1
|
Miranda‐Molina A, Alvarez L, Antunez‐Mojica M, Velasco‐Bejarano B. Reviewing Glycosyl-Inositols: Natural Occurrence, Biological Roles, and Synthetic Techniques. Chembiochem 2025; 26:e202400823. [PMID: 40025679 PMCID: PMC11907402 DOI: 10.1002/cbic.202400823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/14/2025] [Indexed: 03/04/2025]
Abstract
Glycosyl-inositols are molecules consisting of one or more α- or β-D-glycosyl residues bonded primarily to inositol or methyl-inositol. These derivatives are found in plants, yeast, bacteria, and parasites, and exhibit diverse biological properties. The limited availability of glycosyl inositols from natural sources has led to significant interest in chemical and enzymatic synthesis techniques due to their potential applications in various fields. This review provides a comprehensive overview of inositols, methyl-inositols, and primarily glycosyl inositols, focusing on their classification, natural occurrence, biological roles, and potential applications across different disciplines. Inositols, particularly myo-inositol and its derivatives are widely distributed in plants and play essential roles in biochemical processes and metabolic functions in different organs and tissues. Glycosyl inositols, including glycosylphosphatidylinositols, glycosyl inositol phosphorylceramides, phosphatidylinositol mannosides, monoglycosyl and diglycosyl derivatives, are discussed, emphasizing their structural diversity and biological functions. Methods for their chemical and enzymatic synthesis are also reviewed, highlighting recent advances and challenges in the field. Overall, this comprehensive review underscores the significance of glycosyl inositols as versatile molecules with diverse biological functions and promising applications in scientific research and industry.
Collapse
Affiliation(s)
- Alfonso Miranda‐Molina
- Departamento de Ingeniería Celular y BiocatálisisInstituto de BiotecnologíaUniversidad Nacional Autónoma de México.Av. Universidad 2001, Col. Chamilpa, C. P.62210Cuernavaca, MorelosMéxico
| | - Laura Alvarez
- LANEM-Centro de Investigaciones Químicas-IICBAUniversidad Autónoma del Estado de MorelosAvenida Universidad 1001Cuernavaca Morelos62209Mexico
- cCentro de Investigaciones Químicas-IICBAUniversidad Autónoma del Estado de MorelosAvenida Universidad 1001Cuernavaca Morelos62209México
| | - Mayra Antunez‐Mojica
- CONAHCYT-Centro de Investigaciones Químicas-IICBAUniversidad Autónoma del Estado de MorelosAvenida Universidad 1001Cuernavaca Morelos62209México
| | - Benjamín Velasco‐Bejarano
- Sección de Química OrgánicaDepartamento de Ciencias QuímicasFacultad de EstudiosSuperiores Cuautitlán-UNAMAv. 1 de Mayo S/N, Col. Sta. Ma. Las TorresCuautitlán Izcalli54740Estado de México C.P.
| |
Collapse
|
2
|
Banjare MK, Banjare BS. Study of the molecular interaction of a phosphonium-based ionic liquid within myo-inositol and non-steroidal anti-inflammatory drugs. RSC Adv 2024; 14:2961-2974. [PMID: 38239439 PMCID: PMC10794903 DOI: 10.1039/d3ra07721g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024] Open
Abstract
Ionic liquids (ILs) can be used as carriers and solubilizers as well as for increasing the effectiveness of drugs. In the present investigation, the micellar properties of phosphonium-based ionic liquids (PILs) such as trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate ([P666(14)][THPP]) and the effect of carbocyclic sugar-based myo-inositol (MI) and non-steroidal anti-inflammatory drugs (NSAIDs), i.e. ibuprofen (IBU) or aspirin (ASP), on the PIL micellar system were studied using surface tension, conductivity, colorimetry, viscometry, FTIR, and dynamic light scattering (DLS) at a temperature of 299 ± 0.5 K. The critical micelle concentrations (CMCs), particle size, zeta potential, and various interfacial parameters were also included i.e., efficiency of adsorption (pC20), surface tension at CMC (γCMC), minimum surface area per molecule (Amin), surface pressure at CMC (πCMC), maximum surface excess concentration (Γmax), and various thermodynamic parameters, such as standard Gibbs free energy of adsorption , standard Gibbs free energy of micellization per alkyl tail , standard Gibbs free energy of the air-water interface (ΔG(s)min), standard Gibbs free energy of transfer , and standard Gibbs free energy of micellization . The adsorption and micellization characteristics became more spontaneous, as shown by the more negative values of and . Viscosity-based rheological properties were calculated for various PIL + MI and PIL + MI + NSAID systems. According to the DLS data, the PIL (Z = 316.4 nm) micellar system generates substantially bigger micelles in an aqueous solution of MI + ASP (Z = 801.7 nm) than in MI + IBU (Z = 674.7 nm). FTIR spectroscopy revealed the interactions of PIL with MI + ASP and MI + IBU, where it was observed that MI + IBU shows good agreement with the PIL system compared to MI + ASP. The current research will have effects on pharmaceutical sciences, molecular biology, and drug delivery.
Collapse
Affiliation(s)
- Manoj Kumar Banjare
- Department of Chemistry (MSS), MATS University, Pandri Campus Raipur-492009 Chhattisgarh India +91-9827768119
| | - Bhupendra Singh Banjare
- Department of Chemistry (MSS), MATS University, Pandri Campus Raipur-492009 Chhattisgarh India +91-9827768119
| |
Collapse
|
3
|
Yan H, Zhao S, Huang HX, Xie P, Cai XH, Qu YD, Zhang W, Luo JQ, Zhang L, Li X. Systematic Mendelian randomization study of the effect of gut microbiome and plasma metabolome on severe COVID-19. Front Immunol 2023; 14:1211612. [PMID: 37662924 PMCID: PMC10468967 DOI: 10.3389/fimmu.2023.1211612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND COVID-19 could develop severe respiratory symptoms in certain infected patients, especially in the patients with immune disorders. Gut microbiome and plasma metabolome act important immunological modulators in the human body and could contribute to the immune responses impacting the progression of COVID-19. However, the causal relationship between specific intestinal bacteria, metabolites and severe COVID-19 remains not clear. METHODS Based on two-sample Mendelian randomization (MR) framework, the causal effects of 131 intestinal taxa and 452 plasma metabolites on severe COVID-19 were evaluated. Single nucleotide polymorphisms (SNPs) strongly associated with the abundance of intestinal taxa and the concentration of plasma metabolites had been utilized as the instrument variables to infer whether they were causal factors of severe COVID-19. In addition, mediation analysis was conducted to find the potential association between the taxon and metabolite, and further colocalization analysis had been performed to validate the causal relationships. RESULTS MR analysis identified 13 taxa and 53 metabolites, which were significantly associated with severe COVID-19 as causal factors. Mediation analysis revealed 11 mediated relationships. Myo-inositol, 2-stearoylglycerophosphocholine, and alpha-glutamyltyrosine, potentially contributed to the association of Howardella and Ruminiclostridium 6 with severe COVID-19, respectively. Butyrivibrio and Ruminococcus gnavus could mediate the association of myo-inositol and N-acetylalanine, respectively. In addition, Ruminococcus torques abundance was colocalized with severe COVID-19 (PP.H4 = 0.77) and the colon expression of permeability related protein RASIP1 (PP.H4 = 0.95). CONCLUSIONS Our study highlights the potential causal relationships between gut microbiome, plasma metabolome and severe COVID-19, which potentially serve as clinical biomarkers for risk stratification and prognostication and benefit the mechanism mechanistic investigation of severe COVID-19.
Collapse
Affiliation(s)
- Han Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Han-Xue Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-He Cai
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-Dan Qu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian-Quan Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Longbo Zhang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Banjare BS, Banjare MK. Impact of carbocyclic sugar-based myo-inositol on conventional surfactants. J Mol Liq 2023; 384:122278. [DOI: 10.1016/j.molliq.2023.122278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
5
|
Arefhosseini S, Roshanravan N, Asghari S, Tutunchi H, Ebrahimi-Mameghani M. Expression of inflammatory genes, WBC-derived inflammatory biomarkers and liver function indices: Effects of myo-inositol supplementation in obese patients with NAFLD. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
|
6
|
Li X, Liu Y, Xu G, Xie Y, Wang X, Wu J, Chen H. Plasma metabolomic characterization of SARS-CoV-2 Omicron infection. Cell Death Dis 2023; 14:276. [PMID: 37076483 PMCID: PMC10113737 DOI: 10.1038/s41419-023-05791-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
Omicron variants of SARS-CoV-2 have spread rapidly worldwide; however, most infected patients have mild or no symptoms. This study aimed to understand the host response to Omicron infections by performing metabolomic profiling of plasma. We observed that Omicron infections triggered an inflammatory response and innate immune, and adaptive immunity was suppressed, including reduced T-cell response and immunoglobulin antibody production. Similar to the original SARS-CoV-2 strain circulating in 2019, the host developed an anti-inflammatory response and accelerated energy metabolism in response to Omicron infection. However, differential regulation of macrophage polarization and reduced neutrophil function has been observed in Omicron infections. Interferon-induced antiviral immunity was not as strong in Omicron infections as in the original SARS-CoV-2 infections. The host response to Omicron infections increased antioxidant capacity and liver detoxification more than in the original strain. Hence, these findings suggest that Omicron infections cause weaker inflammatory alterations and immune responses than the original SARS-CoV-2 strain.
Collapse
Affiliation(s)
- Xue Li
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China
| | - Yimeng Liu
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
| | - Guiying Xu
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
| | - Yi Xie
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China
| | - Ximo Wang
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ injury and ITCWM Repair, Tianjin, China.
| | - Junping Wu
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China.
- Department of Tuberculosis, Haihe Hospital, Tianjin University, Tianjin, 300350, China.
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China.
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China.
| |
Collapse
|
7
|
Guarnieri G, Iervolino M, Cavallone S, Unfer V, Vianello A. The "Asthma-Polycystic Ovary Overlap Syndrome" and the Therapeutic Role of Myo-Inositol. Int J Mol Sci 2023; 24:ijms24086959. [PMID: 37108123 PMCID: PMC10138395 DOI: 10.3390/ijms24086959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Asthma is a heterogeneous inflammatory disease characterized by abnormalities in immune response. Due to the inherent complexity of the disease and the presence of comorbidities, asthma control is often difficult to obtain. In asthmatic patients, an increased prevalence of irregular menstrual cycles, infertility, obesity, and insulin resistance has been reported. Given that these conditions are also common in patients with polycystic ovary syndrome (PCOS), we propose the definition of "asthma-PCOS overlap syndrome" to indicate a medical condition which shares characteristics of both diseases. The aim of this review is to analyze the links between asthma and PCOS and evaluate the therapeutic role of myo-inositol, a natural compound currently utilized in patients with PCOS, in the management of asthma patients.
Collapse
Affiliation(s)
- Gabriella Guarnieri
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | | | | | - Vittorio Unfer
- Systems Biology Group Laboratory, 00163 Rome, Italy
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
| | - Andrea Vianello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| |
Collapse
|
8
|
Schloss JV. Nutritional deficiencies that may predispose to long COVID. Inflammopharmacology 2023; 31:573-583. [PMID: 36920723 PMCID: PMC10015545 DOI: 10.1007/s10787-023-01183-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Multiple nutritional deficiencies (MND) confound studies designed to assess the role of a single nutrient in contributing to the initiation and progression of disease states. Despite the perception of many healthcare practitioners, up to 25% of Americans are deficient in five-or-more essential nutrients. Stress associated with the COVID-19 pandemic further increases the prevalence of deficiency states. Viral infections compete for crucial nutrients with immune cells. Viral replication and proliferation of immunocompetent cells critical to the host response require these essential nutrients, including zinc. Clinical studies have linked levels of more than 22 different dietary components to the likelihood of COVID-19 infection and the severity of the disease. People at higher risk of infection due to MND are also more likely to have long-term sequelae, known as Long COVID.
Collapse
Affiliation(s)
- John V Schloss
- Departments of Pharmaceutical Science and Biochemistry & Molecular Biology, Schools of Pharmacy and Medicine, American University of Health Sciences, 1600 East Hill St., Signal Hill, CA, 90755, USA.
| |
Collapse
|
9
|
Baines DL, Vasiljevs S, Kalsi KK. Getting sweeter: new evidence for glucose transporters in specific cell types of the airway? Am J Physiol Cell Physiol 2023; 324:C153-C166. [PMID: 36409177 PMCID: PMC9829484 DOI: 10.1152/ajpcell.00140.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
New technologies such as single-cell RNA sequencing (scRNAseq) has enabled identification of the mRNA transcripts expressed by individual cells. This review provides insight from recent scRNAseq studies on the expression of glucose transporters in the epithelial cells of the airway epithelium from trachea to alveolus. The number of studies analyzed was limited, not all reported the full range of glucose transporters and there were differences between cells freshly isolated from the airways and those grown in vitro. Furthermore, glucose transporter mRNA transcripts were expressed at lower levels than other epithelial marker genes. Nevertheless, these studies highlighted that there were differences in cellular expression of glucose transporters. GLUT1 was the most abundant of the broadly expressed transporters that included GLUT8, 10, and 13. GLUT9 transcripts were more common in basal cells and GLUT12 in ionocytes/ciliated cells. In addition to alveolar cells, SGLT1 transcripts were present in secretory cells. GLUT3 mRNA transcripts were expressed in a cell cluster that expressed monocarboxylate (MCT2) transporters. Such distributions likely underlie cell-specific metabolic requirements to support proliferation, ion transport, mucous secretion, environment sensing, and airway glucose homeostasis. These studies have also highlighted the role of glucose transporters in the movement of dehydroascorbic acid/vitamin C/myoinositol/urate, which are factors important to the innate immune properties of the airways. Discrepancies remain between detection of mRNAs, protein, and function of glucose transporters in the lungs. However, collation of the data from further scRNAseq studies may provide a better consensus and understanding, supported by qPCR, immunohistochemistry, and functional experiments.
Collapse
Affiliation(s)
- Deborah L. Baines
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Stanislavs Vasiljevs
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Kameljit K. Kalsi
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| |
Collapse
|
10
|
Favilli A, Laganà AS, Chiantera V, Uccella S, Gerli S, Garzon S. COVID-19 and Pregnancy: Have We Gotten through the Darkest Hour? J Pers Med 2022; 12:jpm12121987. [PMID: 36556208 PMCID: PMC9782586 DOI: 10.3390/jpm12121987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 12/02/2022] Open
Abstract
On December 2019, a new Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) was isolated and identified in Wuhan (China) [...].
Collapse
Affiliation(s)
- Alessandro Favilli
- Unit of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
- Correspondence:
| | - Antonio Simone Laganà
- Unit of Gynecologic Oncology, ARNAS “Civico—Di Cristina—Benfratelli”, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Vito Chiantera
- Unit of Gynecologic Oncology, ARNAS “Civico—Di Cristina—Benfratelli”, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Stefano Uccella
- Unit of Obstetrics and Gynecology—Department of Surgery, Dentistry, Pediatrics, and Gynecology, AOUI Verona—University of Verona Piazzale A. Stefani 1, 37126 Verona, Italy
| | - Sandro Gerli
- Unit of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Simone Garzon
- Unit of Obstetrics and Gynecology—Department of Surgery, Dentistry, Pediatrics, and Gynecology, AOUI Verona—University of Verona Piazzale A. Stefani 1, 37126 Verona, Italy
| |
Collapse
|
11
|
Ceballos FC, Virseda-Berdices A, Resino S, Ryan P, Martínez-González O, Peréz-García F, Martin-Vicente M, Brochado-Kith O, Blancas R, Bartolome-Sánchez S, Vidal-Alcántara EJ, Albóniga-Díez OE, Cuadros-González J, Blanca-López N, Martínez I, Martinez-Acitores IR, Barbas C, Fernández-Rodríguez A, Jiménez-Sousa MÁ. Metabolic Profiling at COVID-19 Onset Shows Disease Severity and Sex-Specific Dysregulation. Front Immunol 2022; 13:925558. [PMID: 35844615 PMCID: PMC9280146 DOI: 10.3389/fimmu.2022.925558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Backgroundmetabolic changes through SARS-CoV-2 infection has been reported but not fully comprehended. This metabolic dysregulation affects multiple organs during COVID-19 and its early detection can be used as a prognosis marker of severity. Therefore, we aimed to characterize metabolic and cytokine profile at COVID-19 onset and its relationship with disease severity to identify metabolic profiles predicting disease progression.Material and Methodswe performed a retrospective cross-sectional study in 123 COVID-19 patients which were stratified as asymptomatic/mild, moderate and severe according to the highest COVID-19 severity status, and a group of healthy controls. We performed an untargeted plasma metabolic profiling (gas chromatography and capillary electrophoresis-mass spectrometry (GC and CE-MS)) and cytokine evaluation.ResultsAfter data filtering and identification we observed 105 metabolites dysregulated (66 GC-MS and 40 CE-MS) which shown different expression patterns for each COVID-19 severity status. These metabolites belonged to different metabolic pathways including amino acid, energy, and nitrogen metabolism among others. Severity-specific metabolic dysregulation was observed, as an increased transformation of L-tryptophan into L-kynurenine. Thus, metabolic profiling at hospital admission differentiate between severe and moderate patients in the later phase of worse evolution. Several plasma pro-inflammatory biomarkers showed significant correlation with deregulated metabolites, specially with L-kynurenine and L-tryptophan. Finally, we describe a strong sex-related dysregulation of metabolites, cytokines and chemokines between severe and moderate patients. In conclusion, metabolic profiling of COVID-19 patients at disease onset is a powerful tool to unravel the SARS-CoV-2 molecular pathogenesis.ConclusionsThis technique makes it possible to identify metabolic phenoconversion that predicts disease progression and explains the pronounced pathogenesis differences between sexes.
Collapse
Affiliation(s)
- Francisco C. Ceballos
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Ana Virseda-Berdices
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Salvador Resino
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Ryan
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Oscar Martínez-González
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
- Universidad Alfonso X el Sabio, Villanueva de la Cañada, Madrid, Spain
| | - Felipe Peréz-García
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedicine and Biotecnology, Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, Spain
| | - María Martin-Vicente
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Brochado-Kith
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Blancas
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
- Universidad Alfonso X el Sabio, Villanueva de la Cañada, Madrid, Spain
| | - Sofía Bartolome-Sánchez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Erick Joan Vidal-Alcántara
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Oihane Elena Albóniga-Díez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Juan Cuadros-González
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedicine and Biotecnology, Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, Spain
| | | | - Isidoro Martínez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Amanda Fernández-Rodríguez, ; María Ángeles Jiménez-Sousa,
| | - María Ángeles Jiménez-Sousa
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Amanda Fernández-Rodríguez, ; María Ángeles Jiménez-Sousa,
| |
Collapse
|
12
|
Siracusa L, Napoli E, Ruberto G. Novel Chemical and Biological Insights of Inositol Derivatives in Mediterranean Plants. Molecules 2022; 27:1525. [PMID: 35268625 PMCID: PMC8912080 DOI: 10.3390/molecules27051525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Inositols (Ins) are natural compounds largely widespread in plants and animals. Bio-sinthetically they derive from sugars, possessing a molecular structure very similar to the simple sugars, and this aspect concurs to define them as primary metabolites, even though it is much more correct to place them at the boundary between primary and secondary metabolites. This dichotomy is well represented by the fact that as primary metabolites they are essential cellular components in the form of phospholipid derivatives, while as secondary metabolites they are involved in a plethora of signaling pathways playing an important role in the surviving of living organisms. myo-Inositol is the most important and widespread compound of this family, it derives directly from d-glucose, and all known inositols, including stereoisomers and derivatives, are the results of metabolic processes on this unique molecule. In this review, we report the new insights of these compounds and their derivatives concerning their occurrence in Nature with a particular emphasis on the plant of the Mediterranean area, as well as the new developments about their biological effectiveness.
Collapse
Affiliation(s)
| | | | - Giuseppe Ruberto
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy; (L.S.); (E.N.)
| |
Collapse
|
13
|
Guo B, Peng Y, Gu Y, Zhong Y, Su C, Liu L, Chai D, Song T, Zhao N, Yan X, Xu T. Resveratrol pretreatment mitigates LPS-induced acute lung injury by regulating conventional dendritic cells' maturation and function. Open Life Sci 2021; 16:1064-1081. [PMID: 34676301 PMCID: PMC8483064 DOI: 10.1515/biol-2021-0110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a severe syndrome lacking efficient therapy and resulting in high morbidity and mortality. Although resveratrol (RES), a natural phytoalexin, has been reported to protect the ALI by suppressing the inflammatory response, the detailed mechanism of how RES affected the immune system is poorly studied. Pulmonary conventional dendritic cells (cDCs) are critically involved in the pathogenesis of inflammatory lung diseases including ALI. In this study, we aimed to investigate the protective role of RES via pulmonary cDCs in lipopolysaccharide (LPS)-induced ALI mice. Murine ALI model was established by intratracheally challenging with 5 mg/kg LPS. We found that RES pretreatment could mitigate LPS-induced ALI. Additionally, proinflammatory-skewed cytokines decreased whereas anti-inflammatory-related cytokines increased in bronchoalveolar lavage fluid by RES pretreatment. Mechanistically, RES regulated pulmonary cDCs' maturation and function, exhibiting lower level of CD80, CD86, major histocompatibility complex (MHC) II expression, and IL-10 secretion in ALI mice. Furthermore, RES modulated the balance between proinflammation and anti-inflammation of cDCs. Moreover, in vitro RES pretreatment regulated the maturation and function of bone marrow derived dendritic cells (BMDCs). Finally, the adoptive transfer of RES-pretreated BMDCs enhanced recovery of ALI. Thus, these data might further extend our understanding of a protective role of RES in regulating pulmonary cDCs against ALI.
Collapse
Affiliation(s)
- Bingnan Guo
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yigen Peng
- Department of Emergency Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Yuting Gu
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yi Zhong
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Chenglei Su
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Lin Liu
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Tengfei Song
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, New York, United States
| | - Ningjun Zhao
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xianliang Yan
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Tie Xu
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
- Department of Emergency Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| |
Collapse
|
14
|
A Targeted Serum Metabolomics GC-MS Approach Identifies Predictive Blood Biomarkers for Retained Placenta in Holstein Dairy Cows. Metabolites 2021; 11:metabo11090633. [PMID: 34564449 PMCID: PMC8466882 DOI: 10.3390/metabo11090633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
The retained placenta is a common pathology of dairy cows. It is associated with a significant drop in the dry matter intake, milk yield, and increased susceptibility of dairy cows to metritis, mastitis, and displaced abomasum. The objective of this study was to identify metabolic alterations that precede and are associated with the disease occurrence. Blood samples were collected from 100 dairy cows at −8 and −4 weeks prior to parturition and on the day of retained placenta, and only 16 healthy cows and 6 cows affected by retained placenta were selected to measure serum polar metabolites by a targeted gas chromatography–mass spectroscopy (GC-MS) metabolomics approach. A total of 27 metabolites were identified and quantified in the serum. There were 10, 18, and 17 metabolites identified as being significantly altered during the three time periods studied. However, only nine metabolites were identified as being shared among the three time periods including five amino acids (Asp, Glu, Ser, Thr, and Tyr), one sugar (myo-inositol), phosphoric acid, and urea. The identified metabolites can be used as predictive biomarkers for the risk of retained placenta in dairy cows and might help explain the metabolic processes that occur prior to the incidence of the disease and throw light on the pathomechanisms of the disease.
Collapse
|
15
|
Yu L, Yan C, Chu S, Chen Y, Wang J. The differential diagnosis of pneumonia in two patients infected by atypical pathogens. Future Microbiol 2021; 16:769-776. [PMID: 34253052 DOI: 10.2217/fmb-2021-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The current study presents two patients who lived in a rural family with close contact and suffered from rapidly progressive pneumonia. Chest computed tomography images and lymphocytopenia indicated the possibility of COVID-19 infection, but antibody and nucleic acid tests excluded this possibility. Negative results were obtained from corresponding tests for pneumococcal, adenovirus, fungal and legionella infection. Metagenomics analysis and subsequent antibody tests confirmed mycoplasma pneumonia. After treating with moxifloxacin, both patients recovered well and left the hospital. In terms of complicated infectious disease, consideration of atypical pathogens and medical and epidemiological history were important for differential diagnosis of COVID-19; metagenomics analysis was useful to provide direct references for diagnosis.
Collapse
Affiliation(s)
- Li Yu
- Department of Infectious Diseases, People's Hospital of Tiantai County, Tiantai, Zhejiang, 317200, China
| | - Congcong Yan
- Department of Science and Education, People's Hospital of Tiantai County, Tiantai, Zhejiang, 317200, China
| | - Shanshan Chu
- Department of Infectious Diseases, People's Hospital of Tiantai County, Tiantai, Zhejiang, 317200, China
| | - Yingjun Chen
- Department of Infectious Diseases, People's Hospital of Tiantai County, Tiantai, Zhejiang, 317200, China
| | - Junwei Wang
- Department of Emergency, People's Hospital of Tiantai County, Tiantai, Zhejiang, 317200, China
| |
Collapse
|
16
|
Myoinositol Reduces Inflammation and Oxidative Stress in Human Endothelial Cells Exposed In Vivo to Chronic Hyperglycemia. Nutrients 2021; 13:nu13072210. [PMID: 34199095 PMCID: PMC8308270 DOI: 10.3390/nu13072210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Myo-inositol (Myo) improves insulin resistance, glucose metabolism, and helps gestational diabetes (GDM) management. GDM is associated with a pro-inflammatory state and increased oxidative stress, which are both involved in vascular damage in diabetes. Our aim was to study Myo anti-inflammatory/antioxidant potential effects on an in vitro model of human umbilical vein endothelial cells (HUVECs). To this end, monocyte cell adhesion to HUVECs, adhesion molecule membrane exposure, and oxidative stress levels were determined in cells from control (C-) and GDM women treated during pregnancy either with diet only (GD-) or with diet plus Myo (GD+Myo). To deeply study the vascular effects of Myo, the same evaluations were performed in C- and GD-HUVECs following 48 h in vitro stimulation with Myo. Notably, we first observed that GD-HUVECs obtained from women assuming Myo supplementation exhibited a significantly decreased number of monocytes that adhered to endothelial cells, less adhesion molecule exposure, and lower intracellular reactive oxygen species (ROS) levels in the basal state as compared to GD-HUVECs obtained from women treated by diet only. This Myo anti-inflammatory/antioxidant effect was confirmed by 48 h in vitro stimulation of GD-HUVECs as compared to controls. Altogether, these results strongly suggest that Myo may exert protective actions against chronic inflammation induced by endothelial dysfunction in diabetes.
Collapse
|
17
|
Montano L, Donato F, Bianco PM, Lettieri G, Guglielmino A, Motta O, Bonapace IM, Piscopo M. Air Pollution and COVID-19: A Possible Dangerous Synergy for Male Fertility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136846. [PMID: 34202243 PMCID: PMC8297116 DOI: 10.3390/ijerph18136846] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
Several studies indicate that semen quality has strongly declined in the last decades worldwide. Air pollution represents a significant co-factor with the COVID-19 impact and has negative effects on the male reproductive system, through pro-oxidant, inflammatory and immune-dysregulating mechanisms. It has recently been reported that chronic exposure to PM2.5 causes overexpression of the alveolar ACE2 receptor, the entry route of SARS-CoV-2 into the organism shared by the lungs and testis where expression is highest in the body. In the testis, the ACE2/Ang-(1-7)/MasR pathway plays an important role in the regulation of spermatogenesis and an indirect mechanism of testicular damage could be due to the blockade of the ACE2 receptor by SARS-CoV-2. This prevents the conversion of specific angiotensins, and their excess causes inflammation with the overproduction of cytokines. PM2.5-induced overexpression of the alveolar ACE2 receptor, in turn, could increase local viral load in patients exposed to pollutants, producing ACE2 receptor depletion and compromising host defenses. By presenting an overall view of epidemiological data and molecular mechanisms, this manuscript aims to interpret the possible synergistic effects of both air pollution and COVID-19 on male reproductive function, warning that the spread of SARS-CoV-2 in the fertile years may represent a significant threat to global reproductive health. All of this should be of great concern, especially for men of the age of maximum reproductive capacity, and an important topic of debate for policy makers. Altered environmental conditions, together with the direct and indirect short- and long-term effects of viral infection could cause a worsening of semen quality with important consequences for male fertility, especially in those areas with higher environmental impact.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (EcoFoodFertility Project), “Oliveto Citra Hospital”, 84020 Oliveto Citra, Italy
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (L.M.); (I.M.B.); (M.P.); Tel.: +39-0331-339452 (I.M.B.); +39-0816-79081 (M.P.)
| | - Francesco Donato
- Unit of Hygiene, Epidemiology, and Public Health, Department of Medical and Surgical Specialties Radiological Sciences and Public Health, University of Brescia, 21100 Brescia, Italy;
| | - Pietro Massimiliano Bianco
- ISPRA, Italian Institute for Environmental Protection and Research, Via Vitaliano Brancati 60, 00144 Roma, Italy;
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
| | | | - Oriana Motta
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy;
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Correspondence: (L.M.); (I.M.B.); (M.P.); Tel.: +39-0331-339452 (I.M.B.); +39-0816-79081 (M.P.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
- Correspondence: (L.M.); (I.M.B.); (M.P.); Tel.: +39-0331-339452 (I.M.B.); +39-0816-79081 (M.P.)
| |
Collapse
|