1
|
Glass AM, Navas-Martin S. Interferon-induced protein ISG15 in the central nervous system, quo vadis? FEBS Lett 2025. [PMID: 40353372 DOI: 10.1002/1873-3468.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
The ubiquitin-like interferon (IFN)-stimulated gene 15 (ISG15) is a unique molecular effector that functions both intra- and extracellularly. Central to its pleiotropic nature is the ability to coordinate cellular responses following its conjugation to target proteins via ISGylation or in its free form. The activity of ISG15 is highly context-dependent: in the case of viral infections, ISG15 can serve as a pro- or antiviral factor. While ISG15 has been studied extensively, several gaps persist in our understanding of its role in dysregulated immune homeostasis. In particular, the role of ISG15 in the central nervous system (CNS), which has traditionally been considered an immune-privileged site, remains ill-defined. Interestingly, elevated ISG15 expression is observed in the CNS following instances of brain injury, autoimmunity, neurodegeneration, and viral infection. In this review, we seek to provide a comprehensive analysis of these studies as they pertain to ISG15 and its potential roles in the CNS. Furthermore, we discuss questions and challenges in the field while highlighting ISG15 as a potential diagnostic biomarker or therapeutic target. Impact statement While ISG15 has been studied extensively, several gaps remain in our understanding of its role in dysregulated immune homeostasis and its impact within the central nervous system (CNS). In this review, we provide a comprehensive analysis of the emerging roles of ISG15 in brain injury, autoimmunity, neurodegeneration, and viral infection within the CNS.
Collapse
Affiliation(s)
- Adam M Glass
- Department of Microbiology and Immunology, Centers for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sonia Navas-Martin
- Department of Microbiology and Immunology, Centers for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
O’Donoghue S, Earley B, Johnston D, Finnie MS, Cosby SL, Lemon K, McMenamy MJ, Taylor JF, Kim JW, Morris DW, Waters SM. Examination of the lung and lymphoid tissue mRNA transcriptome response in dairy calves following experimental challenge with bovine alphaherpesvirus one (BoHV-1). PLoS One 2025; 20:e0319575. [PMID: 40315186 PMCID: PMC12047826 DOI: 10.1371/journal.pone.0319575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/04/2025] [Indexed: 05/04/2025] Open
Abstract
Bovine alphaherpesvirus one (BoHV-1) is a primary cause of bovine respiratory disease (BRD), and a leading cause of morbidity and mortality in cattle. The transcriptomic responses of key respiratory and immune associated tissues of dairy calves following experimental challenge with BoHV-1 are unknown. Thus, the study objective was to examine the gene expression profiles of multiple tissue types from dairy calves following an infectious challenge with BoHV-1. Holstein-Friesian bull calves (mean age ± SD 149.2 days ± 23.8; mean weight ± SD 174.6 kg ± 21.3 kg were challenged with either BoHV-1 inoculate (6.3 × 107/mL × 1.35mL) (n = 12) or sterile phosphate buffered saline (n = 6). Animals were euthanised on day 6 post-challenge and tissue samples collected, including bronchial (BLN) and mediastinal lymph nodes (MLN), pharyngeal tonsil (PGT) and healthy (HL) and lesioned right cranial lung (LL). Total RNA was extracted and libraries sequenced on an Illumina NovaSeq 6000. Differential expression analysis was conducted using edgeR and pathways analysed using DAVID. A weighted gene co-expression network analysis (WGCNA) was conducted separately for each tissue type to identify networks significantly associated with BoHV-1 infection. Differentially expressed genes (DEGs) were identified in all tissues (P < 0.05, FDR < 0.1, FC > 2). Thirty-three DEGs were common to all tissues and enriched pathways included Influenza A and Herpes simplex 1 infection (P < 0.05, FDR < 0.05). Modules enriched for antiviral and innate immune processes were identified for each tissue type. Of the 33 DEGs common to all tissues, 26 were also identified as hub genes in the blood (blue) module. Our use of a controlled experimental challenge allowed for improved understanding of the immune response of dairy calves to a BoHV-1 infection. Furthermore, discovering DEGs that are common to all tissues, including whole blood, indicates future focus areas in research surrounding BRD diagnostic biomarkers.
Collapse
Affiliation(s)
- Stephanie O’Donoghue
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Meath, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Bernadette Earley
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Meath, Ireland
| | - Dayle Johnston
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Meath, Ireland
| | - Matthew S. Finnie
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Meath, Ireland
| | - S. Louise Cosby
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Ireland,
| | - Ken Lemon
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Ireland,
| | - Michael J. McMenamy
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Ireland,
| | - Jeremy F. Taylor
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Jae Woo Kim
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Derek W. Morris
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Sinéad M. Waters
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Tesfay MZ, Zhang Y, Ferdous KU, Taylor MA, Cios A, Shelton RS, Simoes CC, Watters CR, Barro O, Elliott NM, Mustafa B, Chamcheu JC, Graham AL, Washam CL, Alkam D, Gies A, Byrum SD, Giorgakis E, Post SR, Kelly T, Ying J, Moaven O, Chabu CY, Fernandez-Zapico ME, Duda DG, Roberts LR, Govindarajan R, Borad MJ, Cannon MJ, Basnakian AG, Nagalo BM. Enhancing immune response and survival in hepatocellular carcinoma with novel oncolytic Jurona virus and immune checkpoint blockade. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200913. [PMID: 39758249 PMCID: PMC11697550 DOI: 10.1016/j.omton.2024.200913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/19/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025]
Abstract
Members of the Vesiculovirus genus including Jurona virus (JURV) have emerged as promising immunotherapeutic agents, characterized by their tumor selectivity, fast kinetics, low seroprevalence, and minimal toxicity in humans. Here, we demonstrate that the administration of JURV leads to tumor regression in both hepatocellular carcinoma (HCC) xenograft and syngeneic models. Furthermore, our findings indicate that combining JURV and anti-PD-1 therapy reduced tumor burden and improved survival rates over JURV or anti-PD-1 alone in an orthotopic HCC model. Proteogenomic analysis of JURV-treated, murine HCC tumors demonstrates that the therapeutic effects of the combination of JURV and anti-PD-1 are predominantly driven by coordinated activation of immune effectors, which modulate the tumor microenvironment into a state conducive to anti-tumor activity. Our results establish JURV as a potent candidate for immunovirotherapy in HCC, capable of modulating immune response and synergizing with standard of care for HCC to prolong survival in preclinical models. Further, this research deepens our understanding of JURV's anti-tumoral mechanisms and highlights its potential as a novel approach to HCC treatment strategies.
Collapse
Affiliation(s)
- Mulu Z. Tesfay
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Yuguo Zhang
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Khandoker U. Ferdous
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Mika A. Taylor
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Aleksandra Cios
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | | | - Camila C. Simoes
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | | | - Oumar Barro
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Bahaa Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Alicia L. Graham
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Charity L. Washam
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Duah Alkam
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Allen Gies
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Stephanie D. Byrum
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Emmanouil Giorgakis
- College of Medicine, Surgery Transplant University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Steven R. Post
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Thomas Kelly
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Jun Ying
- Department of Biostatistics, UAMS College of Public Health, Little Rock, AR, USA
| | - Omeed Moaven
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, USA
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, USA
- LSU-LCMC Cancer Center, New Orleans, LA, USA
| | - Chiswili Y. Chabu
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, USA
| | | | - Dan G. Duda
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Lewis R. Roberts
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - Rang Govindarajan
- Medical Oncology Division, Internal Medicine Department, The University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mitesh J. Borad
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Martin J. Cannon
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
- Department of Microbiology and Immunology, UAMS, Little Rock, AR, USA
| | - Alexei G. Basnakian
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
- Department of Pharmacology, UAMS, Little Rock, AR, USA
| | - Bolni M. Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| |
Collapse
|
4
|
Feige L, Kozaki T, Dias de Melo G, Guillemot V, Larrous F, Ginhoux F, Bourhy H. Susceptibilities of CNS Cells towards Rabies Virus Infection Is Linked to Cellular Innate Immune Responses. Viruses 2022; 15:88. [PMID: 36680128 PMCID: PMC9860954 DOI: 10.3390/v15010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
Rabies is caused by neurotropic rabies virus (RABV), contributing to 60,000 human deaths annually. Even though rabies leads to major public health concerns worldwide, we still do not fully understand factors determining RABV tropism and why glial cells are unable to clear RABV from the infected brain. Here, we compare susceptibilities and immune responses of CNS cell types to infection with two RABV strains, Tha and its attenuated variant Th2P-4M, mutated on phospho- (P-protein) and matrix protein (M-protein). We demonstrate that RABV replicates in human stem cell-derived neurons and astrocytes but fails to infect human iPSC-derived microglia. Additionally, we observed major differences in transcription profiles and quantification of intracellular protein levels between antiviral immune responses mediated by neurons, astrocytes (IFNB1, CCL5, CXCL10, IL1B, IL6, and LIF), and microglia (CCL5, CXCL10, ISG15, MX1, and IL6) upon Tha infection. We also show that P- and M-proteins of Tha mediate evasion of NF-κB- and JAK-STAT-controlled antiviral host responses in neuronal cell types in contrast to glial cells, potentially explaining the strong neuron-specific tropism of RABV. Further, Tha-infected astrocytes and microglia protect neurons from Tha infection via a filtrable and transferable agent. Overall, our study provides novel insights into RABV tropism, showing the interest in studying the interplay of CNS cell types during RABV infection.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| | - Tatsuya Kozaki
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Level 3, Singapore 138648, Singapore
| | - Guilherme Dias de Melo
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| | - Vincent Guillemot
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, 75015 Paris, France
| | - Florence Larrous
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Level 3, Singapore 138648, Singapore
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Center, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore
- Inserm U1015, Gustave Roussy, Bâtiment de Médecine Moléculaire, 114 Rue Edouard Vaillant, 94800 Villejuif, France
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| |
Collapse
|
5
|
Function of Host Protein Staufen1 in Rabies Virus Replication. Viruses 2021; 13:v13081426. [PMID: 34452292 PMCID: PMC8402631 DOI: 10.3390/v13081426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Rabies virus is a highly neurophilic negative-strand RNA virus with high lethality and remains a huge public health problem in developing countries to date. The double-stranded RNA-binding protein Staufen1 (STAU1) has multiple functions in RNA virus replication, transcription, and translation. However, its function in RABV infection and its mechanism of action are not clear. In this study, we investigated the role of host factor STAU1 in RABV infection of SH-SY-5Y cells. Immunofluorescence, TCID50 titers, confocal microscopy, quantitative real-time PCR and Western blotting were carried out to determine the molecular function and subcellular distribution of STAU1 in these cell lines. Expression of STAU1 in SH-SY-5Y cells was down-regulated by RNA interference or up-regulated by transfection of eukaryotic expression vectors. The results showed that N proficiently colocalized with STAU1 in SH-SY-5Y at 36 h post-infection, and the expression level of STAU1 was also proportional to the time of infection. Down-regulation of STAU1 expression increased the number of Negri body-like structures, enhanced viral replication, and a caused 10-fold increase in viral titers. Meanwhile, N protein and G protein mRNA levels also accumulated gradually with increasing infection time, which implied that STAU1 inhibited rabies virus infection of SH-SY-5Y cells in vitro. In conclusion, our results provide important clues for the detailed replication mechanism of rabies virus and the discovery of therapeutic targets.
Collapse
|
6
|
Zhao W, Su J, Wang N, Zhao N, Su S. Expression Profiling and Bioinformatics Analysis of CircRNA in Mice Brain Infected with Rabies Virus. Int J Mol Sci 2021; 22:ijms22126537. [PMID: 34207166 PMCID: PMC8234020 DOI: 10.3390/ijms22126537] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
Rabies virus (RABV) induces acute, fatal encephalitis in mammals including humans. The circRNAs are important in virus infection process, but whether circRNAs regulated RABV infection remains largely unknown. Here, mice brain with or without the RABV CVS-11 strain were subjected to RNA sequencing and a total of 30,985 circRNAs were obtained. Among these, 9021 candidates were shared in both groups, and 14,610 and 7354 circRNAs were expressed specifically to the control and experimental groups, indicating that certain circRNAs were specifically inhibited or induced on RABV infection. The circRNAs mainly derived from coding exons. In total, 636 circRNAs were differentially expressed in RABV infection, of which 426 significantly upregulated and 210 significantly downregulated (p < 0.05 and fold change ≥2). The expression of randomly selected 6 upregulated and 6 downregulated circRNAs was tested by RT-qPCR, and the expression trend of the 11 out of 12 circRNAs was consistent in RT- qPCR and RNA-seq analysis. Rnase R-resistant assay and Sanger sequencing were conducted to verify the circularity of circRNAs. GO analysis demonstrated that source genes of all differentially regulated circRNAs were mainly related to cell plasticity and synapse function. Both KEGG and GSEA analysis revealed that these source genes were engaged in the cGMP–PKG and MAPK signaling pathway, and HTLV-I infection. Also, pathways related to glucose metabolism and synaptic functions were enriched in KEGG analysis. The circRNA–miRNA–mRNA network was built with 25 of 636 differentially expressed circRNAs, 264 mRNAs involved in RABV infection, and 29 miRNAs. Several miRNAs and many mRNAs in the network were reported to be related to viral infection and the immune response, suggesting that circRNAs could regulate RABV infection via interacting with miRNAs and mRNAs. Taken together, this study first characterized the transcriptomic pattern of circRNAs, and signaling pathways and function that circRNAs are involved in, which may indicate directions for further research to understand mechanisms of RABV pathogenesis.
Collapse
|
7
|
Cardon T, Ozcan B, Aboulouard S, Kobeissy F, Duhamel M, Rodet F, Fournier I, Salzet M. Epigenetic Studies Revealed a Ghost Proteome in PC1/3 KD Macrophages under Antitumoral Resistance Induced by IL-10. ACS OMEGA 2020; 5:27774-27782. [PMID: 33163760 PMCID: PMC7643081 DOI: 10.1021/acsomega.0c02530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Our previous investigation on macrophages has allowed us to show that the inhibition of the enzyme proprotein convertase (PC1/3) controls the activation of macrophages. We demonstrated that PC1/3 knockdown (KD) in macrophages exhibits an increased secretion of proinflammatory and antitumoral factors. In this biological context, we assessed the presence of histone modifications and the presence and contribution of a "ghost proteome" in these macrophages. We identified a set of alternative proteins (AltProts) that have a key role in the regulation of various signaling pathways. In this study, to further investigate the underlying mechanisms involved in the resistance of PC1/3-KD macrophages to anti-inflammatory stimuli, we have conducted a proteomic system biology study to assess the epigenome variation, focusing on histone modifications. Results from our study have indicated the presence of significant variations in histone modifications along with the identification of 28 AltProts, which can be correlated with antitumoral resistance under IL-10 stimulation. These findings highlight a key role of altered epigenome histone modifications in driving resistance and indicate that like the reference proteins, AltProts can have a major impact in the field of epigenetics and regulation of gene expression, as shown in our results.
Collapse
Affiliation(s)
- Tristan Cardon
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Bilgehan Ozcan
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Soulaimane Aboulouard
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Firas Kobeissy
- Department
of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Marie Duhamel
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Franck Rodet
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Isabelle Fournier
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
- Institut
Universitaire de France, Paris 75000, France
| | - Michel Salzet
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
- Institut
Universitaire de France, Paris 75000, France
| |
Collapse
|
8
|
Zhao P, Hou K, Yang S, Xia X. Characterization of small metabolites alteration in mice brain tissues after infected by rabies virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104571. [PMID: 32980577 DOI: 10.1016/j.meegid.2020.104571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/06/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023]
Abstract
Rabies, caused by rabies virus (RABV), is still one of the deadliest infectious diseases. Host metabolomic changes against RABV infection has not yet been fully understood. We performed untargeted metabolomics to discover the metabolites associated with RABV infection. The brain tissues from 20 RABV infected mice and 10 mock infected mice were used for this method. A total of 1352 differential metabolites were identified after the first-run screen, and the number reduced to 75 after second-run screen. Multivariate analysis using PLS-DA and OPLS-DA clearly discriminated the RABV infected samples from controls. Pathways enrichment analysis revealed that most differential metabolites were associated with metabolism of nucleotide and amino acid, and aminoacyl - tRNA biosynthesis and purine metabolism were the most active pathways. The findings presented in our study would promote the understanding of metabolomics changes in brains of mice after RABV infection as well as a new perspective to study the relationship between RABV and host.
Collapse
Affiliation(s)
- Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Shaoguan 512025, China.
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Xianzhu Xia
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| |
Collapse
|
9
|
Li Y, Yao M, Duan X, Ye H, Li S, Chen L, Yang C, Chen Y. The USP18 cysteine protease promotes HBV production independent of its protease activity. Virol J 2020; 17:47. [PMID: 32248821 PMCID: PMC7133002 DOI: 10.1186/s12985-020-01304-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background Hepatitis B virus (HBV) infection remains as one of the major public health problems in the world. Type I interferon (IFN) plays an essential role in antiviral defense by induced expression of a few hundred interferon stimulated genes (ISGs), including ubiquitin-specific protease 18 (USP18). The expression level of USP18 was elevated in the pretreatment liver tissues of chronic hepatitis B(CHB) patients who did not respond to IFN treatment. Thus, this study was designed to investigate the effects of USP18 on HBV replication/production. Methods The levels of wild type USP18(WT-USP18) and USP18 catalytically inactive form C64S were up-regulated by plasmids transfection in HepAD38 cells, respectively. Real-time PCR and ELISA were used to quantify HBV replication. Type I IFN signaling pathway was monitored at three levels: p-STAT1 (western Blot), interferon stimulated response element (ISRE) activity (dual luciferase assay) and ISGs expression (real time PCR). Results Our data demonstrated that overexpression of either WT-USP18 or USP18-C64S inactive mutant increased the intracellular viral pgRNA, total DNA, cccDNA, as well as HBV DNA levels in the culture supernatant, while silencing USP18 led to opposite effect on HBV production. In addition, upregulated WT-USP18 or USP18-C64S suppressed ISRE activity and the expression levels of p-STAT1 and ISGs. Conclusion USP18 promoted HBV replication via inhibiting type I IFN signaling pathway, which was independent of its protease activity.
Collapse
Affiliation(s)
- Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Min Yao
- The University of Hong Kong Shenzhen Hospital, Shenzhen, 518053, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Haiyan Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China.,Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, M5G1L6, Canada
| | - Chunhui Yang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China.
| | - Yongjun Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China.
| |
Collapse
|
10
|
Analysis of expression profiles of long noncoding RNAs and mRNAs in brains of mice infected by rabies virus by RNA sequencing. Sci Rep 2018; 8:11858. [PMID: 30089776 PMCID: PMC6082909 DOI: 10.1038/s41598-018-30359-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
Rabies, caused by rabies virus (RABV), is still the deadliest infectious disease. Mechanism of host immune response upon RABV infection is not yet fully understood. Accumulating evidences suggest that long noncoding RNAs (lncRNAs) plays key roles in host antiviral responses. However, expression profile and function of lncRNAs in RABV infection remain unclear. In the present study, expression profile of lncRNAs and mRNAs profiles were investigated in RABV-infected brain tissues of mice by RNA sequencing. A total of 140 lncRNAs and 3,807 mRNAs were differentially expressed in RABV-infected animals. The functional annotation and enrichment analysis using Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that differentially expressed transcripts were predominantly involved in signaling pathways related to host immune response. The expression profiles of the selected lncRNAs in brains of mice during RABV infections were verified by quantitative real time polymerase chain reaction (qRT-PCR). To our knowledge, this is the first report to profile the lncRNA expression in RABV infected mice. Our findings provide insights into understanding the role of lncRNAs in host immune response against RABV infection.
Collapse
|
11
|
Xu C, Sun L, Liu W, Duan Z. Latent Membrane Protein 1 of Epstein-Barr Virus Promotes RIG-I Degradation Mediated by Proteasome Pathway. Front Immunol 2018; 9:1446. [PMID: 30002655 PMCID: PMC6031712 DOI: 10.3389/fimmu.2018.01446] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
RIG-I signaling is critical to host innate immune response against RNA virus infection, and also can be activated against many kinds of cancer. Oncogene LMP1 of Epstein-Barr virus (EBV) contributes to various tumors progress. In this study, we have provided strong evidence that LMP1 inhibits Sendai virus mediated type I interferon production and downregulates RIG-I signaling pathway by promotion RIG-I degradation dependent on proteasome. Nineteen kinds of E3 ligase are identified by IP-MS as LMP1-interactors, they are candidate E3s, which are possibly recruited by LMP1 to mediate RIG-I degradation. CHIP is among these E3s, which has been reported to lead RIG-I degradation. Notably, we find C666-1, an EBV-positive nasopharyngeal carcinoma cell line, expresses low level of RIG-I, even treated with IFN-α, RIG-I expression could not be induced. This evidence indicates that EBV employs a unique strategy to evade RIG-I mediated immune responses.
Collapse
Affiliation(s)
- Chongfeng Xu
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ziyuan Duan
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|