of humans and animals. Prevention and suppression of E. coli infection is of great concern. In this study, we isolated a strain of Lactobacillus agilis 32 from pig manure and evaluated its biological characteristics, and found that its bacterial survival rate was 25% after 4 h of treatment at pH 2, and under the condition of 0·5% bile concentration, its survival rate exceeds 30%. In addition, L. agilis 32 has a cell surface hydrophobicity of 77·8%, and exhibits 67·1% auto-aggregation and 63·2% aggregation with Enterotoxigenic E. coli 10 (ETEC 10). FITC fluorescence labelling showed that the fluorescence intensity of cecum was significantly higher than that of duodenum, jejunum or colon (P < 0·05), but no significant difference from ileum. Lactobacillus agilis 32 bacterial culture and CFS showed average inhibition zone diameters of 14·2 and 15·4 mm respectively. Lactobacillus agilis 32 CFS treatment can significantly reduce the pathogenicity of ETEC 10. These results show that L. agilis 32 is an active and potential probiotic, and it has a good antibacterial effect on ETEC10, which provides basic research for probiotics to prevent and treat intestinal diarrhoea pathogen infection.
Collapse
Affiliation(s)
- S Shi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, P. R. China.,College of Life Sciences, Anqing Normal University, Anqing, P. R. China
| | - B Cheng
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, P. R. China
| | - B Gu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, P. R. China
| | - T Sheng
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, P. R. China
| | - J Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, P. R. China
| | - Y Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, P. R. China
| | - K Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, P. R. China
| | - D Zhou
- College of Life Sciences, Anqing Normal University, Anqing, P. R. China
| |
Collapse
|
19
|
Zand E, Pfanner H, Domig KJ, Sinn G, Zunabovic-Pichler M, Jaeger H. Biofilm-Forming Ability of Microbacterium lacticum and Staphylococcus capitis Considering Physicochemical and Topographical Surface Properties. Foods 2021; 10:foods10030611. [PMID: 33805651 PMCID: PMC8001712 DOI: 10.3390/foods10030611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Biofilm characteristics of Microbacterium lacticum D84 (M. lacticum) and Staphylococcus capitis subsp. capitis (S. capitis) on polytetrafluoroethylene and AISI-304 stainless steel at early- (24, 48 h) and late-stage (144, 192 h) biofilm formation were investigated. M. lacticum biofilm structure was more developed compared to S. capitis, representing vastly mature biofilms with a strongly developed amorphous matrix, possibly extracellular polymeric substances (EPSs), at late-stage biofilm formation. S. capitis showed faster growth behavior but still resulted in a relatively flat biofilm structure. Strong correlations were found between several roughness parameters and S. capitis surface coverage (r ≥ 0.98), and between total surface free energy (γs) and S. capitis surface coverage (r = 0.89), while M. lacticum remained mostly unaffected. The pronounced ubiquitous biofilm characteristics make M. lacticum D84 a suitable model for biofilm research. Studying biofilm formation of these bacteria may help one understand bacterial adhesion on interfaces and hence reduce biofilm formation in the food industry.
Collapse
Affiliation(s)
- Elena Zand
- Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria; (E.Z.); (H.P.); (H.J.)
| | - Hedwig Pfanner
- Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria; (E.Z.); (H.P.); (H.J.)
| | - Konrad J. Domig
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| | - Gerhard Sinn
- Institute of Physics and Material Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| | - Marija Zunabovic-Pichler
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
- Correspondence:
| | - Henry Jaeger
- Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria; (E.Z.); (H.P.); (H.J.)
| |
Collapse
|
20
|
Kıran F, Akoğlu A, Çakır İ. Control of
Listeria monocytogenes
biofilm on industrial surfaces by cell
‐
free extracts of
Lactobacillus plantarum. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fadime Kıran
- Faculty of Science, Department of Biology Ankara University Ankara Turkey
| | - Aylin Akoğlu
- Faculty of Health Sciences, Department of Nutrition and Dietetics Bolu Abant Izzet Baysal University Bolu Turkey
| | - İbrahim Çakır
- Faculty of Engineering, Department of Food Engineering Bolu Abant Izzet Baysal University Bolu Turkey
| |
Collapse
|
21
|
Bazireh H, Shariati P, Azimzadeh Jamalkandi S, Ahmadi A, Boroumand MA. Isolation of Novel Probiotic Lactobacillus and Enterococcus Strains From Human Salivary and Fecal Sources. Front Microbiol 2020; 11:597946. [PMID: 33343539 PMCID: PMC7746552 DOI: 10.3389/fmicb.2020.597946] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022] Open
Abstract
Probiotics are non-pathogenic microorganisms that can interact with the gastrointestinal microbiota. They have numerous beneficial health effects that include enhancement of the host immune response, antiallergic, antimicrobial, anti-cancer, and anti-inflammatory properties. Probiotics are capable of restoring the impaired microbiome of a dysbiotic gut. They can be isolated from different environments. However, it is frequently suggested that probiotics for human use should come from human sources. The objective of this study was to isolate and characterize novel probiotic strains from the saliva and feces of healthy human individuals. To meet the criteria for probiotic attributes, the isolates were subjected to numerous standard morphological and biochemical tests. These tests included Gram staining, catalase tests, antibiotic susceptibility testing, hemolytic and antagonistic evaluation, tolerance tests involving temperature, NaCl levels, pH and bile salts, adherence ability assays, and genotypic characterization involving 16S rRNA gene sequencing. From 26 saliva and 11 stool samples, 185 microbial strains were isolated. Based on morphological and biochemical characteristics, 14 potential probiotic candidates were selected and identified genotypically. The new strains belonged to Lactobacillus fermentum, Enterococcus faecium, and Enterococcus hire. The selected strains were non-hemolytic, showed high tolerance to low pH and bile salts, and strong adherence abilities. Furthermore, the strains displayed a wide range of antimicrobial activities, particularly against antibiotic-resistant pathogens such as methicillin resistant Staphylococcus aureus (MRSA). Moreover, five of the selected isolates demonstrated antiproliferative features against human colon cancer cell line (Caco-2). The results of this investigation confirm the diversity of microbial populations in the human gut and saliva, and since these strains are of human origin, they will highly likely display maximal activities in food and drugs set for human use. Hence, the new strains of this study require additional in vivo experiments to assess their health-promoting effects.
Collapse
Affiliation(s)
- Homa Bazireh
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Parvin Shariati
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Boroumand
- Department of Pathology and Laboratory Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Lynch D, Hill C, Field D, Begley M. Inhibition of Listeria monocytogenes by the Staphylococcus capitis - derived bacteriocin capidermicin. Food Microbiol 2020; 94:103661. [PMID: 33279086 DOI: 10.1016/j.fm.2020.103661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/17/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Natural methods to control food pathogens are required and bacteriocins have received much interest in this regard. The aim of this study was to investigate the ability of the novel bacteriocin capidermicin to inhibit Listeria monocytogenes. Agar-based deferred antagonism assays were carried out with the capidermicin producer against 17 L. monocytogenes strains and large zones of inhibition were observed for 12 strains. Minimal inhibitory concentration assays performed with purified capidermicin peptide revealed MIC values between 680 nM and 11 μM. Biofilm assays were performed with five L. monocytogenes strains. Addition of capidermicin prevented biofilm formation by one strain and could remove pre-established biofilms of all five strains. Broth based growth experiments demonstrated that addition of capidermicin resulted in an extended lag phase of both L. monocytogenes strains tested. Kill-curve experiments showed that capidermicin was able to potentiate the anti-Listeria effects of the lantibiotic nisin. This enhanced killing by the combination of both peptides was also observed in model food systems (cottage cheese and chocolate milk). In summary, we show that capidermicin can inhibit L. monocytogenes and warrants further investigation as a potential natural agent for the control of this pathogen.
Collapse
Affiliation(s)
- David Lynch
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Des Field
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| | - Máire Begley
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
23
|
A strategy to control colonization of pathogens: embedding of lactic acid bacteria on the surface of urinary catheter. Appl Microbiol Biotechnol 2020; 104:9053-9066. [PMID: 32949279 DOI: 10.1007/s00253-020-10903-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023]
Abstract
Indwelling urinary catheterization is one of the major causes of urinary tract infection (UTI) in hospitalized patients worldwide. A catheter serves as a surface for the colonization and formation of biofilm by UTI-related pathogenic bacteria. To combat the biofilm formation on its surface, several strategies have already been employed such as coating it with antibiofilm and antimicrobial compounds. For instance, the application of lactic acid bacteria (LAB) offers a potential strategy for the treatment of biofilm formation on the surface of the urinary catheter due to its ability to kill the pathogenic bacteria. The killing of pathogenic bacteria by LAB occurs via the production of antimicrobial compounds such as lactic acid, bacteriocin, and hydrogen peroxide. LAB also displays a competitive exclusion mechanism to prevent the adhesion of pathogens on the surfaces. Hence, LAB has been extensively applied as a bacteriotherapy to combat infectious diseases. Several strategies have been employed to attach LAB to a surface, but its easy detachment during long time exposure becomes one of the drawbacks in its application. Here, we have proposed a novel strategy for its adhesion on the surface of the urinary catheter with the utilization of mannose-specific adhesin (Msa) protein in a way similar as uropathogenic bacteria interacts between Msa present on the tip of the type I fimbriae/pilus and the mannose moieties on the host epithelial cell surfaces. KEY POINTS: • Urinary tract infection (UTI) is one of the common hospital-acquired infections, which is associated with the application of an indwelling urinary catheter. • Based on the competitive exclusions properties of LAB, attachment of the LAB on the catheter surface would be a promising approach to control the formation of pathogenic biofilm. • The strategy employed for the adhesion of LAB is via a covalent interaction of its mannose-specific adhesin (Msa) protein to the mannose residues grafted on the catheter surface.
Collapse
|
24
|
Phloretin inhibits biofilm formation by affecting quorum sensing under different temperature. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Chiappe CS, Iurlina MO, Saiz AI. Effect of honey phenolic extract on biofilm formation by Pediococcus pentosaceus and Lactobacillus fermentum. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Role of Lactobacillus biofilms in Listeria monocytogenes adhesion to glass surfaces. Int J Food Microbiol 2020; 334:108804. [PMID: 32818764 DOI: 10.1016/j.ijfoodmicro.2020.108804] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Listeria monocytogenes can form long-lasting biofilms on food-contact surfaces. Lactic acid bacteria (LAB) have shown promise in antagonizing this microorganism in liquid media. However, the ecological relationships differ when cells are forming biofilms. In this work, we propose the use of Lactobacillus biofilms as surface "conditioners" to modulate the adhesion of L. monocytogenes. For this, the biofilm formation ability of Lactobacillus fermentum MP26 and Lactobacillus salivarius MP14 (human milk origin), fluorescently labeled by transfer of the mCherry-encoding pRCR12 plasmid, was first evaluated. Then, mature biofilms of these strains transformed with pRCR12 for expressing the fluorescent protein mCherry were used as adhesion substrate for GFP-tagged L. monocytogenes Scott A. The resulting biofilms were studied in terms of cellular population and attached biomass (cells plus matrix). Species distribution inside the biofilm structure was revealed by confocal laser scanning microscopy (CLSM). Although none of the Lactobacillus spp. strains reduced the adhesion of L. monocytogenes Scott A, species interactions seem to interfere with the synthesis of extracellular polymeric substances and species distribution inside the biofilms. In dual-species biofilms, CLSM images revealed that Lactobacillus cells were trapping those of L. monocytogenes Scott A. When surfaces were conditioned with Lactobacillus biofilms, the spatial distribution of L. monocytogenes Scott A cells was species-specific, suggesting these interactions are governing the ultimate biofilm structure. The results here obtained open new possibilities for controlling L. monocytogenes dispersal using these Lactobacillus spp. biofilms as a "natural" immobilization way. Whether species interactions could modify the virulence of L. monocytogenes still remains unclear.
Collapse
|
27
|
Benmouna Z, Dalache F, Zadi-Karam H, Karam NE, Vuotto C. Ability of Three Lactic Acid Bacteria to Grow in Sessile Mode and to Inhibit Biofilm Formation of Pathogenic Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1282:105-114. [PMID: 32034730 DOI: 10.1007/5584_2020_495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we explored the effect of three lactic acid bacteria (LAB), i.e. Enterococcus sp CM9, Enterococcus sp CM18 and Enterococcus faecium H3, and their supernatants, on seven biofilm-forming pathogenic strains isolated from human urinary tract or nose infections. By quantitative biofilm production assay, a strong adherence ability of Enterococcus sp CM9 and Enterococcus sp CM18 was revealed while E. faecium H3 resulted to be moderately adherent. Inhibition tests demonstrated an antimicrobial activity of LAB against pathogens.The presence of cell free supernatant (CFS) of CM9 and CM18 strains significantly decreased the adhesion of S. aureus 10,850, S. epidermidis 4,296 and E. coli FSL24. The CFS of H3 strain was effective against S. epidermidis 4,296 and P. aeruginosa PA1FSL biofilms only. Biofilm formation of K. pneumoniae Kp20FSL, A. baumannii AB8FSL and ESBL+ E. coli FS101570 have not been affected by any CSF while P. aeruginosa PA1FSL biofilm increase in presence of CM9 and CM18 CFS.Confocal Laser Scanning Microscopy revealed that K. pneumoniae Kp20FSL biofilm was inhibited by Enterococcus sp CM9, when grown together.Our results suggest that the LAB strains and/or their bacteriocins can be considered as potential tools to control biofilm formation of some bacterial pathogens.
Collapse
Affiliation(s)
- Z Benmouna
- Laboratory of Micro-organisms Biology and Biotechnology, Department of Biotechnology, Faculty of Natural Sciences and Life, University of Oran, Oran, Algeria
| | - F Dalache
- Laboratory of Micro-organisms Biology and Biotechnology, Department of Biotechnology, Faculty of Natural Sciences and Life, University of Oran, Oran, Algeria.,Department of Biology, Faculty of Natural Sciences and Life, University of Mostaganem Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - H Zadi-Karam
- Laboratory of Micro-organisms Biology and Biotechnology, Department of Biotechnology, Faculty of Natural Sciences and Life, University of Oran, Oran, Algeria
| | - N-E Karam
- Laboratory of Micro-organisms Biology and Biotechnology, Department of Biotechnology, Faculty of Natural Sciences and Life, University of Oran, Oran, Algeria
| | - C Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
28
|
Hossain MI, Mizan MFR, Ashrafudoulla M, Nahar S, Joo HJ, Jahid IK, Park SH, Kim KS, Ha SD. Inhibitory effects of probiotic potential lactic acid bacteria isolated from kimchi against Listeria monocytogenes biofilm on lettuce, stainless-steel surfaces, and MBEC™ biofilm device. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108864] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Cui T, Bai F, Sun M, Lv X, Li X, Zhang D, Du H. Lactobacillus crustorum ZHG 2-1 as novel quorum-quenching bacteria reducing virulence factors and biofilms formation of Pseudomonas aeruginosa. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Melian C, Segli F, Gonzalez R, Vignolo G, Castellano P. Lactocin AL705 as quorum sensing inhibitor to control
Listeria monocytogenes
biofilm formation. J Appl Microbiol 2019; 127:911-920. [DOI: 10.1111/jam.14348] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/20/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022]
Affiliation(s)
- C. Melian
- Centro de Referencia para Lactobacilos (CERELA) Tucumán Argentina
| | - F. Segli
- Centro de Referencia para Lactobacilos (CERELA) Tucumán Argentina
| | - R. Gonzalez
- Instituto de Nanobiotecnología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Buenos Aires Argentina
| | - G. Vignolo
- Centro de Referencia para Lactobacilos (CERELA) Tucumán Argentina
| | - P. Castellano
- Centro de Referencia para Lactobacilos (CERELA) Tucumán Argentina
| |
Collapse
|
31
|
Pino A, Bartolo E, Caggia C, Cianci A, Randazzo CL. Detection of vaginal lactobacilli as probiotic candidates. Sci Rep 2019; 9:3355. [PMID: 30833631 PMCID: PMC6399336 DOI: 10.1038/s41598-019-40304-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/08/2019] [Indexed: 11/18/2022] Open
Abstract
The vaginal microbiota of healthy women is dominated by lactobacilli, which exerts important health-promoting effects to the host. In the present study, 261 lactobacilli isolated from vagina of healthy women were screened for their potential probiotic characteristics. Safety features (haemolytic activity, antibiotic susceptibility, bile salt hydrolase activity) and functional properties (resistance to low pH and bile salts, lysozyme tolerance, gastrointestinal survival, antagonistic activity against pathogens, hydrophobicity, auto-aggregation, and co-aggregation abilities, hydrogen peroxide production, biofilm formation, exopolysaccharide production, adhesion capacity to both normal human vagina epithelial cells and Caco-2 epithelial cells, and lactic acid production) were in depth evaluated. Seven strains, identified as Lactobacillus rhamnosus, Lactobacillus helveticus and Lactobacillus salivarius fulfilled the criteria described above. Therefore, the vaginal ecosystem represents a suitable source of probiotic candidates that could be used in new functional formulates for both gastrointestinal and vaginal eubiosis.
Collapse
Affiliation(s)
- Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
| | - Emanuela Bartolo
- Department of General Surgery and Medical Surgical Specialties, Gynecological Clinic, University of Catania, Policlinico Universitario, Catania, Italy
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
| | - Antonio Cianci
- Department of General Surgery and Medical Surgical Specialties, Gynecological Clinic, University of Catania, Policlinico Universitario, Catania, Italy
| | - Cinzia L Randazzo
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy.
| |
Collapse
|
32
|
Koohestani M, Moradi M, Tajik H, Badali A. Effects of cell-free supernatant of Lactobacillus acidophilus LA5 and Lactobacillus casei 431 against planktonic form and biofilm of Staphylococcus aureus. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2018; 9:301-306. [PMID: 30713607 PMCID: PMC6346487 DOI: 10.30466/vrf.2018.33086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
This study was carried out to investigate the stability, antibacterial properties and biofilm removal potential of cell-free supernatant (CFS) of Lactobacillus acidophilus LA5 and Lactobacillus casei 431 against Staphylococcus aureus ATCC 25923. Antibacterial activity of both Lactobacillus strains was measured according to the agar spot method. The CFS was prepared by centrifugation of bacterial suspension at 4000 g for 10 min and the antimicrobial activity was measured using agar-well diffusion. The stability of CFSs during storage at 4.00 ± 2.00 °C and 25.00 ± 2.00 °C for a period of 4 weeks was measured based on the method of broth micro-dilution assay. Moreover, biofilm removal potential of CFS on 2-days-old biofilm of S. aureus developed on polystyrene and glass surfaces was also determined. The efficacy of CFS on bacterial biofilm established on the glass surface was also observed using fluorescence microscope. Results showed that inhibition zones of L. acidophilus (50.26 mm) were greater than L. casei (37.06 mm). The minimum inhibitory concentration of both CFSs remained stable (40 mg mL-1) during the storage for 28 days at 4.00 and 25.00 °C and storage temperature did not affect the antibacterial effectiveness of CFS. The addition of both CFSs significantly removed biofilm developed on both tested surfaces in a concentration-dependent manner. Biofilm removal property of L. acidophilus CFS was generally better than L. casei CFS which was confirmed by fluorescence microscope. The application of CFS of probiotic strains (i.e. Lactobacillus) as antibacterial and biofilm removal compounds could be very suitable to control the growth of food-borne pathogens.
Collapse
Affiliation(s)
- Mobin Koohestani
- DVM Graduated student, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Armen Badali
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
33
|
Lactic Acid Bacteria (LAB) and Their Bacteriocins as Alternative Biotechnological Tools to Control Listeria monocytogenes Biofilms in Food Processing Facilities. Mol Biotechnol 2018; 60:712-726. [PMID: 30073512 DOI: 10.1007/s12033-018-0108-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacteriocins are antimicrobial peptides produced by bacteria Gram-negative and Gram-positive, including lactic acid bacteria (LAB), organisms that are traditionally used in food preservation practices. Bacteriocins have been shown to have an aptitude as biofilm controlling agents in Listeria monocytogenes biofilms, a major risk for consumers and the food industry. Biofilms protect pathogens from sanitization procedures, allowing them to survive and persist in processing facilities, resulting in the cross-contamination of the end products. Studies have been undertaken on bacteriocinogenic LAB, their bacteriocins, and bioengineered bacteriocin derivatives for controlling L. monocytogenes biofilms on different surfaces through inhibition, competition, exclusion, and displacement. These alternative strategies can be considered promising in preventing the development of resistance to conventional sanitizers and disinfectants. Bacteriocins are "friendly" antimicrobial agents, and with high prevalence in nature, they do not have any known associated public health risk. Most trials have been carried out in vitro, on food contact materials such as polystyrene and stainless steel, while there have been few studies performed in situ to consolidate the results observed in vitro. There are strategies that can be employed for prevention and eradication of L. monocytogenes biofilms (such as the establishment of standard cleaning procedures using the available agents at proper concentrations). However, commercial cocktails using alternatives compounds recognized as safe and environmental friendly can be an alternative approach to be applied by the industries in the future.
Collapse
|
34
|
Muruzović MŽ, Mladenović KG, Djilas MD, Stefanović OD, Čomić LR. In vitro evaluation of antimicrobial potential and ability of biofilm formation of autochthonousLactobacillusspp. andLactococcusspp. isolated from traditionally made cheese from Southeastern Serbia. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mirjana Ž. Muruzović
- Faculty of Science, Department of Biology and Ecology; University of Kragujevac; Kragujevac Serbia
| | - Katarina G. Mladenović
- Faculty of Science, Department of Biology and Ecology; University of Kragujevac; Kragujevac Serbia
| | | | - Olgica D. Stefanović
- Faculty of Science, Department of Biology and Ecology; University of Kragujevac; Kragujevac Serbia
| | - Ljiljana R. Čomić
- Faculty of Science, Department of Biology and Ecology; University of Kragujevac; Kragujevac Serbia
| |
Collapse
|
35
|
Castellano P, Pérez Ibarreche M, Longo Borges L, Niño Arias FC, Ross GR, De Martinis ECP. Lactobacillus spp. impair the ability of Listeria monocytogenes FBUNT to adhere to and invade Caco-2 cells. Biotechnol Lett 2018; 40:1237-1244. [PMID: 29948513 DOI: 10.1007/s10529-018-2572-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/18/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The objective of this study was to evaluate the ability of Lactobacillus curvatus CRL705, CRL1532, and CRL1533 and Lactobacillus sakei CRL1613 to survive under simulated gastrointestinal conditions. Moreover, a microencapsulation approach was proposed to improve gastrointestinal survival. Finally, experiments were performed to demonstrate that Lactobacillus spp. can modulate the ability of Listeria monocytogenes FBUNT to adhere to and invade Caco-2 cells. RESULTS Lactobacillus strains were encapsulated in alginate beads to enhance the survival of bacteria under in vitro gastrointestinal conditions. All strains hydrolyzed bile salts using chenodeoxycholic acid as a substrate and adhered to Caco-2 cells. Cell-free supernatants (CFSs) showed antimicrobial activity against L. monocytogenes as demonstrated by agar diffusion assays. The average percentages of L. monocytogenes adhesion decreased from 67.74 to 41.75 and 38.7% in the presence of 50 and 90% (v/v), respectively, for all CFSs tested. The highest concentrations of CFSs completely inhibited the L. monocytogenes invasion of Caco-2 cells. CONCLUSIONS The studied Lactobacillus strains have protective effects against the adhesion and invasion of L. monocytogenes FBUNT. Alginate encapsulation of these bacteria improved gastrointestinal tolerance such that they could be further studied as potential probiotics against intestinal pathogenic bacteria.
Collapse
Affiliation(s)
- P Castellano
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, 4000, Tucumán, Argentina.
| | - M Pérez Ibarreche
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, 4000, Tucumán, Argentina
| | - L Longo Borges
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - F C Niño Arias
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - G R Ross
- Instituto de Biotecnología farmacéutica y alimentaria (INBIOFAL-CONICET), Av Kichner, 4000, Tucumán, Argentina
| | - E C Pereira De Martinis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| |
Collapse
|
36
|
Muruzović MŽ, Mladenović KG, Čomić LR. In vitro evaluation of resistance to environmental stress by planktonic and biofilm form of lactic acid bacteria isolated from traditionally made cheese from Serbia. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Andrabi ST, Bhat B, Gupta M, Bajaj BK. Phytase-Producing Potential and Other Functional Attributes of Lactic Acid Bacteria Isolates for Prospective Probiotic Applications. Probiotics Antimicrob Proteins 2018; 8:121-9. [PMID: 27349529 DOI: 10.1007/s12602-016-9220-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Wide variations among multifaceted-health benefitting attributes of probiotics fueled investigations on targeting efficacious probiotics. In the current study, lactic acid bacteria (LAB) isolated from poultry gut, feces of rat, chicken, human infants, and fermented foods were characterized for desired probiotic functional properties including the phytase-producing ability which is one of the wanted characteristics for probiotics for potential applications for upgrading animal nutrition, enhancing feed conversion, and minimizing anti-nutritional properties. Among 62 LAB isolates Weissella kimchii R-3 an isolate from poultry gut exhibited substantial phytase-producing ability (1.77 U/ml) in addition to other functional probiotic characteristics viz. hydrophobicity, autoaggregation, coaggregation with bacterial pathogens, and antimicrobial activity against pathogens. Survival of W. kimchii R-3 cells (in free and calcium alginate encapsulated state) was examined sequentially in simulated gastric and intestinal juices. Encapsulated cells exhibited better survival under simulated gut conditions indicating that encapsulation conferred considerable protection against adverse gut conditions. Furthermore, simulated gastric and intestinal juices with pepsin and pancreatin showed higher survival of cells than the juices without pepsin and pancreatin. W. kimchii R-3 due to its significant functional probiotic attributes may have prospective for commercial applications in human/animal nutrition.
Collapse
Affiliation(s)
- Syed Tabia Andrabi
- School of Biotechnology, University of Jammu, Bawe Wali Rakh, Jammu, 180006, India
| | - Bilqeesa Bhat
- School of Biotechnology, University of Jammu, Bawe Wali Rakh, Jammu, 180006, India
| | - Mahak Gupta
- School of Biotechnology, University of Jammu, Bawe Wali Rakh, Jammu, 180006, India
| | - Bijender Kumar Bajaj
- School of Biotechnology, University of Jammu, Bawe Wali Rakh, Jammu, 180006, India.
| |
Collapse
|
38
|
Ribeiro SC, Stanton C, Yang B, Ross RP, Silva CC. Conjugated linoleic acid production and probiotic assessment of Lactobacillus plantarum isolated from Pico cheese. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Hossain MI, Sadekuzzaman M, Ha SD. Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review. Food Res Int 2017; 100:63-73. [DOI: 10.1016/j.foodres.2017.07.077] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
|
40
|
Ribeiro SC, Ross RP, Stanton C, Silva CCG. Characterization and Application of Antilisterial Enterocins on Model Fresh Cheese. J Food Prot 2017; 80:1303-1316. [PMID: 28703625 DOI: 10.4315/0362-028x.jfp-17-031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Enterococcus faecalis strains isolated from an artisanal cheese were selected based on enterocin production against Listeria monocytogenes. The strains formed biofilms and presented high hydrophobic character and good autoaggregation and coaggregation capacity with L. monocytogenes. Strains L3A21M3 and L3B1K3 presented high survival under gastrointestinal conditions, were able to adhere to human intestinal cells (Caco-2 and HT-29), and blocked the adhesion and invasion of L. monocytogenes. The antilisterial activity of enterocins was not affected by pH (2 to 12), heating (100°C), and chemical and surfactant agents. However, strains L3A21M3 and L3A21M8 produced thermolabile enterocins, which were also sensible to extreme pH values. Enterocins exhibited a bacteriostatic mode of action against L. monocytogenes, and maximum production was observed during the stationary phase. Common enterocin structural genes were not detected by PCR amplification with specific primers, although an exhaustive screening was not performed. The enterocin produced by the L3B1K3 strain was purified and applied to model cheeses contaminated with L. monocytogenes. This enterocin reduced survival of L. monocytogenes on fresh cheeses in a dose-dependent manner. The highest dose tested (2,048 arbitrary units per g of cheese) was effective in reducing the pathogen counts to undetectable values throughout storage (6 to 72 h). These results suggest that these strains have great potential to be used as biopreservatives in the food industry and also as probiotics, with the potential to prevent L. monocytogenes gastrointestinal infection.
Collapse
Affiliation(s)
- Susana C Ribeiro
- 1 Instituto de Investigação e Tecnologias Agrárias e do Ambiente (IITAA), Universidade dos Açores, 9700-042 Angra do Heroísmo, Açores, Portugal (ORCID: http://orcid.org/0000-0003-0870-0071 [C.C.G.S.])
| | - R Paul Ross
- 2 College of Science, Engineering and Food Science, University College Cork, Ireland; and
| | - Catherine Stanton
- 3 Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Célia C G Silva
- 1 Instituto de Investigação e Tecnologias Agrárias e do Ambiente (IITAA), Universidade dos Açores, 9700-042 Angra do Heroísmo, Açores, Portugal (ORCID: http://orcid.org/0000-0003-0870-0071 [C.C.G.S.])
| |
Collapse
|
41
|
Castellano P, Pérez Ibarreche M, Blanco Massani M, Fontana C, Vignolo GM. Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments. Microorganisms 2017; 5:E38. [PMID: 28696370 PMCID: PMC5620629 DOI: 10.3390/microorganisms5030038] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/23/2017] [Accepted: 07/07/2017] [Indexed: 12/16/2022] Open
Abstract
The globalization of trade and lifestyle ensure that the factors responsible for the emergence of diseases are more present than ever. Despite biotechnology advancements, meat-based foods are still under scrutiny because of the presence of pathogens, which causes a loss of consumer confidence and consequently a fall in demand. In this context, Lactic Acid Bacteria (LAB) as GRAS organisms offer an alternative for developing pathogen-free foods, particularly avoiding Listeria monocytogenes, with minimal processing and fewer additives while maintaining the foods' sensorial characteristics. The use of LAB strains, enabling us to produce antimicrobial peptides (bacteriocins) in addition to lactic acid, with an impact on quality and safety during fermentation, processing, and/or storage of meat and ready-to-eat (RTE) meat products, constitutes a promising tool. A number of bacteriocin-based strategies including the use of bioprotective cultures, purified and/or semi-purified bacteriocins as well as their inclusion in varied packaging materials under different storage conditions, have been investigated. The application of bacteriocins as part of hurdle technology using non-thermal technologies was explored for the preservation of RTE meat products. Likewise, considering that food contamination with L. monocytogenes is a consequence of the post-processing manipulation of RTE foods, the role of bacteriocinogenic LAB in the control of biofilms formed on industrial surfaces is also discussed.
Collapse
Affiliation(s)
- Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Chacabuco 145, Tucumán T4000ILC, Argentina.
| | - Mariana Pérez Ibarreche
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Chacabuco 145, Tucumán T4000ILC, Argentina.
| | - Mariana Blanco Massani
- INTI-Plásticos, Gral Paz 5445 e/Constituyentes y Albarelos, B1650KNA Gral, San Martín, Buenos Aires, Argentina.
| | - Cecilia Fontana
- Instituto Nacional de Tecnología Agropecuaria INTA-EEA, Ruta Provincial 301 Km 32, Famaillá 4132, Tucumán, Argentina.
| | - Graciela M Vignolo
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Chacabuco 145, Tucumán T4000ILC, Argentina.
| |
Collapse
|
42
|
Pérez-Ibarreche M, Mendoza LM, Vignolo G, Fadda S. Proteomic and genetics insights on the response of the bacteriocinogenic Lactobacillus sakei CRL1862 during biofilm formation on stainless steel surface at 10°C. Int J Food Microbiol 2017; 258:18-27. [PMID: 28738195 DOI: 10.1016/j.ijfoodmicro.2017.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/07/2017] [Accepted: 07/02/2017] [Indexed: 11/16/2022]
Abstract
Some lactic acid bacteria have the ability to form biofilms on food-industry surfaces and this property could be used to control food pathogens colonization. Lactobacillus sakei CR1862 was selected considering its bacteriocinogenic nature and ability to adhere to abiotic surfaces at low temperatures. In this study, the proteome of L. sakei CRL1862 grown either under biofilm on stainless steel surface and planktonic modes of growth at 10°C, was investigated. Using two-dimensional gel electrophoresis, 29 out of 43 statistically significant spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Ten proteins resulted up-regulated whereas 16 were down-regulated during biofilm formation. Differentially expressed proteins were found to belong to carbohydrate, nucleotide, aminoacid and lipid metabolisms as well as translation, peptide hydrolysis, cell envelope/cell wall biosynthesis, adaption to atypical conditions and protein secretion. Some proteins related to carbohydrate and nucleotide metabolisms, translation and peptide degradation were overexpressed whereas those associated to stress conditions were synthesized in lower amounts. It seems that conditions for biofilm development would not imply a stressful environment for L. sakei CRL1862 cells, directing its growth strategy towards glycolytic flux regulation and reinforcing protein synthesis. In addition, L. sakei CRL1862 showed to harbor nine out of ten assayed genes involved in biofilm formation and protein anchoring. By applying qRT-PCR analysis, four of these genes showed to be up regulated, srtA2 being the most remarkable. The results of this study contribute to the knowledge of the physiology of L. sakei CRL1862 growing in biofilm on a characteristic food contact surface. The use of this strain as green biocide preventing L. monocytogenes post-processing contamination on industrial surfaces may be considered.
Collapse
Affiliation(s)
- Mariana Pérez-Ibarreche
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Lucía M Mendoza
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Silvina Fadda
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Chacabuco 145, T4000ILC Tucumán, Argentina.
| |
Collapse
|
43
|
Oloketuyi SF, Khan F. Inhibition strategies of Listeria monocytogenes biofilms-current knowledge and future outlooks. J Basic Microbiol 2017; 57:728-743. [PMID: 28594071 DOI: 10.1002/jobm.201700071] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022]
Abstract
There is an increasing trend in the food industry on the Listeria monocytogenes biofilm formation and inhibition. This is attributed to its easy survival on contact surfaces, resistance to disinfectants or antibiotics and growth under the stringent condition used for food processing and preservation thereby leading to food contamination products by direct or indirect exposure. Though, there is a lack of conclusive evidences about the mechanism of biofilm formation, in this review, the concept of biofilm formation and various chemical, physical, and green technology approaches to prevent or control the biofilm formed is discussed. State-of-the-art approaches ranging from the application of natural to synthetic molecules with high effectiveness and non-toxicity targeted at the different steps of biofilm formation could positively influence the biofilm inhibition in the future.
Collapse
Affiliation(s)
- Sandra F Oloketuyi
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Fazlurrahman Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| |
Collapse
|
44
|
Al-Seraih A, Belguesmia Y, Baah J, Szunerits S, Boukherroub R, Drider D. Enterocin B3A-B3B produced by LAB collected from infant faeces: potential utilization in the food industry for Listeria monocytogenes biofilm management. Antonie Van Leeuwenhoek 2017; 110:205-219. [PMID: 27878401 DOI: 10.1007/s10482-016-0791-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/14/2016] [Indexed: 02/06/2023]
Abstract
Enterococcus faecalis B3A-B3B produces the bacteriocin B3A-B3B with activity against Listeria monocytogenes, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium perfringens, but apparently not against fungi or Gram-negative bacteria, except for Salmonella Newport. B3A-B3B enterocin has two different nucleotides but similar amino acid composition to the class IIb MR10A-MR10B enterocin. B3A-B3B consists of two peptides of predicted molecular mass of 5176.31 Da (B3A) and 5182.21 Da (B3B). Importantly, B3A-B3B impeded biofilm formation of the foodborne pathogen L. monocytogenes 162 grown on stainless steel. The antimicrobial treatment of stainless steel with nisin (1 or 16 mg ml-1) decreased the cell numbers by about 2 log CFU ml-1, thereby impeding the biofilm formation by L. monocytogenes 162 or its nisin-resistant derivative strain L. monocytogenes 162R. Furthermore, the combination of nisin and B3A-B3B enterocin reduced the MIC required to inhibit this pathogen grown in planktonic or biofilm cultures.
Collapse
Affiliation(s)
- Alaa Al-Seraih
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV (Institut Charles Viollette), 59000, Lille, France
| | - Yanath Belguesmia
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV (Institut Charles Viollette), 59000, Lille, France.
| | - John Baah
- Best Environmental Technologies Inc, 9610-39 Avenue NW, Edmonton, AB, T6E 5T9, Canada
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 -IEMN, 59000, Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 -IEMN, 59000, Lille, France
| | - Djamel Drider
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV (Institut Charles Viollette), 59000, Lille, France
| |
Collapse
|
45
|
Ribeiro SC, O'Connor PM, Ross RP, Stanton C, Silva CC. An anti-listerial Lactococcus lactis strain isolated from Azorean Pico cheese produces lacticin 481. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Das P, Khowala S, Biswas S. In vitro probiotic characterization of Lactobacillus casei isolated from marine samples. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.06.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Gómez NC, Ramiro JMP, Quecan BXV, de Melo Franco BDG. Use of Potential Probiotic Lactic Acid Bacteria (LAB) Biofilms for the Control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 Biofilms Formation. Front Microbiol 2016; 7:863. [PMID: 27375584 PMCID: PMC4901071 DOI: 10.3389/fmicb.2016.00863] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/23/2016] [Indexed: 01/04/2023] Open
Abstract
Use of probiotic biofilms can be an alternative approach for reducing the formation of pathogenic biofilms in food industries. The aims of this study were (i) to evaluate the probiotic properties of bacteriocinogenic (Lactococcus lactis VB69, L. lactis VB94, Lactobacillus sakei MBSa1, and Lactobacillus curvatus MBSa3) and non-bacteriocinogenic (L. lactis 368, Lactobacillus helveticus 354, Lactobacillus casei 40, and Weissela viridescens 113) lactic acid bacteria (LAB) isolated from Brazilian’s foods and (ii) to develop protective biofilms with these strains and test them for exclusion of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium. LAB were tested for survival in acid and bile salt conditions, surface properties, biosurfactant production, β-galactosidase and gelatinase activity, antibiotic resistance and presence of virulence genes. Most strains survived exposure to pH 2 and 4% bile salts. The highest percentages of auto-aggregation were obtained after 24 h of incubation. Sixty-seven percentage auto-aggregation value was observed in W. viridescens 113 and Lactobacillus curvatus MBSa3 exhibited the highest co-aggregation (69% with Listeria monocytogenes and 74.6% with E. coli O157:H7), while the lowest co-aggregation was exhibited by W. viridescens 113 (53.4% with Listeria monocytogenes and 38% with E. coli O157:H7). Tests for hemolytic activity, bacterial cell adherence with xylene, and drop collapse confirmed the biosurfactant-producing ability of most strains. Only one strain (L. lactis 368) produced β-galactosidase. All strains were negative for virulence genes cob, ccf, cylLL, cylLs, cyllM, cylB, cylA and efaAfs and gelatinase production. The antibiotic susceptibility tests indicated that the MIC for ciprofloxacin, clindamycin, gentamicin, kanamycin, and streptomycin did not exceed the epidemiological cut-off suggested by the European Food Safety Authority. Some strains were resistant to one or more antibiotics and resistance to antibiotics was species and strain dependent. In the protective biofilm assays, strains L. lactis 368 (bac-), Lactobacillus curvatus MBSa3 (bac+), and Lactobacillus sakei MBSa1 (bac+) resulted in more than six log reductions in the pathogens counts when compared to the controls. This effect could not be attributed to bacteriocin production. These results suggest that these potential probiotic strains can be used as alternatives for control of biofilm formation by pathogenic bacteria in the food industry, without conferring a risk to the consumers.
Collapse
Affiliation(s)
- Natacha C Gómez
- Department of Food and Experimental Nutrition, Food Microbiology, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo São Paulo, Brazil
| | | | - Beatriz X V Quecan
- Department of Food and Experimental Nutrition, Food Microbiology, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo São Paulo, Brazil
| | - Bernadette D G de Melo Franco
- Department of Food and Experimental Nutrition, Food Microbiology, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo São Paulo, Brazil
| |
Collapse
|
48
|
Diaz M, Ladero V, Del Rio B, Redruello B, Fernández M, Martin MC, Alvarez MA. Biofilm-Forming Capacity in Biogenic Amine-Producing Bacteria Isolated from Dairy Products. Front Microbiol 2016; 7:591. [PMID: 27242675 PMCID: PMC4864664 DOI: 10.3389/fmicb.2016.00591] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Biofilms on the surface of food industry equipment are reservoirs of potentially food-contaminating bacteria—both spoilage and pathogenic. However, the capacity of biogenic amine (BA)-producers to form biofilms has remained largely unexamined. BAs are low molecular weight, biologically active compounds that in food can reach concentrations high enough to be a toxicological hazard. Fermented foods, especially some types of cheese, accumulate the highest BA concentrations of all. The present work examines the biofilm-forming capacity of 56 BA-producing strains belonging to three genera and 10 species (12 Enterococcus faecalis, 6 Enterococcus faecium, 6 Enterococcus durans, 1 Enterococcus hirae, 12 Lactococcus lactis, 7 Lactobacillus vaginalis, 2 Lactobacillus curvatus, 2 Lactobacillus brevis, 1 Lactobacillus reuteri, and 7 Lactobacillus parabuchneri), all isolated from dairy products. Strains of all the tested species - except for L. vaginalis—were able to produce biofilms on polystyrene and adhered to stainless steel. However, the biomass produced in biofilms was strain-dependent. These results suggest that biofilms may provide a route via which fermented foods can become contaminated by BA-producing microorganisms.
Collapse
Affiliation(s)
- Maria Diaz
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) Villaviciosa, Spain
| | - Victor Ladero
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) Villaviciosa, Spain
| | - Beatriz Del Rio
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) Villaviciosa, Spain
| | - Begoña Redruello
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) Villaviciosa, Spain
| | - María Fernández
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) Villaviciosa, Spain
| | - M Cruz Martin
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) Villaviciosa, Spain
| | - Miguel A Alvarez
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) Villaviciosa, Spain
| |
Collapse
|
49
|
Santos CMA, Pires MCV, Leão TL, Hernández ZP, Rodriguez ML, Martins AKS, Miranda LS, Martins FS, Nicoli JR. Selection of Lactobacillus strains as potential probiotics for vaginitis treatment. MICROBIOLOGY-SGM 2016; 162:1195-1207. [PMID: 27154285 DOI: 10.1099/mic.0.000302] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lactobacilli are the dominant bacteria of the vaginal tract of healthy women, and imbalance of the local microbiota can predispose women to acquire infections, such as bacterial vaginosis (BV) and vulvovaginal candidiasis (VVC). Although antimicrobial therapy is generally effective, there is still a high incidence of recurrence and increase of microbial resistance due to the repetitive use of antimicrobials. Thus, it has been suggested that administration of probiotics incorporating selected Lactobacillus strains may be an effective strategy for preventing vaginal infections. Accordingly, the in vitro probiotic potential of 23 lactobacilli isolated from the vaginal ecosystem of healthy women from Cuba was evaluated for use in BV and VVC treatments. Eight strains were selected based on their antagonist potential against Gardnerella vaginalis, Candida albicansor both. In vitro assays revealed that all these strains reduced the pathogen counts in co-incubation, showed excellent adhesive properties (biofilm formation and auto-aggregation), were able to co-aggregate with G. vaginalis and C. albicans, yielded high amounts of hydrogen peroxide and lactic acid and demonstrated high adhesion rates to epithelial HeLa cells. Interference tests within HeLa cells showed that all strains were able to reduce the adherence of pathogens by exclusion or displacement. Lactobacilli were able to inhibit HeLa cell apoptosis caused by pathogens when the cells were incubated with the probiotics prior to challenge. These results suggest that these strains have a promising probiotic potential and can be used for prevention or treatment of BV and VVC.
Collapse
Affiliation(s)
- Carolina M A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria C V Pires
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago L Leão
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Zulema P Hernández
- Centro Nacional de Sanidad Agropecuária, Dirección de Producciones Biofarmacéuticas, San José de las Lajas Mayabeque, Cuba
| | - Marisleydys L Rodriguez
- Centro Nacional de Sanidad Agropecuária, Dirección de Producciones Biofarmacéuticas, San José de las Lajas Mayabeque, Cuba
| | - Ariane K S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lilian S Miranda
- Centro Nacional de Sanidad Agropecuária, Dirección de Producciones Biofarmacéuticas, San José de las Lajas Mayabeque, Cuba
| | - Flaviano S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
50
|
Pérez-Ibarreche M, Castellano P, Leclercq A, Vignolo G. Control of Listeria monocytogenes biofilms on industrial surfaces by the bacteriocin-producing Lactobacillus sakei CRL1862. FEMS Microbiol Lett 2016; 363:fnw118. [PMID: 27190146 DOI: 10.1093/femsle/fnw118] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 12/24/2022] Open
Abstract
The effect of the bacteriocin-producing Lactobacillus sakei CRL1862 and its bacteriocin in the control of Listeria biofilm formation on industrial surfaces at 10°C was investigated. A screening among different Listeria species was performed allowing selecting L. monocytogenes FBUNT for its use as a biofilm producer on stainless steel (SS) and polytetrafluoroe-thylene (PTFE) surfaces. Three conditions were simulated to evaluate the ability of the bacteriocinogenic strain to displace, exclude and compete pathogen biofilm formation. Lactobacillus sakei CRL1862 effectively inhibited biofilm formation by L. monocytogenes FBUNT through the three assayed mechanisms, pathogen inhibition being more efficient on PTFE than on SS surface. Moreover, co-culture of L. monocytogenes FBUNT with the bacteriocin-producer displayed the highest efficacy reducing the pathogen by 5.54 ± 0.12 and 4.52 ± 0.01 on PTFE and SS, respectively. Industrially, the pre-treatment with L. sakei CRL1862 or its bacteriocin (exclusion) constitutes the most realistic way to prevent pathogen biofilm settlement. The use of bacteriocins and/or the bacteriocin-producer strain represents a safe and environmentally-friendly sanitation method to mitigate post-processing food contamination.
Collapse
Affiliation(s)
- Mariana Pérez-Ibarreche
- Laboratorio de Tecnología y Desarrollo. Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Patricia Castellano
- Laboratorio de Tecnología y Desarrollo. Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Alexandre Leclercq
- Biology of Infection Unit, French National Reference Center and World Health Organization Collaborating Centre on Listeria, Institut Pasteur, 75015 Paris, France
| | - Graciela Vignolo
- Laboratorio de Tecnología y Desarrollo. Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, T4000ILC, Tucumán, Argentina
| |
Collapse
|