1
|
Xu B, Yin Q, Ren D, Mo S, Ni T, Fu S, Zhang Z, Yan T, Zhao Y, Liu J, He Y. Scientometric analysis of research trends in hemorrhagic fever with renal syndrome: A historical review and network visualization. J Infect Public Health 2025; 18:102647. [PMID: 39946976 DOI: 10.1016/j.jiph.2024.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Hemorrhagic fever with renal syndrome (HFRS) research has undergone significant global transformation over the past decades. A comprehensive scientometric overview of research trends and scholarly cooperation in HFRS is absent. This study employs scientometric analysis to map the evolution of research themes, identify widely and scarcely explored areas, and anticipate future research directions. METHODS We searched Web of Science Core Collection from inception until July 31, 2023, identifying 3908 HFRS-related studies published for analysis. Utilizing CiteSpace, VOSviewer, and Bibliometrix, we performed co-authorship, co-occurrence, and co-citation analyses, and visualized research networks. RESULTS Our analysis revealed a consistent upward trend in HFRS publications since 1980, with an average growth rate of 11.34 %. The United States led in publication and citation counts, followed by China, Finland, Germany, and Sweden. Through co-occurrence analysis, we categorized keywords into eight clusters and 24 sub-clusters, revealing six predominant research themes: Clinical Features, Epidemiology, Mechanisms, Virus, Evolution, and Host. Notably, while themes such as Virus and Pathogenesis have been extensively studied, others, including certain aspects of Host research and Environmental Factors, remain less explored. CONCLUSION This scientometric synthesis provides a global perspective on the breadth and depth of HFRS research, highlighting well-trodden and understudied areas. It offers a roadmap for researchers to navigate the evolving landscape of HFRS studies and prioritize areas ripe for future investigation.
Collapse
Affiliation(s)
- Bing Xu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qian Yin
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Danfeng Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China
| | - Shaocong Mo
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China
| | - Tianzhi Ni
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China
| | - Shan Fu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China
| | - Ze Zhang
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China
| | - Taotao Yan
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China
| | - Yingren Zhao
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China
| | - Jinfeng Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China.
| | - Yingli He
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
Li J, Wang D, Qi L, Yang Y, Pei J, Dong Y, Wang Y, Yao M, Zhang F, Lei Y, Cheng L, Ye W. Genomic sequencing revealed recombination event between clade 1 and clade 2 occurs in circulating varicella-zoster virus in China. Braz J Microbiol 2024; 55:125-132. [PMID: 38052769 PMCID: PMC10920497 DOI: 10.1007/s42770-023-01206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023] Open
Abstract
Varicella-zoster virus (VZV), a member of the Alphaherpesvirinae subfamily, causes varicella in primary infections and establishing a latent stage in sensory ganglia. Upon reactivation, VZV causes herpes zoster with severe neuralgia, especially in elderly patients. The mutation rate for VZV is comparatively lower than the other members of other alpha herpesviruses. Due to geographic isolation, different genotypes of VZV are circulating on separate continents. Here, we successfully isolated a VZV from the vesicular fluid of a youth zoster patient. Based on the single-nucleotide polymorphism profiles of different open reading frames that define the genotype, this newly isolated VZV primarily represents genotype clade 2 but also has characteristics of genotype clade 1. The next-generation sequencing provided a nearly full-length sequence, and further phylogenetic analysis revealed that this VZV isolate is distinct from clades 1 and 2. The Recombination Detection Program indicates that a possible recombinant event may occur between the VZV isolate and clade 1. In summary, we found that there is a circulating VZV isolate in China that may represent a recombinant between clade 1 and clade 2, providing new concerns that need to be considered in the future VZV vaccination program.
Collapse
Affiliation(s)
- Jia Li
- Department of Neurology, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Dan Wang
- Second Affiliated Hospital, Xi'an Medical University, 167th Textile East Street, Xi'an, China
| | - Libin Qi
- Cadet Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, 710032, China
| | - Yuewu Yang
- Cadet Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, 710032, China
| | - Jiawei Pei
- Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Min Yao
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Si Y, Zhang H, Zhou Z, Zhu X, Yang Y, Liu H, Zhang L, Cheng L, Wang K, Ye W, Lv X, Zhang X, Hou W, Zhao G, Lei Y, Zhang F, Ma H. RIPK3 promotes hantaviral replication by restricting JAK-STAT signaling without triggering necroptosis. Virol Sin 2023; 38:741-754. [PMID: 37633447 PMCID: PMC10590702 DOI: 10.1016/j.virs.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
Hantaan virus (HTNV) is a rodent-borne virus that causes hemorrhagic fever with renal syndrome (HFRS), resulting in a high mortality rate of 15%. Interferons (IFNs) play a critical role in the anti-hantaviral immune response, and IFN pretreatment efficiently restricts HTNV infection by triggering the expression of a series of IFN-stimulated genes (ISGs) through the Janus kinase-signal transducer and activator of transcription 1 (JAK-STAT) pathway. However, the tremendous amount of IFNs produced during late infection could not restrain HTNV replication, and the mechanism remains unclear. Here, we demonstrated that receptor-interacting protein kinase 3 (RIPK3), a crucial molecule that mediates necroptosis, was activated by HTNV and contributed to hantavirus evasion of IFN responses by inhibiting STAT1 phosphorylation. RNA-seq analysis revealed the upregulation of multiple cell death-related genes after HTNV infection, with RIPK3 identified as a key modulator of viral replication. RIPK3 ablation significantly enhanced ISGs expression and restrained HTNV replication, without affecting the expression of pattern recognition receptors (PRRs) or the production of type I IFNs. Conversely, exogenously expressed RIPK3 compromised the host's antiviral response and facilitated HTNV replication. RIPK3-/- mice also maintained a robust ability to clear HTNV with enhanced innate immune responses. Mechanistically, we found that RIPK3 could bind STAT1 and inhibit STAT1 phosphorylation dependent on the protein kinase domain (PKD) of RIPK3 but not its kinase activity. Overall, these observations demonstrated a noncanonical function of RIPK3 during viral infection and have elucidated a novel host innate immunity evasion strategy utilized by HTNV.
Collapse
Affiliation(s)
- Yue Si
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Haijun Zhang
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China; Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 710032, China
| | - Ziqing Zhou
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xudong Zhu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Yongheng Yang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Liang Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Linfeng Cheng
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Kerong Wang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xin Lv
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xijing Zhang
- Department of Anesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Wugang Hou
- Department of Anesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China; The College of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yingfeng Lei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China; Department of Anesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Zhao Y, Zhao N, Cai Y, Zhang H, Li J, Liu J, Ye C, Wang Y, Dang Y, Li W, Liu H, Zhang L, Li Y, Zhang L, Cheng L, Dong Y, Xu Z, Lei Y, Lu L, Wang Y, Ye W, Zhang F. An algal lectin griffithsin inhibits Hantaan virus infection in vitro and in vivo. Front Cell Infect Microbiol 2022; 12:881083. [PMID: 36579342 PMCID: PMC9791197 DOI: 10.3389/fcimb.2022.881083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Hantaan virus (HTNV) is the etiological pathogen of hemorrhagic fever with renal syndrome in East Asia. There are currently no effective therapeutics approved for HTNV and other hantavirus infections. We found that griffithsin (GRFT), an algae-derived lectin with broad-spectrum antiviral activity against various enveloped viruses, can inhibit the growth and spread of HTNV. In vitro experiments using recombinant vesicular stomatitis virus (rVSV) with HTNV glycoproteins as a model revealed that the GRFT inhibited the entry of rVSV-HTNV-G into host cells. In addition, we demonstrated that GRFT prevented authentic HTNV infection in vitro by binding to the viral N-glycans. In vivo experiments showed that GRFT partially protected the suckling mice from death induced by intracranial exposure to HTNV. These results demonstrated that GRFT can be a promising agent for inhibiting HTNV infection.
Collapse
Affiliation(s)
- Yajing Zhao
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China,Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Ningbo Zhao
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China,Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Yanxing Cai
- Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou, China,Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and BSL-3 Facility, Fudan University, Shanghai, China
| | - Hui Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Jia Li
- Department of Neurology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Jiaqi Liu
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Airforce Medical University, Xi’an, Shaanxi, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Yamei Dang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Wanying Li
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China,Department of Pathogenic Biology, School of Preclinical Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - He Liu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Lianqing Zhang
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yuexiang Li
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and BSL-3 Facility, Fudan University, Shanghai, China
| | - Yingjuan Wang
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China,*Correspondence: Fanglin Zhang, ; Wei Ye, ; Yingjuan Wang,
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China,*Correspondence: Fanglin Zhang, ; Wei Ye, ; Yingjuan Wang,
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China,*Correspondence: Fanglin Zhang, ; Wei Ye, ; Yingjuan Wang,
| |
Collapse
|
5
|
Wang B, Pei J, Zhang H, Li J, Dang Y, Liu H, Wang Y, Zhang L, Qi L, Yang Y, Cheng L, Dong Y, Qian A, Xu Z, Lei Y, Zhang F, Ye W. Dihydropyridine-derived calcium channel blocker as a promising anti-hantavirus entry inhibitor. Front Pharmacol 2022; 13:940178. [PMID: 36105208 PMCID: PMC9465303 DOI: 10.3389/fphar.2022.940178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Hantaviruses, the causative agent for two types of hemorrhagic fevers, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), are distributed from Eurasia to America. HFRS and HPS have mortality rates of up to 15% or 45%, respectively. Currently, no certified therapeutic has been licensed to treat hantavirus infection. In this study, we discovered that benidipine hydrochloride, a calcium channel blocker, inhibits the entry of hantaviruses in vitro. Moreover, an array of calcium channel inhibitors, such as cilnidipine, felodipine, amlodipine, manidipine, nicardipine, and nisoldipine, exhibit similar antiviral properties. Using pseudotyped vesicular stomatitis viruses harboring the different hantavirus glycoproteins, we demonstrate that benidipine hydrochloride inhibits the infection by both HFRS- and HPS-causing hantaviruses. The results of our study indicate the possibility of repurposing FDA-approved calcium channel blockers for the treatment of hantavirus infection, and they also indicate the need for further research in vivo.
Collapse
Affiliation(s)
- Bin Wang
- Center of Clinical Aerospace Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jiawei Pei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
- Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jia Li
- Department of Neurology, Xi’an International Medical Center Hospital, Xi’an, China
| | - Yamei Dang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - He Liu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Libin Qi
- Student Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuewu Yang
- Student Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Airong Qian
- Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Wei Ye, ; Fanglin Zhang, ; Yingfeng Lei,
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Wei Ye, ; Fanglin Zhang, ; Yingfeng Lei,
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Wei Ye, ; Fanglin Zhang, ; Yingfeng Lei,
| |
Collapse
|
6
|
Kell AM. Innate Immunity to Orthohantaviruses: Could Divergent Immune Interactions Explain Host-specific Disease Outcomes? J Mol Biol 2021; 434:167230. [PMID: 34487792 PMCID: PMC8894506 DOI: 10.1016/j.jmb.2021.167230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The genus Orthohantavirus (family Hantaviridae, order Bunyavirales) consists of numerous genetic and pathologically distinct viral species found within rodent and mammalian insectivore populations world-wide. Although reservoir hosts experience persistent asymptomatic infection, numerous rodent-borne orthohantaviruses cause severe disease when transmitted to humans, with case-fatality rates up to 40%. The first isolation of an orthohantavirus occurred in 1976 and, since then, the field has made significant progress in understanding the immune correlates of disease, viral interactions with the human innate immune response, and the immune kinetics of reservoir hosts. Much still remains elusive regarding the molecular mechanisms of orthohantavirus recognition by the innate immune response and viral antagonism within the reservoir host, however. This review provides a summary of the last 45 years of research into orthohantavirus interaction with the host innate immune response. This summary includes discussion of current knowledge involving human, non-reservoir rodent, and reservoir innate immune responses to viruses which cause hemorrhagic fever with renal syndrome and hantavirus cardio-pulmonary syndrome. Review of the literature concludes with a brief proposition for the development of novel tools needed to drive forward investigations into the molecular mechanisms of innate immune activation and consequences for disease outcomes in the various hosts for orthohantaviruses.
Collapse
Affiliation(s)
- Alison M Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud, Albuquerque, NM 87131, United States.
| |
Collapse
|
7
|
Ye W, Yao M, Dong Y, Ye C, Wang D, Liu H, Ma H, Zhang H, Qi L, Yang Y, Wang Y, Zhang L, Cheng L, Lv X, Xu Z, Lei Y, Zhang F. Remdesivir (GS-5734) Impedes Enterovirus Replication Through Viral RNA Synthesis Inhibition. Front Microbiol 2020; 11:1105. [PMID: 32595613 PMCID: PMC7304253 DOI: 10.3389/fmicb.2020.01105] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Human enteroviruses are responsible for diverse diseases, from mild respiratory symptoms to fatal neurological complications. Currently, no registered antivirals have been approved for clinical therapy. Thus, a therapeutic agent for the enterovirus-related disease is urgently needed. Remdesivir (GS-5734) is a novel monophosphoramidate adenosine analog prodrug that exhibits potent antiviral activity against diverse RNA virus families, including positive-sense Coronaviridae and Flaviviridae and negative-sense Filoviridae, Paramyxoviridae, and Pneumoviridae. Currently, remdesivir is under phase 3 clinical development for disease COVID-19 treatment. Here, we found that remdesivir impeded both EV71 viral RNA (vRNA) and complementary (cRNA) synthesis, indicating that EV71 replication is inhibited by the triphosphate (TP) form of remdesivir. Moreover, remdesivir showed potent antiviral activity against diverse enteroviruses. These data extend the remdesivir antiviral activity to enteroviruses and indicate that remdesivir is a promising antiviral treatment for EV71 and other enterovirus infections.
Collapse
Affiliation(s)
- Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, China
| | - Min Yao
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Dan Wang
- Second Affiliated Hospital, Xi’an Medical University, Xi’an, China
| | - He Liu
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, China
| | - Hongwei Ma
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, China
| | - Hui Zhang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, China
| | - Libin Qi
- Cadet Brigade, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, China
| | - Yuewu Yang
- Cadet Brigade, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, China
| | - Liang Zhang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, China
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, China
| | - Xin Lv
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, China
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, China
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
8
|
Kell AM, Hemann EA, Turnbull JB, Gale M. RIG-I-like receptor activation drives type I IFN and antiviral signaling to limit Hantaan orthohantavirus replication. PLoS Pathog 2020; 16:e1008483. [PMID: 32330200 PMCID: PMC7202661 DOI: 10.1371/journal.ppat.1008483] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/06/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Pathogenic hantaviruses, genus Orthohantaviridae, are maintained in rodent reservoirs with zoonotic transmission to humans occurring through inhalation of rodent excreta. Hantavirus disease in humans is characterized by localized vascular leakage and elevated levels of circulating proinflammatory cytokines. Despite the constant potential for deadly zoonotic transmission to humans, specific virus-host interactions of hantaviruses that lead to innate immune activation, and how these processes impart disease, remain unclear. In this study, we examined the mechanisms of viral recognition and innate immune activation of Hantaan orthohantavirus (HTNV) infection. We identified the RIG-I-like receptor (RLR) pathway as essential for innate immune activation, interferon (IFN) production, and interferon stimulated gene (ISG) expression in response to HTNV infection in human endothelial cells, and in murine cells representative of a non-reservoir host. Our results demonstrate that innate immune activation and signaling through the RLR pathway depends on viral replication wherein the host response can significantly restrict replication in target cells in a manner dependent on the type 1 interferon receptor (IFNAR). Importantly, following HTNV infection of a non-reservoir host murine model, IFNAR-deficient mice had higher viral loads, increased persistence, and greater viral dissemination to lung, spleen, and kidney compared to wild-type animals. Surprisingly, this response was MAVS independent in vivo. Innate immune profiling in these tissues demonstrates that HTNV infection triggers expression of IFN-regulated cytokines early during infection. We conclude that the RLR pathway is essential for recognition of HTNV infection to direct innate immune activation and control of viral replication in vitro, and that additional virus sensing and innate immune response pathways of IFN and cytokine regulation contribute to control of HTNV in vivo. These results reveal a critical role for innate immune regulation in driving divergent outcomes of HTNV infection, and serve to inform studies to identify therapeutic targets to alleviate human hantavirus disease.
Collapse
Affiliation(s)
- Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, United States of America
| | - Emily A. Hemann
- Department of Immunology, University of Washington, Seattle, United States of America
| | - J. Bryan Turnbull
- Department of Immunology, University of Washington, Seattle, United States of America
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle United States of America
| |
Collapse
|
9
|
Cao Q, Juan CX, Zhang DQ, He J, Cao YZ, Pasha AB, Wang JY, Qi HX, Li S, Jin R, Zhou GP. STING positively regulates human ORMDL3 expression through TBK1-IRF3-STAT6 complex mediation. Exp Cell Res 2018; 370:498-505. [PMID: 30009792 DOI: 10.1016/j.yexcr.2018.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Orosomucoid 1-like protein 3 (ORMDL3) is an asthma candidate gene associated with virus-triggered recurrent wheeze. Stimulator of interferon gene (STING) controls TLR-independent cytosolic responses to viruses. However, the association of STING with ORMDL3 is unclear. Here, we have shown that ORMDL3 expression shows a linear correlation with STING in recurrent wheeze patients. In elucidating the molecular mechanisms of the ORMDL3-STING relationship, we found that STING promoted the transcriptional activity of ORMDL3, which was significantly associated with increased levels of interferon regulatory factor 3 (IRF3) and signal transducer and activator of transcription 6 (STAT6). Further study showed that via activation of TANK binding kinase 1 (TBK1), STING enhanced the phosphorylation and binding of IRF3 and STAT6, which upregulated ORMDL3 by binding to the promoter. Our results showed that STING positively regulated ORMDL3 through the TBK1-IRF3-STAT6 complex.
Collapse
Affiliation(s)
- Qian Cao
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Chen-Xia Juan
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Dao-Qi Zhang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jia He
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yi-Zhi Cao
- The First Clinical Medical School, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Asfia Banu Pasha
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jin-Ya Wang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hai-Xiao Qi
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Sheng Li
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
10
|
Taking the lead - how keratinocytes orchestrate skin T cell immunity. Immunol Lett 2018; 200:43-51. [PMID: 29969603 DOI: 10.1016/j.imlet.2018.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/20/2018] [Accepted: 06/29/2018] [Indexed: 12/15/2022]
Abstract
The skin comprises a complex coordinated system of epithelial tissue cells and immune cells that ensure adequate immune reactions against trauma, toxins and pathogens, while maintaining tissue homeostasis. Keratinocytes form the outermost barrier of the skin, and sense changes in barrier integrity, intrusion of microbial components and stress molecules. Thus, they act as sentinels that continuously communicate the status of the organ to the cutaneous immune system. Upon damage the keratinocytes initiate a pro-inflammatory signaling cascade that leads to the activation of resident immune cells. Simultaneously, the tissue mediates and supports immune-suppressive functions to contain inflammation locally. After resolution of inflammation, the skin provides a niche for regulatory and effector memory T cells that can quickly respond to reoccurring antigens. In this review we discuss the central role of keratinocyte-derived signals in controlling cutaneous T cell immunity.
Collapse
|
11
|
Ma HW, Ye W, Chen HS, Nie TJ, Cheng LF, Zhang L, Han PJ, Wu XA, Xu ZK, Lei YF, Zhang FL. In-Cell Western Assays to Evaluate Hantaan Virus Replication as a Novel Approach to Screen Antiviral Molecules and Detect Neutralizing Antibody Titers. Front Cell Infect Microbiol 2017; 7:269. [PMID: 28676847 PMCID: PMC5476785 DOI: 10.3389/fcimb.2017.00269] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Hantaviruses encompass rodent-borne zoonotic pathogens that cause severe hemorrhagic fever disease with high mortality rates in humans. Detection of infectious virus titer lays a solid foundation for virology and immunology researches. Canonical methods to assess viral titers rely on visible cytopathic effects (CPE), but Hantaan virus (HTNV, the prototype hantavirus) maintains a relatively sluggish life cycle and does not produce CPE in cell culture. Here, an in-cell Western (ICW) assay was utilized to rapidly measure the expression of viral proteins in infected cells and to establish a novel approach to detect viral titers. Compared with classical approaches, the ICW assay is accurate and time- and cost-effective. Furthermore, the ICW assay provided a high-throughput platform to screen and identify antiviral molecules. Potential antiviral roles of several DExD/H box helicase family members were investigated using the ICW assay, and the results indicated that DDX21 and DDX60 reinforced IFN responses and exerted anti-hantaviral effects, whereas DDX50 probably promoted HTNV replication. Additionally, the ICW assay was also applied to assess NAb titers in patients and vaccine recipients. Patients with prompt production of NAbs tended to have favorable disease outcomes. Modest NAb titers were found in vaccinees, indicating that current vaccines still require improvements as they cannot prime host humoral immunity with high efficiency. Taken together, our results indicate that the use of the ICW assay to evaluate non-CPE Hantaan virus titer demonstrates a significant improvement over current infectivity approaches and a novel technique to screen antiviral molecules and detect NAb efficacies.
Collapse
Affiliation(s)
- Hong-Wei Ma
- Department of Microbiology, Fourth Military Medical UniversityXi'an, China
| | - Wei Ye
- Department of Microbiology, Fourth Military Medical UniversityXi'an, China
| | - He-Song Chen
- Department of Microbiology, Fourth Military Medical UniversityXi'an, China
| | - Tie-Jian Nie
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Lin-Feng Cheng
- Department of Microbiology, Fourth Military Medical UniversityXi'an, China
| | - Liang Zhang
- Department of Microbiology, Fourth Military Medical UniversityXi'an, China
| | - Pei-Jun Han
- Department of Microbiology, Fourth Military Medical UniversityXi'an, China
| | - Xing-An Wu
- Department of Microbiology, Fourth Military Medical UniversityXi'an, China
| | - Zhi-Kai Xu
- Department of Microbiology, Fourth Military Medical UniversityXi'an, China
| | - Ying-Feng Lei
- Department of Microbiology, Fourth Military Medical UniversityXi'an, China
| | - Fang-Lin Zhang
- Department of Microbiology, Fourth Military Medical UniversityXi'an, China
| |
Collapse
|
12
|
Ma H, Han P, Ye W, Chen H, Zheng X, Cheng L, Zhang L, Yu L, Wu X, Xu Z, Lei Y, Zhang F. The Long Noncoding RNA NEAT1 Exerts Antihantaviral Effects by Acting as Positive Feedback for RIG-I Signaling. J Virol 2017; 91:e02250-16. [PMID: 28202761 PMCID: PMC5391460 DOI: 10.1128/jvi.02250-16] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 11/20/2022] Open
Abstract
Hantavirus infection, which causes zoonotic diseases with a high mortality rate in humans, has long been a global public health concern. Over the past decades, accumulating evidence suggests that long noncoding RNAs (lncRNAs) play key regulatory roles in innate immunity. However, the involvement of host lncRNAs in hantaviral control remains uncharacterized. In this study, we identified the lncRNA NEAT1 as a vital antiviral modulator. NEAT1 was dramatically upregulated after Hantaan virus (HTNV) infection, whereas its downregulation in vitro or in vivo delayed host innate immune responses and aggravated HTNV replication. Ectopic expression of NEAT1 enhanced beta interferon (IFN-β) production and suppressed HTNV infection. Further investigation suggested that NEAT1 served as positive feedback for RIG-I signaling. HTNV infection activated NEAT1 transcription through the RIG-I-IRF7 pathway, whereas NEAT1 removed the transcriptional inhibitory effects of the splicing factor proline- and glutamine-rich protein (SFPQ) by relocating SFPQ to paraspeckles, thus promoting the expression of RIG-I and DDX60. RIG-I and DDX60 had synergic effects on IFN production. Taken together, our findings demonstrate that NEAT1 modulates the innate immune response against HTNV infection, providing another layer of information about the role of lncRNAs in controlling viral infections.IMPORTANCE Hantaviruses have attracted worldwide attention as archetypal emerging pathogens. Recently, increasing evidence has highlighted long noncoding RNAs (lncRNAs) as key regulators of innate immunity; however, their roles in hantavirus infection remain unknown. In the present work, a new unexplored function of lncRNA NEAT1 in controlling HTNV replication was found. NEAT1 promoted interferon (IFN) responses by acting as positive feedback for RIG-I signaling. This lncRNA was induced by HTNV through the RIG-I-IRF7 pathway in a time- and dose-dependent manner and promoted HTNV-induced IFN production by facilitating RIG-I and DDX60 expression. Intriguingly, NEAT1 relocated SFPQ and formed paraspeckles after HTNV infection, which might reverse inhibitive effects of SFPQ on the transcription of RIG-I and DDX60. To the best of our knowledge, this is the first study to address the regulatory role of the lncRNA NEAT1 in host innate immunity after HTNV infection. In summary, our findings provide additional insights regarding the role of lncRNAs in controlling viral infections.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Peijun Han
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Wei Ye
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Hesong Chen
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Xuyang Zheng
- Center of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Linfeng Cheng
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Liang Zhang
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Lan Yu
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Xing'an Wu
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Zhikai Xu
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Yingfeng Lei
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Fanglin Zhang
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Wang XH, Shu J, Jiang CM, Zhuang LL, Yang WX, Zhang HW, Wang LL, Li L, Chen XQ, Jin R, Zhou GP. Mechanisms and roles by which IRF-3 mediates the regulation of ORMDL3 transcription in respiratory syncytial virus infection. Int J Biochem Cell Biol 2017; 87:8-17. [PMID: 28336364 DOI: 10.1016/j.biocel.2017.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/05/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis in infancy, which is a major risk factor for recurrent wheezing and asthma. Orosomucoid 1-like protein 3 (ORMDL3) has been reported to associate with virus-triggered recurrent wheezing and asthma in children. However, little is known about how ORMDL3 is involved into RSV infection. In this study, we showed that the mRNA expression of ORMDL3 is significantly increased in the peripheral blood lymphocytes of infants with RSV-induced bronchiolitis compared with uninfected controls, also increased in bronchial epithelial cells and lung fibroblasts following RSV infection in vitro. To investigate the underlying mechanisms of RSV-induced ORMDL3 expression, we performed in silico analysis of the binding sites of several transcription factors in the ORMDL3 promoter. The proximal interferon-regulatory factor-3 (IRF-3) binding site positively regulated ORMDL3 transcription following exposure to RSV, as determined through mutational analysis. Overexpression and RNA interference experiments targeting IRF-3 showed that it regulates the expression of ORMDL3 following RSV exposure. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay showed that IRF-3 binds directly to the promoter of the ORMDL3 gene. Furthermore, we confirmed that expression of IRF-3 is significantly increased and shows a strong linear correlation with increased ORMDL3 in the peripheral blood lymphocytes from infants with RSV-induced bronchiolitis. Our results indicate that IRF-3 is an important regulator of ORMDL3 induction following RSV infection by binding directly to the promoter of ORMDL3, which may be implicated in the inflammatory and immune reactions involved in bronchiolitis and wheezing diseases.
Collapse
Affiliation(s)
- Xiao-Hua Wang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China; Department of Pediatrics, Nanjing First Hospital, Nanjing Medical University, 68 Chang Le Road, Nanjing, Jiangsu Province 210006, China
| | - Jin Shu
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Chun-Ming Jiang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Li-Li Zhuang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Wei-Xia Yang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Hui-Weng Zhang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Lu-Lu Wang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Lin Li
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Xiao-Qing Chen
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China.
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
14
|
Ermonval M, Baychelier F, Tordo N. What Do We Know about How Hantaviruses Interact with Their Different Hosts? Viruses 2016; 8:v8080223. [PMID: 27529272 PMCID: PMC4997585 DOI: 10.3390/v8080223] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/27/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022] Open
Abstract
Hantaviruses, like other members of the Bunyaviridae family, are emerging viruses that are able to cause hemorrhagic fevers. Occasional transmission to humans is due to inhalation of contaminated aerosolized excreta from infected rodents. Hantaviruses are asymptomatic in their rodent or insectivore natural hosts with which they have co-evolved for millions of years. In contrast, hantaviruses cause different pathologies in humans with varying mortality rates, depending on the hantavirus species and its geographic origin. Cases of hemorrhagic fever with renal syndrome (HFRS) have been reported in Europe and Asia, while hantavirus cardiopulmonary syndromes (HCPS) are observed in the Americas. In some cases, diseases caused by Old World hantaviruses exhibit HCPS-like symptoms. Although the etiologic agents of HFRS were identified in the early 1980s, the way hantaviruses interact with their different hosts still remains elusive. What are the entry receptors? How do hantaviruses propagate in the organism and how do they cope with the immune system? This review summarizes recent data documenting interactions established by pathogenic and nonpathogenic hantaviruses with their natural or human hosts that could highlight their different outcomes.
Collapse
Affiliation(s)
- Myriam Ermonval
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Florence Baychelier
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Noël Tordo
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
15
|
Dong Y, Ye W, Yang J, Han P, Wang Y, Ye C, Weng D, Zhang F, Xu Z, Lei Y. DDX21 translocates from nucleus to cytoplasm and stimulates the innate immune response due to dengue virus infection. Biochem Biophys Res Commun 2016; 473:648-53. [PMID: 27033607 DOI: 10.1016/j.bbrc.2016.03.120] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 11/29/2022]
Abstract
Successful DENV infection relies on its ability to evade the host innate immune system. By using iTRAQ labeling followed by LC-MS/MS analysis, DDX21 was identified as a new host RNA helicase involved in the DENV life cycle. In DENV infected cells, DDX21 translocates from nucleus to cytoplasm to active the innate immune response and thus inhibits DENV replication in the early stages of infection. DDX21 is then degraded by the viral NS2B-NS3 protease complex and the innate immunity is thus subverted to facilitate DENV replication. The results reveal a new mechanism in which DENV subverts the host innate immune system to facilitate its replication in host cells.
Collapse
Affiliation(s)
- Yangchao Dong
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Wei Ye
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Jing Yang
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Peijun Han
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Yuan Wang
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Chuantao Ye
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Daihui Weng
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Fanglin Zhang
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Zhikai Xu
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China.
| | - Yingfeng Lei
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China.
| |
Collapse
|