1
|
Naknaen A, Surachat K, Manit J, Jetwanna KWN, Thawonsuwan J, Pomwised R. Virulent properties and genomic diversity of Vibrio vulnificus isolated from environment, human, diseased fish. Microbiol Spectr 2024; 12:e0007924. [PMID: 38860819 PMCID: PMC11218479 DOI: 10.1128/spectrum.00079-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
The incidence of Vibrio vulnificus infections, with high mortality rates in humans and aquatic animals, has escalated, highlighting a significant public health challenge. Currently, reliable markers to identify strains with high virulence potential are lacking, and the understanding of evolutionary drivers behind the emergence of pathogenic strains is limited. In this study, we analyzed the distribution of virulent genotypes and phenotypes to discern the infectious potential of V. vulnificus strains isolated from three distinct sources. Most isolates, traditionally classified as biotype 1, possessed the virulence-correlated gene-C type. Environmental isolates predominantly exhibited YJ-like alleles, while clinical and diseased fish isolates were significantly associated with the nanA gene and pathogenicity region XII. Hemolytic activity was primarily observed in the culture supernatants of clinical and diseased fish isolates. Genetic relationships, as determined by multiple-locus variable-number tandem repeat analysis, suggested that strains originating from the same source tended to cluster together. However, multilocus sequence typing revealed considerable genetic diversity across clusters and sources. A phylogenetic analysis using single nucleotide polymorphisms of diseased fish strains alongside publicly available genomes demonstrated a high degree of evolutionary relatedness within and across different isolation sources. Notably, our findings reveal no direct correlation between phylogenetic patterns, isolation sources, and virulence capabilities. This underscores the necessity for proactive risk management strategies to address pathogenic V. vulnificus strains emerging from environmental reservoirs.IMPORTANCEAs the global incidence of Vibrio vulnificus infections rises, impacting human health and marine aquacultures, understanding the pathogenicity of environmental strains remains critical yet underexplored. This study addresses this gap by evaluating the virulence potential and genetic relatedness of V. vulnificus strains, focusing on environmental origins. We conduct an extensive genotypic analysis and phenotypic assessment, including virulence testing in a wax moth model. Our findings aim to uncover genetic and evolutionary factors that drive pathogenic strain emergence in the environment. This research advances our ability to identify reliable virulence markers and understand the distribution of pathogenic strains, offering significant insights for public health and environmental risk management.
Collapse
Affiliation(s)
- Ampapan Naknaen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jutamas Manit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - Jumroensri Thawonsuwan
- Department of Fisheries, Aquatic Animal Health Research and Development Division, Songkhla Aquatic Animal Health Research Center, Songkhla, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
2
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
3
|
Shikov AE, Savina IA, Nizhnikov AA, Antonets KS. Recombination in Bacterial Genomes: Evolutionary Trends. Toxins (Basel) 2023; 15:568. [PMID: 37755994 PMCID: PMC10534446 DOI: 10.3390/toxins15090568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Bacterial organisms have undergone homologous recombination (HR) and horizontal gene transfer (HGT) multiple times during their history. These processes could increase fitness to new environments, cause specialization, the emergence of new species, and changes in virulence. Therefore, comprehensive knowledge of the impact and intensity of genetic exchanges and the location of recombination hotspots on the genome is necessary for understanding the dynamics of adaptation to various conditions. To this end, we aimed to characterize the functional impact and genomic context of computationally detected recombination events by analyzing genomic studies of any bacterial species, for which events have been detected in the last 30 years. Genomic loci where the transfer of DNA was detected pertained to mobile genetic elements (MGEs) housing genes that code for proteins engaged in distinct cellular processes, such as secretion systems, toxins, infection effectors, biosynthesis enzymes, etc. We found that all inferences fall into three main lifestyle categories, namely, ecological diversification, pathogenesis, and symbiosis. The latter primarily exhibits ancestral events, thus, possibly indicating that adaptation appears to be governed by similar recombination-dependent mechanisms.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Iuliia A. Savina
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Genomic Diversity among Actinomyces naeslundii Strains and Closely Related Species. Microorganisms 2023; 11:microorganisms11020254. [PMID: 36838222 PMCID: PMC9964710 DOI: 10.3390/microorganisms11020254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to investigate and clarify the ambiguous taxonomy of Actinomyces naeslundii and its closely related species using state-of-the-art high-throughput sequencing techniques, and, furthermore, to determine whether sub-clusters identified within Actinomyces oris and Actinomyces naeslundii in a previous study by multi locus sequence typing (MLST) using concatenation of seven housekeeping genes should either be classified as subspecies or distinct species. The strains in this study were broadly classified under Actinomyces naeslundii group as A. naeslundii genospecies I and genospecies II. Based on MLST data analysis, these were further classified as A. oris and A. naeslundii. The whole genome sequencing of selected strains of A. oris (n = 17) and A. naeslundii (n = 19) was carried out using Illumina Genome Analyzer IIxe and Roche 454 allowing paired-end and single-reads sequencing, respectively. The sequences obtained were aligned using CLC Genomic workbench version 5.1 and annotated using RAST (Rapid Annotation using Subsystem Technology) release version 59 accessible online. Additionally, genomes of seven publicly available strains of Actinomyces (k20, MG1, c505, OT175, OT171, OT170, and A. johnsonii) were also included. Comparative genomic analysis (CGA) using Mauve, Progressive Mauve, gene-by-gene, Core, and Pan Genome, and finally Digital DNA-DNA homology (DDH) analysis was carried out. DDH values were obtained using in silico genome-genome comparison. Evolutionary analysis using ClonalFrame was also undertaken. The mutation and recombination events were compared using chi-square test among A. oris and A. naeslundii isolates (analysis methods are not included in the study). CGA results were consistent with previous traditional classification using MLST. It was found that strains of Actinomyces k20, MG1, c505, and OT175 clustered in A. oris group of isolates, while OT171, OT170, and A. johnsonii appeared as separate branches. Similar clustering to MLST was observed for other isolates. The mutation and recombination events were significantly higher in A. oris than A. naeslundii, highlighting the diversity of A. oris strains in the oral cavity. These findings suggest that A. oris forms six distinct groups, whereas A. naeslundii forms three. The correct designation of isolates will help in the identification of clinical Actinomyces isolates found in dental plaque. Easily accessible online genomic sequence data will also accelerate the investigation of the biochemical characterisation and pathogenesis of this important group of micro-organisms.
Collapse
|
5
|
Role of the Vibriolysin VemA Secreted by the Emergent Pathogen Vibrio europaeus in the Colonization of Manila Clam Mucus. Microorganisms 2022; 10:microorganisms10122475. [PMID: 36557728 PMCID: PMC9785129 DOI: 10.3390/microorganisms10122475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Vibrio europaeus is an emergent pathogen affecting clams, oysters and scallops produced in the most important countries for bivalve aquaculture. Studies concerning virulence factors involved in the virulence of V. europaeus are very scarce despite its global significance for aquaculture. Zinc-metalloproteases have been described as a major virulence factor in some Vibrio spp., although their contribution and role in the virulence of V. europaeus is not clear. To address this, we have studied an extracellular zinc-metalloprotease (VemA) encoded by V. europaeus, which was identified as a vibriolysin, highly conserved in this species and homologous in other pathogenic and non-pathogenic species. Virulence challenge experiments demonstrated that infection processes were faster when Manila clam larvae and juveniles were infected with the wildtype rather than with a mutant defective in the vemA gene (ΔvemA). V. europaeus was able to resist the bactericidal action of mucus and displayed a chemotaxis ability favoured by VemA to colonize the body mucus of clams and form a biofilm. The overall results suggest that VemA, although it is not a major virulence factor, plays a role in the colonization of the Manila clam mucus, and thus boosts the infection process as we observed in virulence challenge experiments.
Collapse
|
6
|
Kling K, Trinh SA, Leyn SA, Rodionov DA, Rodionov ID, Herrera A, Cervantes K, Pankey G, Ashcraft D, Ozer EA, Godzik A, Satchell KJF. Genetic Divergence of Vibrio vulnificus Clinical Isolates with Mild to Severe Outcomes. mBio 2022; 13:e0150022. [PMID: 36169197 PMCID: PMC9600620 DOI: 10.1128/mbio.01500-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
The marine bacterium Vibrio vulnificus infects humans via food or water contamination, leading to serious manifestations, including gastroenteritis, wound infections, and septic shock. Previous studies suggest phylogenetic Lineage 1 isolates with the vcgC allele of the vcg gene cause human infections, whereas Lineage 2 isolates with the vcgE allele are less pathogenic. Mouse studies suggest that some variants of the primary toxin could drive more serious infections. A collection of 109 V. vulnificus United States human clinical isolates from 2001 to 2019 with paired clinical outcome data were assembled. The isolates underwent whole-genome sequencing, multilocus-sequence phylogenetic analysis, and toxinotype analysis of the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin. In contrast to prior reports, clinical isolates were equally distributed between lineages. We found no correlation between phylogenetic lineage or MARTX toxinotype and disease severity. Infections caused by isolates in Lineage 1 demonstrated a borderline statistically significant higher mortality. Lineage 1 isolates had a trend toward a higher proportion of M-type MARTX toxins compared with Lineage 2, although this was not statistically significant. IMPORTANCE Vibrio vulnificus is an aquatic pathogen that is capable of causing severe disease in humans. Previous studies have suggested that pathogenic isolates were restricted to certain phylogenetic lineages and possibly toxinotype. Our study demonstrated that phylogenetic lineage and multifunctional autoprocessing repeats-in-toxin (MARTX) toxinotype do not predict severity of infection. V. vulnificus strains capable of causing severe human disease are not concentrated in Lineage 1 but are genetically diverse. Thus, food surveillance based on lineage type or toxinotype may not be an appropriate intervention measure to control this rare but serious infection.
Collapse
Affiliation(s)
- Kendall Kling
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sonya A. Trinh
- Division of Infectious Diseases, Ochsner Medical Center, New Orleans, Louisiana, USA
| | - Semen A. Leyn
- Sanford Burnham Prebys Medical Discovery Institute, LaJolla, California, USA
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, LaJolla, California, USA
| | | | - Alfa Herrera
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kasey Cervantes
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - George Pankey
- Infectious Disease Translational Research, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Deborah Ashcraft
- Infectious Disease Translational Research, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Egon A. Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam Godzik
- Biosciences Division, University of California Riverside School of Medicine, Riverside, California, USA
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
López-Pérez M, Jayakumar JM, Grant TA, Zaragoza-Solas A, Cabello-Yeves PJ, Almagro-Moreno S. Ecological diversification reveals routes of pathogen emergence in endemic Vibrio vulnificus populations. Proc Natl Acad Sci U S A 2021; 118:e2103470118. [PMID: 34593634 PMCID: PMC8501797 DOI: 10.1073/pnas.2103470118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Pathogen emergence is a complex phenomenon that, despite its public health relevance, remains poorly understood. Vibrio vulnificus, an emergent human pathogen, can cause a deadly septicaemia with over 50% mortality rate. To date, the ecological drivers that lead to the emergence of clinical strains and the unique genetic traits that allow these clones to colonize the human host remain mostly unknown. We recently surveyed a large estuary in eastern Florida, where outbreaks of the disease frequently occur, and found endemic populations of the bacterium. We established two sampling sites and observed strong correlations between location and pathogenic potential. One site is significantly enriched with strains that belong to one phylogenomic cluster (C1) in which the majority of clinical strains belong. Interestingly, strains isolated from this site exhibit phenotypic traits associated with clinical outcomes, whereas strains from the second site belong to a cluster that rarely causes disease in humans (C2). Analyses of C1 genomes indicate unique genetic markers in the form of clinical-associated alleles with a potential role in virulence. Finally, metagenomic and physicochemical analyses of the sampling sites indicate that this marked cluster distribution and genetic traits are strongly associated with distinct biotic and abiotic factors (e.g., salinity, nutrients, or biodiversity), revealing how ecosystems generate selective pressures that facilitate the emergence of specific strains with pathogenic potential in a population. This knowledge can be applied to assess the risk of pathogen emergence from environmental sources and integrated toward the development of novel strategies for the prevention of future outbreaks.
Collapse
Affiliation(s)
- Mario López-Pérez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, 03550 Alicante, Spain
| | - Jane M Jayakumar
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816
| | - Trudy-Ann Grant
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816
| | - Asier Zaragoza-Solas
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, 03550 Alicante, Spain
| | - Pedro J Cabello-Yeves
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, 03550 Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816;
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816
| |
Collapse
|
8
|
Bisharat N, Koton Y, Oliver JD. Phylogeography of the marine pathogen, Vibrio vulnificus, revealed the ancestral scenarios of its evolution. Microbiologyopen 2020; 9:e1103. [PMID: 32779403 PMCID: PMC7520988 DOI: 10.1002/mbo3.1103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022] Open
Abstract
Vibrio vulnificus is the leading cause of seafood‐associated deaths worldwide. Despite the growing knowledge about the population structure of V. vulnificus, the evolutionary history and the ancestral relationships of strains isolated from various regions around the world have not been determined. Using the largest collection of sequence and isolate data of V. vulnificus to date, we applied ancestral character reconstruction to study the phylogeography of V. vulnificus. Multilocus sequence typing data from 10 housekeeping genes were used for the inference of ancestral states and reconstruction of the evolutionary history. The findings showed that the common ancestor of all V. vulnificus populations originated from East Asia, and later evolved into two main clusters that spread with time and eventually evolved into distinct populations in different parts of the world. While we found no meaningful insights concerning the evolution of V. vulnificus populations in the Middle East; however, we were able to reconstruct the ancestral scenarios of its evolution in East Asia, North America, and Western Europe.
Collapse
Affiliation(s)
- Naiel Bisharat
- Department of Medicine D, Emek Medical Center, Clalit Health Services, Afula, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology-Technion, Haifa, Israel
| | - Yael Koton
- Department of Medicine D, Emek Medical Center, Clalit Health Services, Afula, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology-Technion, Haifa, Israel
| | - James D Oliver
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
9
|
|
10
|
Isla A, Saldarriaga-Córdoba M, Fuentes DE, Albornoz R, Haussmann D, Mancilla-Schulz J, Martínez A, Figueroa J, Avendaño-Herrera R, Yáñez A. Multilocus sequence typing detects new Piscirickettsia salmonis hybrid genogroup in Chilean fish farms: Evidence for genetic diversity and population structure. JOURNAL OF FISH DISEASES 2019; 42:721-737. [PMID: 30851000 DOI: 10.1111/jfd.12976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Piscirickettsia salmonisis the causative bacterial pathogen of piscirickettsiosis, a salmonid disease that causes notable mortalities in the worldwide aquaculture industry. Published research describes the phenotypic traits, virulence factors, pathogenicity and antibiotic-resistance potential for various P. salmonisstrains. However, evolutionary and genetic information is scarce for P. salmonis. The present study used multilocus sequence typing (MLST) to gain insight into the population structure and evolution of P. salmonis. Forty-two Chilean P. salmonisisolates, as well as the type strain LF-89T , were recovered from diseased Salmo salar, Oncorhynchus kisutchand Oncorhynchus mykissfrom two Chilean Regions. MLST assessed the loci sequences of dnaK, efp, fumC, glyA, murG, rpoD and trpB. Bioinformatics analyses established the genetic diversity among P. salmonis isolates (H = 0.5810). A total of 23 sequence types (ST) were identified, 53.48% of which were represented by ST1, ST5 and ST2. Population structure analysis through polymorphism patterns showed few polymorphic sites (218 nucleotides from 4,010 bp), while dN/dS ratio analysis indicated purifying selection for dnaK, epf, fumC, murG, and rpoD but neutral selection for the trpB loci. The standardized index of association indicated strong linkage disequilibrium, suggesting clonal population structure. However, recombination events were detected in a group of seven isolates. Findings included genogroups homologous to the LF-89T and EM-90 strains, as well as a seven-isolate hybrid genogroup recovered from both assessed regions (three O. mykiss and four S. salar isolates). The presented MLST scheme has comparative potential, with promising applications in studying distinct P. salmonis isolates (e.g., from different hosts, farms, geographical areas) and in understanding the epidemiology of this pathogen.
Collapse
Affiliation(s)
- Adolfo Isla
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Mónica Saldarriaga-Córdoba
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Derie E Fuentes
- Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Chile
| | - Romina Albornoz
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Denise Haussmann
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Valdivia, Chile
| | | | | | - Jaime Figueroa
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Ruben Avendaño-Herrera
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Santiago, Chile
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Alejandro Yáñez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| |
Collapse
|
11
|
Le H, LiHua D, JianJun F, Peng L, SongLin G. Immunogenicity study of an expressed outer membrane protein U of Vibrio vulnificus in Japanese eel (Anguilla japonica). J Appl Microbiol 2018; 125:1642-1654. [PMID: 30106200 DOI: 10.1111/jam.14068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022]
Abstract
AIMS Vibrio vulnificus is a common bacterial pathogen causing haemorrhagic septicaemia in eel farming. This study investigates the immunogenicity of an outer membrane protein U (OmpU) of V. vulnificus and the feasibility of the protein as a new subunit vaccine against V. vulnificus. METHODS AND RESULTS Partial gene sequence of the OmpU of V. vulnificus was cloned, and then the OmpU was expressed and purified. Three groups of Japanese eels (Anguilla japonica) were intraperitoneally (i.p) injected with bovine serum albumin (BSA group), formalin-killed whole cell of V. vulnificus (FKC group) or the expressed OmpU of V. vulnificus (OMP group). On 14, 21, 28 and 42 days postimmunization (dpi), the whole blood cells were collected to evaluate the stimulation index (SI) and bactericidal activity. The serum was obtained to assess the titres of specific antibody, lysozyme activity, complement activity and bactericidal activity. The lysozyme activities in the suspension of kidney, skin mucus and liver in eels were also ascertained. The results showed that the SI and the titres of anti-V. vulnificus antibody in the OMP group was significantly increased on 28 dpi; lysozyme activity in the kidney and skin mucus of OMP group on 42 and 14 dpi were both significantly higher than BSA group; eels in OMP group showed strong bactericidal capacity on 21 and 28 days; and the relative percent survival of OMP vs BSA group after challenged by V. vulnificus on 28 dpi was 80%. CONCLUSIONS These results showed that the expressed OmpU of V. vulnificus could significantly improve the immune function of Japanese eel and the resistance of eels to the infection of V. vulnificus. SIGNIFICANCE AND IMPACT OF THE STUDY This study offered an alternative preliminary strategy of making aquaculture vaccines against V. vulnificus for eel farming.
Collapse
Affiliation(s)
- H Le
- Fishery College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, China
| | - D LiHua
- Fishery College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, China
| | - F JianJun
- Fishery College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, China
| | - L Peng
- Fishery College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, China
| | - G SongLin
- Fishery College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, China
| |
Collapse
|
12
|
Huang J, Zeng B, Liu D, Wu R, Zhang J, Liao B, He H, Bian F. Classification and structural insight into vibriolysin-like proteases of Vibrio pathogenicity. Microb Pathog 2018; 117:335-340. [PMID: 29510206 DOI: 10.1016/j.micpath.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/18/2018] [Accepted: 03/02/2018] [Indexed: 12/17/2022]
Abstract
Vibriolysin-like proteases (VLPs) are important virulence agents in the arsenal of Vibrio causing instant cytotoxic effects during infection. Most of Vibrio secreted VLPs show serious pathogenicity, while some species of Vibrio with VLPs are non-pathogenic, like Vibrio tasmaniensis and Vibrio pacinii. To investigate the relation between VLPs and Vibrio pathogenicity, one phylogenetic tree of VLPs was constructed and compared consensus sequences at the N-terminus of VLPs. Based on these results, VLPs were defined into nine phylogenetic clades. Pathogenicity analysis of Vibrio showed that Vibrio species with VLPs III, VI, VII or VIII are serious pathogenic bacteria, while species with VLPs I, II, IV or IX are opportunistic pathogens. Multiple sequence alignment showed that the N-terminal 5-16 nucleotides of each clade are highly conservative. Topological analysis of VLPs exhibited the structural differences in N-terminal regions of each VLP clade. These results suggest that structure of N-terminus might play a key role in the pathogenicity of VLPs. Our findings give new insights into the classification of VLPs and the relationship between VLPs and Vibrio pathogenicity.
Collapse
Affiliation(s)
- JiaFeng Huang
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha 410013, China
| | - BingQi Zeng
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha 410013, China
| | - Dan Liu
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha 410013, China
| | - RiBang Wu
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha 410013, China
| | - Jiang Zhang
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha 410013, China
| | - BinQiang Liao
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha 410013, China
| | - HaiLun He
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha 410013, China.
| | - Fei Bian
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250000, China.
| |
Collapse
|
13
|
Bier N, Jäckel C, Dieckmann R, Brennholt N, Böer SI, Strauch E. Virulence Profiles of Vibrio vulnificus in German Coastal Waters, a Comparison of North Sea and Baltic Sea Isolates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:15943-59. [PMID: 26694432 PMCID: PMC4690967 DOI: 10.3390/ijerph121215031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/22/2015] [Accepted: 12/09/2015] [Indexed: 12/01/2022]
Abstract
Vibrio vulnificus is a halophilic bacterium of coastal environments known for sporadically causing severe foodborne or wound infections. Global warming is expected to lead to a rising occurrence of V. vulnificus and an increasing incidence of human infections in Northern Europe. So far, infections in Germany were exclusively documented for the Baltic Sea coast, while no cases from the North Sea region have been reported. Regional variations in the prevalence of infections may be influenced by differences in the pathogenicity of V. vulnificus populations in both areas. This study aimed to compare the distribution of virulence-associated traits and genotypes among 101 V. vulnificus isolates from the Baltic Sea and North Sea in order to assess their pathogenicity potential. Furthermore, genetic relationships were examined by multilocus sequence typing (MLST). A high diversity of MLST sequences (74 sequence types) and differences regarding the presence of six potential pathogenicity markers were observed in the V. vulnificus populations of both areas. Strains with genotypes and markers associated with pathogenicity are not restricted to a particular geographic region. This indicates that lack of reported cases in the North Sea region is not caused by the absence of potentially pathogenic strains.
Collapse
Affiliation(s)
- Nadja Bier
- National Reference Laboratory for Monitoring Bacteriological Contamination of Bivalve Mollusks, Department of Biological Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin D-10589, Germany.
| | - Claudia Jäckel
- National Reference Laboratory for Monitoring Bacteriological Contamination of Bivalve Mollusks, Department of Biological Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin D-10589, Germany.
| | - Ralf Dieckmann
- National Reference Laboratory for Monitoring Bacteriological Contamination of Bivalve Mollusks, Department of Biological Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin D-10589, Germany.
| | - Nicole Brennholt
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz D-56068, Germany.
| | - Simone I Böer
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz D-56068, Germany.
| | - Eckhard Strauch
- National Reference Laboratory for Monitoring Bacteriological Contamination of Bivalve Mollusks, Department of Biological Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin D-10589, Germany.
| |
Collapse
|
14
|
Genotypic Diversity and Population Structure of Vibrio vulnificus Strains Isolated in Taiwan and Korea as Determined by Multilocus Sequence Typing. PLoS One 2015; 10:e0142657. [PMID: 26599487 PMCID: PMC4658092 DOI: 10.1371/journal.pone.0142657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
The genetic diversity and population structure of Vibrio vulnificus isolates from Korea and Taiwan were investigated using PCR-based assays targeting putative virulence-related genes and multilocus sequence typing (MLST). BOX-PCR genomic fingerprinting identified 52 unique genotypes in 84 environmental and clinical V. vulnificus isolates. The majority (> 50%) of strains had pathogenic genotypes for all loci tested; moreover, many environmental strains had pathogenic genotypes. Although significant (p < 0.05) inter-relationships among the genotypes were observed, the association between genotype and strain source (environmental or clinical) was not significant, indicating that genotypic characteristics alone are not sufficient to predict the isolation source or the virulence of a given V. vulnificus strain and vice versa. MLST revealed 23–35 allelic types per locus analyzed, resulting in a total of 44 unique sequence types (STs). Two major monophyletic groups (lineages A and B) corresponding to the two known lineages of V. vulnificus were observed; lineage A had six STs that were exclusively environmental, whereas lineage B had STs from both environmental and clinical sources. Pathogenic and nonpathogenic genotypes predominated in MLST lineages B and A, respectively. In addition, V. vulnificus was shown to be in linkage disequilibrium (p < 0.05), although two different recombination tests (PHI and Sawyer’s tests) detected significant evidence of recombination. Tajima’s D test also indicated that V. vulnificus might be comprised of recently sub-divided lineages. These results suggested that the two lineages revealed by MLST correspond to two distinct ecotypes of V. vulnificus.
Collapse
|
15
|
The Fish Pathogen
Vibrio vulnificus
Biotype 2: Epidemiology, Phylogeny, and Virulence Factors Involved in Warm-Water Vibriosis. Microbiol Spectr 2015; 3. [DOI: 10.1128/microbiolspec.ve-0005-2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Vibrio vulnificus
biotype 2 is the etiological agent of warm-water vibriosis, a disease that affects eels and other teleosts, especially in fish farms. Biotype 2 is polyphyletic and probably emerged from aquatic bacteria by acquisition of a transferable virulence plasmid that encodes resistance to innate immunity of eels and other teleosts. Interestingly, biotype 2 comprises a zoonotic clonal complex designated as serovar E that has extended worldwide. One of the most interesting virulence factors produced by serovar E is RtxA1
3
, a multifunctional protein that acts as a lethal factor for fish, an invasion factor for mice, and a survival factor outside the host. Two practically identical copies of
rtxA1
3
are present in all biotype 2 strains regardless of the serovar, one in the virulence plasmid and the other in chromosome II. The plasmid also contains other genes involved in survival and growth in eel blood:
vep07
, a gene for an outer membrane (OM) lipoprotein involved in resistance to eel serum and
vep20
, a gene for an OM receptor specific for eel-transferrin and, probably, other related fish transferrins. All the three genes are highly conserved within biotype 2, which suggests that they are under a strong selective pressure. Interestingly, the three genes are related with transferable plasmids, which emphasizes the role of horizontal gene transfer in the evolution of
V. vulnificus
in nutrient-enriched aquatic environments, such as fish farms.
Collapse
|
16
|
Guerrero A, Gómez Gil Rodríguez B, Wong-Chang I, Lizárraga-Partida ML. Genetic characterization of Vibrio vulnificus strains isolated from oyster samples in Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2015; 25:614-627. [PMID: 25651067 DOI: 10.1080/09603123.2014.1003038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Vibrio vulnificus strains were isolated from oysters that were collected at the main seafood market in Mexico City. Strains were characterized with regard to vvhA, vcg genotype, PFGE, multilocus sequence typing (MLST), and rtxA1. Analyses included a comparison with rtxA1 reference sequences. Environmental (vcgE) and clinical (vcgC) genotypes were isolated at nearly equal percentages. PFGE had high heterogeneity, but the strains clustered by vcgE or vcgC genotype. Select housekeeping genes for MLST and primers that were designed for rtxA1 domains divided the strains into two clusters according to the E or C genotype. Reference rtxA1 sequences and those from this study were also clustered according to genotype. These results confirm that this genetic dimorphism is not limited to vcg genotyping, as other studies have reported. Some environmental C genotype strains had high similarity to reference strains, which have been reported to be virulent, indicating a potential risk for oyster consumers in Mexico City.
Collapse
Affiliation(s)
- Abraham Guerrero
- a Centro de Investigación Científica y de Educación Superior de Ensenada Baja California (CICESE), Marine Biotechnology , Ensenada , Mexico
| | - Bruno Gómez Gil Rodríguez
- b CIAD, Research Center for Food and Development A.C. Mazatlán Unit., Aquaculture and Environmental Management , Mazatlán , México
| | - Irma Wong-Chang
- c Universidad Nacional Autónoma de México (UNAM), ICMyL. Instituto de Ciencias del Mar y Limnología , México , México
| | - Marcial Leonardo Lizárraga-Partida
- a Centro de Investigación Científica y de Educación Superior de Ensenada Baja California (CICESE), Marine Biotechnology , Ensenada , Mexico
| |
Collapse
|
17
|
Bier N, Diescher S, Strauch E. Multiplex PCR for detection of virulence markers of Vibrio vulnificus. Lett Appl Microbiol 2015; 60:414-20. [PMID: 25604517 DOI: 10.1111/lam.12394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED Vibrio vulnificus is a Gram-negative pathogen found in coastal and estuarine waters worldwide that can cause life threatening diseases. Characterization of the vcg (virulence correlated gene) or 16S rRNA alleles is used to distinguish virulent (clinical (C)-type) from presumably avirulent (environmental (E)-type) strains. However, some studies reported a significant number of clinical strains belonging to the E-type. In recent years more potential virulence markers have been identified, that are useful for the identification of potentially pathogenic isolates of the E-type. In this study, we successfully combined detection of pathogenicity region XII, nanA and a mannitol fermentation operon with the virulence associated alleles of the 16S rRNA and vcg genes in one multiplex PCR. Additionally, toxR primers for species confirmation and internal amplification control were included. Validation of multiplex amplification was performed with a total of 132 bacterial strains, including V. vulnificus (n = 71), other Vibrionaceae (n = 50) and non-Vibrio isolates (n = 11). Multiplex PCR showed reliable amplification of four of the five virulence markers with a high sensitivity and specificity. Amplification of the 16S rRNA type B allele was not completely reliable with conventional PCR assays, however, the positive predictive value of this marker was 100 %. SIGNIFICANCE AND IMPACT OF THE STUDY A multiplex PCR for simultaneous detection and characterization of potentially virulent strains of Vibrio vulnificus was developed and validated. Monitoring programs will benefit from this cost and time effective method when screening large strain collections. Application of the multiplex PCR simplifies determination of risks emanating from V. vulnificus in recreational waters or mussel primary production.
Collapse
Affiliation(s)
- N Bier
- Federal Institute for Risk Assessment, National Reference Laboratory for Monitoring Bacteriological Contamination of Bivalve Molluscs, Berlin, Germany
| | | | | |
Collapse
|
18
|
Koton Y, Gordon M, Chalifa-Caspi V, Bisharat N. Comparative genomic analysis of clinical and environmental Vibrio vulnificus isolates revealed biotype 3 evolutionary relationships. Front Microbiol 2015; 5:803. [PMID: 25642229 PMCID: PMC4295529 DOI: 10.3389/fmicb.2014.00803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/29/2014] [Indexed: 12/19/2022] Open
Abstract
In 1996 a common-source outbreak of severe soft tissue and bloodstream infections erupted among Israeli fish farmers and fish consumers due to changes in fish marketing policies. The causative pathogen was a new strain of Vibrio vulnificus, named biotype 3, which displayed a unique biochemical and genotypic profile. Initial observations suggested that the pathogen erupted as a result of genetic recombination between two distinct populations. We applied a whole genome shotgun sequencing approach using several V. vulnificus strains from Israel in order to study the pan genome of V. vulnificus and determine the phylogenetic relationship of biotype 3 with existing populations. The core genome of V. vulnificus based on 16 draft and complete genomes consisted of 3068 genes, representing between 59 and 78% of the whole genome of 16 strains. The accessory genome varied in size from 781 to 2044 kbp. Phylogenetic analysis based on whole, core, and accessory genomes displayed similar clustering patterns with two main clusters, clinical (C) and environmental (E), all biotype 3 strains formed a distinct group within the E cluster. Annotation of accessory genomic regions found in biotype 3 strains and absent from the core genome yielded 1732 genes, of which the vast majority encoded hypothetical proteins, phage-related proteins, and mobile element proteins. A total of 1916 proteins (including 713 hypothetical proteins) were present in all human pathogenic strains (both biotype 3 and non-biotype 3) and absent from the environmental strains. Clustering analysis of the non-hypothetical proteins revealed 148 protein clusters shared by all human pathogenic strains; these included transcriptional regulators, arylsulfatases, methyl-accepting chemotaxis proteins, acetyltransferases, GGDEF family proteins, transposases, type IV secretory system (T4SS) proteins, and integrases. Our study showed that V. vulnificus biotype 3 evolved from environmental populations and formed a genetically distinct group within the E-cluster. The unique epidemiological circumstances facilitated disease outbreak and brought this genotype to the attention of the scientific community.
Collapse
Affiliation(s)
- Yael Koton
- Department of Medicine D, Emek Medical Center Afula, Israel ; Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Israel
| | - Michal Gordon
- Bioinformatics Core Facility, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Vered Chalifa-Caspi
- Bioinformatics Core Facility, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Naiel Bisharat
- Department of Medicine D, Emek Medical Center Afula, Israel ; Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Israel
| |
Collapse
|
19
|
Raz N, Danin-Poleg Y, Hayman RB, Bar-On Y, Linetsky A, Shmoish M, Sanjuán E, Amaro C, Walt DR, Kashi Y. Genome-wide SNP-genotyping array to study the evolution of the human pathogen Vibrio vulnificus biotype 3. PLoS One 2014; 9:e114576. [PMID: 25526263 PMCID: PMC4272304 DOI: 10.1371/journal.pone.0114576] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/11/2014] [Indexed: 12/18/2022] Open
Abstract
Vibrio vulnificus is an aquatic bacterium and an important human pathogen. Strains of V. vulnificus are classified into three different biotypes. The newly emerged biotype 3 has been found to be clonal and restricted to Israel. In the family Vibrionaceae, horizontal gene transfer is the main mechanism responsible for the emergence of new pathogen groups. To better understand the evolution of the bacterium, and in particular to trace the evolution of biotype 3, we performed genome-wide SNP genotyping of 254 clinical and environmental V. vulnificus isolates with worldwide distribution recovered over a 30-year period, representing all phylogeny groups. A custom single-nucleotide polymorphism (SNP) array implemented on the Illumina GoldenGate platform was developed based on 570 SNPs randomly distributed throughout the genome. In general, the genotyping results divided the V. vulnificus species into three main phylogenetic lineages and an additional subgroup, clade B, consisting of environmental and clinical isolates from Israel. Data analysis suggested that 69% of biotype 3 SNPs are similar to SNPs from clade B, indicating that biotype 3 and clade B have a common ancestor. The rest of the biotype 3 SNPs were scattered along the biotype 3 genome, probably representing multiple chromosomal segments that may have been horizontally inserted into the clade B recipient core genome from other phylogroups or bacterial species sharing the same ecological niche. Results emphasize the continuous evolution of V. vulnificus and support the emergence of new pathogenic groups within this species as a recurrent phenomenon. Our findings contribute to a broader understanding of the evolution of this human pathogen.
Collapse
Affiliation(s)
- Nili Raz
- Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Danin-Poleg
- Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Ryan B. Hayman
- Department of Chemistry, Tufts University, Medford, Massachusetts, United States of America
| | - Yudi Bar-On
- Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Alex Linetsky
- Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Michael Shmoish
- Bioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Eva Sanjuán
- Department of Microbiology, Faculty of Biology, University of Valencia, Valencia, Spain
| | - Carmen Amaro
- Department of Microbiology, Faculty of Biology, University of Valencia, Valencia, Spain
| | - David R. Walt
- Department of Chemistry, Tufts University, Medford, Massachusetts, United States of America
| | - Yechezkel Kashi
- Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
20
|
Huehn S, Eichhorn C, Urmersbach S, Breidenbach J, Bechlars S, Bier N, Alter T, Bartelt E, Frank C, Oberheitmann B, Gunzer F, Brennholt N, Böer S, Appel B, Dieckmann R, Strauch E. Pathogenic vibrios in environmental, seafood and clinical sources in Germany. Int J Med Microbiol 2014; 304:843-50. [PMID: 25129553 DOI: 10.1016/j.ijmm.2014.07.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bacteria of the family Vibrionaceae naturally occur in marine and estuarine environments. Only few species of Vibrionaceae are associated with human cases of gastroenteritis, ear and wound infections, caused by ingestion of seafood or contact with Vibrio containing water. Increasing consumption of seafood (fish, fishery products and shellfish) poses a possible source of Vibrio infections in Germany. Additionally, there is a growing concern that abundances of pathogenic vibrios may increase in German coastal waters as a result of e.g. climate change resulting in probably rising surface water temperatures. According to the One Health concept the VibrioNet consortium started in 2010 to investigate the occurrence and relevance of non-cholera vibrios of human concern in Germany. Vibrios from environmental, seafood and clinical sources were analyzed with the aim to find connections between different reservoirs or sources and to identify potential ways of transmission of these pathogens to assess the risk of infections associated with them. Potentially pathogenic strains mostly belong to the species Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae. Investigations on imported seafood and mussels from primary production areas confirmed the frequent occurrence of these species. Moreover, studies of German coastal waters and sediments showed the presence and seasonality of these marine bacteria. So far the incidence of clinical cases of vibriosis in Germany is low. Between 1994 and 2013 thirteen cases of Vibrio spp. associated wound infections and/or septicaemia have been reported. However, the high prevalence of vibrios in aquatic environments and aquatic organisms is of concern and demands continued control of food and surveillance for clinical infections with pathogenic vibrios.
Collapse
Affiliation(s)
- Stephan Huehn
- Institut für Lebensmittelhygiene, Freie Universität Berlin, Berlin, Germany
| | - Christin Eichhorn
- Institut für Medizinische Mikrobiologie und Hygiene, Technische Universität Dresden, Dresden, Germany
| | - Sara Urmersbach
- Institut für Lebensmittelhygiene, Freie Universität Berlin, Berlin, Germany
| | | | | | - Nadja Bier
- Bundesinstitut für Risikobewertung, Berlin, Germany
| | - Thomas Alter
- Institut für Lebensmittelhygiene, Freie Universität Berlin, Berlin, Germany
| | - Edda Bartelt
- Institut für Fische und Fischereierzeugnisse, LAVES, Cuxhaven, Germany
| | | | | | - Florian Gunzer
- Institut für Medizinische Mikrobiologie und Hygiene, Technische Universität Dresden, Dresden, Germany
| | | | - Simone Böer
- Bundesanstalt für Gewässerkunde, Koblenz, Germany
| | - Bernd Appel
- Bundesinstitut für Risikobewertung, Berlin, Germany
| | | | | |
Collapse
|
21
|
Das S, Dash HR, Mangwani N, Chakraborty J, Kumari S. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. J Microbiol Methods 2014; 103:80-100. [PMID: 24886836 DOI: 10.1016/j.mimet.2014.05.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 12/29/2022]
Abstract
The major proportion of earth's biological diversity is inhabited by microorganisms and they play a useful role in diversified environments. However, taxonomy of microorganisms is progressing at a snail's pace, thus less than 1% of the microbial population has been identified so far. The major problem associated with this is due to a lack of uniform, reliable, advanced, and common to all practices for microbial identification and systematic studies. However, recent advances have developed many useful techniques taking into account the house-keeping genes as well as targeting other gene catalogues (16S rRNA, rpoA, rpoB, gyrA, gyrB etc. in case of bacteria and 26S, 28S, β-tubulin gene in case of fungi). Some uncultivable approaches using much advanced techniques like flow cytometry and gel based techniques have also been used to decipher microbial diversity. However, all these techniques have their corresponding pros and cons. In this regard, a polyphasic taxonomic approach is advantageous because it exploits simultaneously both conventional as well as molecular identification techniques. In this review, certain aspects of the merits and limitations of different methods for molecular identification and systematics of microorganisms have been discussed. The major advantages of the polyphasic approach have also been described taking into account certain groups of bacteria as case studies to arrive at a consensus approach to microbial identification.
Collapse
Affiliation(s)
- Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| | - Hirak R Dash
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Neelam Mangwani
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Jaya Chakraborty
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Supriya Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| |
Collapse
|
22
|
Reynaud Y, Pitchford S, De Decker S, Wikfors GH, Brown CL. Molecular typing of environmental and clinical strains of Vibrio vulnificus isolated in the northeastern USA. PLoS One 2013; 8:e83357. [PMID: 24386187 PMCID: PMC3875459 DOI: 10.1371/journal.pone.0083357] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/01/2013] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus is a ubiquitous marine bacterium that is responsible for infections and some seafood-related illnesses and deaths in the United States, mainly in individuals with compromised health status in the Gulf of Mexico region. Most phylogenetic studies focus on V. vulnificus strains isolated in the southern United States, but almost no genetic data are available on northeastern bacterial isolates of clinical or environmental origin. Our goal in this study was to examine the genetic diversity of environmental strains isolated from commercially-produced oysters and in clinical strains of known pathogenicity in northeastern United States. We conducted analyses of a total of eighty-three strains of V. vulnificus, including 18 clinical strains known to be pathogenic. A polyphasic, molecular-typing approach was carried out, based upon established biotypes, vcg, CPS, 16S rRNA types and three other genes possibly associated with virulence (arylsulfatase A, mtlABC, and nanA). An established Multi Locus Sequence Typing (MLST) method was also performed. Phylogenetic analyses of these markers and MLST results produced similar patterns of clustering of strains into two main lineages (we categorized as 'LI' and 'LII'), with clinical and environmental strains clustering together in both lineages. Lineage LII was comprised primarily but not entirely of clinical bacterial isolates. Putative virulence markers were present in both clinical and environmental strains. These results suggest that some northeastern environmental strains of V. vulnificus are phylogenetically close to clinical strains and probably are capable of virulence. Further studies are necessary to assess the risk of human illness from consuming raw oysters harvested in the northeastern US.
Collapse
Affiliation(s)
- Yann Reynaud
- NOAA (National Oceanic and Atmospheric Administration), NEFSC (Northeast Fisheries Science Center), Milford Laboratory, Milford, Connecticut, United States of America
| | - Steven Pitchford
- NOAA (National Oceanic and Atmospheric Administration), NEFSC (Northeast Fisheries Science Center), Milford Laboratory, Milford, Connecticut, United States of America
| | - Sophie De Decker
- NOAA (National Oceanic and Atmospheric Administration), NEFSC (Northeast Fisheries Science Center), Milford Laboratory, Milford, Connecticut, United States of America
| | - Gary H. Wikfors
- NOAA (National Oceanic and Atmospheric Administration), NEFSC (Northeast Fisheries Science Center), Milford Laboratory, Milford, Connecticut, United States of America
| | - Christopher L. Brown
- NOAA (National Oceanic and Atmospheric Administration), NEFSC (Northeast Fisheries Science Center), Milford Laboratory, Milford, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
23
|
Efimov V, Danin-Poleg Y, Raz N, Elgavish S, Linetsky A, Kashi Y. Insight into the evolution of Vibrio vulnificus biotype 3's genome. Front Microbiol 2013; 4:393. [PMID: 24385974 PMCID: PMC3866513 DOI: 10.3389/fmicb.2013.00393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/02/2013] [Indexed: 12/23/2022] Open
Abstract
Vibrio vulnificus is an aquatic bacterium and an important human pathogen. Strains of V. vulnificus are biochemically classified into three biotypes. The newly emerged biotype 3 appears to be rather clonal and geographically restricted to Israel, where it caused an outbreak of wound infections and bacteremia. To understand the evolution of the bacterium's genome, we sequenced and analyzed the genome of biotype 3 strain VVyb1(BT3), and then conducted a microbial environmental survey of the hypothesized niche from which it probably evolved. The genome of this environmental isolate revealed higher similarity to the published biotype 1 genomes of clinical strains (90%) than to the environmental strains (87%), supporting the virulence of the biotype 3 group. Moreover, 214 of the total 5361 genes were found to be unique to strain VVyb1(BT3), having no sequence similarity to any of the known genomes of V. vulnificus; 35 of them function in DNA mobility and rearrangement, supporting the role of horizontal gene transfer in genome evolution. Interestingly, 29 of the “unique” genes had homologies among Shewanella species. In a survey conducted in aquaculture ponds in Israel, we successfully co-isolated Shewanella and V. vulnificus from the same niche, further supporting the probable contribution of Shewanella to the genome evolution of biotype 3. Indeed, one gene was found in a S. algae isolate. Surprisingly, molecular analysis revealed that some of the considered unique genes are harbored by non-sequenced biotype 1 strains isolated from the same environment. Finally, analyses of the biotype 3 genome together with the environmental survey suggested that its genome originated from a biotype 1 Israeli strain that acquired a rather small number of genes from other bacterial species in the niche, such as Shewanella. Therefore, aquaculture is likely to play a major role as a man-made ecological niche in bacterial evolution, leading the emergence of new pathogenic groups in V. vulnificus.
Collapse
Affiliation(s)
- Vera Efimov
- Laboratory of Food Microbiology and Applied Genomics, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Yael Danin-Poleg
- Laboratory of Food Microbiology and Applied Genomics, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Nili Raz
- Laboratory of Food Microbiology and Applied Genomics, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Sharona Elgavish
- Bioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Alex Linetsky
- Laboratory of Food Microbiology and Applied Genomics, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Yechezkel Kashi
- Laboratory of Food Microbiology and Applied Genomics, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology Haifa, Israel
| |
Collapse
|
24
|
Bisharat N, Bronstein M, Korner M, Schnitzer T, Koton Y. Transcriptome profiling analysis of Vibrio vulnificus during human infection. MICROBIOLOGY-SGM 2013; 159:1878-1887. [PMID: 23782800 DOI: 10.1099/mic.0.067900-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vibrio vulnificus is a waterborne pathogen that was responsible for an outbreak of severe soft-tissue infections among fish farmers and fish consumers in Israel. Several factors have been shown to be associated with virulence. However, the transcriptome profile of the pathogen during human infection has not been determined yet. We compared the transcriptome profile, using RNA sequencing, of a human-pathogenic strain harvested directly from tissue of a patient suffering from severe soft-tissue infection with necrotizing fasciitis, with the same strain and three other environmental strains grown in vitro. The five sequenced libraries were aligned to the reference genomes of V. vulnificus strains CMCP6 and YJ016. Approximately 47.8 to 62.3 million paired-end raw reads were generated from the five runs. Nearly 84 % of the genome was covered by reads from at least one of the five runs, suggesting that nearly 16 % of the genome is not transcribed or is transcribed at low levels. We identified 123 genes that were differentially expressed during the acute phase of infection. Sixty-three genes were mapped to the large chromosome, 47 genes mapped to the small chromosome and 13 genes mapped to the YJ016 plasmid. The 123 genes fell into a variety of functional categories including transcription, signal transduction, cell motility, carbohydrate metabolism, intracellular trafficking and cell envelope biogenesis. Among the genes differentially expressed during human infection we identified genes encoding bacterial toxin (RtxA1) and genes involved in flagellar components, Flp-coding region, GGDEF family protein, iron acquisition system and sialic acid metabolism.
Collapse
Affiliation(s)
- Naiel Bisharat
- Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Medicine D, Emek Medical Center, Afula, Israel
| | - Michal Bronstein
- Center for Genomic Technologies, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Mira Korner
- Center for Genomic Technologies, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Temima Schnitzer
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Yael Koton
- Department of Medicine D, Emek Medical Center, Afula, Israel
| |
Collapse
|
25
|
Williams TC, Froelich B, Oliver JD. A new culture-based method for the improved identification of Vibrio vulnificus from environmental samples, reducing the need for molecular confirmation. J Microbiol Methods 2013; 93:277-83. [DOI: 10.1016/j.mimet.2013.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 12/17/2022]
|
26
|
Genotypic diversity and virulence characteristics of clinical and environmental Vibrio vulnificus isolates from the Baltic Sea region. Appl Environ Microbiol 2013; 79:3570-81. [PMID: 23542621 DOI: 10.1128/aem.00477-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The genetic diversity of Vibrio vulnificus isolates from clinical and environmental sources originating from the Baltic Sea region was evaluated by multilocus sequence typing (MLST), and possible relationships between MLST clusters, potential genotypic and phenotypic traits associated with pathogenicity, and source of isolation were investigated. The studied traits included genotyping of polymorphic loci (16S rRNA, vcg, and pilF), presence/absence of potential virulence genes, including nanA, nab, and genes of pathogenicity regions, metabolic features, hemolytic activity, resistance to human serum, and cytotoxicity to human intestinal cells. MLST generated 35 (27 new) sequence types and divided the 53 isolates (including four reference strains) into two main clusters, with cluster I containing biotype 1 and 2 isolates of mainly environmental origin and cluster II containing biotype 1 isolates of mainly clinical origin. Cluster II isolates were further subdivided into two branches. Branch IIB included isolates from recent cases of wound infections that were acquired at the German Baltic Sea coastline between 2010 and 2011 and isolates from seawater samples of the same regions isolated between 1994 and 2010. Comparing the MLST data with the results of genotyping and phenotyping showed that strains of MLST cluster II possess a number of additional pathogenicity-associated traits compared to cluster I strains. Rapid microbiological methods such as matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry combined with typing of selected virulence-associated traits (e.g., serum resistance, mannitol fermentation, nanA, and pathogenicity region XII) could be used for risk assessment purposes regarding V. vulnificus strains isolated from the Baltic Sea region.
Collapse
|
27
|
Martino ME, Maifreni M, Marino M, Bartolomeoli I, Carraro L, Fasolato L, Cardazzo B. Genotypic and phenotypic diversity of Pediococcus pentosaceus strains isolated from food matrices and characterisation of the penocin operon. Antonie van Leeuwenhoek 2013; 103:1149-63. [DOI: 10.1007/s10482-013-9897-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/20/2013] [Indexed: 11/30/2022]
|
28
|
Vangay P, Fugett EB, Sun Q, Wiedmann M. Food microbe tracker: a web-based tool for storage and comparison of food-associated microbes. J Food Prot 2013; 76:283-94. [PMID: 23433376 DOI: 10.4315/0362-028x.jfp-12-276] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Large amounts of molecular subtyping information are generated by the private sector, academia, and government agencies. However, use of subtype data is limited by a lack of effective data storage and sharing mechanisms that allow comparison of subtype data from multiple sources. Currently available subtype databases are generally limited in scope to a few data types (e.g., MLST. net) or are not publicly available (e.g., PulseNet). We describe the development and initial implementation of Food Microbe Tracker, a public Web-based database that allows archiving and exchange of a variety of molecular subtype data that can be cross-referenced with isolate source data, genetic data, and phenotypic characteristics. Data can be queried with a variety of search criteria, including DNA sequences and banding pattern data (e.g., ribotype or pulsed-field gel electrophoresis type). Food Microbe Tracker allows the deposition of data on any bacterial genus and species, bacteriophages, and other viruses. The bacterial genera and species that currently have the most entries in this database are Listeria monocytogenes, Salmonella, Streptococcus spp., Pseudomonas spp., Bacillus spp., and Paenibacillus spp., with over 40,000 isolates. The combination of pathogen and spoilage microorganism data in the database will facilitate source tracking and outbreak detection, improve discovery of emerging subtypes, and increase our understanding of transmission and ecology of these microbes. Continued addition of subtyping, genetic or phenotypic data for a variety of microbial species will broaden the database and facilitate large-scale studies on the diversity of food-associated microbes.
Collapse
Affiliation(s)
- Pajau Vangay
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
29
|
Comparative pathogenomics of bacteria causing infectious diseases in fish. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:457264. [PMID: 22675651 PMCID: PMC3364575 DOI: 10.1155/2012/457264] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/20/2012] [Indexed: 11/18/2022]
Abstract
Fish living in the wild as well as reared in the aquaculture facilities are susceptible to infectious diseases caused by a phylogenetically diverse collection of bacterial pathogens. Control and treatment options using vaccines and drugs are either inadequate, inefficient, or impracticable. The classical approach in studying fish bacterial pathogens has been looking at individual or few virulence factors. Recently, genome sequencing of a number of bacterial fish pathogens has tremendously increased our understanding of the biology, host adaptation, and virulence factors of these important pathogens. This paper attempts to compile the scattered literature on genome sequence information of fish pathogenic bacteria published and available to date. The genome sequencing has uncovered several complex adaptive evolutionary strategies mediated by horizontal gene transfer, insertion sequence elements, mutations and prophage sequences operating in fish pathogens, and how their genomes evolved from generalist environmental strains to highly virulent obligatory pathogens. In addition, the comparative genomics has allowed the identification of unique pathogen-specific gene clusters. The paper focuses on the comparative analysis of the virulogenomes of important fish bacterial pathogens, and the genes involved in their evolutionary adaptation to different ecological niches. The paper also proposes some new directions on finding novel vaccine and chemotherapeutic targets in the genomes of bacterial pathogens of fish.
Collapse
|
30
|
Genetic diversity of the human pathogen Vibrio vulnificus: a new phylogroup. Int J Food Microbiol 2011; 153:436-43. [PMID: 22227412 DOI: 10.1016/j.ijfoodmicro.2011.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/01/2011] [Accepted: 12/07/2011] [Indexed: 11/21/2022]
Abstract
The biotype 3 group of the human pathogen Vibrio vulnificus emerged in Israel probably as a result of genome hybridization of two bacterial populations. We performed a genomic and phylogenetic study of V. vulnificus strains isolated from the environmental niche from which this group emerged - fish aquaculture in Israel. The genetic relationships and evolutionary aspects of 188 environmental and clinical isolates of the bacterium were studied by genomic typing. Genetic relations were determined based on variation at 12 variable number tandem repeat (VNTR, also termed SSR) loci. Analysis revealed a new cluster, in addition to the main groups of biotype 1& 2 and biotype 3. Similar grouping results were obtained with three different statistical approaches. Isolates forming this new cluster presented unclear biochemical profile nevertheless were not identified as biotype 1 or biotype 3. Further examination of representative strains by multilocus sequence typing (MLST) of 10 housekeeping genes and 5 conserved hypothetical genes supported the identification of this as yet undiscovered phylogroup (phenotypically diverse), termed clade A herein. This new clonal subgroup includes environmental as well as clinical isolates. The results highlight the fish aquaculture environment, and possibly man-made ecological niches as a whole, as a source for the emergence of new pathogenic strains.
Collapse
|
31
|
Genomic and metabolic profiling of nonulosonic acids in Vibrionaceae reveal biochemical phenotypes of allelic divergence in Vibrio vulnificus. Appl Environ Microbiol 2011; 77:5782-93. [PMID: 21724895 DOI: 10.1128/aem.00712-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nonulosonic acids (NulOs) encompass a large group of structurally diverse nine-carbon backbone α-keto sugars widely distributed among the three domains of life. Mammals express a specialized version of NulOs called sialic acids, which are displayed in prominent terminal positions of cell surface and secreted glycoconjugates. Within bacteria, the ability to synthesize NulOs has been demonstrated in a number of human pathogens and is phylogenetically widespread. Here we examine the distribution, diversity, evolution, and function of NulO biosynthesis pathways in members of the family Vibrionaceae. Among 27 species of Vibrionaceae examined at the genomic level, 12 species contained nab gene clusters. We document examples of duplication, divergence, horizontal transfer, and recombination of nab gene clusters in different Vibrionaceae lineages. Biochemical analyses, including mass spectrometry, confirmed that many species do, in fact, produce di-N-acetylated NulOs. A library of clinical and environmental isolates of Vibrio vulnificus served as a model for further investigation of nab allele genotypes and levels of NulO expression. The data show that lineage I isolates produce about 20-fold higher levels of NulOs than lineage II isolates. Moreover, nab gene alleles found in a subset of V. vulnificus clinical isolates express 40-fold higher levels of NulOs than nab alleles associated with environmental isolates. Taken together, the data implicate the family Vibrionaceae as a "hot spot" of NulO evolution and suggest that these molecules may have diverse roles in environmental persistence and/or animal virulence.
Collapse
|
32
|
Occurrence of Vibrio parahaemolyticus and Vibrio alginolyticus in the German Bight over a seasonal cycle. Antonie van Leeuwenhoek 2011; 100:291-307. [PMID: 21598011 DOI: 10.1007/s10482-011-9586-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/06/2011] [Indexed: 12/19/2022]
Abstract
Bacteria of the genus Vibrio are an important component of marine ecosystems worldwide. The genus harbors several human pathogens, for instance the species Vibrio parahaemolyticus, a main cause for foodborne gastroenteritis in Asia and the USA. Pathogenic V. parahaemolyticus strains emerged also in Europe, but little is known about the abundance, pathogenicity and ecology of V. parahaemolyticus especially in Northern European waters. This study focuses on V. parahaemolyticus and its close relative Vibrio alginolyticus in the North Sea (Helgoland Roads, Germany). Free-living, plankton-attached and shellfish-associated Vibrio spp. were quantified between May 2008 and January 2010. CFUs up to 4.3 × 10(3) N l(-1) and MPNs up to 240 N g(-1) were determined. Phylogenetic classification based on rpoB gene sequencing revealed V. alginolyticus as the dominant Vibrio species at Helgoland Roads, followed by V. parahaemolyticus. We investigated the intraspecific diversity of V. parahaemolyticus and V. alginolyticus using ERIC-PCR. The fingerprinting disclosed three distinct groups at Helgoland Roads, representing V. parahaemolyticus, V. alginolyticus and one group in between. The species V. parahaemolyticus occurred mainly in summer months. None of the strains carried the virulence-associated genes tdh or trh. We further analyzed the influence of nutrients, secchi depth, temperature, salinity, chlorophyll a and phytoplankton on the abundance of Vibrio spp. and the population structure of V. parahaemolyticus. Spearman Rank analysis revealed that particularly temperature correlated significantly with Vibrio spp. numbers. Based on multivariate statistical analyses we report that the V. parahaemolyticus population was structured by a complex combination of environmental parameters. To further investigate these influences is the key to understanding the dynamics of Vibrio spp. in temperate European waters, where this microbial group and especially the pathogenic species, are likely to gain in importance.
Collapse
|
33
|
Genotype is correlated with but does not predict virulence of Vibrio vulnificus biotype 1 in subcutaneously inoculated, iron dextran-treated mice. Infect Immun 2011; 79:1194-207. [PMID: 21199909 DOI: 10.1128/iai.01031-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus is the leading cause of reported deaths from infections related to consumption of seafood in the United States. Affected predisposed individuals frequently die rapidly from sepsis. Otherwise healthy people can experience severe wound infection, which can lead to sepsis and death. A question is why, with so many people consuming contaminated raw oysters, the incidence of severe V. vulnificus disease is low. Molecular typing systems have shown associations of V. vulnificus genotypes and the environmental or clinical source of the strains, suggesting that different genotypes possess different virulence potentials. We examined 69 V. vulnificus biotype 1 strains that were genotyped by several methods and evaluated them for virulence in a subcutaneously inoculated iron dextran-treated mouse model. By examining the relationships between skin infection, systemic liver infection, and presumptive death (a decrease in body temperature), we determined that liver infection is predicated on severe skin infection and that death requires significant liver infection. Although most strains caused severe skin infection, not every strain caused systemic infection and death. Strains with polymorphisms at multiple loci (rrn, vcg, housekeeping genes, and repetitive DNA) designated profile 2 were more likely to cause lethal systemic infection with more severe indicators of virulence than were profile 1 strains with different polymorphisms at these loci. However, some profile 1 strains were lethal and some profile 2 strains did not cause systemic infection. Therefore, current genotyping schemes cannot strictly predict the virulence of V. vulnificus strains and further investigation is needed to identify virulence genes as markers of virulence.
Collapse
|
34
|
Polyphyletic origin of Vibrio vulnificus biotype 2 as revealed by sequence-based analysis. Appl Environ Microbiol 2010; 77:688-95. [PMID: 21097581 DOI: 10.1128/aem.01263-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A sequence-based analysis of seven housekeeping and virulence-related genes shows that the species Vibrio vulnificus is subdivided into three phylogenetic lineages that do not correspond with the biotypes and that biotype 2 is polyphyletic. These results support the reclassification of biotype 2 as a pathovar that would group the strains with pathogenic potential to develop vibriosis in fish.
Collapse
|
35
|
Domain organization and evolution of multifunctional autoprocessing repeats-in-toxin (MARTX) toxin in Vibrio vulnificus. Appl Environ Microbiol 2010; 77:657-68. [PMID: 21075892 DOI: 10.1128/aem.01806-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to analyze multifunctional autoprocessing repeats-in-toxin (MARTX) toxin domain organization within the aquatic species Vibrio vulnificus as well as to study the evolution of the rtxA1 gene. The species is subdivided into three biotypes that differ in host range and geographical distribution. We have found three different types (I, II, and III) of V. vulnificus MARTX (MARTX(Vv)) toxins with common domains (an autocatalytic cysteine protease domain [CPD], an α/β-hydrolase domain, and a domain resembling that of the LifA protein of Escherichia coli O127:H6 E2348/69 [Efa/LifA]) and specific domains (a Rho-GTPase inactivation domain [RID], a domain of unknown function [DUF], a domain resembling that of the rtxA protein of Photorhabdus asymbiotica [rtxA(PA)], and an actin cross-linking domain [ACD]). Biotype 1 isolates harbor MARTX(Vv) toxin types I and II, biotype 2 isolates carry MARTX(Vv) toxin type III, and biotype 3 isolates have MARTX(Vv) toxin type II. The analyzed biotype 2 isolates harbor two identical copies of rtxA1, one chromosomal and the other plasmidic. The evolutionary history of the gene demonstrates that MARTX(Vv) toxins are mosaics, comprising pieces with different evolutionary histories, some of which have been acquired by intra- or interspecific horizontal gene transfer. Finally, we have found evidence that the evolutionary history of the rtxA1 gene for biotype 2 differs totally from the gene history of biotypes 1 and 3.
Collapse
|
36
|
Recombination shapes the structure of an environmental Vibrio cholerae population. Appl Environ Microbiol 2010; 77:537-44. [PMID: 21075874 DOI: 10.1128/aem.02062-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae consists of pathogenic strains that cause sporadic gastrointestinal illness or epidemic cholera disease and nonpathogenic strains that grow and persist in coastal aquatic ecosystems. Previous studies of disease-causing strains have shown V. cholerae to be a primarily clonal bacterial species, but isolates analyzed have been strongly biased toward pathogenic genotypes, while representing only a small sample of the vast diversity in environmental strains. In this study, we characterized homologous recombination and structure among 152 environmental V. cholerae isolates and 13 other putative Vibrio isolates from coastal waters and sediments in central California, as well as four clinical V. cholerae isolates, using multilocus sequence analysis of seven housekeeping genes. Recombinant regions were identified by at least three detection methods in 72% of our V. cholerae isolates. Despite frequent recombination, significant linkage disequilibrium was still detected among the V. cholerae sequence types. Incongruent but nonrandom associations were observed for maximum likelihood topologies from the individual loci. Overall, our estimated recombination rate in V. cholerae of 6.5 times the mutation rate is similar to those of other sexual bacteria and appears frequently enough to restrict selection from purging much of the neutral intraspecies diversity. These data suggest that frequent recombination among V. cholerae may hinder the identification of ecotypes in this bacterioplankton population.
Collapse
|
37
|
Gulig PA, Crécy-Lagard VD, Wright AC, Walts B, Telonis-Scott M, McIntyre LM. SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes. BMC Genomics 2010; 11:512. [PMID: 20863407 PMCID: PMC3091676 DOI: 10.1186/1471-2164-11-512] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/24/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Vibrio vulnificus is the leading cause of reported death from consumption of seafood in the United States. Despite several decades of research on molecular pathogenesis, much remains to be learned about the mechanisms of virulence of this opportunistic bacterial pathogen. The two complete and annotated genomic DNA sequences of V. vulnificus belong to strains of clade 2, which is the predominant clade among clinical strains. Clade 2 strains generally possess higher virulence potential in animal models of disease compared with clade 1, which predominates among environmental strains. SOLiD sequencing of four V. vulnificus strains representing different clades (1 and 2) and biotypes (1 and 2) was used for comparative genomic analysis. RESULTS Greater than 4,100,000 bases were sequenced of each strain, yielding approximately 100-fold coverage for each of the four genomes. Although the read lengths of SOLiD genomic sequencing were only 35 nt, we were able to make significant conclusions about the unique and shared sequences among the genomes, including identification of single nucleotide polymorphisms. Comparative analysis of the newly sequenced genomes to the existing reference genomes enabled the identification of 3,459 core V. vulnificus genes shared among all six strains and 80 clade 2-specific genes. We identified 523,161 SNPs among the six genomes. CONCLUSIONS We were able to glean much information about the genomic content of each strain using next generation sequencing. Flp pili, GGDEF proteins, and genomic island XII were identified as possible virulence factors because of their presence in virulent sequenced strains. Genomic comparisons also point toward the involvement of sialic acid catabolism in pathogenesis.
Collapse
Affiliation(s)
- Paul A Gulig
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Anita C Wright
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA
| | - Brandon Walts
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Marina Telonis-Scott
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
- Department of Genetics, University of Melbourne, 3010 Australia
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
38
|
Ansede-Bermejo J, Gavilan RG, Triñanes J, Espejo RT, Martinez-Urtaza J. Origins and colonization history of pandemic Vibrio parahaemolyticus in South America. Mol Ecol 2010; 19:3924-37. [PMID: 20735744 DOI: 10.1111/j.1365-294x.2010.04782.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The dynamics of dissemination of the environmental human pathogen Vibrio parahaemolyticus are uncertain. The O3:K6 clone was restricted to Asia until its detection along the Peruvian coasts and in northern Chile in 1997 in phase with the arrival of El Niño waters. A subsequent emergence of O3:K6 strains was detected in austral Chile in 2004. The origin of these 1997 and 2004 population radiations has not yet been conclusively determined. Multiple loci VNTR analysis using seven polymorphic loci was carried out with a number of representative strains from Asia, Peru and Chile to determine their genetic characteristics and population structure. Asian and Chilean subpopulations were the most genetically distant groups with an intermediate subpopulation in Peru. Population structure inferred from a minimum-spanning tree and Bayesian analysis divided the populations into two genetically distinct groups, consistent with the epidemic dynamics of the O3:K6 clone in South America. One group comprised strains from the original Asiatic population and strains arriving in Peru and Chile in 1997. The second group included the remaining Peruvian Strains and Chilean strains obtained from Puerto Montt in 2004. The analysis of the arrival of the O3:K6 clone at the Pacific coasts of South America has provided novel insights linking the origin of the invasion in 1997 to Asian populations and describing the successful establishment of the O3:K6 populations, first in Peru and subsequently in the South of Chile owing to a possible radiation of Peruvian populations.
Collapse
Affiliation(s)
- Juan Ansede-Bermejo
- Instituto de Acuicultura, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
39
|
Genetic characterization of Vibrio vulnificus strains from tilapia aquaculture in Bangladesh. Appl Environ Microbiol 2010; 76:4890-5. [PMID: 20495047 DOI: 10.1128/aem.00636-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Outbreaks of Vibrio vulnificus wound infections in Israel were previously attributed to tilapia aquaculture. In this study, V. vulnificus was frequently isolated from coastal but not freshwater aquaculture in Bangladesh. Phylogenetic analyses showed that strains from Bangladesh differed remarkably from isolates commonly recovered elsewhere from fish or oysters and were more closely related to strains of clinical origin.
Collapse
|
40
|
Kirkup BC, Chang L, Chang S, Gevers D, Polz MF. Vibrio chromosomes share common history. BMC Microbiol 2010; 10:137. [PMID: 20459749 PMCID: PMC2875227 DOI: 10.1186/1471-2180-10-137] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 05/10/2010] [Indexed: 11/23/2022] Open
Abstract
Background While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an open question to what extent the two chromosomes themselves share a common history since their formation. Results Single copy genes from each chromosome (142 genes from chromosome I and 42 genes from chromosome II) were identified from 19 sequenced Vibrionales genomes and their phylogenetic comparison suggests consistent phylogenies for each chromosome. Additionally, study of the gene organization and phylogeny of the respective origins of replication confirmed the shared history. Conclusions Thus, while elements within the chromosomes may have experienced significant genetic mobility, the backbones share a common history. This allows conclusions based on multilocus sequence analysis (MLSA) for one chromosome to be applied equally to both chromosomes.
Collapse
Affiliation(s)
- Benjamin C Kirkup
- Dept, of Civil and Environmental Engineering, 15 Vassar Street, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
41
|
Ragan MA, Beiko RG. Lateral genetic transfer: open issues. Philos Trans R Soc Lond B Biol Sci 2009; 364:2241-51. [PMID: 19571244 DOI: 10.1098/rstb.2009.0031] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lateral genetic transfer (LGT) is an important adaptive force in evolution, contributing to metabolic, physiological and ecological innovation in most prokaryotes and some eukaryotes. Genomic sequences and other data have begun to illuminate the processes, mechanisms, quantitative extent and impact of LGT in diverse organisms, populations, taxa and environments; deep questions are being posed, and the provisional answers sometimes challenge existing paradigms. At the same time, there is an enhanced appreciation of the imperfections, biases and blind spots in the data and in analytical approaches. Here we identify and consider significant open questions concerning the role of LGT in genome evolution.
Collapse
Affiliation(s)
- Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
42
|
USER friendly cloning coupled with chitin-based natural transformation enables rapid mutagenesis of Vibrio vulnificus. Appl Environ Microbiol 2009; 75:4936-49. [PMID: 19502446 DOI: 10.1128/aem.02564-08] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a bacterial contaminant of shellfish and causes highly lethal sepsis and destructive wound infections. A definitive identification of virulence factors using the molecular version of Koch's postulates has been hindered because of difficulties in performing molecular genetic analysis of this opportunistic pathogen. For example, conjugation is required to introduce plasmid DNA, and allelic exchange suicide vectors that rely on sucrose sensitivity for counterselection are not efficient. We therefore incorporated USER friendly cloning techniques into pCVD442-based allelic exchange suicide vectors and other expression vectors to enable the rapid and efficient capture of PCR amplicons. Upstream and downstream DNA sequences flanking genes targeted for deletion were cloned together in a single step. Based on results from Vibrio cholerae, we determined that V. vulnificus becomes naturally transformable with linear DNA during growth on chitin in the form of crab shells. By combining USER friendly cloning and chitin-based transformation, we rapidly and efficiently produced targeted deletions in V. vulnificus, bypassing the need for two-step, suicide vector-mediated allelic exchange. These methods were used to examine the roles of two flagellin loci (flaCDE and flaFBA), the motAB genes, and the cheY-3 gene in motility and to create deletions of rtxC, rtxA1, and fadR. Additionally, chitin-based transformation was useful in moving antibiotic resistance-labeled mutations between V. vulnificus strains by simply coculturing the strains on crab shells. The methods and genetic tools that we developed should be of general use to those performing molecular genetic analysis and manipulation of other gram-negative bacteria.
Collapse
|
43
|
Abstract
Vibrio vulnificus is a heterogeneous bacterial species that can be virulent for humans and fish. Virulence in fish seems to rely on a recently described plasmid that can be transmitted between strains, aided by a conjugative plasmid. The main objective of this work was to analyse the plasmid content of a wide collection of strains from the three biotypes of the species, as well as to identify putative conjugative and virulence plasmids by means of Southern hybridization with specific probes and sequence analysis of selected gene markers. We found 28 different plasmid profiles in a total of 112 strains, which were relatively biotype- or serovar-specific. Biotype 1 lacked high-molecular-mass plasmids, with the exception of a putative conjugative plasmid of 48 kb that was present in 42.8% of clinical and environmental strains isolated worldwide. All biotype 2 strains possessed the virulence plasmid, whose molecular mass ranged between 68 and 70 kb, and 89.65% of these strains also had a putative conjugative plasmid with a molecular size of 52-56 kb. Finally, a 48 kb putative conjugative plasmid was present in all biotype 3 strains. Data from partial sequencing of traD, traI and the whole vep07 (a recently described plasmid-borne virulence gene) from a selection of strains suggest that the plasmids of 48-56 kb probably belong to the same family of F-plasmids as pYJ016 and that the gene vep07 is absolutely essential for fish virulence. Additional cryptic plasmids of low molecular mass were present in the three biotypes. In conclusion, plasmids are widespread among V. vulnificus species and could contribute substantially to genetic plasticity of the species.
Collapse
Affiliation(s)
- Francisco J Roig
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Carmen Amaro
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
44
|
Zaidenstein R, Sadik C, Lerner L, Valinsky L, Kopelowitz J, Yishai R, Agmon V, Parsons M, Bopp C, Weinberger M. Clinical characteristics and molecular subtyping of Vibrio vulnificus illnesses, Israel. Emerg Infect Dis 2009; 14:1875-82. [PMID: 19046510 PMCID: PMC2634625 DOI: 10.3201/eid1412.080499] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The genetically distinct biotype 3 has penetrated Israeli freshwaters and is causing severe illness in persons who handle tilapia or carp. During 1996–1997, a new Vibrio vulnificus biotype 3, which caused severe soft tissue infection after fishbone injury, emerged in Israel. We conducted a follow-up study from 1998 through 2005 to assess changing trends, outcomes, and molecular relatedness of the implicated strains. A total of 132 cases (71% confirmed and 29% suspected) of V. vulnificus biotype 3 infection were found. Most infections (95%) were related to percutaneous fish exposure, mainly tilapia (83%) or common carp (13%). Bacteremia, altered immune status, and history of ischemic heart disease were identified as independent risk factors for death, which reached a prevalence of 7.6%. Pulsed-field gel electrophoresis patterns of strains from 1998 through 2005 and from 1996 through 1997 showed a high degree of homogeneity and were distinct from those of V. vulnificus biotype 1. Infections caused by V. vulnificus biotype 3 continue affect the public’s health in Israel.
Collapse
|
45
|
Vos M, Didelot X. A comparison of homologous recombination rates in bacteria and archaea. ISME JOURNAL 2008; 3:199-208. [PMID: 18830278 DOI: 10.1038/ismej.2008.93] [Citation(s) in RCA: 390] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It is a standard practice to test for the signature of homologous recombination in studies examining the genetic diversity of bacterial populations. Although it has emerged that homologous recombination rates can vary widely between species, comparing the results from different studies is made difficult by the diversity of estimation methods used. Here, Multi Locus Sequence Typing (MLST) datasets from a wide variety of bacteria and archaea are analyzed using the ClonalFrame method. This enables a direct comparison between species and allows for a first exploration of the question whether phylogeny or ecology is the primary determinant of homologous recombination rate.
Collapse
Affiliation(s)
- Michiel Vos
- Department of Zoology, University of Oxford, Oxford, UK.
| | | |
Collapse
|
46
|
Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. BMC Microbiol 2008; 8:110. [PMID: 18590559 PMCID: PMC2491623 DOI: 10.1186/1471-2180-8-110] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 06/30/2008] [Indexed: 11/24/2022] Open
Abstract
Background Vibrio parahaemolyticus is abundant in the aquatic environment particularly in warmer waters and is the leading cause of seafood borne gastroenteritis worldwide. Prior to 1995, numerous V. parahaemolyticus serogroups were associated with disease, however, in that year an O3:K6 serogroup emerged in Southeast Asia causing large outbreaks and rapid hospitalizations. This new highly virulent strain is now globally disseminated. Results We performed a four-way BLAST analysis on the genome sequence of V. parahaemolyticus RIMD2210633, an O3:K6 isolate from Japan recovered in 1996, versus the genomes of four published Vibrio species and constructed genome BLAST atlases. We identified 24 regions, gaps in the genome atlas, of greater than 10 kb that were unique to RIMD2210633. These 24 regions included an integron, f237 phage, 2 type III secretion systems (T3SS), a type VI secretion system (T6SS) and 7 Vibrio parahaemolyticus genomic islands (VPaI-1 to VPaI-7). Comparative genomic analysis of our fifth genome, V. parahaemolyticus AQ3810, an O3:K6 isolate recovered in 1983, identified four regions unique to each V. parahaemolyticus strain. Interestingly, AQ3810 did not encode 8 of the 24 regions unique to RMID, including a T6SS, which suggests an additional virulence mechanism in RIMD2210633. The distribution of only the VPaI regions was highly variable among a collection of 42 isolates and phylogenetic analysis of these isolates show that these regions are confined to a pathogenic clade. Conclusion Our data show that there is considerable genomic flux in this species and that the new highly virulent clone arose from an O3:K6 isolate that acquired at least seven novel regions, which included both a T3SS and a T6SS.
Collapse
|
47
|
Population structure of the fish-pathogenic bacterium Flavobacterium psychrophilum. Appl Environ Microbiol 2008; 74:3702-9. [PMID: 18424537 DOI: 10.1128/aem.00244-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavobacterium psychrophilum is currently one of the main bacterial pathogens hampering the productivity of salmonid farming worldwide, and its control mainly relies on antibiotic treatments. To better understand the population structure of this bacterium and its mode of evolution, we have examined the nucleotide polymorphisms at 11 protein-coding loci of the core genome in a set of 50 isolates. These isolates were selected to represent the broadest possible diversity, originating from 10 different host fish species and four continents. The nucleotide diversity between pairs of sequences amounted to fewer than four differences per kilobase on average, corresponding to a particularly low level of diversity, possibly indicative of a small effective-population size. The recombination rate, however, seemed remarkably high, and as a consequence, most of the isolates harbored unique combinations of alleles (33 distinct sequence types were resolved). The analysis also showed the existence of several clonal complexes with worldwide geographic distribution but marked association with particular fish species. Such an association could reflect preferential routes of transmission and/or adaptive niche specialization. The analysis provided no clues that the initial range of the bacterium was originally limited to North America. Instead, the historical record of the expansion of the pathogen may reflect the spread of a few clonal complexes. As a resource for future epidemiological surveys, a multilocus sequence typing website based on seven highly informative loci is available.
Collapse
|
48
|
Shekar M, Acharya S, Karunasagar I, Karunasagar I. Variable repeat regions in the genome of Vibrio vulnificus and polymorphism in one of the loci in strains isolated from oysters. Int J Food Microbiol 2008; 123:240-5. [PMID: 18374439 DOI: 10.1016/j.ijfoodmicro.2008.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 02/12/2008] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
Abstract
Vibrio vulnificus an estuarine bacterium is associated with severe wound infections and fatal septicemia related to consumption of raw shellfish. In this study we screened the two whole genome sequences available for V. vulnificus in GenBank for the presence of variable number of tandem repeat (VNTR) regions. Five potential VNTR loci with unit repeat size ranging from 6-7 nucleotides were identified for V. vulnificus genome. One of the loci designated Vv1 was selected to detect the repeat number present in V. vulnificus strains isolated from oyster samples in India. Twenty six of the thirty samples tested were found to be highly polymorphic for the Vv1 locus. Copy numbers for the hexanucleotide motif ranged from 4-55, giving rise to a total of 17 polymorphic groups. Our analysis, shows that different genotypic variants exist in the environment and the VNTR loci studied can be used as a marker for strain discrimination and in epidemiological study of this organism.
Collapse
Affiliation(s)
- Malathi Shekar
- Department of Fishery Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries , Mangalore 575 002, India
| | | | | | | |
Collapse
|