1
|
Altulea A, Rutten MGS, Verdijk LB, Demaria M. Sport and longevity: an observational study of international athletes. GeroScience 2025; 47:1397-1409. [PMID: 39129051 PMCID: PMC11979035 DOI: 10.1007/s11357-024-01307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
The human lifespan is influenced by various factors, with physical activity being a significant contributor. Despite the clear benefit of exercise on health and longevity, the association between different types of sports and lifespan is yet to be considered. Accordingly, we aimed to study this association in a large international cohort of former athletes using a robust linear regression model. We collected data on athletes from public sources, accumulating a total of 95,210 observations, 95.5% of which were accounted for by males. The dataset represented athletes born between 1862 and 2002 from 183 countries across 44 sports disciplines. We calculated the change in lifespan by measuring the difference in age between athletes and the corresponding reference populations, while accounting for variations caused by sex, year of death, and country. The results revealed that various sports impacted lifespan differently, with male athletes being more likely to experience benefits from sports than female athletes. Among male athletes, pole vaulting and gymnastics were linked to the highest extension in lifespan (8.4 years, 95% CI [6.8, 9.9] and 8.2 years, 95% CI [7.4, 9], respectively), while volleyball and sumo wrestling were the most negatively associated with lifespan (- 5.4 years, 95% CI [- 7, - 3.8]; - 9.8 years, 95% CI [- 11, - 8.6], respectively). The association between lifespan and popular team sports in males was positive for cricket, rowing, baseball, water polo, Australian rules, hurling, lacrosse, field hockey, minimal for rugby, canoeing and kayaking, basketball, gridiron football, and football (soccer), and negative for handball and volleyball. Racquet sports (i.e., tennis and badminton) exhibited a consistent and positive association in both male and female athletes, as shown by an extended lifespan of up to 5.7 years in males (95% CI [5, 6.5]) and 2.8 years in females (95% CI [1.8, 3.9]). Although lacking conclusive evidence, we theorize that the observed results may be attributed to the aerobic and anaerobic characteristics of each sport, with mixed sports yielding the maximum benefits for the lifespan. While results from female athletes should be cautiously interpreted, our study highlights the complex interplay between sports and lifespan and contributes to the growing body of knowledge on the multifaceted relationship between physical activity and human longevity.
Collapse
Affiliation(s)
- Abdullah Altulea
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Martijn G S Rutten
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM Institute for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands.
| |
Collapse
|
2
|
Li YY, Yaylayan V, Palin M, Ngapo TM, Cliche S, Gagnon F, Gariépy C. Effect of dietary carnosine during in vitro digestion of a burger meal combo model including ascorbic acid as an antioxidant and fructose as a pro-oxidant. J Food Sci 2025; 90:e70181. [PMID: 40205770 PMCID: PMC11982654 DOI: 10.1111/1750-3841.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
Carnosine, as a meat constituent, was previously shown to exhibit some pro-oxidative effects during in vitro digestion of a burger meal model in the presence of high (supplemental) level of ascorbic acid (AA). In the current study, effects of dietary carnosine were assessed during in vitro digestion of a burger meal combo model, including intrinsic (low, LCar) and enriched (intermediate, MCar; high, HCar) carnosine in ground pork, with or without dietary levels of AA and/or fructose in simulated beverages. Increased levels of dietary carnosine (MCar and HCar) showed antioxidant activity, irrespective of the digestion phase and the presence of fructose and/or AA. At a dietary level, AA generally acted as an antioxidant, but promoted the formation of glyoxal (GO) in gastric digests and malondialdehyde (MDA) and hexanal in duodenal digests. Fructose generally showed a pro-oxidant effect, but decreased MDA and GO concentrations in both digestion phases. Despite a higher bio-accessible carnosine level measured in HCar, which potentially represents additional health benefits post absorption, MCar treatment provided optimal antioxidant activity during digestion without further effects obtained at the HCar level, showing a ceiling-like effect of dietary carnosine benefits in the digestive environment in vitro. These results demonstrate potential health advantages of increased carnosine in meat during digestion of a meal despite the presence of other redox-active dietary compounds and suggest a potential hormetic effect of carnosine can occur during digestion. PRACTICAL APPLICATION: Carnosine, a multifunctional compound naturally present in meat, can bring considerable advantages to meat consumers. Increased dietary levels of carnosine in meat reduced oxidation and the formation of advanced glycation end products (AGEs) during the digestion of a burger meal in the presence of dietary levels of either ascorbic acid (AA) (as an antioxidant) or fructose (as a pro-oxidant). In the context of this study, optimal benefits of carnosine were attained at the intermediate enhancement level, which can be naturally obtained through breeding and nutrition.
Collapse
Affiliation(s)
- Yi Yao Li
- Department of Food Science and Agricultural Chemistry, Macdonald CampusMcGill UniversitySte Anne de BellevueQuebecCanada
- Saint‐Hyacinthe Research and Development CentreAgriculture and Agri‐Food CanadaSaint‐HyacintheQuebecCanada
| | - Varoujan Yaylayan
- Department of Food Science and Agricultural Chemistry, Macdonald CampusMcGill UniversitySte Anne de BellevueQuebecCanada
| | - Marie‐France Palin
- Sherbrooke Research and Development CentreAgriculture and Agri‐Food CanadaSherbrookeQuebecCanada
| | - Tania M. Ngapo
- Saint‐Hyacinthe Research and Development CentreAgriculture and Agri‐Food CanadaSaint‐HyacintheQuebecCanada
| | - Simon Cliche
- Saint‐Hyacinthe Research and Development CentreAgriculture and Agri‐Food CanadaSaint‐HyacintheQuebecCanada
| | - Fleur Gagnon
- Saint‐Hyacinthe Research and Development CentreAgriculture and Agri‐Food CanadaSaint‐HyacintheQuebecCanada
| | - Claude Gariépy
- Saint‐Hyacinthe Research and Development CentreAgriculture and Agri‐Food CanadaSaint‐HyacintheQuebecCanada
| |
Collapse
|
3
|
Wevers A, San Roman-Mata S, Navarro-Ledesma S, Pruimboom L. The Role of Insulin Within the Socio-Psycho-Biological Framework in Type 2 Diabetes-A Perspective from Psychoneuroimmunology. Biomedicines 2024; 12:2539. [PMID: 39595105 PMCID: PMC11591609 DOI: 10.3390/biomedicines12112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
The interplay between socio-psychological factors and biological systems is pivotal in defining human health and disease, particularly in chronic non-communicable diseases. Recent advancements in psychoneuroimmunology and mitochondrial psychobiology have emphasized the significance of psychological factors as critical determinants of disease onset, progression, recurrence, and severity. These insights align with evolutionary biology, psychology, and psychiatry, highlighting the inherent social nature of humans. This study proposes a theory that expands insulin's role beyond traditional metabolic functions, incorporating it into the Mitochondrial Information Processing System (MIPS) and exploring it from an evolutionary medicine perspective to explore its function in processing psychological and social factors into biological responses. This narrative review comprises data from preclinical animal studies, longitudinal cohort studies, cross-sectional studies, machine learning analyses, and randomized controlled trials, and investigates the role of insulin in health and disease. The result is a proposal for a theoretical framework of insulin as a social substance within the socio-psycho-biological framework, emphasizing its extensive roles in health and disease. Type 2 Diabetes Mellitus (T2DM) with musculoskeletal disorders and neurodegeneration exemplifies this narrative. We suggest further research towards a comprehensive treatment protocol meeting evolutionary expectations, where incorporating psychosocial interventions plays an essential role. By supporting the concept of 'insulin resilience' and suggesting the use of heart rate variability to assess insulin resilience, we aim to provide an integrative approach to managing insulin levels and monitoring the effectiveness of interventions. This integrative strategy addresses broader socio-psychological factors, ultimately improving health outcomes for individuals with T2DM and musculoskeletal complications and neurodegeneration while providing new insights into the interplay between socio-psychological factors and biological systems in chronic diseases.
Collapse
Affiliation(s)
- Anne Wevers
- Clinical Medicine and Public Health PhD Program, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain;
| | - Silvia San Roman-Mata
- Department of Nursing, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain;
| | - Santiago Navarro-Ledesma
- Department of Physical Therapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| | - Leo Pruimboom
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| |
Collapse
|
4
|
Alekseeva TM, Topuzova MP, Kulikov VP, Kovzelev PD, Kosenko MG, Tregub PP. Hypercapnic hypoxia as a rehabilitation method for patients after ischemic stroke. Neurol Res 2024; 46:695-705. [PMID: 38643375 DOI: 10.1080/01616412.2024.2343510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Experimental studies on animals have demonstrated a higher neuroprotective efficacy of hypercapnic hypoxia compared to normocapnic hypoxia. Respiratory training with hypercapnic hypoxia has shown a positive impact on the functional state of the nervous system in children with cerebral palsy (CP). It can be presumed that the combined effect of moderate hypercapnia and hypoxia will be promising for clinical application within the context of early rehabilitation after ischemic stroke. METHODS A randomized triple-blind placebo-controlled study was conducted on 102 patients with ischemic stroke, aged 63.07 ± 12.1 years. All patients were diagnosed with ischemic stroke based on neuroimaging criteria and/or clinical criteria within the 48-72 hour timeframe. The experimental group (n = 50) underwent daily respiratory training with hypercapnic hypoxia (FetCO2 5-6%, FetO2 15-16%) using the 'Carbonic' device for 7-11 sessions of 20 minutes each day during the treatment process. The control group (placebo, n = 52) underwent training on a similar device modified for breathing atmospheric air. Neurological examinations were conducted on all patients before the study and on the day after completing the training course. RESULTS The standard treatment demonstrated effectiveness in terms of neurological status scales in both groups. Intermittent exposure to hypercapnic hypoxia proved more effective in improving neurological function indicators in patients compared to the placebo group: NIHSS scale scores were 40% lower than in the placebo group (p < 0.001); mRS scale scores were 35% lower (p < 0.001); B-ADL-I and RMI indices were higher by 26% (p < 0.01) and 36% (p < 0.001), respectively; MoCA scale results were 13% higher (p < 0.05); HADS and BDI-II scale scores were lower by 35% (p < 0.05) and 25% (p < 0.05), respectively. The increase in MMSE scale scores in the intervention group was 54% higher (p < 0.001), and MoCA scale scores increased by 25% (p < 0.001). CONCLUSION Respiratory training with hypercapnic hypoxia improves the functional state of the nervous system in patients with ischemic stroke. After conducting further clarifying studies, hypercapnic hypoxia can be considered as an effective method of neurorehabilitation, which can be used as early as 48-72 hours after the onset of stroke.
Collapse
Affiliation(s)
- Tatiana M Alekseeva
- Department of Neurology with Clinic, V.A. Almazov National Medical Research Center, Saint-Petersburg, Russia
| | - Maria P Topuzova
- Department of Neurology with Clinic, V.A. Almazov National Medical Research Center, Saint-Petersburg, Russia
| | - Vladimir P Kulikov
- Department of Ultrasound and Functional Diagnostics, Altai State Medical University, Barnaul, Russia
| | - Pavel D Kovzelev
- Department of Neurology with Clinic, Smart Clinic ltd, Saint-Petersburg, Russia
| | - Mark G Kosenko
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pavel P Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Scientific and Educational Resource Center "Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis", RUDN University, Moscow, Russia
| |
Collapse
|
5
|
Tregub PP, Komleva YK, Kulikov VP, Chekulaev PA, Tregub OF, Maltseva LD, Manasova ZS, Popova IA, Andriutsa NS, Samburova NV, Salmina AB, Litvitskiy PF. Relationship between Hypoxia and Hypercapnia Tolerance and Life Expectancy. Int J Mol Sci 2024; 25:6512. [PMID: 38928217 PMCID: PMC11204369 DOI: 10.3390/ijms25126512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The review discusses the potential relationship between hypoxia resistance and longevity, the influence of carbon dioxide on the mechanisms of aging of the mammalian organism, and intermittent hypercapnic-hypoxic effects on the signaling pathways of aging mechanisms. In the article, we focused on the potential mechanisms of the gero-protective efficacy of carbon dioxide when combined with hypoxia. The review summarizes the possible influence of intermittent hypoxia and hypercapnia on aging processes in the nervous system. We considered the perspective variants of the application of hypercapnic-hypoxic influences for achieving active longevity and the prospects for the possibilities of developing hypercapnic-hypoxic training methods.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia
| | - Yulia K. Komleva
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
| | - Vladimir P. Kulikov
- Department of Ultrasound and Functional Diagnostics, Altay State Medical University, 656040 Barnaul, Russia
| | - Pavel A. Chekulaev
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Larisa D. Maltseva
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Zaripat Sh. Manasova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Inga A. Popova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia S. Andriutsa
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia V. Samburova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alla B. Salmina
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
| | - Peter F. Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
6
|
Tregub PP, Kulikov VP, Ibrahimli I, Tregub OF, Volodkin AV, Ignatyuk MA, Kostin AA, Atiakshin DA. Molecular Mechanisms of Neuroprotection after the Intermittent Exposures of Hypercapnic Hypoxia. Int J Mol Sci 2024; 25:3665. [PMID: 38612476 PMCID: PMC11011936 DOI: 10.3390/ijms25073665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The review introduces the stages of formation and experimental confirmation of the hypothesis regarding the mutual potentiation of neuroprotective effects of hypoxia and hypercapnia during their combined influence (hypercapnic hypoxia). The main focus is on the mechanisms and signaling pathways involved in the formation of ischemic tolerance in the brain during intermittent hypercapnic hypoxia. Importantly, the combined effect of hypoxia and hypercapnia exerts a more pronounced neuroprotective effect compared to their separate application. Some signaling systems are associated with the predominance of the hypoxic stimulus (HIF-1α, A1 receptors), while others (NF-κB, antioxidant activity, inhibition of apoptosis, maintenance of selective blood-brain barrier permeability) are mainly modulated by hypercapnia. Most of the molecular and cellular mechanisms involved in the formation of brain tolerance to ischemia are due to the contribution of both excess carbon dioxide and oxygen deficiency (ATP-dependent potassium channels, chaperones, endoplasmic reticulum stress, mitochondrial metabolism reprogramming). Overall, experimental studies indicate the dominance of hypercapnia in the neuroprotective effect of its combined action with hypoxia. Recent clinical studies have demonstrated the effectiveness of hypercapnic-hypoxic training in the treatment of childhood cerebral palsy and diabetic polyneuropathy in children. Combining hypercapnic hypoxia with pharmacological modulators of neuro/cardio/cytoprotection signaling pathways is likely to be promising for translating experimental research into clinical medicine.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Vladimir P. Kulikov
- Department of Ultrasound and Functional Diagnostics, Altay State Medical University, 656040 Barnaul, Russia;
| | - Irada Ibrahimli
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | | | - Artem V. Volodkin
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Michael A. Ignatyuk
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Andrey A. Kostin
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Dmitrii A. Atiakshin
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| |
Collapse
|
7
|
Tregub P, Motin Y, Kulikov V, Kovzelev P, Chaykovskaya A, Ibrahimli I. Ultrastructural Changes in Hippocampal Region CA1 Neurons After Exposure to Permissive Hypercapnia and/or Normobaric Hypoxia. Cell Mol Neurobiol 2023; 43:4209-4217. [PMID: 37716927 PMCID: PMC11407706 DOI: 10.1007/s10571-023-01407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Isolated exposure to intermittent hypoxia and permissive hypercapnia activates signaling mechanisms that induce ultrastructural changes in mitochondria and endoplasmic reticulum, accompanied by the development of maximal ischemic tolerance in neurons under the combined influence of these factors. However, there are a lack of data on the combined impact of these factors on the ultrastructure of neuronal organelles. The present study aims to comparatively assess the ultrastructural changes in neurons following isolated and combined exposure to hypoxia and hypercapnia, as well as to correlate these changes with the neuroprotective potential previously observed for these factors. Following a 15-session course of 30-min exposures to permissive hypercapnia (PCO2 ≈ 50 mmHg) and/or normobaric hypoxia (PO2 ≈ 150 mmHg), morphometric assessment was conducted to evaluate the extent of ultrastructural changes in hippocampal neurons (mitochondria, perinuclear space, and granular endoplasmic reticulum). It was found that in hippocampal neurons from the CA1 region, permissive hypercapnia resulted in increased mitochondrial size, expansion of membranous compartments of the granular endoplasmic reticulum, and perinuclear space. Normobaric hypoxia affected only mitochondrial size, while hypercapnic hypoxia specifically widened the perinuclear space. These ultrastructural changes objectively reflect varying degrees of the influence of hypoxia and hypercapnia on organelles responsible for energy metabolism, anti-apoptotic, and synthetic functions of neurons. This confirms the effect of potentiation of their neuroprotective effects under combined exposure and highlights the dominant role of the hypercapnic component in this mechanism.
Collapse
Affiliation(s)
- Pavel Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str., 8, P. 2, Moscow, Russian Federation, 119991.
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, Russian Federation, 117198.
- Research Center of Neurology, Moscow, Russian Federation, 125367.
| | - Yuri Motin
- Altai State Medical University, 40 Lenin Prospekt, Barnaul, Russian Federation, 656038
| | - Vladimir Kulikov
- Altai State Medical University, 40 Lenin Prospekt, Barnaul, Russian Federation, 656038
| | - Pavel Kovzelev
- V.A. Almazov National Medical Research Center, Akkuratov Str., P. 2, St. Petersburg, Russian Federation, 197341
| | - Aleksandra Chaykovskaya
- V.A. Almazov National Medical Research Center, Akkuratov Str., P. 2, St. Petersburg, Russian Federation, 197341
| | - Irada Ibrahimli
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str., 8, P. 2, Moscow, Russian Federation, 119991
| |
Collapse
|
8
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
9
|
Mitochondrial Aging and Senolytic Natural Products with Protective Potential. Int J Mol Sci 2022; 23:ijms232416219. [PMID: 36555859 PMCID: PMC9784569 DOI: 10.3390/ijms232416219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Living organisms do not disregard the laws of thermodynamics and must therefore consume energy for their survival. In this way, cellular energy exchanges, which aim above all at the production of ATP, a fundamental molecule used by the cell for its metabolisms, favor the formation of waste products that, if not properly disposed of, can contribute to cellular aging and damage. Numerous genes have been linked to aging, with some favoring it (gerontogenes) and others blocking it (longevity pathways). Animal model studies have shown that calorie restriction (CR) may promote longevity pathways, but given the difficult application of CR in humans, research is investigating the use of CR-mimetic substances capable of producing the same effect. These include some phytonutrients such as oleuropein, hydroxytyrosol, epigallo-catechin-gallate, fisetin, quercetin, and curcumin and minerals such as magnesium and selenium. Some of them also have senolytic effects, which promote the apoptosis of defective cells that accumulate over the years (senescent cells) and disrupt normal metabolism. In this article, we review the properties of these natural elements that can promote a longer and healthier life.
Collapse
|
10
|
Alt KW, Al-Ahmad A, Woelber JP. Nutrition and Health in Human Evolution-Past to Present. Nutrients 2022; 14:3594. [PMID: 36079850 PMCID: PMC9460423 DOI: 10.3390/nu14173594] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Anyone who wants to understand the biological nature of humans and their special characteristics must look far back into evolutionary history. Today's way of life is drastically different from that of our ancestors. For almost 99% of human history, gathering and hunting have been the basis of nutrition. It was not until about 12,000 years ago that humans began domesticating plants and animals. Bioarchaeologically and biochemically, this can be traced back to our earliest roots. Modern living conditions and the quality of human life are better today than ever before. However, neither physically nor psychosocially have we made this adjustment and we are paying a high health price for it. The studies presented allow us to reconstruct food supply, lifestyles, and dietary habits: from the earliest primates, through hunter-gatherers of the Paleolithic, farming communities since the beginning of the Anthropocene, to the Industrial Age and the present. The comprehensive data pool allows extraction of all findings of medical relevance. Our recent lifestyle and diet are essentially determined by our culture rather than by our millions of years of ancestry. Culture is permanently in a dominant position compared to natural evolution. Thereby culture does not form a contrast to nature but represents its result. There is no doubt that we are biologically adapted to culture, but it is questionable how much culture humans can cope with.
Collapse
Affiliation(s)
- Kurt W. Alt
- Center of Natural and Cultural Human History, Danube Private University, 3500 Krems, Austria
- Integrative Prehistory and Archaeological Science, University of Basel, 4055 Basel, Switzerland
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, 71906 Freiburg, Germany
| | - Johan Peter Woelber
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, 71906 Freiburg, Germany
| |
Collapse
|
11
|
Paans O, Ehlen B. Action-Shapers and Their Neuro-Immunological Foundations. Front Psychol 2022; 13:917876. [PMID: 35910998 PMCID: PMC9336682 DOI: 10.3389/fpsyg.2022.917876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/20/2022] [Indexed: 12/05/2022] Open
Abstract
Not all our intentions translate into actions, as our capacity to act may be influenced by a variety of mental and biochemical factors. In this article, we present a comprehensive account of how neuro-immunological processes affect our intentional abilities and our capacity to act. We do so by extending the theory of thought-shapers (TTS) through the notion of action-shapers and combining this theory with the essential embodiment thesis (EE). This thesis about the mind-body relation says that human minds are necessarily and completely embodied. Action-shapers dynamically constitute the action-space of individuals, affecting their capacity to take action or to select one course of action over another. We highlight the effects and interactions of neuro-immunological effective processes in the body to demonstrate how they shape the action-space. In this article, we consider neuro-immunological effective processes that influence the gut-brain axis, chronic stress, high levels of sugar intake, the amygdala and the effects of prolonged stress. We investigate the effects of these processes on the perception and on the capacity to form intentions and act on them. We conclude the paper by providing a concise account of action-shapers, in which we attempt to summarize the line of argumentation and provide suggestions for further research.
Collapse
|
12
|
Uthaug MV, Mason NL, Havenith MN, Vancura M, Ramaekers JG. An experience with Holotropic Breathwork is associated with improvement in non-judgement and satisfaction with life while reducing symptoms of stress in a Czech-speaking population. JOURNAL OF PSYCHEDELIC STUDIES 2022. [DOI: 10.1556/2054.2021.00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Background
Holotropic breathwork (Grof ® Breathwork), was developed by Stanislav Grof and Christina Grof as a ‘non-drug’ alternative technique to evoke altered states of consciousness (ASC). Interestingly, although HBW has been anecdotally reported to evoke experiences and mental health effects corresponding to those of psychedelic substances, the scientific literature on the matter is scarce.
Aims
The objective of this study was to assess the (sub)acute and long-term effects of HBW on satisfaction with life, and whether these depend on the depth of the experience evoked by the HBW session.
Methods
A naturalistic observational design was employed in the present study. Between January 2019 and July 2020, 58 Czech-speaking participants who had an experience with HBW were assessed using three separate anonymous online-surveys created and hosted on Qualtrics. Assessments of mindfulness, satisfaction with life, depression, anxiety, and stress were made once prior to (baseline), and two times following (sub-acutely and 4-weeks) the participants’ experience with HBW. The ego dissolution inventory and the 5-dimensional altered states of consciousness scale was used to quantify the HBW experience.
Results
Despite low ratings of the psychedelic experience (mean range of 0–34% out of 100%), ratings of non-judgement significantly increased sub-acutely following the HBW session and persisted for 4-weeks. Stress-related symptoms significantly decreased while satisfaction with life significantly increased at 4-weeks after HBW.
Conclusion
An experience with HBW may be associated with improvement in non-judgement, satisfaction with life, and reductions of stress-related symptoms.
Collapse
Affiliation(s)
- Malin Vedøy Uthaug
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Martha N Havenith
- Zero-Noise Lab, Ernst Strüngmann Institute for Neuroscience, Deutschordenstr. 46, 60528, Frankfurt a.M., Germany
| | - Michael Vancura
- Diabasis z.s., Rybničná 1, Prague 6, Prague, The Czech Republic
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| |
Collapse
|
13
|
Kelly JS, Bird E. Improved mood following a single immersion in cold water. LIFESTYLE MEDICINE 2021. [DOI: 10.1002/lim2.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- John S. Kelly
- Institute of Sport, Nursing and Allied Health University of Chichester Chichester UK
| | - Ellis Bird
- Institute of Sport, Nursing and Allied Health University of Chichester Chichester UK
| |
Collapse
|
14
|
Hypercapnia Modulates the Activity of Adenosine A1 Receptors and mitoK +ATP-Channels in Rat Brain When Exposed to Intermittent Hypoxia. Neuromolecular Med 2021; 24:155-168. [PMID: 34115290 DOI: 10.1007/s12017-021-08672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms and signaling pathways of the neuroprotective effects of hypercapnia and its combination with hypoxia are not studied sufficiently. The study aims to test the hypothesis of the potentiating effect of hypercapnia on the systems of adaptation to hypoxia, directly associated with A1-adenosine receptors and mitochondrial ATP-dependent K+ -channels (mitoK+ATP-channels). We evaluated the relative number of A1-adenosine receptors and mitoK+ATP-channels in astrocytes obtained from male Wistar rats exposed to various respiratory conditions (15 times of hypoxia and/or hypercapnia). In addition, the relative number of these molecules in astrocytes was evaluated on an in vitro model of chemical hypoxia, as well as in the cerebral cortex after photothrombotic damage. This study indicates an increase in the relative number of A1-adenosine receptors in astrocytes and in cells next to the stroke region of the cerebral cortex in rats exposed to hypoxia and hypercapnic hypoxia, but not hypercapnia alone. Hypercapnia and hypoxia increase the relative number of mitoK+ATP-channels in astrocytes and in cells of the peri-infarct region of the cerebral cortex in rats. In an in vitro study, hypercapnia mitigates the effects of acute chemical hypoxia observed in astrocytes for A1-adenosine receptors and mitoK+ATP-channels. Hypercapnia, unlike hypoxia, does not affect the relative number of A1 receptors to adenosine. At the same time, both hypercapnia and hypoxia increase the relative number of mitoK+ATP-channels, which can potentiate their protective effects with combined exposure.
Collapse
|
15
|
Tregub PP, Malinovskaya NA, Morgun AV, Osipova ED, Kulikov VP, Kuzovkov DA, Kovzelev PD. Hypercapnia potentiates HIF-1α activation in the brain of rats exposed to intermittent hypoxia. Respir Physiol Neurobiol 2020; 278:103442. [DOI: 10.1016/j.resp.2020.103442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/19/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
|
16
|
Gray ID, Kross AR, Renfrew ME, Wood P. Precision Medicine in Lifestyle Medicine: The Way of the Future? Am J Lifestyle Med 2020; 14:169-186. [PMID: 32231483 PMCID: PMC7092395 DOI: 10.1177/1559827619834527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/21/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Precision medicine has captured the imagination of the medical community with visions of therapies precisely targeted to the specific individual's genetic, biological, social, and environmental profile. However, in practice it has become synonymous with genomic medicine. As such its successes have been limited, with poor predictive or clinical value for the majority of people. It adds little to lifestyle medicine, other than in establishing why a healthy lifestyle is effective in combatting chronic disease. The challenge of lifestyle medicine remains getting people to actually adopt, sustain, and naturalize a healthy lifestyle, and this will require an approach that treats the patient as a person with individual needs and providing them with suitable types of support. The future of lifestyle medicine is holistic and person-centered rather than technological.
Collapse
Affiliation(s)
- Ian D. Gray
- Avondale College of Higher Education, Cooranbong,
New South Wales, Australia
| | - Andrea R. Kross
- Avondale College of Higher Education, Cooranbong,
New South Wales, Australia
| | - Melanie E. Renfrew
- Avondale College of Higher Education, Cooranbong,
New South Wales, Australia
| | - Paul Wood
- Avondale College of Higher Education, Cooranbong,
New South Wales, Australia
| |
Collapse
|
17
|
Hypercapnic hypoxia as a potential means to extend life expectancy and improve physiological activity in mice. Biogerontology 2019; 20:677-686. [DOI: 10.1007/s10522-019-09821-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/10/2019] [Indexed: 01/09/2023]
|
18
|
A Review of the Science of Colorful, Plant-Based Food and Practical Strategies for "Eating the Rainbow". J Nutr Metab 2019; 2019:2125070. [PMID: 33414957 PMCID: PMC7770496 DOI: 10.1155/2019/2125070] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/27/2019] [Accepted: 04/17/2019] [Indexed: 01/10/2023] Open
Abstract
Over the past decades, thousands of published studies have amassed supporting recommendations to consume fruits and vegetables for physiological and psychological health. Newer research has emerged to suggest that these plant-based foods contain a plethora of not only vitamins and minerals, but perhaps, most importantly, phytonutrients. These phytonutrients have known pleiotropic effects on cellular structure and function, ultimately resulting in the modulation of protein kinases and subsequent epigenetic modification in a manner that leads to improved outcomes. Even though eating fruits and vegetables is a well-known feature of a healthy dietary pattern, population intakes continue to be below federal recommendations. To encourage consumers to include fruits and vegetables into their diet, an “eat by color” approach is proposed in this review. Although each individual food may have numerous effects based on its constituents, the goal of this simplified approach was to identify general patterns of benefits based on the preponderance of scientific data and known mechanisms of food-based constituents. It is suggested that such a consumer-oriented categorization of these plant-based foods may lead to greater recognition of their importance in the daily diet throughout the lifespan. Other adjunctive strategies to heighten awareness of fruits and vegetables are discussed.
Collapse
|