1
|
Mirhoseinian M, Jalilvand S, Yaghooti MM, Kachooei A, Latifi T, Feizi M, Motamedi-Rad M, Azadmanesh K, Marashi SM, Roohvand F, Shoja Z. Full genome sequence analysis of the predominant and uncommon G9P[4] rotavirus strains circulating in Tehran, Iran, 2021-2022: Evidence for inter and intra-genotype recombination. Virology 2024; 600:110250. [PMID: 39321558 DOI: 10.1016/j.virol.2024.110250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Group A rotaviruses (RVAs) are a major cause of acute gastroenteritis in children under 5 years of age worldwide. Herein, the genetic sequences of 11 RNA segments from three uncommon G9P[4] RVA strains found in the stool samples of children under 5 years of age in Iran were analyzed using next-generation sequencing (NGS) technology. The genomic constellations of these three uncommon G9P[4] strains indicated the presence of the double and quadruple reassortants of two G9P[4] strains, containing the VP7/NSP2 and VP7/VP2/NSP2/NSP4 genes on a DS-1-like genetic background, respectively. The genome of one strain indicated a Wa-like genetic backbone in a single-reassortant with the VP4 of the DS1-like human strains. With the exception of VP1, VP2, VP7, NSP2, NSP3, and NSP4 genes, which clustered with RVA of human origins belonging to cognate gene sequences of genogroup 1/2 genotypes/lineages, the remaining five genes (VP8/VP4, VP3, VP6, NSP1, NSP5) displayed direct evidence of recombination. It is presumed that the presence of uncommon G9P[4] strains in Iran is not linked to vaccination pressure, but rather to the high prevalence of RVA co-infection or the direct import of these uncommon RVA reassortants strains from other countries (especially those that have implemented RV vaccination).
Collapse
Affiliation(s)
- Mahtab Mirhoseinian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Atefeh Kachooei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Mahsa Feizi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Mansour Ghanaiee R, Fallah T, Karimi A, Sedighi I, Tariverdi M, Nazari T, Nahanmoghaddam N, Sedighi P, Nateghian A, Amirali A, Monavari SH, Fallahi M, Zahraei SM, Mahmoudi S, Elikaei A, Alebouyeh M. Multicenter Study of Rotavirus Infection, Diversity of Circulating Genotypes and Clinical Outcomes in Children ≤5 Years Old in Iran. Pediatr Infect Dis J 2024; 43:320-327. [PMID: 38190647 DOI: 10.1097/inf.0000000000004231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
BACKGROUND To determine the epidemiology of rotavirus group A (RVA) infection in symptomatic children, and analyze genotype diversity in association with clinical characteristics, geographical and seasonal changes. METHODS The stool samples of symptomatic children 5≥ years old were collected from 5 different hospitals during December 2020 and March 2022. Rotavirus stool antigen test was done and G and P genotypes of the positive samples were determined. Associations of the infection and genotype diversity with demographical and clinical data were assessed by statistical methods. RESULTS RVA infection was detected in 32.1% (300/934) of the patients (Ranges between 28.4% and 47.4%). An inverse association with age was detected, where the highest frequency was measured in children ≤12 months of age (175/482, 36.3%). The infection was more frequent during winter (124/284, 43.7%) and spring (64/187, 34.2%). Children who were exclusively fed with breast milk showed a lower rate of infection (72/251, 28.6%). Among the 46 characterized genotypes (17 single- and 29 mixed-genotype infections), G1P[8] and G9P[4] were more frequently detected in children <36 (67/234, 28.63%) and 36-60 (7/24, 29.16%) months of age children, respectively. A seasonal diversity in the circulating genotypes was detected in different cities. Children with G1P[8], G1P[6], and mixed-genotype infection experienced a shorter duration of hospitalization, and a higher frequency of nausea and severe diarrhea, respectively. CONCLUSIONS In this study high frequency of RVA infection was detected in symptomatic children in Iran. Moreover, genotype diversity according to geographic area, seasons, age groups, and clinical features of disease was detected.
Collapse
Affiliation(s)
- Roxana Mansour Ghanaiee
- From the Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tina Fallah
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Abdollah Karimi
- From the Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Iraj Sedighi
- Department of Pediatrics, Faculty of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Marjan Tariverdi
- Department of Pediatrics, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Tayebe Nazari
- From the Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Nahanmoghaddam
- Department of Pediatrics, Bouali Hospital Children's Hospital, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Parinaz Sedighi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alireza Nateghian
- Department of Pediatrics, Ali Asghar Children's hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Arezu Amirali
- From the Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Seyed Hamidreza Monavari
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Fallahi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Seyed Mohsen Zahraei
- Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Sussan Mahmoudi
- Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Ameneh Elikaei
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Masoud Alebouyeh
- From the Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Michael F, Mirambo MM, Lyimo D, Salehe A, Kyesi F, Msanga DR, Mahamba D, Nyawale H, Kwiyolecha E, Okamo B, Mwanyika PJ, Maghina V, Bendera E, Salehe M, Hokororo A, Mwipopo E, Khamis AC, Nyaki H, Magodi R, Mujuni D, Konje ET, Katembo B, Wilillo R, Mshana SE. Rotavirus genotype diversity in Tanzania during Rotavirus vaccine implementation between 2013 and 2018. Sci Rep 2023; 13:21795. [PMID: 38066194 PMCID: PMC10709589 DOI: 10.1038/s41598-023-49350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
The study aims to determine Rotavirus genotypes between 2013 and 2018 during implementation of ROTARIX vaccine in Tanzania. The analysis of surveillance data obtained between 2013 and 2018 was done to determine circulating genotypes after introduction of Rotarix vaccine. From 2013 to 2018, a total of 10,557 samples were collected and screened for Rotavirus using an enzyme immunoassay. A significant decrease in Rotavirus positivity (29.3% to 17.8%) from 2013 to 2018 (OR 0.830, 95% CI 0.803-0.857, P < 0.001) was observed. A total of 766 randomly selected Rotavirus positive samples were genotyped. Between 2013 and 2018, a total of 18 Rotavirus genotypes were detected with G1P [8] being the most prevalent. The G1P [8] strain was found to decrease from 72.3% in 2015 to 13.5% in 2018 while the G9P [4] strain increased from 1 to 67.7% in the same years. G2P [4] was found to decrease from 59.7% in 2013 to 6.8% in 2018 while G3P [6] decreased from 11.2% in 2014 to 4.1% in 2018. The data has clearly demonstrated that ROTARIX vaccine has provided protection to varieties of the wild-type Rotavirus strains. Continuous surveillance is needed to monitor the circulation of Rotavirus strains during this era of vaccine implementation.
Collapse
Affiliation(s)
- Fausta Michael
- Ministry of Health, Immunization and Vaccine Development Program, Dodoma, Tanzania
| | - Mariam M Mirambo
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania.
| | - Dafrossa Lyimo
- Ministry of Health, Immunization and Vaccine Development Program, Dodoma, Tanzania
| | - Abdul Salehe
- Ministry of Health, Immunization and Vaccine Development Program, Zanzibar, Tanzania
| | - Furaha Kyesi
- Ministry of Health, Immunization and Vaccine Development Program, Dodoma, Tanzania
| | - Delfina R Msanga
- Department of Paediatrics and Child Health, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Dina Mahamba
- Department of Pediatrics and Child Health, College of Health Sciences, University of Dodoma, P.O. Box 395, Dodoma, Tanzania
| | - Helmut Nyawale
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Elizabeth Kwiyolecha
- Department of Paediatrics and Child Health, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Bernard Okamo
- Department of Biochemistry and Molecular Biology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Paul J Mwanyika
- Department of Pediatrics and Child Health, Mbeya Zonal Referral Hospital, P.O. Box 419, Mbeya, Tanzania
| | - Victoria Maghina
- Department of Pediatrics and Child Health, Mbeya Zonal Referral Hospital, P.O. Box 419, Mbeya, Tanzania
| | - Elice Bendera
- Department of Pediatrics and Child Health, Muheza Designated District Hospital, Tanga, Tanzania
| | - Mohammed Salehe
- Department of Pediatrics and Child Health, Bombo Regional Referral Hospital, Tanga, Tanzania
| | - Adolfine Hokororo
- Department of Paediatrics and Child Health, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Ernestina Mwipopo
- Department of Pediatrics and Child Health, Mwananyamala Regional Referral Hospital, Dar es Salaam, Tanzania
| | - Asha C Khamis
- Department of Pediatrics and Child Health, Temeke Regional Referral Hospital, Dar es Salaam, Tanzania
| | - Honest Nyaki
- Ministry of Health, Immunization and Vaccine Development Program, Dodoma, Tanzania
| | - Richard Magodi
- Ministry of Health, Immunization and Vaccine Development Program, Dodoma, Tanzania
| | - Delphius Mujuni
- Ministry of Health, Immunization and Vaccine Development Program, Dodoma, Tanzania
| | - Eveline T Konje
- Department of Epidemiology and Biostatistics, School of Public Health, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Betina Katembo
- National Public Health Laboratory, Dar es Salaam, Tanzania
| | - Ritha Wilillo
- World Health Organization, Country Office, Dar es Salaam, Tanzania
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| |
Collapse
|
4
|
Degiuseppe JI, Martelli A, Barrios Mathieur C, Stupka JA. Genetic diversity of rotavirus A in Argentina during 2019-2022: detection of G6 strains and insights regarding its dissemination. Arch Virol 2023; 168:251. [PMID: 37702836 DOI: 10.1007/s00705-023-05874-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
One of the challenges associated with introducing a vaccine is monitoring its impact through clinical and molecular surveillance. The aims of this study were to analyze the genetic diversity of rotavirus A in Argentina between 2019 and 2022 and to assess the phylogenetic and phylodynamic features of the unusual G6 strains detected. A significant decline in the Wa-like genogroup strains was observed, and G6 strains were detected for the first time in Argentina, in association with P[8] and P[9]. Spatiotemporal analysis showed that the G6-lineage I strains detected recently in Argentina and Brazil might have emerged from European strains. This study provides recent evidence of the genetic diversity of rotaviruses in isolated cases. It is considered important to support continuous surveillance of rotavirus in the post-vaccine scenario, mainly to evaluate potential changes that may occur after the COVID-19 pandemic.
Collapse
Affiliation(s)
- Juan Ignacio Degiuseppe
- Argentine Reference Laboratory for Rotavirus and Norovirus, INEI-ANLIS "Dr. Carlos G. Malbrán", Avenida Vélez Sársfield 563, Buenos Aires, Argentina.
| | - Antonella Martelli
- Laboratory of Clinical Virology, Centro de Educación Médica e Investigaciones Clínicas "Dr. Norberto Quirno" (CEMIC), Galván 4102, Buenos Aires, Argentina
| | - Christian Barrios Mathieur
- Argentine Reference Laboratory for Rotavirus and Norovirus, INEI-ANLIS "Dr. Carlos G. Malbrán", Avenida Vélez Sársfield 563, Buenos Aires, Argentina
| | - Juan Andrés Stupka
- Argentine Reference Laboratory for Rotavirus and Norovirus, INEI-ANLIS "Dr. Carlos G. Malbrán", Avenida Vélez Sársfield 563, Buenos Aires, Argentina
| |
Collapse
|
5
|
Tahar AS, Ong EJ, Rahardja A, Mamora D, Lim KT, Ahmed K, Kulai D, Tan CS. Emergence of equine-like G3 and porcine-like G9 rotavirus strains in Sarawak, Malaysia: 2019-2021. J Med Virol 2023; 95:e28987. [PMID: 37501648 DOI: 10.1002/jmv.28987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Rotavirus is the leading causative viral agent of pediatric acute gastroenteritis globally, infecting mostly children 5 years old and below. Data on rotavirus prevalence in Malaysia is scarce, despite the WHO's recommendation for continuous rotavirus surveillance, and has underestimated the need for national rotavirus vaccination. Characteristics of the current rotavirus strains in Malaysia have to be determined to understand the rotavirus epidemiology and vaccine compatibility. This study sought to determine the genetic relatedness of Sarawak rotavirus strains with global strains and to determine the antigenic coverage and epitope compatibility of Rotarix and RotaTeq vaccines with the Sarawak rotavirus strains via in silico analysis. A total of 89 stool samples were collected from pediatric patients (<5 years old) with acute gastroenteritis at private hospitals in Kuching, Sarawak. Rotavirus was detected using reverse transcription-polymerase chain reaction. Positive amplicons were analyzed using nucleotide sequencing before phylogenetic analyses and assessment of epitope compatibility. Genotyping revealed G1P[8] (1/13; 7.7%), G3P[8] (3/13; 23%), G9P[4] (1/13; 7.7%), and G9P[8] (3/13; 23%), G9P[X] (1/13; 7.7%), GXP[4] (1/13; 7.7%), and GXP[8] (3/13; 23%) in samples. All wild-type Sarawak rotavirus strains, with the exception of G1, showed variations in their phylogenetic and antigenic epitope characteristics.
Collapse
Affiliation(s)
- Ahmad Syatir Tahar
- Centre for Tropical and Emerging Diseases, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Eng Joe Ong
- Borneo Medical Centre, Kuching, Sarawak, Malaysia
| | | | - Dewi Mamora
- Borneo Medical Centre, Kuching, Sarawak, Malaysia
| | | | - Kamruddin Ahmed
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Dorothy Kulai
- Universiti Teknologi Mara Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Cheng Siang Tan
- Centre for Tropical and Emerging Diseases, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
6
|
Gutierrez MB, de Assis RMS, de Andrade JDSR, Fialho AM, Fumian TM. Rotavirus A during the COVID-19 Pandemic in Brazil, 2020-2022: Emergence of G6P[8] Genotype. Viruses 2023; 15:1619. [PMID: 37631962 PMCID: PMC10458023 DOI: 10.3390/v15081619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023] Open
Abstract
Rotavirus A (RVA) remains a leading cause of acute gastroenteritis (AGE) hospitalizations in children worldwide. During the COVID-19 pandemic, a reduction in vaccination coverage in Brazil and elsewhere was observed, and some reports have demonstrated a reduction in AGE notifications during the pandemic. This study aims to investigate the diversity and prevalence of RVA genotypes in children and adults presenting with AGE symptoms in Brazil during the COVID-19 pandemic between 2020 and 2022. RVA was screened using RT-qPCR; then, G and P genotypes were characterized using one-step multiplex RT-PCR. A total of 2173 samples were investigated over the three-year period, and we detected RVA in 7.7% of samples (n = 167), being 15.5% in 2020, 0.5% in 2021, and 13.8% in 2022. Higher RVA prevalence was observed in the Northeastern region (19.3%) compared to the Southeastern (6.1%) and Southern regions (5.5%). The most affected age group was children aged between 0 and 6 months old; however, this was not statistically significant. Genotyping and phylogenetic analysis identified the emergence of G6P[8] during the period; moreover, it was detected in 10.6% of samples in 2020 and in 83.5% in 2022. In contrast, the prevalence of G3P[8], the previous dominant genotype, decreased from 72.3% in 2020 to 11.3% in 2022. We also identified unusual strains, such as G3P[9] and G9P[4], being sporadically detected during the period. This is the first report on the molecular epidemiology and surveillance of RVA during the COVID-19 pandemic period in Brazil. Our study provides evidence for the importance of maintaining high and sustainable levels of vaccine coverage to protect against RVA disease. Furthermore, it highlights the need to maintain nationwide surveillance in order to monitor future trends and changes in the epidemiology of RVA in Brazil.
Collapse
Affiliation(s)
| | | | | | | | - Tulio Machado Fumian
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (M.B.G.)
| |
Collapse
|
7
|
Amit LN, John JL, Mori D, Chin AZ, Mosiun AK, Ahmed K. Increase in rotavirus prevalence with the emergence of genotype G9P[8] in replacement of genotype G12P[6] in Sabah, Malaysia. Arch Virol 2023; 168:173. [PMID: 37269384 DOI: 10.1007/s00705-023-05803-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 06/05/2023]
Abstract
Rotaviruses are major causative agents of acute diarrhea in children under 5 years of age in Malaysia. However, a rotavirus vaccine has not been included in the national vaccination program. To date, only two studies have been carried out in the state of Sabah, Malaysia, although children in this state are at risk of diarrheal diseases. Previous studies showed that 16%-17% of cases of diarrhea were caused by rotaviruses and that equine-like G3 rotavirus strains are predominant. Because the prevalence of rotaviruses and their genotype distribution vary over time, this study was conducted at four government healthcare facilities from September 2019 through February 2020. Our study revealed that the proportion of rotavirus diarrhea increased significantly to 37.2% (51/137) after the emergence of the G9P[8] genotype in replacement of the G12P[8] genotype. Although equine-like G3P[8] strains remain the predominant rotaviruses circulating among children, the Sabahan G9P[8] strain belonged to lineage VI and was phylogenetically related to strains from other countries. A comparison of the Sabahan G9 strains with the G9 vaccine strains used in the RotaSiil and Rotavac vaccines revealed several mismatches in neutralizing epitopes, indicating that these vaccines might not be effective in Sabahan children. However, a vaccine trial may be necessary to understand the precise effects of vaccination.
Collapse
Affiliation(s)
- Lia Natasha Amit
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jecelyn Leaslie John
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Daisuke Mori
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Abraham Zefong Chin
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Andau Konodan Mosiun
- Kunak District Health Office, Ministry of Health Malaysia, Kunak, Sabah, Malaysia
| | - Kamruddin Ahmed
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
8
|
Medeiros RS, França Y, Viana E, de Azevedo LS, Guiducci R, de Lima Neto DF, da Costa AC, Luchs A. Genomic Constellation of Human Rotavirus G8 Strains in Brazil over a 13-Year Period: Detection of the Novel Bovine-like G8P[8] Strains with the DS-1-like Backbone. Viruses 2023; 15:664. [PMID: 36992373 PMCID: PMC10056101 DOI: 10.3390/v15030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Rotavirus (RVA) G8 is frequently detected in animals, but only occasionally in humans. G8 strains, however, are frequently documented in nations in Africa. Recently, an increase in G8 detection was observed outside Africa. The aims of the study were to monitor G8 infections in the Brazilian human population between 2007 and 2020, undertake the full-genotype characterization of the four G8P[4], six G8P[6] and two G8P[8] RVA strains and conduct phylogenetic analysis in order to understand their genetic diversity and evolution. A total of 12,978 specimens were screened for RVA using ELISA, PAGE, RT-PCR and Sanger sequencing. G8 genotype represented 0.6% (15/2434) of the entirely RVA-positive samples. G8P[4] comprised 33.3% (5/15), G8P[6] 46.7% (7/15) and G8P[8] 20% (3/15). All G8 strains showed a short RNA pattern. All twelve selected G8 strains displayed a DS-1-like genetic backbone. The whole-genotype analysis on a DS-1-like backbone identified four different genotype-linage constellations. According to VP7 analysis, the Brazilian G8P[8] strains with the DS-1-like backbone strains were derived from cattle and clustered with newly DS-1-like G1/G3/G9/G8P[8] strains and G2P[4] strains. Brazilian IAL-R193/2017/G8P[8] belonged to a VP1/R2.XI lineage and were grouped with bovine-like G8P[8] strains with the DS-1-like backbone strains detected in Asia. Otherwise, the Brazilian IAL-R558/2017/G8P[8] possess a "Distinct" VP1/R2 lineage never previously described and grouped apart from any of the DS-1-like reference strains. Collectively, our findings suggest that the Brazilian bovine-like G8P[8] strains with the DS-1-like backbone strains are continuously evolving and likely reassorting with local RVA strains rather than directly relating to imports from Asia. The Brazilian G8P[6]-DS-1-like strains have been reassorted with nearby co-circulating American strains of the same DS-1 genotype constellation. However, phylogenetic analyses revealed that these strains have some genetic origin from Africa. Finally, rather than being African-born, Brazilian G8P[4]-DS-1-like strains were likely imported from Europe. None of the Brazilian G8 strains examined here exhibited signs of recent zoonotic reassortment. G8 strains continued to be found in Brazil according to their intermittent and localized pattern, thus, does not suggest that a potential emergence is taking place in the country. Our research demonstrates the diversity of G8 RVA strains in Brazil and adds to the understanding of G8P[4]/P[6]/P[8] RVA genetic diversity and evolution on a global scale.
Collapse
Affiliation(s)
- Roberta Salzone Medeiros
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Yasmin França
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Ellen Viana
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Lais Sampaio de Azevedo
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Raquel Guiducci
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Daniel Ferreira de Lima Neto
- General Coordination of Public Health Laboratories, Department of Strategic Articulation in Epidemiology and Health Surveillance, Ministry of Health, Brasília 70068-900, Brazil
| | - Antonio Charlys da Costa
- Medical Parasitology Laboratory (LIM/46), São Paulo Tropical Medicine Institute, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| |
Collapse
|
9
|
Koukou DM, Michos A, Chatzichristou P, Trimis G, Tatsi EB, Dellis C, Zachariadou L, Liakopoulou T, Chrousos GP, Syriopoulou V. Rotavirus epidemiology and genotype distribution in hospitalised children, Greece, 2008 to 2020: A prospective multicentre study. Euro Surveill 2022; 27. [PMID: 36695456 DOI: 10.2807/1560-7917.es.2022.27.47.2101133/cite/plaintext] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
BackgroundTwo rotavirus (RV) vaccines were licensed in Greece in late 2006 and included in the national immunisation programme in 2012.AimTo study the epidemiology and genotype distribution of RV in children during the post-vaccination period and assess the impact of increased vaccination coverage.MethodsIn a prospective multicentre hospital-based study, hospitalised children (≤ 16 years) with an RV-positive faecal sample were recruited. Epidemiological and genotyping analyses were performed; periods of low (2008-12) and moderate (2012-20) RV vaccination coverage were compared. Statistical analysis was performed with a chi-squared or Mann-Whitney U test and logistic regression.ResultsA total of 3,874 children (55.6% male; n = 2,153) with median age of 1.4 years (IQR: 0.5-3.3) were studied during 2008-20. Most RV-infected children were aged ≤ 3 years (72.2%) and hospitalised during December-May (69.1%). Common RV genotypes (G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], G12P[8]) were detected in 92.2% of samples; G-P combinations with prevalence above 1% were G4P[8] (44.1%), G1P[8] (25.4%), G2P[4] (14.9%), G9P[8] (3.5%), G12P[8] (2.2%), G3P[8] (2.1%), other (4.3%) and mixed (3.5%). Of all samples, 97.6% were homotypic or partially heterotypic to vaccines' genotypes. With moderate vaccination coverage, the seasonal peak was detected earlier, children were older and partially or fully heterotypic genotypes were increased (p < 0.001).ConclusionsIn the era of moderate RV vaccination coverage in Greece, epidemiology of RV in hospitalised children seemed to change. However, most circulating genotypes remain homotypic or partially heterotypic to RV vaccines. Continuous epidemiological surveillance and genotyping are important to monitor possible changes arising from RV vaccines' implementation.
Collapse
Affiliation(s)
- Dimitra-Maria Koukou
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Athanasios Michos
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Panagiota Chatzichristou
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Georgios Trimis
- MSD Greece, Medical and Scientific Affairs Department, Athens, Greece
| | - Elizabeth-Barbara Tatsi
- University Research Institute of Maternal and Child Health and Precision Medicine, Athens, Greece
| | - Charilaos Dellis
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | | | | | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, Athens, Greece
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Vasiliki Syriopoulou
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, Athens, Greece
| |
Collapse
|
10
|
Degiuseppe JI, Torres C, Mbayed VA, Stupka JA. Phylogeography of Rotavirus G8P[8] Detected in Argentina: Evidence of Transpacific Dissemination. Viruses 2022; 14:v14102223. [PMID: 36298778 PMCID: PMC9609476 DOI: 10.3390/v14102223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023] Open
Abstract
Rotavirus is one of the leading causes of diarrhea in children. In 2018, G8P[8], an unusual association of genotypes, was detected with moderate frequency in symptomatic children in Argen-tina, unlike a previous sporadic identification in 2016. The aim of this study was to analyze the dissemination pattern of the G8P[8]-lineage IV strains detected in Argentina. Nucleotide sequences of the VP7 gene of Argentine G8P[8] strains (2016, 2018 and 2019) were studied by discrete phylodynamic analyses, together with other worldwide relevant G8-lineage IV strains. Bayes Factor (BF) was used to assess the strength of the epidemiological association between countries. Phylodynamic analyses determined an evolutionary rate of 3.7 × 10-3 (HDP95%: 1.4 × 10-3-8.2 × 10-3) substitutions/site/year. Likewise, the most recent common ancestor was 32.2 years old, dating back to 1986 (HDP95% = 1984-1988). The spatiotemporal dynamics analysis revealed South Korea as being the country of origin of the Argentine strains (posterior probability of the ancestral state: 0.8471), which was also evidenced by a significant rate of diffusion from South Korea to Argentina (BF: 55.1). The detection of G8 in South America in 2016-2017 was not related to the cases detected in 2018-2019, revealing a new G8 introduction to the region and supporting a transpacific dissemination.
Collapse
Affiliation(s)
- Juan Ignacio Degiuseppe
- Laboratorio de Gastroenteritis Virales, INEI-ANLIS “Dr. Carlos G. Malbrán”, Avenida Vélez Sarsfield 563, Ciudad de Buenos Aires 1281, Argentina
- Correspondence: ; Tel.: +54-9-11-5804-6039; Fax: +54-11-4301-7428
| | - Carolina Torres
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina Junín 954, Ciudad de Buenos Aires 1113, Argentina
| | - Viviana Andrea Mbayed
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina Junín 954, Ciudad de Buenos Aires 1113, Argentina
| | - Juan Andrés Stupka
- Laboratorio de Gastroenteritis Virales, INEI-ANLIS “Dr. Carlos G. Malbrán”, Avenida Vélez Sarsfield 563, Ciudad de Buenos Aires 1281, Argentina
| |
Collapse
|
11
|
Okitsu S, Khamrin P, Hikita T, Thongprachum A, Pham NTK, Hoque SA, Hayakawa S, Maneekarn N, Ushijima H. Changing distribution of rotavirus A genotypes circulating in Japanese children with acute gastroenteritis in outpatient clinic, 2014-2020. J Infect Public Health 2022; 15:816-825. [PMID: 35759807 DOI: 10.1016/j.jiph.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Rotavirus A (RVA) is a major cause of severe acute gastroenteritis (AGE) in infants and children worldwide. In Japan, two kinds of rotavirus vaccines have been introduced as voluntary vaccines in 2011 and 2012, respectively, and launched into the national vaccine program in October 2020. METHODS In this study, we investigated prevalence of RVA and their molecular characterization in the stool samples collected from infants and children with AGE who visited one outpatient clinic in Japan, from July 2014 to June 2020, during voluntary vaccination with two kinds of rotavirus vaccines. RESULTS The RVA detection rates decreased from 44.7 % in 2014-2015 to 35.4 % in 2018-2019, whereas in 2019-2020 the numbers of samples collected were dramatically decreased and none of RVA was detected. During this study period, rotavirus vaccination rates in this area increased from 32.4 % to 62.2 %. Distribution of RVA VP7 (G), VP4 (P), and VP6 (I) genotypes in this area had changed year by year; the major genotype combinations were G1P[8]I1 and G1P[8]I2 in 2014-2015, G2P[4]I2 and G9P[8]I1 in 2015-2016, G1P[8]I1 and G8P[8]I2 in 2017-2018, and G8P[8]I2 in 2018-2019. Phylogenetic analysis demonstrated that VP7 nucleotide sequences of G1 were genetically diverse compared with those of other G genotypes in this study. Meanwhile, predominance of unusual G2P[8]I1, G2P[8]I2 and mixed P genotypes were observed only in 2016-2017, but did not carry on in 2017-2019. The equine-like G3 was detected only in 2016-2017. CONCLUSIONS The results revealed diversity of RVA genotypes and the genotype combinations have changed year by year in Japan, during the study period of 2016-2020.
Collapse
Affiliation(s)
- Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | | | - Aksara Thongprachum
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand; Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|