1
|
Kasuya F, Mori K, Harada S, Kumagai R, Suzuki A, Amano A, Kosugi T, Hasegawa M, Nagashima M, Suzuki J, Sadamasu K. Molecular and Epidemiological Analysis of Respiratory Syncytial Virus Detected in Tokyo, Japan in 2021 Season. Jpn J Infect Dis 2023; 76:87-90. [PMID: 36184395 DOI: 10.7883/yoken.jjid.2022.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During the COVID-19 pandemic in 2021, Japan experienced an outbreak of respiratory syncytial virus (RSV) infection. A total of 51 RSV cases were detected in infant specimens, including 38 rhinorrhea and 13 nasopharyngeal swabs, collected at the Tokyo Metropolitan Institute of Public Health. Of the 51 cases, 12 were RSV-A and 39 were RSV-B. The G protein gene sequence of RSV-A belonged to the ON1 genotype, whereas RSV-B belonged to the BA9 genotype; thus, different types of RSV were detected during the same period, suggesting that the unusual 2021 RSV season was not due to a single strain or genotype. Of all RSV-positive cases, the proportion of patients aged ≥2 years was 56.8% in 2021, higher than the 31.2% reported in the past 5 years. This indicates that infants aged <1 year who were originally susceptible to RSV infection were less likely to be infected with RSV because of the COVID-19 control measures. The 2021 epidemic peaked in the 28th week, 9 weeks earlier than the average from 2016 to 2020. Therefore, it seems necessary to accumulate and analyze further data, such as factors that led to the outbreak and the characteristics of the detected viruses in 2021.
Collapse
Affiliation(s)
- Fumi Kasuya
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Japan
| | - Kohji Mori
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Japan
| | - Sachiko Harada
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Japan
| | - Ryota Kumagai
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Japan
| | - Ai Suzuki
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Japan
| | - Arisa Amano
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Japan
| | - Tomohiro Kosugi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Japan
| | - Michiya Hasegawa
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Japan
| | - Mami Nagashima
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Japan
| | - Jun Suzuki
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Japan
| |
Collapse
|
2
|
Fall A, Elawar F, Hodcroft EB, Jallow MM, Toure CT, Barry MA, Kiori DE, Sy S, Diaw Y, Goudiaby D, Niang MN, Dia N. Genetic diversity and evolutionary dynamics of respiratory syncytial virus over eleven consecutive years of surveillance in Senegal. INFECTION GENETICS AND EVOLUTION 2021; 91:104864. [PMID: 33866019 DOI: 10.1016/j.meegid.2021.104864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Amary Fall
- Virology Department, Institute Pasteur of Dakar, Senegal.
| | - Farah Elawar
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - Emma B Hodcroft
- Biozentrum, University of Basel, Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Mamadou Malado Jallow
- Virology Department, Institute Pasteur of Dakar, Senegal; University Cheikh Anta Diop of Dakar, Senegal.
| | - Cheikh Talibouya Toure
- Virology Department, Institute Pasteur of Dakar, Senegal; University Cheikh Anta Diop of Dakar, Senegal.
| | - Mamadou A Barry
- Unit Epidemiology of Infectious Diseases, Institute Pasteur of Dakar, Senegal.
| | | | - Sara Sy
- Virology Department, Institute Pasteur of Dakar, Senegal.
| | - Yague Diaw
- Virology Department, Institute Pasteur of Dakar, Senegal.
| | | | | | - Ndongo Dia
- Virology Department, Institute Pasteur of Dakar, Senegal.
| |
Collapse
|
3
|
Krivitskaya V, Komissarova K, Pisareva M, Sverlova M, Fadeev A, Petrova E, Timonina V, Sominina A, Danilenko D. Respiratory Syncytial Virus G Protein Sequence Variability among Isolates from St. Petersburg, Russia, during the 2013-2014 Epidemic Season. Viruses 2021; 13:119. [PMID: 33477301 PMCID: PMC7830914 DOI: 10.3390/v13010119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. It is actively evolving under environmental and herd immunity influences. This work presents, for the first time, sequence variability analysis of RSV G gene and G protein using St. Petersburg (Russia) isolates. Viruses were isolated in a cell culture from the clinical samples of 61 children hospitalized (January-April 2014) with laboratory-confirmed RSV infection. Real-time RT-PCR data showed that 56 isolates (91.8%) belonged to RSV-A and 5 isolates (8.2%) belonged to RSV-B. The G genes were sequenced for 27 RSV-A isolates and all of them belonged to genotype ON1/GA2. Of these RSV-A, 77.8% belonged to the ON1(1.1) genetic sub-cluster, and 14.8% belonged to the ON1(1.2) sub-cluster. The ON1(1.3) sub-cluster constituted a minor group (3.7%). Many single-amino acid substitutions were identified in the G proteins of St. Petersburg isolates, compared with the Canadian ON1/GA2 reference virus (ON67-1210A). Most of the amino acid replacements were found in immunodominant B- and T-cell antigenic determinants of G protein. These may affect the antigenic characteristics of RSV and influence the host antiviral immune response to currently circulating viruses.
Collapse
Affiliation(s)
- Vera Krivitskaya
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Kseniya Komissarova
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Maria Pisareva
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Maria Sverlova
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Artem Fadeev
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Ekaterina Petrova
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Veronika Timonina
- Children’s City Hospital of St. Olga, 194017 Saint-Petersburg, Russia;
| | - Anna Sominina
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Daria Danilenko
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| |
Collapse
|
4
|
Razanajatovo Rahombanjanahary NH, Rybkina K, Randriambolamanantsoa TH, Razafimanjato H, Heraud JM. Genetic diversity and molecular epidemiology of respiratory syncytial virus circulated in Antananarivo, Madagascar, from 2011 to 2017: Predominance of ON1 and BA9 genotypes. J Clin Virol 2020; 129:104506. [PMID: 32585620 DOI: 10.1016/j.jcv.2020.104506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Respiratory syncytial virus is the main cause of acute respiratory infections leading to a considerable morbidity and mortality among under-5 years children. A comprehensive scheme of RSV virus evolution is of great value in implementing effective universal RSV vaccine. OBJECTIVE We investigated the clinical spectrum and molecular characteristics of detected RSV over a period of seven years (January 2011 to June 2017) in Antananarivo, the capital city of Madagascar. STUDY DESIGN 671 nasopharyngeal samples taken from children aged less than 5 years suffered from ARI were screened for RSV by real-time PCR. Clinical data were retrieved from case report forms. Genotype identification was performed by reverse-transcription PCR and sequencing of the second hyper variable region (HVR2) of the G glycoprotein. RESULTS Amongst samples tested, 292 (43.5 %) were found positive for RSV. RSV A predominated during the study period which accounted for 62.3 % (182/292) of positive samples while RSV B represented 37.0 % (108/292). Phylogenetic analyses identified NA1 and ON1 genotypes among RSV A. Though NA1 widespread from 2011 to 2013, ON1 became prevalent during the following years. Among RSV B, THB, CB1 and BA9 genotypes were detected. A co-circulation of THB and CB1 strains occurred during the 2011 season that was substituted by the BA9 from 2012. Malagasy ON1 strains carried some characteristic amino acid substitutions that distinguish them from the worldwide ON1 strains. By analyzing clinical spectrum, ON1 and BA genotypes seemed to prevail in mild infections compared to NA1. CONCLUSION Results obtained here will have its implication in predicting temporal evolution of RSV at the local level. Considering the insularity of the country, information obtained should help in comparative analysis with global RSV strains to optimize vaccine efficacy.
Collapse
Affiliation(s)
| | - Ksenia Rybkina
- National Influenza Center, Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | - Helisoa Razafimanjato
- National Influenza Center, Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Jean-Michel Heraud
- National Influenza Center, Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| |
Collapse
|
5
|
Yoshihara K, Minh LN, Okada T, Toizumi M, Nguyen HA, Vo HM, Hashizume M, Dang DA, Kimura H, Yoshida LM. Evolutionary dynamics of influenza B strains detected from paediatric acute respiratory infections in central Vietnam. INFECTION GENETICS AND EVOLUTION 2020; 81:104264. [PMID: 32105864 DOI: 10.1016/j.meegid.2020.104264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/07/2020] [Accepted: 02/22/2020] [Indexed: 11/28/2022]
Abstract
Influenza virus B belongs to the family Orthomyxoviridae with segmented negative-sense RNA genomes. Since 1970s, influenza B has diverged intoVictoria and Yamagata, which differs in antigenic and evolutionary characteristics. Yet, molecular-epidemiological information of influenza B from developing nations is limited. In central Vietnam, influenza A subtype-specific circulation pattern and clinical characteristics were previously described. However, molecular evolutionary characteristics of influenza B has not been discussed to date. We utilized the influenza B positives obtained from paediatric ARI surveillance during 2007-2013. Influenza B HA and NA genes were amplified, sequenced, and phylogenetic/molecular evolutionary analysis was performed using Maximum Likelihood and Bayesian MCMC. Phylodynamics analysis was performed with Bayesian Skyline Plot (BSP). Furthermore, we performed selection pressure analysis and estimated N-glycosylation sites. In the current study, overall positive rate for influenza B was 3.0%, and Victoria lineage immediately became predominant in post-A/H1N1pdm09 period. The noticeable shift in Victoria lineage WHO Group occurred. With respect to the evolutionary rate (substitutions/site/year), Victoria lineage HA gene was evolving faster than Yamagata lineage (2.43 × 10-3 vs 2.00 × 10-3). Furthermore, the evolutionary rate of Victoria Group 5 was greater than Group 1. BSP presented the rapid growth in Effective Population Size (EPS) of Victoria lineage occurred soon after the 1st A/H1N1pdm09 case was detected whereas the EPS of Yamagata lineage was stable for both genes. N-glycosylation pattern between lineages and among WHO Groups were slightly different, and HA gene had a total of 6 amino acid substitutions under positive section pressure (4 for Victoria and 2 for Yamagata). The current results highlight the importance of Victoria lineage in post-A/H1N1pdm09 period. Difference in evolutionary characteristics and phylodynamics may indicate lineage and WHO Group-specific evolutionary dynamics. It is necessary to further continue the molecular-epidemiological surveillance in local setting to gain a better understanding of local evolutionary characteristics of influenza B strains.
Collapse
Affiliation(s)
- Keisuke Yoshihara
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Le Nhat Minh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Viet Nam
| | - Takashi Okada
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Michiko Toizumi
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hien Anh Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Viet Nam
| | - Hien Minh Vo
- Department of Paediatrics, Khanh Hoa General Hospital, Nha Trang 650000, Viet Nam
| | - Masahiro Hashizume
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Duc Anh Dang
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Viet Nam
| | - Hirokazu Kimura
- School of Medical Technology, Gunma Paz University, Takasaki-shi, Gunma, 370-0006, Japan
| | - Lay-Myint Yoshida
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan.
| |
Collapse
|
6
|
Haider MSH, Khan WH, Deeba F, Ali S, Ahmed A, Naqvi IH, Dohare R, Alsenaidy HA, Alsenaidy AM, Broor S, Parveen S. BA9 lineage of respiratory syncytial virus from across the globe and its evolutionary dynamics. PLoS One 2018; 13:e0193525. [PMID: 29694383 PMCID: PMC5919079 DOI: 10.1371/journal.pone.0193525] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/13/2018] [Indexed: 11/29/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an important pathogen of global significance. The BA9 is one of the most predominant lineages of the BA genotype of group B RSV that has acquired a 60bp duplication in its G protein gene. We describe the local and global evolutionary dynamics of the second hyper variable region in the C- terminal of the G protein gene of the BA9 lineage. A total of 418 sequences (including 31 study and 387 GenBank strains) from 29 different countries were used for phylogenetic analysis. This analysis showed that the study strains clustered with BA (BA9 and BA8) and SAB4 genotype of group B RSV. We performed time-scaled evolutionary clock analyses using Bayesian Markov chain Monte Carlo methods. We also carried out glycosylation, selection pressure, mutational, entropy and Network analyses of the BA9 lineage. The time to the most recent common ancestor (tMRCA) of the BA genotype and BA9 lineage were estimated to be the years 1995 (95% HPD; 1987–1997) and 2000 (95% HPD; 1998–2001), respectively. The nucleotide substitution rate of the BA genotype [(4.58×10−3 (95% HPD; 3.89–5.29×10−3) substitution/site/year] was slightly faster than the BA9 lineage [4.03×10−3 (95% HPD; 4.65–5.2492×10−3)]. The BA9 lineage was categorized into 3 sub lineages (I, II and III) based on the Bayesian and Network analyses. The local transmission pattern suggested that BA9 is the predominant lineage of BA viruses that has been circulating in India since 2002 though showing fluctuations in its effective population size. The BA9 lineage established its global distribution with report from 23 different countries over the past 16 years. The present study augments our understanding of RSV infection, its epidemiological dynamics warranting steps towards its overall global surveillance.
Collapse
Affiliation(s)
| | - Wajihul Hasan Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Farah Deeba
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sher Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Centre for Excellence in Biotechnology Research, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Irshad H. Naqvi
- Dr. M. A. Ansari Health Centre, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | | | | | - Shobha Broor
- Department of Microbiology, Faculty of Medicine and Health Science, Shree Guru Gobind Singh Tricentenary University, Gurgaon, Haryana, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- * E-mail: ,
| |
Collapse
|
7
|
Hibino A, Saito R, Taniguchi K, Zaraket H, Shobugawa Y, Matsui T, Suzuki H, for the Japanese HRSV Collaborative Study Group. Molecular epidemiology of human respiratory syncytial virus among children in Japan during three seasons and hospitalization risk of genotype ON1. PLoS One 2018; 13:e0192085. [PMID: 29377949 PMCID: PMC5788364 DOI: 10.1371/journal.pone.0192085] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/16/2018] [Indexed: 12/25/2022] Open
Abstract
We investigated the genetic diversity, the circulation patterns, and risk for hospital admission of human respiratory syncytial virus (HRSV) strains in Japan between 2012 through 2015. During the study period, 744 HRSV-positive cases were identified by rapid diagnostic test. Of these, 572 samples were positive by real-time PCR; 400 (69.9%) were HRSV-A, and 172 (30.1%) were HRSV-B. HRSV-A and -B alternated as the dominant strain in the subsequent seasons. Phylogenetic tree analysis of the second hyper-variable region of the G protein classified the HRSV-A specimens into NA1 (n = 242) and ON1 (n = 114) genotypes and the HRSV-B specimens into BA9 (n = 60), and BA10 (n = 27). The ON1 genotype, containing a 72-nucleotide duplication in the G protein’s second hyper-variable region, was first detected in the 2012–2013 season but it predominated and replaced the older NA1 HRSV-A in the 2014–2015 season, which also coincided with a record number of HRSV cases reported to the National Infectious Disease Surveillance in Japan. The risk of hospitalization was 6.9 times higher for the ON1 genotype compared to NA1. In conclusion, our data showed that the emergence and predominance of the relatively new ON1 genotype in Japan was associated with a record high number of cases and increased risk for hospitalization.
Collapse
Affiliation(s)
- Akinobu Hibino
- Division of International Health (Public Health), Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Reiko Saito
- Division of International Health (Public Health), Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- * E-mail:
| | | | - Hassan Zaraket
- Division of International Health (Public Health), Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Pathology, Immunology, and Microbiology, Faculty of Medicine American University of Beirut, Beirut, Lebanon
- Center for Infectious Disease Research, Faculty of Medicine American University of Beirut, Beirut, Lebanon
| | - Yugo Shobugawa
- Division of International Health (Public Health), Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tamano Matsui
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Suzuki
- School of Nursing, Niigata Seiryo University, Niigata, Japan
| | | |
Collapse
|
8
|
Song J, Wang H, Shi J, Cui A, Huang Y, Sun L, Xiang X, Ma C, Yu P, Yang Z, Li Q, Ng TI, Zhang Y, Zhang R, Xu W. Emergence of BA9 genotype of human respiratory syncytial virus subgroup B in China from 2006 to 2014. Sci Rep 2017; 7:16765. [PMID: 29196726 PMCID: PMC5711796 DOI: 10.1038/s41598-017-17055-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/21/2017] [Indexed: 01/10/2023] Open
Abstract
A study was conducted to investigate the circulation of HRSV subgroup B (HRSVB) in China in recent years. HRSVB sequences from 365 samples collected in 1991, 2004 and 2008-2014 in China, together with 332 Chinese HRSVB sequences obtained from GenBank were analyzed to determine the geographic and yearly distribution of HRSVB. Phylogenetic analysis revealed these HRSVB sequences clustered into 4 genotypes with different frequencies: BA (83%), CB1 (11%), SAB (3.0%) and GB3 (0.7%). Between 2005 and 2013, there was a co-circulation of BA and non-BA genotypes in China. Genotypes BA9 and BA10 were two of the main BA genotypes detected in this study. Genotype BA9 was first detected in China in 2006 and became the predominant HRSVB genotype circulating in China from 2008 to 2014. Three different lineages were detected for both genotypes BA9 and BA10. Time to the most recent common ancestor for genotypes BA9 and BA10 was estimated for years 1997 and 1996, respectively. Results of this study not only contribute to the understanding of the circulation pattern, but also the phylogenetic pattern and evolution of HRSVB in China from 1991 to 2014.
Collapse
Affiliation(s)
- Jinhua Song
- WHO WPRO Regional Reference Measles/Rubella Laboratory and Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Huiling Wang
- WHO WPRO Regional Reference Measles/Rubella Laboratory and Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jing Shi
- WHO WPRO Regional Reference Measles/Rubella Laboratory and Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China.,Lu Juan Community Health Center of Daxing region, Beijing, People's Republic of China
| | - Aili Cui
- WHO WPRO Regional Reference Measles/Rubella Laboratory and Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yanzhi Huang
- Jilin Children's Medical Center, Children's Hospital of Changchun, Changchun, People's Republic of China
| | - Liwei Sun
- Jilin Children's Medical Center, Children's Hospital of Changchun, Changchun, People's Republic of China
| | - Xingyu Xiang
- Hunan Provincial Centers for Disease Control and Prevention, Changsha, People's Republic of China
| | - Chaofeng Ma
- Xian Center for Disease Control and Prevention, Xian, People's Republic of China
| | - Pengbo Yu
- Shaanxi Provincial Centers for Disease Control and Prevention, Xian, People's Republic of China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qi Li
- Hebei Provincial Centers for Disease Control and Prevention, Shijiazhuang, People's Republic of China
| | | | - Yan Zhang
- WHO WPRO Regional Reference Measles/Rubella Laboratory and Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China.
| | - Rongbo Zhang
- Medical College, Anhui University of Science & Technology, Huainan, People's Republic of China.
| | - Wenbo Xu
- WHO WPRO Regional Reference Measles/Rubella Laboratory and Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China. .,Medical College, Anhui University of Science & Technology, Huainan, People's Republic of China.
| |
Collapse
|
9
|
Korsun N, Angelova S, Tzotcheva I, Georgieva I, Lazova S, Parina S, Alexiev I, Perenovska P. Prevalence and genetic characterisation of respiratory syncytial viruses circulating in Bulgaria during the 2014/15 and 2015/16 winter seasons. Pathog Glob Health 2017; 111:351-361. [PMID: 28948867 DOI: 10.1080/20477724.2017.1375708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The respiratory syncytial virus (RSV) is a leading cause of acute respiratory illnesses (ARI) in infants and young children. The objectives of this study were to investigate the RSV circulation among children aged <5 years in Bulgaria, to identify the RSV-A and RSV-B genotypes and to perform an amino acid sequence analysis of second hypervariable region (HVR2) of the G gene. During the 2014/15 and 2015/16 winter seasons, nasopharyngeal specimens of 610 children aged <5 years with ARI were tested using Real Time RT-PCR for influenza viruses, RSV, metapneumovirus, parainfluenza viruses, rhinoviruses and adenoviruses. Viral respiratory pathogens were detected in 429 (70%) out of 610 patients examined and RSV was the most frequently identified virus (26%) followed by influenza A(H1N1)pdm09 virus (14%) (p < .05). RSV was the most prevalent pathogen in patients with bronchiolitis (48%) and pneumonia (38%). In the 2014/15 season, RSV-A dominated slightly (53%), while in the next season RSV-B viruses prevailed more strongly (66%). The phylogenetic analysis based on the G gene indicated that all 21 studied RSV-A strains belonged to the ON1 genotype; the vast majority (96%) of the RSV-B strains were classified into BA9 genotype and only one - into BA10 genotype. All Bulgarian RSV-A and RSV-B sequences contained a 72-nt and a 60-nt duplication in the HVR2, respectively. The study showed the leading role of this pathogen as a causative agent of serious respiratory illnesses in early childhood, year-on-year fluctuations in RSV incidence, a shift from RSV-A to RSV-B subgroup dominance and relatively low genetic divergence in the circulating strains.
Collapse
Affiliation(s)
- Neli Korsun
- a Department of Virology , National Centre of Infectious and Parasitic Diseases , Sofia , Bulgaria
| | - Svetla Angelova
- a Department of Virology , National Centre of Infectious and Parasitic Diseases , Sofia , Bulgaria
| | - Iren Tzotcheva
- b Paediatric clinic , University Hospital Alexandrovska, Medical University , Sofia , Bulgaria
| | - Irina Georgieva
- a Department of Virology , National Centre of Infectious and Parasitic Diseases , Sofia , Bulgaria
| | - Snezhina Lazova
- b Paediatric clinic , University Hospital Alexandrovska, Medical University , Sofia , Bulgaria
| | - Snezhana Parina
- b Paediatric clinic , University Hospital Alexandrovska, Medical University , Sofia , Bulgaria
| | - Ivaylo Alexiev
- a Department of Virology , National Centre of Infectious and Parasitic Diseases , Sofia , Bulgaria
| | - Penka Perenovska
- b Paediatric clinic , University Hospital Alexandrovska, Medical University , Sofia , Bulgaria
| |
Collapse
|
10
|
Wang J, Qiu J, Zhu Y, Zhou H, Yu L, Ding Y, Zhang L, Guo Z, Dong C. Molecular evolution of hepatitis B vaccine escape variants in China, during 2000-2016. Vaccine 2017; 35:5808-5813. [PMID: 28939157 DOI: 10.1016/j.vaccine.2017.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/02/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023]
Abstract
Hepatitis B vaccine escape variants are the main threat to hepatitis B virus (HBV) infection in vaccination era worldwide. With 215 genotype B HBV and 313 genotype C HBV vaccine escape variants isolated from China during 2000-2016, we reported that genotype B HBV vaccine escape strains diverged in ∼1997 (95% HPD; 1987-2005), while genotype C HBV vaccine escape strains diverged in ∼1976 (95% HPD; 1955-2003). Additionally, the p-distance of genotype C HBV vaccine escape strains was 0.0291±0.0169, which was significantly higher than that in the genotype B HBV (t=131.02, p<0.05). However, genotype B HBV vaccine escape strains evolved more rapidly than genotype C HBV (2.103×10-3 vs 1.083×10-3 substitutions/site/year). Bayesian skyline plot analysis showed that the populations of genotype C HBV vaccine escape strains fluctuated more than those in genotype B HBV. Four sites (A5T/S, L21S, T/A126S and T/N131I/A) and 13 sites (N3S, T5A, G10Q/R/E, L21S, T47K/A/V, L98V/P, I/S126N/V/T, Q129H/R/L, T131P/I/N/A, G145A/R, L175S/F, L213I/S, V224A/G) were found to be under positive selection in genotype B and C HBV vaccine escape strains, respectively. More importantly, N3S, L21S, T47K, L98V, I/S126T and L213I mutations were detected in 1 (2.5%), 1 (2.5%), 1 (2.5%), 3 (7.5%), 1 (2.5%), 1 (2.5%) genotype C HBV infected Chinese younger with neonatal HBV vaccination, respectively. Therefore, our results should be valuable in further understanding the molecular evolution of HBV and providing new ideas for the elimination of HBV infection.
Collapse
Affiliation(s)
- Jie Wang
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Jing Qiu
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yinwei Zhu
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Hui Zhou
- Suzhou Industrial Park Centers for Disease Control and Prevention, Suzhou 215123, China
| | - Lugang Yu
- Suzhou Industrial Park Centers for Disease Control and Prevention, Suzhou 215123, China
| | - Yi Ding
- Suzhou Industrial Park Centers for Disease Control and Prevention, Suzhou 215123, China
| | - Lige Zhang
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Zhirong Guo
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chen Dong
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
11
|
Ábrego LE, Delfraro A, Franco D, Castillo J, Castillo M, Moreno B, López-Vergès S, Pascale JM, Arbiza J. Genetic variability of human respiratory syncytial virus group B in Panama reveals a novel genotype BA14. J Med Virol 2017; 89:1734-1742. [PMID: 28464479 DOI: 10.1002/jmv.24838] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/24/2017] [Accepted: 04/17/2017] [Indexed: 11/10/2022]
Abstract
In Panama, human respiratory syncytial virus (HRSV) is responsible of 20-40% of acute respiratory infections in children under 5 years old. Currently, little is known about the genetic variability of HRSV in Central America and the Caribbean. Recently, we reported the genetic variability of HRSV-A, however; no studies on HRSV-B in Panama have been described yet. In this study, 24 sequences of Panamanian HRSV-B, from children (<5 years) with acute respiratory infections (ARI), collected from July 2008 to November 2012 were analyzed. All sequences share the characteristic 60-nt duplication of the BA strains. Six Panamanian strains grouped with the BA10 genotype and 12 samples clustered together in a separate monophyletic clade with an aLRT support value of 0.92 and an intra-group p-distance less than 0.07. This fulfills the criteria to consider a new genotype in HRSV, which we named BA14 genotype. Another six strains remain unclassified, but closely related to BA9, BA11, or the new BA14 genotypes, according to their genetic p-distance. Different amino acid substitutions in the Panamanian HRSV-B strains were observed, some previously described and others found only on Panamanian strains. This study contributes to the knowledge of the genetic variability and evolution of HRSV in Central America.
Collapse
Affiliation(s)
- Leyda E Ábrego
- Deparment of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Adriana Delfraro
- Virology Section, School of Sciences, University of the Republic, Montevideo, Uruguay
| | - Danilo Franco
- Deparment of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama.,School of Medicine, University of Panama, Panama City, Panama
| | - Juan Castillo
- Department of Genomic and Proteomic, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Marlene Castillo
- Deparment of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Brechla Moreno
- Deparment of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Sandra López-Vergès
- Deparment of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Juan M Pascale
- School of Medicine, University of Panama, Panama City, Panama.,Department of Genomic and Proteomic, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Juan Arbiza
- Virology Section, School of Sciences, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
12
|
Kimura H, Nagasawa K, Kimura R, Tsukagoshi H, Matsushima Y, Fujita K, Hirano E, Ishiwada N, Misaki T, Oishi K, Kuroda M, Ryo A. Molecular evolution of the fusion protein (F) gene in human respiratory syncytial virus subgroup B. INFECTION GENETICS AND EVOLUTION 2017; 52:1-9. [PMID: 28414106 DOI: 10.1016/j.meegid.2017.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 11/19/2022]
Abstract
In this study, we examined the molecular evolution of the fusion protein (F) gene in human respiratory syncytial virus subgroup B (HRSV-B). First, we performed time-scale evolution analyses using the Bayesian Markov chain Monte Carlo (MCMC) method. Next, we performed genetic distance, linear B-cell epitope prediction, N-glycosylation, positive/negative selection site, and Bayesian skyline plot analyses. We also constructed a structural model of the F protein and mapped the amino acid substitutions and the predicted B-cell epitopes. The MCMC-constructed phylogenetic tree indicated that the HRSV F gene diverged from the bovine respiratory syncytial virus gene approximately 580years ago and had a relatively low evolutionary rate (7.14×10-4substitutions/site/year). Furthermore, a common ancestor of HRSV-A and -B diverged approximately 290years ago, while HRSV-B diverged into three clusters for approximately 60years. The genetic similarity of the present strains was very high. Although a maximum of 11 amino acid substitutions were observed in the structural model of the F protein, only one strain possessed an amino acid substitution located within the palivizumab epitope. Four epitopes were predicted, although these did not correspond to the neutralization sites of the F protein including the palivizumab epitope. In addition, five N-glycosylation sites of the present HRSV-B strains were inferred. No positive selection sites were identified; however, many sites were found to be under negative selection. The effective population size of the gene has remained almost constant. On the basis of these results, it can be concluded that the HRSV-B F gene is highly conserved, as is the F protein of HRSV-A. Moreover, our prediction of B-cell epitopes does not show that the palivizumab reaction site may be recognized as an epitope during naturally occurring infections.
Collapse
Affiliation(s)
- Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan; Department of Microbiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanagawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | - Koo Nagasawa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Ryusuke Kimura
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 37-1 Nakaoruimachi, Takasaki-shi, Gunma 370-0033, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma 371-0052, Japan
| | - Yuki Matsushima
- Kawasaki City Institute for Public Health, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Kiyotaka Fujita
- School of Medical Technology, Faculty of Health Science, Gumma Paz College, 1-7-1 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
| | - Eiko Hirano
- Fukui Prefectural Institute of Public Health and Environmental Science, 39-4 Harame-cho, Fukui-shi, Fukui 910-8851, Japan
| | - Naruhiko Ishiwada
- Division of Infection Control and Prevention, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8677, Japan
| | - Takako Misaki
- Kawasaki City Institute for Public Health, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanagawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan
| |
Collapse
|
13
|
Yoshihara K, Le MN, Nagasawa K, Tsukagoshi H, Nguyen HA, Toizumi M, Moriuchi H, Hashizume M, Ariyoshi K, Dang DA, Kimura H, Yoshida LM. Molecular evolution of respiratory syncytial virus subgroup A genotype NA1 and ON1 attachment glycoprotein (G) gene in central Vietnam. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2016; 45:437-446. [PMID: 27746294 DOI: 10.1016/j.meegid.2016.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023]
Abstract
We performed molecular evolutionary analyses of the G gene C-terminal 3rd hypervariable region of RSV-A genotypes NA1 and ON1 strains from the paediatric acute respiratory infection patients in central Vietnam during the 2010-2012 study period. Time-scaled phylogenetic analyses were performed using Bayesian Markov Chain Monte Carlo (MCMC) method, and pairwise distances (p-distances) were calculated. Bayesian Skyline Plot (BSP) was constructed to analyze the time-trend relative genetic diversity of central Vietnam RSV-A strains. We also estimated the N-glycosylation sites within G gene hypervariable region. Amino acid substitutions under positive and negative selection pressure were examined using Conservative Single Likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), Internal Fixed Effects Likelihood (IFEL) and Mixed Effects Model for Episodic Diversifying Selection (MEME) models. The majority of central Vietnam ON1 strains detected in 2012 were classified into lineage 1 with few positively selected substitutions. As for the Vietnamese NA1 strains, four lineages were circulating during the study period with a few positive selection sites. Shifting patterns of the predominantly circulating NA1 lineage were observed in each year during the investigation period. Median p-distance of central Vietnam NA1 strains was wider (p-distance=0.028) than that of ON1 (p-distance=0.012). The molecular evolutionary rate of central Vietnam ON1 strains was estimated to be 2.55×10-2 (substitutions/site/year) and was faster than NA1 (7.12×10-3 (substitutions/site/year)). Interestingly, the evolutionary rates of both genotypes ON1 and NA1 strains from central Vietnam were faster than the global strains respectively. Furthermore, the shifts of N-glycosylation pattern within the G gene 3rd hypervariable region of Vietnamese NA1 strains were observed in each year. BSP analysis indicated the rapid growth of RSV-A effective population size in early 2012. These results suggested that the molecular evolution of RSV-A G gene detected in central Vietnam was fast with unique evolutionary dynamics.
Collapse
Affiliation(s)
- Keisuke Yoshihara
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Minh Nhat Le
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Koo Nagasawa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi, Gunma 371-0052, Japan
| | - Hien Anh Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Michiko Toizumi
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hiroyuki Moriuchi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; Department of Paediatrics, Nagasaki University Hospital, Nagasaki 852-8102, Japan
| | - Masahiro Hashizume
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Koya Ariyoshi
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Duc Anh Dang
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Lay-Myint Yoshida
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan.
| |
Collapse
|
14
|
Molecular evolution of the fusion protein gene in human respiratory syncytial virus subgroup A. INFECTION GENETICS AND EVOLUTION 2016; 43:398-406. [PMID: 27291709 DOI: 10.1016/j.meegid.2016.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 12/18/2022]
Abstract
We studied the molecular evolution of the fusion protein (F) gene in the human respiratory syncytial virus subgroup A (HRSV-A). We performed time-scaled phylogenetic analyses using the Bayesian Markov chain Monte Carlo (MCMC) method. We also conducted genetic distance (p-distance), positive/negative selection, and Bayesian skyline plot analyses. Furthermore, we mapped the amino acid substitutions of the protein. The MCMC-constructed tree indicated that the HRSV F gene diverged from the bovine RSV (BRSV) gene approximately 550years ago and had a relatively low substitution rate (7.59×10(-4) substitutions/site/year). Moreover, a common ancestor of HRSV-A and -B diverged approximately 280years ago, which has since formed four distinct clusters. The present HRSV-A strains were assigned six genotypes based on F gene sequences and attachment glycoprotein gene sequences. The present strains exhibited high F gene sequence similarity values and low genetic divergence. No positive selection sites were identified; however, 50 negative selection sites were identified. F protein amino acid substitutions at 17 sites were distributed in the F protein. The effective population size of the gene has remained relatively constant, but the population size of the prevalent genotype (GA2) has increased in the last 10years. These results suggest that the HRSV-AF gene has evolved independently and formed some genotypes.
Collapse
|