1
|
Dunowska M. Avian influenza viruses: are they changing? N Z Vet J 2025; 73:225-229. [PMID: 40261820 DOI: 10.1080/00480169.2025.2485064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Affiliation(s)
- Magdalena Dunowska
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Luczo JM, Spackman E. Molecular Evolution of the H5 and H7 Highly Pathogenic Avian Influenza Virus Haemagglutinin Cleavage Site Motif. Rev Med Virol 2025; 35:e70012. [PMID: 39730318 DOI: 10.1002/rmv.70012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024]
Abstract
Avian influenza viruses are ubiquitous in the Anatinae subfamily of aquatic birds and occasionally spill over to poultry. Infection with low pathogenicity avian influenza viruses generally leads to subclinical or mild clinical disease. In contrast, highly pathogenic avian influenza viruses emerge from low pathogenic forms and can cause severe disease associated with extraordinarily high mortality rates. Here, we describe the natural history of avian influenza virus, with a focus on H5Nx and H7Nx subtypes, and the emergence of highly pathogenic forms; we review the biology of AIV; we examine cleavage of haemagglutinin by host cell enzymes with a particular emphasis on the biochemical properties of the proprotein convertases, and trypsin and trypsin-like proteases; we describe mechanisms implicated in the functional evolution of the haemagglutinin cleavage site motif that leads to emergence of HPAIVs; and finally, we discuss the diversity of H5 and H7 haemagglutinin cleavage site sequence motifs. It is crucial to understand the molecular attributes that drive the emergence and evolution of HPAIVs with pandemic potential to inform risk assessments and mitigate the threat of HPAIVs to poultry and human populations.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, East Geelong, Australia
- United States Department of Agriculture, Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA
| | - Erica Spackman
- United States Department of Agriculture, Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA
| |
Collapse
|
3
|
Gross J, Volmer R, Bessière P. High pathogenicity avian influenza virus emergence: Blame it on chickens or on humans raising chickens? PLoS Pathog 2024; 20:e1012608. [PMID: 39413054 PMCID: PMC11482663 DOI: 10.1371/journal.ppat.1012608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024] Open
Affiliation(s)
- Juliette Gross
- Ecole nationale vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Romain Volmer
- Ecole nationale vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Pierre Bessière
- Ecole nationale vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| |
Collapse
|
4
|
James J, Thomas SS, Seekings AH, Mahmood S, Kelly M, Banyard AC, Núñez A, Brookes SM, Slomka MJ. Evaluating the epizootic and zoonotic threat of an H7N9 low-pathogenicity avian influenza virus (LPAIV) variant associated with enhanced pathogenicity in turkeys. J Gen Virol 2024; 105:002008. [PMID: 38980150 PMCID: PMC11316556 DOI: 10.1099/jgv.0.002008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Between 2013 and 2017, the A/Anhui/1/13-lineage (H7N9) low-pathogenicity avian influenza virus (LPAIV) was epizootic in chickens in China, causing mild disease, with 616 fatal human cases. Despite poultry vaccination, H7N9 has not been eradicated. Previously, we demonstrated increased pathogenesis in turkeys infected with H7N9, correlating with the emergence of the L217Q (L226Q H3 numbering) polymorphism in the haemagglutinin (HA) protein. A Q217-containing virus also arose and is now dominant in China following vaccination. We compared infection and transmission of this Q217-containing 'turkey-adapted' (ty-ad) isolate alongside the H7N9 (L217) wild-type (wt) virus in different poultry species and investigated the zoonotic potential in the ferret model. Both wt and ty-ad viruses demonstrated similar shedding and transmission in turkeys and chickens. However, the ty-ad virus was significantly more pathogenic than the wt virus in turkeys but not in chickens, causing 100 and 33% mortality in turkeys respectively. Expanded tissue tropism was seen for the ty-ad virus in turkeys but not in chickens, yet the viral cell receptor distribution was broadly similar in the visceral organs of both species. The ty-ad virus required exogenous trypsin for in vitro replication yet had increased replication in primary avian cells. Replication was comparable in mammalian cells, and the ty-ad virus replicated successfully in ferrets. The L217Q polymorphism also affected antigenicity. Therefore, H7N9 infection in turkeys can generate novel variants with increased risk through altered pathogenicity and potential HA antigenic escape. These findings emphasize the requirement for enhanced surveillance and understanding of A/Anhui/1/13-lineage viruses and their risk to different species.
Collapse
Affiliation(s)
- Joe James
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Saumya S. Thomas
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Amanda H. Seekings
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Sahar Mahmood
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Michael Kelly
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Ashley C. Banyard
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Alejandro Núñez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Sharon M. Brookes
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Marek J. Slomka
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
5
|
Huynh DT, Chathuranga WG, Chathuranga K, Lee JS, Kim CJ. Mucosal Administration of Lactobacillus casei Surface-Displayed HA1 Induces Protective Immune Responses against Avian Influenza A Virus in Mice. J Microbiol Biotechnol 2024; 34:735-745. [PMID: 37915251 PMCID: PMC11016770 DOI: 10.4014/jmb.2307.07040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Avian influenza is a serious threat to both public health and the poultry industry worldwide. This respiratory virus can be combated by eliciting robust immune responses at the site of infection through mucosal immunization. Recombinant probiotics, specifically lactic acid bacteria, are safe and effective carriers for mucosal vaccines. In this study, we engineered recombinant fusion protein by fusing the hemagglutinin 1 (HA1) subunit of the A/Aquatic bird/Korea/W81/2005 (H5N2) with the Bacillus subtilis poly γ-glutamic acid synthetase A (pgsA) at the surface of Lactobacillus casei (pgsA-HA1/L. casei). Using subcellular fractionation and flow cytometry we confirmed the surface localization of this fusion protein. Mucosal administration of pgsA-HA1/L. casei in mice resulted in significant levels of HA1-specific serum IgG, mucosal IgA and neutralizing antibodies against the H5N2 virus. Additionally, pgsA-HA1/L. casei-induced systemic and local cell-mediated immune responses specific to HA1, as evidenced by an increased number of IFN-γ and IL-4 secreting cells in the spleens and higher levels of IL-4 in the local lymphocyte supernatants. Finally, mice inoculated with pgsA-HA1/L. casei were protected against a 10LD50 dose of the homologous mouse-adapted H5N2 virus. These results suggest that mucosal immunization with L. casei displaying HA1 on its surface could be a potential strategy for developing a mucosal vaccine against other H5 subtype viruses.
Collapse
Affiliation(s)
- Dung T. Huynh
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - W.A. Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| |
Collapse
|
6
|
Carnegie L, Raghwani J, Fournié G, Hill SC. Phylodynamic approaches to studying avian influenza virus. Avian Pathol 2023; 52:289-308. [PMID: 37565466 DOI: 10.1080/03079457.2023.2236568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Avian influenza viruses can cause severe disease in domestic and wild birds and are a pandemic threat. Phylodynamics is the study of how epidemiological, evolutionary, and immunological processes can interact to shape viral phylogenies. This review summarizes how phylodynamic methods have and could contribute to the study of avian influenza viruses. Specifically, we assess how phylodynamics can be used to examine viral spread within and between wild or domestic bird populations at various geographical scales, identify factors associated with virus dispersal, and determine the order and timing of virus lineage movement between geographic regions or poultry production systems. We discuss factors that can complicate the interpretation of phylodynamic results and identify how future methodological developments could contribute to improved control of the virus.
Collapse
Affiliation(s)
- L Carnegie
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - J Raghwani
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - G Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint Genes Champanelle, France
| | - S C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| |
Collapse
|
7
|
Evidence for Different Virulence Determinants and Host Response after Infection of Turkeys and Chickens with Highly Pathogenic H7N1 Avian Influenza Virus. J Virol 2022; 96:e0099422. [PMID: 35993736 PMCID: PMC9472639 DOI: 10.1128/jvi.00994-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild birds are the reservoir for all avian influenza viruses (AIV). In poultry, the transition from low pathogenic (LP) AIV of H5 and H7 subtypes to highly pathogenic (HP) AIV is accompanied mainly by changing the hemagglutinin (HA) monobasic cleavage site (CS) to a polybasic motif (pCS). Galliformes, including turkeys and chickens, succumb with high morbidity and mortality to HPAIV infections, although turkeys appear more vulnerable than chickens. Surprisingly, the genetic determinants for virulence and pathogenesis of HPAIV in turkeys are largely unknown. Here, we determined the genetic markers for virulence and transmission of HPAIV H7N1 in turkeys, and we explored the host responses in this species compared to those of chickens. We found that recombinant LPAIV H7N1 carrying pCS was avirulent in chickens but exhibited high virulence in turkeys, indicating that virulence determinants vary in these two galliform species. A transcriptome analysis indicated that turkeys mount a different host response than do chickens, particularly from genes involved in RNA metabolism and the immune response. Furthermore, we found that the HA glycosylation at residue 123, acquired by LP viruses shortly after transmission from wild birds and preceding the transition from LP to HP, had a role in virus fitness and virulence in chickens, though it was not a prerequisite for high virulence in turkeys. Together, these findings indicate variable virulence determinants and host responses in two closely related galliformes, turkeys and chickens, after infection with HPAIV H7N1. These results could explain the higher vulnerability to HPAIV of turkeys compared to chickens. IMPORTANCE Infection with HPAIV in chickens and turkeys, two closely related galliform species, results in severe disease and death. Although the presence of a polybasic cleavage site (pCS) in the hemagglutinin of AIV is a major virulence determinant for the transition of LPAIV to HPAIV, there are knowledge gaps on the genetic determinants (including pCS) and the host responses in turkeys compared to chickens. Here, we found that the pCS alone was sufficient for the transformation of a LP H7N1 into a HPAIV in turkeys but not in chickens. We also noticed that turkeys exhibited a different host response to an HPAIV infection, namely, a widespread downregulation of host gene expression associated with protein synthesis and the immune response. These results are important for a better understanding of the evolution of HPAIV from LPAIV and of the different outcomes and the pathomechanisms of HPAIV infections in chickens and turkeys.
Collapse
|
8
|
Wille M, Tolf C, Latorre-Margalef N, Fouchier RAM, Halpin RA, Wentworth DE, Ragwani J, Pybus OG, Olsen B, Waldenström J. Evolutionary features of a prolific subtype of avian influenza A virus in European waterfowl. Virus Evol 2022; 8:veac074. [PMID: 36128050 PMCID: PMC9477075 DOI: 10.1093/ve/veac074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/12/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Avian influenza A virus (AIV) is ubiquitous in waterfowl and is detected annually at high prevalence in waterfowl during the Northern Hemisphere autumn. Some AIV subtypes are globally common in waterfowl, such as H3N8, H4N6, and H6N2, and are detected in the same populations at a high frequency, annually. In order to investigate genetic features associated to the long-term maintenance of common subtypes in migratory ducks, we sequenced 248 H4 viruses isolated across 8 years (2002-9) from mallards (Anas platyrhynchos) sampled in southeast Sweden. Phylogenetic analyses showed that both H4 and N6 sequences fell into three distinct lineages, structured by year of isolation. Specifically, across the 8 years of the study, we observed lineage replacement, whereby a different HA lineage circulated in the population each year. Analysis of deduced amino acid sequences of the HA lineages illustrated key differences in regions of the globular head of hemagglutinin that overlap with established antigenic sites in homologous hemagglutinin H3, suggesting the possibility of antigenic differences among these HA lineages. Beyond HA, lineage replacement was common to all segments, such that novel genome constellations were detected across years. A dominant genome constellation would rapidly amplify in the duck population, followed by unlinking of gene segments as a result of reassortment within 2-3 weeks following introduction. These data help reveal the evolutionary dynamics exhibited by AIV on both annual and decadal scales in an important reservoir host.
Collapse
Affiliation(s)
- Michelle Wille
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| | - Conny Tolf
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| | - Neus Latorre-Margalef
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| | - Ron A M Fouchier
- Department of Virology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | - Jayna Ragwani
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London AL9 7TA, UK
| | - Björn Olsen
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala SE751 85, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| |
Collapse
|
9
|
Evolution of the North American Lineage H7 Avian Influenza Viruses in Association with H7 Virus's Introduction to Poultry. J Virol 2022; 96:e0027822. [PMID: 35862690 PMCID: PMC9327676 DOI: 10.1128/jvi.00278-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The incursions of H7 subtype low-pathogenicity avian influenza virus (LPAIV) from wild birds into poultry and its mutations to highly pathogenic avian influenza virus (HPAIV) have been an ongoing concern in North America. Since 2000, 10 phylogenetically distinct H7 virus outbreaks from wild birds have been detected in poultry, six of which mutated to HPAIV. To study the molecular evolution of the H7 viruses that occurs when changing hosts from wild birds to poultry, we performed analyses of the North American H7 hemagglutinin (HA) genes to identify amino acid changes as the virus circulated in wild birds from 2000 to 2019. Then, we analyzed recurring HA amino acid changes and gene constellations of the viruses that spread from wild birds to poultry. We found six HA amino acid changes occurring during wild bird circulation and 10 recurring changes after the spread to poultry. Eight of the changes were in and around the HA antigenic sites, three of which were supported by positive selection. Viruses from each H7 outbreak had a unique genotype, with no specific genetic group associated with poultry outbreaks or mutation to HPAIV. However, the genotypes of the H7 viruses in poultry outbreaks tended to contain minor genetic groups less observed in wild bird H7 viruses, suggesting either a biased sampling of wild bird AIVs or a tendency of having reassortment with minor genetic groups prior to the virus's introduction to poultry. IMPORTANCE Wild bird-origin H7 subtype avian influenza viruses are a constant threat to commercial poultry, both directly by the disease they cause and indirectly through trade restrictions that can be imposed when the virus is detected in poultry. It is important to understand the genetic basis of why the North American lineage H7 viruses have repeatedly crossed the species barrier from wild birds to poultry. We examined the amino acid changes in the H7 viruses associated with poultry outbreaks and tried to determine gene reassortment related to poultry adaptation and mutations to HPAIV. The findings in this study increase the understanding of the evolutionary pathways of wild bird AIV before infecting poultry and the HA changes associated with adaptation of the virus in poultry.
Collapse
|
10
|
de Bruin ACM, Funk M, Spronken MI, Gultyaev AP, Fouchier RAM, Richard M. Hemagglutinin Subtype Specificity and Mechanisms of Highly Pathogenic Avian Influenza Virus Genesis. Viruses 2022; 14:1566. [PMID: 35891546 PMCID: PMC9321182 DOI: 10.3390/v14071566] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Highly Pathogenic Avian Influenza Viruses (HPAIVs) arise from low pathogenic precursors following spillover from wild waterfowl into poultry populations. The main virulence determinant of HPAIVs is the presence of a multi-basic cleavage site (MBCS) in the hemagglutinin (HA) glycoprotein. The MBCS allows for HA cleavage and, consequently, activation by ubiquitous proteases, which results in systemic dissemination in terrestrial poultry. Since 1959, 51 independent MBCS acquisition events have been documented, virtually all in HA from the H5 and H7 subtypes. In the present article, data from natural LPAIV to HPAIV conversions and experimental in vitro and in vivo studies were reviewed in order to compile recent advances in understanding HA cleavage efficiency, protease usage, and MBCS acquisition mechanisms. Finally, recent hypotheses that might explain the unique predisposition of the H5 and H7 HA sequences to obtain an MBCS in nature are discussed.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Alexander P. Gultyaev
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
- Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2300 RA Leiden, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| |
Collapse
|
11
|
JMM Profile: Avian influenza: a veterinary pathogen with zoonotic potential. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian influenza viruses (AIVs) are classified as either low pathogenicity (LP; generally causing sub-clinical to mild infections) or high pathogenicity (HP; capable of causing significant mortality events in birds). To date, HPAIVs appear o be restricted to the haemagglutinin (HA) glycoprotein H5 and H7 AIV subtypes. Both LPAIV and HPAIV H5 and H7 AIV subtypes are classified as the causative agents of notifiable disease in poultry. A broad range of non-H5/non-H7 LPAIVs also exist that have been associated with more severe disease outcomes in avian species. As a result, the constant threat from AIVs causes significant economic damage in poultry production systems worldwide. The close proximity between mammalian and susceptible avian species in some environments provides the opportunity for both inter-host transmission and mammalian adaptation, potentially resulting in novel AIV strains capable of infecting humans.
Collapse
|
12
|
Fujiwara M, Auty H, Brown I, Boden L. Assessing the Likelihood of High Pathogenicity Avian Influenza Incursion Into the Gamebird Sector in Great Britain via Designated Hatcheries. Front Vet Sci 2022; 9:877197. [PMID: 35529831 PMCID: PMC9072826 DOI: 10.3389/fvets.2022.877197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
The outbreaks of High Pathogenicity Avian Influenza (HPAI) in the United Kingdom in 2017 and 2021 had a substantial impact on the gamebird industry and highlighted to policymakers the importance of existing knowledge gaps for effective disease control. Despite the size of the industry, the impact of HPAI on the gamebird industry is not well-understood. To improve future disease preparedness, a veterinary risk assessment to explore the risk of HPAI incursion into the gamebird sector in Great Britain via a designated hatchery was commissioned by Scottish Government Animal Health and Welfare Division. Hatchery designation is a legal requirement for hatcheries located within disease control zones or that have business links to premises located in disease control zones to continue operating during an HPAI outbreak. Several risk pathways were identified, which involved various management procedures associated with egg production through to the delivery of day-old chicks. The overall likelihood of the HPAI virus introduction into a designated hatchery through hatching egg movement is considered to be low (high uncertainty). The overall likelihood of onward transmission of the HPAI virus into gamebird rearing sites from a designated hatchery through day-old chick movement is also considered to be low (medium uncertainty). These risk levels are based on the assumption that relevant control measures are observed, as enhanced biosecurity is one of the requirements for hatchery designation. However, high uncertainties and variabilities were identified in the level of compliance with these biosecurity measures. Factors increasing the likelihood level include management practices typical to this sector, such as having multiple egg production sites, raising birds at outdoor sites, catching birds from the wild for egg production, having various scale of satellite farms in various locations, importing eggs and day-old chicks from overseas, as well as the proximity of the game farm to the infected premise or to higher risk areas. This study offers evidence for policymakers to help develop criteria for hatchery designation and proposes important mitigation strategies for future disease outbreaks specific for the gamebird sector.
Collapse
Affiliation(s)
- Mayumi Fujiwara
- Global Academy of Agriculture and Food Security, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Harriet Auty
- Institute of Biodiversity, College of Medical, Veterinary & Life Sciences, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Ian Brown
- Animal and Plant Health Agency, Weybridge, United Kingdom.,School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom.,Royal Veterinary College, University of London, London, United Kingdom
| | - Lisa Boden
- Global Academy of Agriculture and Food Security, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Li X, Zhang R, Huang Z, Yao D, Luo L, Chen J, Ye W, Li L, Xiao S, Liu X, Ou X, Sun B, Xu M, Yang R, Zhang X. Estimation of Avian Influenza Viruses in Water Environments of Live Poultry Markets in Changsha, China, 2014 to 2018. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:30-39. [PMID: 34997459 DOI: 10.1007/s12560-021-09506-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
In routine surveillance for avian influenza viruses (AIVs) in the environments of live poultry markets (LPMs), certain samples were positive for AIVs type A while negative for subtypes (e.g., H5, H7, and H9). However, little attention has been paid to these unsubtyped AIVs samples. To reveal the dynamic distribution and molecular characteristics of AIVs, especially the unsubtyped AIVs, we reported and analyzed 1969 samples collected from the water environments of LPMs in Changsha, China, from January 2014 to November 2018. Our results revealed that 1504 (76.38%) samples were positive for AIV type A. Of these samples, the predominant hemagglutinin (HA) subtype was H9, followed by H5 and H7 (P < 0.05). The positive rate of H5 subtype in water environmental samples exhibited seasonality, which reached a peak in each winter-spring season from January 2014 to March 2017. The positive rates of AIVs (including type A, subtype H9, and mixed subtype H5/H7/H9) in non-central-city regions were higher than that in the central-city regions (P < 0.05). Notably, 161 unsubtyped AIVs samples were detected during the routine surveillance. However, subtyping with the commercial kit further identified eight different HA and seven different neuraminidase subtypes. Analyses unraveled that further subtyped AIVs H1, H6, and H11 had only one basic amino acid (R or K) at the cleavage site and residues Q226 and G228 at the receptor-binding associated sites. Overall, in addition to H5, H7, and H9 subtypes, we should also pay attention to unsubtyped AIVs samples during the routine surveillance for AIVs in the environments of LPMs.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Rusheng Zhang
- Changsha Center for Disease Control and Prevention, Changsha, 410004, China.
| | - Zheng Huang
- Changsha Center for Disease Control and Prevention, Changsha, 410004, China
| | - Dong Yao
- Changsha Center for Disease Control and Prevention, Changsha, 410004, China
| | - Lei Luo
- Changsha Center for Disease Control and Prevention, Changsha, 410004, China
| | - Jingfang Chen
- Changsha Center for Disease Control and Prevention, Changsha, 410004, China
| | - Wen Ye
- Changsha Center for Disease Control and Prevention, Changsha, 410004, China
| | - Lingzhi Li
- Changsha Center for Disease Control and Prevention, Changsha, 410004, China
| | - Shan Xiao
- Changsha Center for Disease Control and Prevention, Changsha, 410004, China
| | - Xiaolei Liu
- Changsha Center for Disease Control and Prevention, Changsha, 410004, China
| | - Xinhua Ou
- Changsha Center for Disease Control and Prevention, Changsha, 410004, China
| | - Biancheng Sun
- Changsha Center for Disease Control and Prevention, Changsha, 410004, China
| | - Mingzhong Xu
- Changsha Center for Disease Control and Prevention, Changsha, 410004, China
| | - Rengui Yang
- Changsha Center for Disease Control and Prevention, Changsha, 410004, China
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
14
|
H7N7 Avian Influenza Virus Mutation from Low to High Pathogenicity on a Layer Chicken Farm in the UK. Viruses 2021; 13:v13020259. [PMID: 33567525 PMCID: PMC7914596 DOI: 10.3390/v13020259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/02/2022] Open
Abstract
Avian influenza virus (AIV) subtypes H5 and H7 are capable of mutating from low to high pathogenicity strains, causing high mortality in poultry with significant economic losses globally. During 2015, two outbreaks of H7N7 low pathogenicity AIV (LPAIV) in Germany, and one each in the United Kingdom (UK) and The Netherlands occurred, as well as single outbreaks of H7N7 high pathogenicity AIV (HPAIV) in Germany and the UK. Both HPAIV outbreaks were linked to precursor H7N7 LPAIV outbreaks on the same or adjacent premises. Herein, we describe the clinical, epidemiological, and virological investigations for the H7N7 UK HPAIV outbreak on a farm with layer chickens in mixed free-range and caged units. H7N7 HPAIV was identified and isolated from clinical samples, as well as H7N7 LPAIV, which could not be isolated. Using serological and molecular evidence, we postulate how the viruses spread throughout the premises, indicating potential points of incursion and possible locations for the mutation event. Serological and mortality data suggested that the LPAIV infection preceded the HPAIV infection and afforded some clinical protection against the HPAIV. These results document the identification of a LPAIV to HPAIV mutation in nature, providing insights into factors that drive its manifestation during outbreaks.
Collapse
|
15
|
Gierak A, Śmietanka K, de Vos CJ. Quantitative risk assessment of the introduction of low pathogenic avian influenza H5 and H7 strains into Poland via legal import of live poultry. Prev Vet Med 2021; 189:105289. [PMID: 33588326 DOI: 10.1016/j.prevetmed.2021.105289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Low pathogenic avian influenza (LPAI) caused by H5 and H7 viruses is considered a threatening disease for poultry production due to the possibility of prolonged undetected virus circulation in a poultry flock and its potential to mutate to highly pathogenic avian influenza (HPAI). The occurrence of HPAI may have devastating impact on the poultry industry and has serious economic consequences. The possibility of LPAI virus (LPAIV) being introduced into Poland via import of live poultry from EU countries was considered. The main aim of the study was to quantitatively assess the probability of LPAIV H5 and H7 introduction into Poland (PLPAI) via this pathway, to evaluate the relative contribution of exporting countries and species of poultry to this probability and to present the spatial distribution of the introduction probability in Poland. To this end, a stochastic multilevel binomial risk model, taking into account uncertainty and variability of input parameter values, was developed. The results of this model indicate that the mean annual probability of LPAIV H5 or H7 introduction into Poland is 0.088 [95 % uncertainty interval: 0.0575, 0.128], which corresponds to, on average, one outbreak every 11 years. The countries contributing most to this probability are Germany, Czech Republic and Denmark. Importations of ducks, chickens and turkeys contribute most to PLPAI, whereas importations of geese and guinea fowl represent a minor risk. The probability of LPAIV introduction is not equally distributed across Poland with the majority of counties having a high probability of LPAIV introduction being located in the Western part of the country. The results of this study can be used to support decision makers on targeted prevention or risk-based surveillance strategies for LPAI.
Collapse
Affiliation(s)
- Anna Gierak
- Department of Epidemiology and Risk Assessment, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100, Puławy, Poland.
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100, Puławy, Poland.
| | - Clazien J de Vos
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, P.O. Box 65, 8200, AB Lelystad, the Netherlands.
| |
Collapse
|
16
|
A universal RT-qPCR assay for "One Health" detection of influenza A viruses. PLoS One 2021; 16:e0244669. [PMID: 33471840 PMCID: PMC7817021 DOI: 10.1371/journal.pone.0244669] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/15/2020] [Indexed: 12/27/2022] Open
Abstract
The mutual dependence of human and animal health is central to the One Health initiative as an integrated strategy for infectious disease control and management. A crucial element of the One Health includes preparation and response to influenza A virus (IAV) threats at the human-animal interface. The IAVs are characterized by extensive genetic variability, they circulate among different hosts and can establish host-specific lineages. The four main hosts are: avian, swine, human and equine, with occasional transmission to other mammalian species. The host diversity is mirrored in the range of the RT-qPCR assays for IAV detection. Different assays are recommended by the responsible health authorities for generic IAV detection in birds, swine or humans. In order to unify IAV monitoring in different hosts and apply the One Health approach, we developed a single RT-qPCR assay for universal detection of all IAVs of all subtypes, species origin and global distribution. The assay design was centred on a highly conserved region of the IAV matrix protein (MP)-segment identified by a comprehensive analysis of 99,353 sequences. The reaction parameters were effectively optimised with efficiency of 93–97% and LOD95% of approximately ten IAV templates per reaction. The assay showed high repeatability, reproducibility and robustness. The extensive in silico evaluation demonstrated high inclusivity, i.e. perfect sequence match in the primers and probe binding regions, established as 94.6% for swine, 98.2% for avian and 100% for human H3N2, pandemic H1N1, as well as other IAV strains, resulting in an overall predicted detection rate of 99% on the analysed dataset. The theoretical predictions were confirmed and extensively validated by collaboration between six veterinary or human diagnostic laboratories on a total of 1970 specimens, of which 1455 were clinical and included a diverse panel of IAV strains.
Collapse
|
17
|
Tang W, Li X, Tang L, Wang T, He G. Characterization of the low-pathogenic H7N7 avian influenza virus in Shanghai, China. Poult Sci 2020; 100:565-574. [PMID: 33518109 PMCID: PMC7858150 DOI: 10.1016/j.psj.2020.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/02/2020] [Accepted: 11/09/2020] [Indexed: 01/16/2023] Open
Abstract
H7N7 avian influenza virus (AIV) can divided into low-pathogenic AIV and high-pathogenic AIV groups. It has been shown to infect humans and animals. Its prevalence state in wild birds in China remains largely unclear. In this study, a new strain of H7N7 AIV, designated CM1216, isolated from wild birds in Shanghai, China, was characterized. Phylogenetic and nucleotide sequence analyses of CM1216 revealed that HA, NA, PB1, NP, and M genes shared the highest nucleotide identity with the Japan H7 subtype AIV circulated in 2019; the PB2 and PA genes shared the highest nucleotide identity with the Korea H7 subtype AIV circulated in wild birds in 2018, while NS gene of CM1216 was 98.93% identical to that of the duck AIV circulating in Bangladesh, and they all belong to the Eurasian lineage. A Bayesian phylogenetic reconstruction of the 2 surface genes of CM1216 showed that multiple reassortments might have occurred in 2015. Mutations were found in HA (A135 T, T136S, and T160 A [H3 numbering]), M1 (N30D and T215 A), NS1 (P42S and D97 E), PB2 (R389 K), and PA (N383D) proteins; these mutations have been shown to be related to mammalian adaptation and changes in virulence of AIVs. Infection studies demonstrated that CM1216 could infect mice and cause symptoms characteristic of influenza virus infection and proliferate in the lungs without prior adaption. This study demonstrates the need for routine surveillance of AIVs in wild birds and detection of their evolution to become a virus with high pathogenicity and ability to infect humans.
Collapse
Affiliation(s)
- Wangjun Tang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuyong Li
- College of Agricultural, Liaocheng University, Liaocheng, China
| | - Ling Tang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Tianhou Wang
- School of Life Sciences, East China Normal University, Shanghai, China; Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, China
| | - Guimei He
- School of Life Sciences, East China Normal University, Shanghai, China; Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, China.
| |
Collapse
|
18
|
Lee DH, Killian ML, Deliberto TJ, Wan XF, Lei L, Swayne DE, Torchetti MK. H7N1 Low Pathogenicity Avian Influenza Viruses in Poultry in the United States During 2018. Avian Dis 2020; 65:59-62. [PMID: 34339123 DOI: 10.1637/aviandiseases-d-20-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/01/2020] [Indexed: 11/05/2022]
Abstract
Here, we report three detections of H7N1 low pathogenicity avian influenza viruses (LPAIV) from poultry in Missouri (n = 2) and Texas (n = 1) during February and March 2018. Complete genome sequencing and comparative phylogenetic analysis suggest that the H7 LPAIV precursor viruses were circulating in wild birds in North America during the fall and winter of 2017 and spilled over into domestic poultry in Texas and Missouri independently during the spring of 2018.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, .,United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605
| | - Mary Lea Killian
- National Veterinary Services Laboratories, Diagnostics and Biologics, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010
| | - Thomas J Deliberto
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO 80521
| | - Xiu-Feng Wan
- MU Center for Research on Influenza Systems Biology, University of Missouri, Columbia, MO, 65211.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211.,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211.,Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, 65211.,MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211.,Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Li Lei
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - David E Swayne
- United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605
| | - Mia Kim Torchetti
- National Veterinary Services Laboratories, Diagnostics and Biologics, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010
| |
Collapse
|
19
|
Seekings AH, Howard WA, Nuñéz A, Slomka MJ, Banyard AC, Hicks D, Ellis RJ, Nuñéz-García J, Hartgroves LC, Barclay WS, Banks J, Brown IH. The Emergence of H7N7 Highly Pathogenic Avian Influenza Virus from Low Pathogenicity Avian Influenza Virus Using an in ovo Embryo Culture Model. Viruses 2020; 12:v12090920. [PMID: 32839404 PMCID: PMC7552004 DOI: 10.3390/v12090920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 01/19/2023] Open
Abstract
Outbreaks of highly pathogenic avian influenza virus (HPAIV) often result in the infection of millions of poultry, causing up to 100% mortality. HPAIV has been shown to emerge from low pathogenicity avian influenza virus (LPAIV) in field outbreaks. Direct evidence for the emergence of H7N7 HPAIV from a LPAIV precursor with a rare di-basic cleavage site (DBCS) was identified in the UK in 2008. The DBCS contained an additional basic amino acid compared to commonly circulating LPAIVs that harbor a single-basic amino acid at the cleavage site (SBCS). Using reverse genetics, outbreak HPAIVs were rescued with a DBCS (H7N7DB), as seen in the LPAIV precursor or an SBCS representative of common H7 LPAIVs (H7N7SB). Passage of H7N7DB in chicken embryo tissues showed spontaneous evolution to a HPAIV. In contrast, deep sequencing of extracts from embryo tissues in which H7N7SB was serially passaged showed retention of the LPAIV genotype. Thus, in chicken embryos, an H7N7 virus containing a DBCS appears naturally unstable, enabling rapid evolution to HPAIV. Evaluation in embryo tissue presents a useful approach to study AIV evolution and allows a laboratory-based dissection of molecular mechanisms behind the emergence of HPAIV.
Collapse
Affiliation(s)
- Amanda H. Seekings
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
- Correspondence:
| | - Wendy A. Howard
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| | - Alejandro Nuñéz
- Pathology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (A.N.); (D.H.)
| | - Marek J. Slomka
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| | - Ashley C. Banyard
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
- Institute for Infection and Immunity, St. George’s Hospital Medical School, University of London, London SW17 0RE, UK
| | - Daniel Hicks
- Pathology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (A.N.); (D.H.)
| | - Richard J. Ellis
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (R.J.E.); (J.N.-G.)
| | - Javier Nuñéz-García
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (R.J.E.); (J.N.-G.)
| | | | - Wendy S. Barclay
- Virology Department, Imperial College, London W2 1NY, UK; (L.C.H.); (W.S.B.)
| | - Jill Banks
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| | - Ian H. Brown
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| |
Collapse
|
20
|
Abstract
In 1918, a strain of influenza A virus caused a human pandemic resulting in the deaths of 50 million people. A century later, with the advent of sequencing technology and corresponding phylogenetic methods, we know much more about the origins, evolution and epidemiology of influenza epidemics. Here we review the history of avian influenza viruses through the lens of their genetic makeup: from their relationship to human pandemic viruses, starting with the 1918 H1N1 strain, through to the highly pathogenic epidemics in birds and zoonoses up to 2018. We describe the genesis of novel influenza A virus strains by reassortment and evolution in wild and domestic bird populations, as well as the role of wild bird migration in their long-range spread. The emergence of highly pathogenic avian influenza viruses, and the zoonotic incursions of avian H5 and H7 viruses into humans over the last couple of decades are also described. The threat of a new avian influenza virus causing a human pandemic is still present today, although control in domestic avian populations can minimize the risk to human health. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.
Collapse
Affiliation(s)
| | | | - Paul Digard
- The Roslin Institute, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
21
|
Reid SM, Núñez A, Seekings AH, Thomas SS, Slomka MJ, Mahmood S, Clark JR, Banks J, Brookes SM, Brown IH. Two Single Incursions of H7N7 and H5N1 Low Pathogenicity Avian Influenza in U.K. Broiler Breeders During 2015 and 2016. Avian Dis 2020; 63:181-192. [PMID: 31131576 DOI: 10.1637/11898-051418-reg.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/02/2018] [Indexed: 11/05/2022]
Abstract
Low pathogenicity (LP) avian influenza viruses (AIVs) have a natural reservoir in wild birds. These cause few (if any) overt clinical signs, but include H5 and H7 LPAIVs, which are notifiable in poultry. In the European Union, notifiable avian disease (NAD) demands laboratory confirmation with prompt statutory interventions to prevent dissemination of infection to multiple farms. Crucially, for H5 and H7 LPAIVs, movement restrictions and culling limit the further risk of mutation to the corresponding highly pathogenic (HP) H5 and H7 AIVs in gallinaceous poultry. An H7N7 LPAIV outbreak occurred during February 2015 at a broiler breeder chicken premise in England. Full genome sequencing suggested an avian origin closely related to contemporary European H7 LPAIV wild bird strains with no correlates for human adaptation. However, a high similarity of PB2, PB1, and NA genes with H10N7 viruses from European seals during 2014 was observed. An H5N1 LPAIV outbreak during January 2016 affecting broiler breeder chickens in Scotland resulted in rapid within-farm spread. An interesting feature from this case was that although viral tropism occurred in heart and kidney endothelial cells, suggesting HPAIV infection, the H5N1 virus had the molecular cleavage site signature of an LPAIV belonging to an indigenous European H5 lineage. There was no genetic evidence for human adaptation or antiviral drug resistance. The source of the infection was also likely to be via indirect contact with wild birds mediated via fomite spread from the nearby environment. Both LPAIV outbreaks were preceded by local flooding events that attracted wild waterfowl to the premises. Prompt detection of both outbreaks highlighted the value of the "testing to exclude" scheme launched in the United Kingdom for commercial gallinaceous poultry in 2014 as an early warning surveillance mechanism for NAD.
Collapse
Affiliation(s)
- Scott M Reid
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom,
| | - Alejandro Núñez
- Department of Pathology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Amanda H Seekings
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Saumya S Thomas
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Marek J Slomka
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Sahar Mahmood
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Jane R Clark
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Jill Banks
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Sharon M Brookes
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Ian H Brown
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| |
Collapse
|
22
|
James J, Slomka MJ, Reid SM, Thomas SS, Mahmood S, Byrne AMP, Cooper J, Russell C, Mollett BC, Agyeman-Dua E, Essen S, Brown IH, Brookes SM. Proceedings Paper-Avian Diseases 10th AI Symposium Issue Development and Application of Real-Time PCR Assays for Specific Detection of Contemporary Avian Influenza Virus Subtypes N5, N6, N7, N8, and N9. Avian Dis 2020; 63:209-218. [PMID: 31131579 DOI: 10.1637/11900-051518-reg.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/10/2018] [Indexed: 11/05/2022]
Abstract
Previously published NA subtype-specific real-time reverse-transcriptase PCRs (RRT-PCRs) were further validated for the detection of five avian influenza virus (AIV) NA subtypes, namely N5, N6, N7, N8, and N9. Testing of 30 AIV isolates of all nine NA subtypes informed the assay assessments, with the N5 and N9 RRT-PCRs retained as the original published assays while the N7 and N8 assays were modified in the primer-probe sequences to optimize detection of current threats. The preferred N6 RRT-PCR was either the original or the modified variant, depending on the specific H5N6 lineage. Clinical specimen (n = 137) testing revealed the ability of selected N5, N6, and N8 RRT-PCRs to sensitively detect clade 2.3.4.4b highly pathogenic AIV (HPAIV) infections due to H5N5, H5N6, and H5N8 subtypes, respectively, all originating from European poultry and wild bird cases during 2016-2018. Similar testing (n = 32 clinical specimens) also showed the ability of N7 and N9 RRT-PCRs to sensitively detect European H7N7 HPAIV and China-origin H7N9 low pathogenicity AIV infections, respectively.
Collapse
Affiliation(s)
- Joe James
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom,
| | - Marek J Slomka
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Scott M Reid
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Saumya S Thomas
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Sahar Mahmood
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Alexander M P Byrne
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Jayne Cooper
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Christine Russell
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Benjamin C Mollett
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Eric Agyeman-Dua
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Steve Essen
- EU/OIE/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Ian H Brown
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom.,EU/OIE/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Sharon M Brookes
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| |
Collapse
|
23
|
Beerens N, Heutink R, Harders F, Bossers A, Koch G, Peeters B. Emergence and Selection of a Highly Pathogenic Avian Influenza H7N3 Virus. J Virol 2020; 94:e01818-19. [PMID: 31969434 PMCID: PMC7108855 DOI: 10.1128/jvi.01818-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/09/2020] [Indexed: 01/21/2023] Open
Abstract
Low-pathogenicity avian influenza (LPAI) viruses of subtypes H5 and H7 have the ability to spontaneously mutate to highly pathogenic (HPAI) virus variants, causing high mortality in poultry. The highly pathogenic phenotype is caused by mutation of the hemagglutinin (HA) cleavage site, but additional mutations may play a role. Evidence from the field for the switch to high pathogenicity remains scarce. This study provides direct evidence for LPAI-to-HPAI virus mutation during H7N3 infection of a turkey farm in the Netherlands. No severe clinical symptoms were reported at the farm, but deep sequencing of isolates from the infected turkeys revealed a minority of HPAI virus sequences (0.06%) in the virus population. The HPAI virus contained a 12-nucleotide insertion in the HA cleavage site that was likely introduced by a single event as no intermediates with shorter inserts were identified. This suggests nonhomologous recombination as the mechanism of insertion. Analysis of different organs of the infected turkeys showed the largest amount of HPAI virus in the lung (4.4%). The HPAI virus was rapidly selected in experimentally infected chickens after both intravenous and intranasal/intratracheal inoculation with a mixed virus preparation. Full-genome sequencing revealed that both pathotypes contained a deletion in the stalk region of the neuraminidase protein. We identified additional mutations in HA and polymerase basic protein 1 (PB1) in the HPAI virus, which were already present as minority variants in the LPAI virus population. Our findings provide more insight into the molecular changes and mechanisms involved in the emergence and selection of HPAI viruses.IMPORTANCE Low-pathogenicity avian influenza (LPAI) viruses circulate in wild birds and can be transmitted to poultry. LPAI viruses can mutate to become highly pathogenic avian influenza (HPAI) viruses causing severe disease and death in poultry. Little is known about this switch to high pathogenicity. We isolated an LPAI H7N3 virus from an infected turkey farm and showed that this contains small amounts of HPAI virus. The HPAI virus rapidly outcompeted the LPAI virus in chickens that were experimentally infected with this mixture of viruses. We analyzed the genome sequences of the LPAI and HPAI viruses and identified several changes that may be important for a virus to become highly pathogenic. This knowledge may be used for timely identification of LPAI viruses that pose a risk of becoming highly pathogenic in the field.
Collapse
Affiliation(s)
- Nancy Beerens
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Rene Heutink
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Frank Harders
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Alex Bossers
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Guus Koch
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Ben Peeters
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|
24
|
Naguib MM, Verhagen JH, Mostafa A, Wille M, Li R, Graaf A, Järhult JD, Ellström P, Zohari S, Lundkvist Å, Olsen B. Global patterns of avian influenza A (H7): virus evolution and zoonotic threats. FEMS Microbiol Rev 2019; 43:608-621. [PMID: 31381759 PMCID: PMC8038931 DOI: 10.1093/femsre/fuz019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/31/2019] [Indexed: 01/16/2023] Open
Abstract
Avian influenza viruses (AIVs) continue to impose a negative impact on animal and human health worldwide. In particular, the emergence of highly pathogenic AIV H5 and, more recently, the emergence of low pathogenic AIV H7N9 have led to enormous socioeconomical losses in the poultry industry and resulted in fatal human infections. While H5N1 remains infamous, the number of zoonotic infections with H7N9 has far surpassed those attributed to H5. Despite the clear public health concerns posed by AIV H7, it is unclear why specifically this virus subtype became endemic in poultry and emerged in humans. In this review, we bring together data on global patterns of H7 circulation, evolution and emergence in humans. Specifically, we discuss data from the wild bird reservoir, expansion and epidemiology in poultry, significant increase in their zoonotic potential since 2013 and genesis of highly pathogenic H7. In addition, we analysed available sequence data from an evolutionary perspective, demonstrating patterns of introductions into distinct geographic regions and reassortment dynamics. The integration of all aspects is crucial in the optimisation of surveillance efforts in wild birds, poultry and humans, and we emphasise the need for a One Health approach in controlling emerging viruses such as AIV H7.
Collapse
Affiliation(s)
- Mahmoud M Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 7 Nadi El-Seid Street, Giza 12618, Egypt
| | - Josanne H Verhagen
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, 44008 Hus Vita, Kalmar SE-391 82 , Sweden
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, Giessen 35392, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), 33 El-Buhouth street, Giza 12622, Egypt
| | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne 3000, Victoria, Australia
| | - Ruiyun Li
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, Praed Street, London W2 1PG, United Kingdom
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute, Ulls väg 2B, Uppsala SE-75189, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| |
Collapse
|
25
|
Kido H, Takahashi E, Kimoto T. Role of host trypsin-type serine proteases and influenza virus-cytokine-trypsin cycle in influenza viral pathogenesis. Pathogenesis-based therapeutic options. Biochimie 2019; 166:203-213. [PMID: 31518617 DOI: 10.1016/j.biochi.2019.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
Influenza A virus (IAV) is one of the most common infectious pathogen and associated with significant morbidity and mortality. Although processing the IAV hemagglutinin (HA) envelope glycoprotein precursor is a pre-requisite for viral membrane fusion activity, viral entry and transmission, HA-processing protease is not encoded in the IAV genome and thus the cellular trypsin-type serine HA-processing proteases determine viral infectious tropism and viral pathogenicity. The initial process of IAV infection of the airway is followed by marked upregulation of ectopic trypsin in various organs and endothelial cells through the induction of various proinflammatory cytokines, and this process has been termed the "influenza virus-cytokine-trypsin" cycle. In the advanced stage of IAV infection, the cytokine storm induces disorders of glucose and lipid metabolism and the "metabolic disorders-cytokine" cycle is then linked with the "influenza virus-cytokine-trypsin" cycle, to advance the pathogenic process into energy crisis and multiple organ failure. Application of protease inhibitors and treatment of metabolic disorders that break these cycles and their interconnection is therefore a promising therapeutic approach against influenza. This review discusses IAV pathogenicity on trypsin type serine HA-processing proteases, cytokines, metabolites and therapeutic options.
Collapse
Affiliation(s)
- Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan.
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | - Takashi Kimoto
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| |
Collapse
|
26
|
Variable impact of the hemagglutinin polybasic cleavage site on virulence and pathogenesis of avian influenza H7N7 virus in chickens, turkeys and ducks. Sci Rep 2019; 9:11556. [PMID: 31399610 PMCID: PMC6689016 DOI: 10.1038/s41598-019-47938-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/24/2019] [Indexed: 11/09/2022] Open
Abstract
Avian influenza viruses (AIV) are classified into 16 hemagglutinin (HA; H1-H16) and 9 neuraminidase (NA; N1-N9) subtypes. All AIV are low pathogenic (LP) in birds, but subtypes H5 and H7 AIV can evolve into highly pathogenic (HP) forms. In the last two decades evolution of HPAIV H7 from LPAIV has been frequently reported. However, little is known about the pathogenesis and evolution of HP H7 from LP ancestors particularly, in non-chicken hosts. In 2015, both LP and HP H7N7 AIV were isolated from chickens in two neighbouring farms in Germany. Here, the virulence of these isogenic H7N7 LP, HP and LP virus carrying a polybasic HA cleavage site (HACS) from HP (designated LP-Poly) was studied in chickens, turkeys and different duck breeds. The LP precursor was avirulent in all birds. In contrast, all inoculated and contact chickens and turkeys died after infection with HP. HP infected Pekin and Mallard ducks remained clinically healthy, while Muscovy ducks exhibited moderate depression and excreted viruses at significantly higher amounts. The polybasic HACS increased virulence in a species-specific manner with intravenous pathogenicity indices of 3.0, 1.9 and 0.2 in chickens, turkeys and Muscovy ducks, respectively. Infection of endothelial cells was only observed in chickens. In summary, Pekin and Mallard were more resistant to HPAIV H7N7 than chickens, turkeys and Muscovy ducks. The polybasic HACS was the main determinant for virulence and endotheliotropism of HPAIV H7N7 in chickens, whereas other viral and/or host factors play an essential role in virulence and pathogenesis in turkeys and ducks.
Collapse
|
27
|
Świętoń E, Olszewska-Tomczyk M, Giza A, Śmietanka K. Evolution of H9N2 low pathogenic avian influenza virus during passages in chickens. INFECTION GENETICS AND EVOLUTION 2019; 75:103979. [PMID: 31351233 DOI: 10.1016/j.meegid.2019.103979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
The process of avian influenza virus (AIV) evolution in a new host was investigated in the experiment in which ten serial passages of a turkey-derived H9N2 AIV were carried out in specific pathogen free chickens (3 birds/group) inoculated by oculonasal route. Oropharyngeal swabs collected 3 days post infection were used for inoculation of birds in the next passage and subjected to analysis using deep sequencing. In total, eight mutations in the consensus sequence were found in the viral pool derived from the 10th passage: four mutations (2 in PB1 and 2 in HA) were present in the inoculum as minority variants while the other four (2 in NP, 1 in PA and 1 in HA) emerged during the passages in chickens. The detected fluctuations in the genetic heterogeneity of viral pools from consecutive passages were most likely attributed to the selective bottleneck. The genes known for bearing molecular determinants of the AIV host specificity (HA, PB2, PB1, PA) contributed most to the overall virus diversity. In some cases, a fast selection of the novel variant was noticed. For example, the amino-acid substitution N337K in the haemagglutinin (HA) cleavage site region detected in the 6th passage as low frequency variant had undergone rapid selection and became predominant in the 7th passage. Interestingly, detection of identical mutation in the field H9N2 isolates 1-year apart suggests that this substitution might provide the virus with a selective advantage. However, the role of specific mutations and their influence on the virus adaptation or fitness are mostly unknown and require further investigations.
Collapse
Affiliation(s)
- Edyta Świętoń
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland.
| | - Monika Olszewska-Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland
| | - Aleksandra Giza
- Department of Omics Analyses, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland
| |
Collapse
|
28
|
Scheibner D, Blaurock C, Mettenleiter TC, Abdelwhab EM. Virulence of three European highly pathogenic H7N1 and H7N7 avian influenza viruses in Pekin and Muscovy ducks. BMC Vet Res 2019; 15:142. [PMID: 31077209 PMCID: PMC6511205 DOI: 10.1186/s12917-019-1899-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/02/2019] [Indexed: 11/24/2022] Open
Abstract
Background There is paucity of data on the virulence of highly pathogenic (HP) avian influenza viruses (AIV) H7 in ducks compared to HPAIV H5. Here, the virulence of HPAIV H7N1 (designated H7N1-FPV34 and H7N1-It99) and H7N7 (designated H7N7-FPV27) was assessed in Pekin and/or Muscovy ducklings after intrachoanal (IC) or intramuscular (IM) infection. Results The morbidity rate ranged from 60 to 100% and mortality rate from 20 to 80% depending on the duck species, virus strain and/or challenge route. All Muscovy ducklings inoculated IC with H7N7-FPV27 or H7N1-FPV34 exhibited mild to severe clinical signs resulting in the death of 2/10 and 8/10 ducklings, respectively. Also, 2/10 and 6/9 of inoculated Muscovy ducklings died after IC or IM infection with H7N1-It99, respectively. Moreover, 5/10 Pekin ducklings inoculated IC or IM with H7N1-It99 died. The level of virus detected in the oropharyngeal swabs was higher than in the cloacal swabs. Conclusion Taken together, HPAIV H7 cause mortality and morbidity in Muscovy and Pekin ducklings. The severity of disease in Muscovy ducklings depended on the virus strain and/or route of infection. Preferential replication of the virus in the respiratory tract compared to the gut merits further investigation.
Collapse
Affiliation(s)
- David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Claudia Blaurock
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
29
|
Roy Chowdhury I, Yeddula SGR, Kim SH. Pathogenicity and Transmissibility of North American H7 Low Pathogenic Avian Influenza Viruses in Chickens and Turkeys. Viruses 2019; 11:v11020163. [PMID: 30781528 PMCID: PMC6410290 DOI: 10.3390/v11020163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 11/16/2022] Open
Abstract
Low pathogenic avian influenza (LPAI) viruses can silently circulate in poultry and wild aquatic birds and potentially mutate into highly pathogenic avian influenza (HPAI) viruses. In the U.S., recent emergence and spread of H7N8 and H7N9 HPAI viruses not only caused devastating losses to domestic poultry but also underscored the capability of LPAI viruses to mutate into HPAI viruses. Therefore, in this study, we evaluated pathogenicity and transmissibility of H7N8 and H7N9 LPAI viruses (the progenitors of HPAI viruses) in chickens and turkeys. We also included H7N2 isolated from an outbreak of LPAI in commercial chickens. H7 viruses replicated more efficiently in the respiratory tract than in the gastrointestinal tract, suggesting that their replication is restricted to the upper respiratory tract. Specifically, H7N2 replicated most efficiently in two-week-old chickens and turkeys. In contrast, H7N8 replicated least efficiently in those birds. Further, replication of H7N2 and H7N9 was restricted in the upper respiratory tract of four-week-old specific-pathogen-free (SPF) and broiler chickens. Despite their restricted replication, the two viruses efficiently transmitted from infected to naïve birds by direct contact, leading to seroconversion of contacted chickens. Our findings suggest the importance of continuous monitoring and surveillance of LPAI viruses in the fields.
Collapse
Affiliation(s)
- Ishita Roy Chowdhury
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| | | | - Shin-Hee Kim
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
30
|
Wille M, Eden JS, Shi M, Klaassen M, Hurt AC, Holmes EC. Virus-virus interactions and host ecology are associated with RNA virome structure in wild birds. Mol Ecol 2018; 27:5263-5278. [PMID: 30375075 PMCID: PMC6312746 DOI: 10.1111/mec.14918] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Little is known about the factors that shape the ecology of RNA viruses in nature. Wild birds are an important case in point, as other than influenza A virus, avian samples are rarely tested for viruses, especially in the absence of overt disease. Using bulk RNA-sequencing ("meta-transcriptomics"), we revealed the viral diversity present in Australian wild birds through the lens of the ecological factors that may determine virome structure and abundance. A meta-transcriptomic analysis of four Anseriformes (waterfowl) and Charadriiformes (shorebird) species sampled in temperate and arid Australia revealed the presence of 27 RNA virus genomes, 18 of which represent newly described species. The viruses identified included a previously described gammacoronavirus and influenza A viruses. Additionally, we identified novel virus species from the families Astroviridae, Caliciviridae, Reoviridae, Rhabdoviridae, Picobirnaviridae and Picornaviridae. We noted differences in virome structure that reflected underlying differences in location and influenza A infection status. Red-necked Avocets (Recurvirostra novaehollandiae) from Australia's arid interior possessed the greatest viral diversity and abundance, markedly higher than individuals sampled in temperate Australia. In Ruddy Turnstones (Arenaria interpres) and dabbling ducks (Anas spp.), viral abundance and diversity were higher and more similar in hosts that were positive for influenza A infection compared to those that were negative for this virus, despite samples being collected on the same day and from the same location. This study highlights the extent and diversity of RNA viruses in wild birds and lays the foundation for understanding the factors that determine virome structure in wild populations.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Centre for Virus Research, Sydney, New South Wales, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Affiliation(s)
- Arthur Otter
- APHA Shrewsbury Veterinary Investigation Centre, Kendal Road, Shrewsbury SY1 4HD
| | - Jo Payne
- APHA Sutton Bonington, The Elms, College Road, Sutton Bonington, Loughborough, Leicestershire LE12 5RB
| | - Susan Carr
- Severn Edge Farm Vets, The Bullring, Hollybush Road, Bridgnorth, Shropshire WV16 4AR
| |
Collapse
|
32
|
Adlhoch C, Kuiken T, Mulatti P, Smietanka K, Staubach C, Muñoz Guajardo I, Amato L, Baldinelli F. Avian influenza overview May - August 2018. EFSA J 2018; 16:e05430. [PMID: 32626052 PMCID: PMC7009402 DOI: 10.2903/j.efsa.2018.5430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Between 16 May and 15 August 2018, three highly pathogenic avian influenza (HPAI) A(H5N8) outbreaks in poultry establishments and three HPAI A(H5N6) outbreaks in wild birds were reported in Europe. Three low pathogenic avian influenza (LPAI) outbreaks were reported in three Member States. Few HPAI and LPAI bird cases have been detected in this period of the year, in accordance with the seasonal expected pattern of LPAI and HPAI. There is no evidence to date that HPAI A(H5N8) and A(H5N6) viruses circulating in Europe have caused any human infections. The risk of zoonotic transmission to the general public in Europe is considered to be very low. Several HPAI outbreaks in poultry were reported during this period from Russia. The presence of the A(H5N2) and A(H5N8) viruses in parts of Russia connected with fall migration routes of wild birds is of concern for possible introduction and spread with wild birds migrating to the EU. Although few AI outbreaks were observed in Africa, Asia and the Middle East during the reporting period, the probability of AI virus introductions from non‐EU countries via wild birds particularly via the north‐eastern route from Russia is increasing, as the fall migration of wild birds will start in the coming weeks. Further, the lower temperatures in autumn and winter may facilitate the environmental survival of avian influenza viruses potentially introduced to Europe.
Collapse
|
33
|
Dirsmith KL, Jeffrey Root J, Bentler KT, Sullivan HJ, Liebowitz AB, Petersen LH, McLean HE, Shriner SA. Persistence of maternal antibodies to influenza A virus among captive mallards (Anas platyrhynchos). Arch Virol 2018; 163:3235-3242. [PMID: 30128612 DOI: 10.1007/s00705-018-3978-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
Wild waterfowl are maintenance hosts of most influenza A virus (IAV) subtypes and are often the subjects of IAV surveillance and transmission models. While maternal antibodies have been detected in yolks and in nestlings for a variety of wild bird species and pathogens, the persistence of maternal antibodies to IAVs in mallard ducklings (Anas platyrhynchos) has not been previously investigated. Nonetheless, this information is important for a full understanding of IAV transmission dynamics because ducklings protected by maternal antibodies may not be susceptible to infection. In this study, we examined the transfer of IAV-specific maternal antibodies to ducklings. Blood samples were collected approximately every five days from ducklings hatched from hens previously infected with an H6 strain of IAV. Serum samples were tested for antibodies to IAV by an enzyme-linked immunosorbent assay. The median persistence of maternal antibodies in ducklings was 12.5 days (range: 4-33 days) post-hatch. The majority of ducklings (71%) had detectable maternal antibodies from 4 to 17 days post-hatch, while a small subset of individuals (29%) had detectable maternal antibodies for up to 21-33 days post-hatch. Antibody concentrations in hens near the time of egg laying were correlated with maternal antibody concentrations in the initial blood sample collected from ducklings (0-4 days post-hatch). Knowledge of the duration of maternal antibodies in ducklings will aid in the interpretation of IAV serological surveillance results and in the modeling of IAV transmission dynamics in waterfowl.
Collapse
Affiliation(s)
- Katherine L Dirsmith
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA. .,College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - J Jeffrey Root
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Kevin T Bentler
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Heather J Sullivan
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Andrea B Liebowitz
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Lauren H Petersen
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Hailey E McLean
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Susan A Shriner
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| |
Collapse
|