1
|
Sajjadi M, Nasrollahzadeh M, Ghafuri H. Functionalized chitosan-inspired (nano)materials containing sulfonic acid groups: Synthesis and application. Carbohydr Polym 2024; 343:122443. [PMID: 39174086 DOI: 10.1016/j.carbpol.2024.122443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Nature-inspired chitosan (CS) materials show a high potential for the design/fabrication of sustainable heterogeneous (nano)materials with extraordinary structural/physical features, such as superior biodegradability/biocompatibility, simplicity of chemical modification, environmental safety, high availability, cost-effectiveness, high electrochemical activity, good film-forming ability, and antioxidant, antimicrobial/antibacterial, and anticoagulant activities. Industrialization and growth of industrial wastes or by-products induce an increasing demand for the development of clean, low-cost, and renewable natural systems to minimize or eliminate the utilization of environmentally toxic compounds. The preparation of novel heterogeneous functionalized polysaccharide-inspired bio(nano)materials via chemical modifications of natural CS to improve its physicochemical/biochemical properties has recently become tremendously attractive for many researchers. The most abundantly available and cost-effective functionalized CS-inspired (nano)materials are considerably valuable in terms of the economic aspects of production of (nano)catalysts, (nano)hydrogels, (nano)composite/blend membranes, and thus their commercialization. In this respect, the preparation of functionalized CS-inspired (nano)materials containing -SO3H groups has been represented as a valid alternative to the homogenous unmodified biomaterials for various applications. Sulfonated derivatives of CS-inspired (nano)materials may possess huge surface areas, catalytic activity, adsorption, and biological/biomedical properties. This review article is aimed at the investigation of different methods and potential applications of sulfonated CS-inspired (nano)materials in catalysis, fuel cells, adsorption of ions, membranes, and biological applications.
Collapse
Affiliation(s)
- Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
2
|
Guo X, Zhang Z, Liu Z, Huang H, Zhang C, Rao H. Improved Proton Conductivity of Chitosan-Based Composite Proton Exchange Membrane Reinforced by Modified GO Inorganic Nanofillers. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1217. [PMID: 39057893 PMCID: PMC11280275 DOI: 10.3390/nano14141217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Non-fluorinated chitosan-based proton exchange membranes (PEMs) have been attracting considerable interest due to their environmental friendliness and relatively low cost. However, low proton conductivity and poor physicochemical properties have limited their application in fuel cells. In this work, a reinforced nanofiller (sulfonated CS/GO, S-CS/GO) is accomplished, for the first time, via a facile amidation and sulfonation reaction. Novel chitosan-based composite PEMs are successfully constructed by the incorporation of the nanofiller into the chitosan matrix. Additionally, the effects of the type and amount of the nanofillers on physicochemical and electrochemical properties are further investigated. It is demonstrated that the chitosan-based composite PEMs incorporating an appropriate amount of the nanofillers (9 wt.%) exhibit good membrane-forming ability, physicochemical properties, improved proton conductivity, and low methanol permeability even under a high temperature and low humidity environment. When the incorporated amounts of S-CS/GO are 9 wt.%, the proton conductivity of the composite PEMs was up to 0.032 S/cm but methanol permeability was decreased to 1.42 × 10-7 cm2/s. Compared to a pristine CS membrane, the tensile strength of the composite membrane is improved by 98% and the methanol permeability is reduced by 51%.
Collapse
Affiliation(s)
- Xinrui Guo
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; (X.G.); (Z.Z.); (Z.L.); (H.H.)
| | - Zhongxin Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; (X.G.); (Z.Z.); (Z.L.); (H.H.)
| | - Zhanyan Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; (X.G.); (Z.Z.); (Z.L.); (H.H.)
| | - Hui Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; (X.G.); (Z.Z.); (Z.L.); (H.H.)
| | - Chunlei Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China;
| | - Huaxin Rao
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; (X.G.); (Z.Z.); (Z.L.); (H.H.)
| |
Collapse
|
3
|
Mutharani B, Ranganathan P, Chang YH, Chiu FC. Design and synthesis of polypyrrole conductive ink based on sulfated chitosan for bactericide carbendazim detection. Carbohydr Polym 2024; 331:121800. [PMID: 38388028 DOI: 10.1016/j.carbpol.2024.121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 02/24/2024]
Abstract
Conductive polymers (CPs) are typically insoluble in solvents, and devising biocompatible hydrophilic CPs is challenging and imperative to expand the applications of CPs. Herein, sulfated chitosan (SCS) is used as a green dopant instead of toxic poly(styrene sulfonate) (PSS), and SCS:polypyrrole (SCS:PPy) conductive ink is prepared by in situ polymerization. Due to the complex structure between PPy and SCS polyanion, the synthesized SCS:PPy dispersion forms a well-connected electric pathway and confers superior conductivity, dispersion stability, good film-forming ability, and high electrical stability. As proof of our concept, electrochemical sensing utilizing an SCS:PPy-modified screen-printed carbon electrode (SPCE) was performed towards carbendazim (CBZ). The SCS:PPy on the SPCE surface displayed greater sensitivity to CBZ because the conductive complex structure eased the electrocatalytic action of SCS:PPy by dramatically increasing the current intensity of CBZ oxidation and notably ameliorating stability. The sensor unveils the lowest detection value of 1.02 nM with a linear range of 0.05 to 906 μM for sensing trace CBZ by utilizing the pulse voltammetry technique. Interestingly, this senor shows excellent selectivity towards CBZ due to the formation of substantial interactions between SCS:PPy and CBZ, as demonstrated by molecular simulation studies. Furthermore, this sensor can precisely monitor CBZ in actual fruit and river water samples with satisfactory results. This study sheds light on the design and synthesis of sustainable hydrophilic CPs in the fabrication of sensors.
Collapse
Affiliation(s)
- Bhuvanenthiran Mutharani
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC
| | - Palraj Ranganathan
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Yen-Hsiang Chang
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC
| | - Fang-Chyou Chiu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC; Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC.
| |
Collapse
|
4
|
Sonawane AV, Rikame S, Sonawane SH, Gaikwad M, Bhanvase B, Sonawane SS, Mungray AK, Gaikwad R. A review of microbial fuel cell and its diversification in the development of green energy technology. CHEMOSPHERE 2024; 350:141127. [PMID: 38184082 DOI: 10.1016/j.chemosphere.2024.141127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
The advancement of microbial fuel cell technology is rapidly growing, with extensive research and well-established methodologies for enhancing structural performance. This terminology attracts researchers to compare the MFC devices on a technological basis. The architectural and scientific successes of MFCs are only possible with the knowledge of engineering and technical fields. This involves the structure of MFCs, using substrates and architectural backbones regarding electrode advancement, separators and system parameter measures. Knowing about the MFCs facilitates the systematic knowledge of engineering and scientific principles. The current situation of rapid urbanization and industrial growth is demanding the augmented engineering goods and production which results in unsolicited burden on traditional wastewater treatment plants. Consequently, posing health hazards and disturbing aquatic veracity due to partial and untreated wastewater. Therefore, it's sensible to evaluate the performance of MFCs as an unconventional treatment method over conventional one to treat the wastewater. However, MFCs some benefits like power generation, stumpy carbon emission and wastewater treatment are the main reasons behind the implementation. Nonetheless, few challenges like low power generation, scaling up are still the major areas needs to be focused so as to make MFCs sustainable one. We have focused on few archetypes which majorities have been laboratory scale in operations. To ensure the efficiency MFCs are needed to integrate and compatible with conventional wastewater treatment schemes. This review intended to explore the diversification in architecture of MFCs, exploration of MFCs ingredients and to provide the foreseen platform for the researchers in one source, so as to establish the channel for scaling up the technology. Further, the present review show that the MFC with different polymer membranes and cathode and anode modification presents significant role for potential commercial applications after change the system form prototype to pilot scale.
Collapse
Affiliation(s)
- Amol V Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal, 506004, Telangana, India.
| | - Satish Rikame
- Department of Chemical Engineering, K.K.Wagh Polytechnic Nashik, Maharashtra, India.
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal, 506004, Telangana, India.
| | - Mahendra Gaikwad
- Department of Chemical Engineering, National Institute of Technology, Raipur, 492010, Chhattisgarh, India.
| | - Bharat Bhanvase
- Department of Chemical Engineering, Laxminarayan Innovation Technological University, Nagpur, 440033, Maharashtra, India.
| | - Shriram S Sonawane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, Maharashtra, India.
| | - Arvind Kumar Mungray
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| | - Ravindra Gaikwad
- Department of Chemical Engineering, Ravindra W. Gaikwad, Jawaharlal Nehru Engineering College, Chatrapati Sambhaji Nagar, 431003, Maharashtra, India.
| |
Collapse
|
5
|
Hemmasi E, Tohidian M, Makki H. Morphology and Transport Study of Acid-Base Blend Proton Exchange Membranes by Molecular Simulations: Case of Chitosan/Nafion. J Phys Chem B 2023; 127:10624-10635. [PMID: 38037344 PMCID: PMC10726362 DOI: 10.1021/acs.jpcb.3c05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Blending a basic polymer (e.g., chitosan) with Nafion can modify some membrane properties in direct methanol fuel cell applications, e.g., controlling methanol crossover, by regulating the morphology of hydrophilic channels. Unraveling the mechanisms by which the channel morphology is modified is essential to formulate design strategies for acid-base blend membrane development. Thus, we use molecular simulations to analyze the morphological features of a blend membrane (at 75/25 chitosan/Nafion wt %), i.e., (i) water/polymer phase organizations, (ii) number and size of water clusters, and (iii) quantitative morphological measures of hydrophilic channels, and compare them to the pure Nafion in a wide range of water contents. It is found that the affinity of water to different hydrophilic groups in the blend membrane can result in more distorted and dispersed hydrophilic phase and fewer bulk water-like features compared to pure Nafion. Also, the width of the hydrophilic network bottleneck, i.e., pore limiting diameter (PLD), is found to be almost five times smaller for the blend membrane compared to Nafion at their maximum water contents. Moreover, by changing the chitosan/Nafion weight ratio from 75/25 to 0/100, we show that as Nafion content increases, all channel morphological characteristics alter monotonically except PLD. This is mainly due to the strong acid-base interactions between Nafion and chitosan, which hinder the monotonic growth of PLD. Interestingly, water and methanol diffusion coefficients are strongly correlated with PLD, suggesting that PLD can be used as a single parameter for tailoring the blending ratio for achieving the desired diffusion properties of acid-base membranes.
Collapse
Affiliation(s)
- Ehsan Hemmasi
- Department
of Polymer and Color Engineering, Amirkabir
University of Technology, 424 Hafez Avenue, Tehran 59163-4311, Iran
| | - Mahdi Tohidian
- Department
of Polymer and Color Engineering, Amirkabir
University of Technology, 424 Hafez Avenue, Tehran 59163-4311, Iran
| | - Hesam Makki
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
6
|
Murmu R, Roy D, Sutar H, Senapati P, Patra SC. Development of the highly performed chitosan based thin film towards the sustainability of direct methanol fuel cell. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2133616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Rabiranjan Murmu
- Department of Chemical Engineering, Jadavpur University, Kolkata, India
- Department of Chemical Engineering, Indira Gandhi Institute of Technology Sarang, Odisha, India
| | - Debashis Roy
- Department of Chemical Engineering, Jadavpur University, Kolkata, India
| | - Harekrushna Sutar
- Department of Chemical Engineering, Indira Gandhi Institute of Technology Sarang, Odisha, India
| | - Pragyan Senapati
- Department of Mechanical Engineering, Siksha ‘O’ Anusandhan (Deemed to Be University) Bhubaneswar, Odisha, India
| | - Sarat Chandra Patra
- Department of Chemical Engineering, Indira Gandhi Institute of Technology Sarang, Odisha, India
| |
Collapse
|
7
|
Hamza MF, Abu Khoziem HA, Khalafalla MS, Abdellah WM, Zaki DI, Althumayri K, Wei Y. Ecofriendly Composite as a Promising Material for Highly-Performance Uranium Recovery from Different Solutions. TOXICS 2022; 10:490. [PMID: 36136455 PMCID: PMC9502357 DOI: 10.3390/toxics10090490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
The development of new materials based on biopolymers (as renewable resources) is substantial for environmental challenges in the heavy metal and radionuclide ions removal contaminations. Functionalization of chitosan with sulfonic groups was achieved for improving the uranium sorption, not only from slightly acidic leachate, but also for the underground water. The prepared hydrogel based on chitosan was characterized by series of analysis tools for structure elucidation as FTIR spectroscopy, textural properties using nitrogen adsorption method, pHPZC (by pH-drift method), thermogravimetric analysis (TGA), SEM, and SEM-EDX analyses. The sorption was performed toward uranium (VI) ions for adjustment of sorption performances. The optimum sorption was performed at pH 4 (prior to the precipitation pH). The total sorption was achieved within 25 min (relatively fast kinetics) and was fitted by pseudo-first order rate equation (PFORE) and resistance to intraparticle diffusion equation (RIDE). The maximum sorption capacity was around 1.5 mmol U g-1. The sorption isotherms were fitted by Langmuir and Sips equations. Desorption was achieved using 0.3 M HCl solution and the complete desorption was performed in around 15 min of contact. The sorption desorption cycles are relatively stable during 5 cycles with limit decreasing in sorption and desorption properties (around 3 ± 0.2% and 99.8 ± 0.1%, respectively). The sorbent was used for removal of U from acid leachate solution in mining area. The sorbent showed a highly performance for U(VI) removal, which was considered as a tool material for radionuclides removing from aquatic medium.
Collapse
Affiliation(s)
- Mohammed F. Hamza
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
- Nuclear Materials Authority, POB 530, El-Maadi, Cairo 11728, Egypt
| | | | | | | | - Doaa I. Zaki
- Nuclear Materials Authority, POB 530, El-Maadi, Cairo 11728, Egypt
| | - Khalid Althumayri
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Synthesis and Characterization of Functionalized Chitosan Nanoparticles with Pyrimidine Derivative for Enhancing Ion Sorption and Application for Removal of Contaminants. MATERIALS 2022; 15:ma15134676. [PMID: 35806800 PMCID: PMC9267285 DOI: 10.3390/ma15134676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023]
Abstract
Modified chitosan has been widely used for heavy metals removal during the last few decades. In this research, the study was focused on the effect of modified chitosan particles after grafting with heterocyclic constituent for enhancing the sorption of Cr(VI) ions. Chitosan was functionalized by 2-thioxodihydropyrimidine-4,6(1H,5H)-dione, in which the synthesized composite considered as a nanoscale size with average 5–7 nm. This explains the fast kinetics of sorption with large surface area. The prepared sorbent was characterized by Fourier-transform infrared (FTIR), elemental analysis (EA), Brunauer–Emmett–Teller (BET surface area) theory, thermogravimetric analysis (TGA), mass spectroscopy, and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) analyses. The experimental part of this work involved the application of the synthesized sorbent for the removal of Cr(VI) ions from highly contaminated tannery effluents that are characterized by a high concentration toward chromate ions with other associated toxic elements, i.e., Pb(II) and Cd (II) ions, which underscore the importance of this treatment. Under the selected conditions (K2Cr2O7 salt, Co: 100 mg L−1 and pH: 4), the sorption diagram shows high Cr(VI) sorption and fast uptake kinetics. The sorption was enhanced by functionalization to 5.7 mmol Cr g−1 as well as fast uptake kinetics; 30 min is sufficient for total sorption compared with 1.97 mmol Cr g−1 and 60 min for the non-grafted sorbent. The Langmuir and Sips equations were fitted for the sorption isotherms, while the pseudo-first order rate equation (PFORE) was fitted for the uptake kinetics.
Collapse
|
9
|
Synthesis of a Novel Adsorbent Based on Chitosan Magnetite Nanoparticles for the High Sorption of Cr (VI) Ions: A Study of Photocatalysis and Recovery on Tannery Effluents. Catalysts 2022. [DOI: 10.3390/catal12070678] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This study aims to evaluate the functionalization of chitosan biopolymer with heterocyclic moieties of 2-thioxodihydropyrimidine-4,6(1H,5H)-dione used for enhancing the sorption of Cr ions from aqueous solution. A synthesized sorbent is a nanoscale particle (around 5–7 nm), which explains the fast kinetics of sorption. The sorbent is specified using elemental analysis (EA), FTIR, BET (nitrogen sorption desorption isotherms), TGA, and SEM-EDX analyses. Sorption properties are investigated using ultraviolet emission (UV) but also using visible light (L). In the sorption diagram, the high sorption uptake and fast kinetics observed using ultraviolet conditions are shown. This work is conducted by removing Cr ions from highly contaminated tannery effluents, which have a high concentration of Cr associated with other poisonous elements such as Cd(II) and Pb(II). Under the selected conditions, complete sorption is performed during the first 60 and 45 min with a capacity of 2.05 and 2.5 mmol Cr g−1 for the crosslinked chitosan (without functionalization) in L and UV, respectively. This sorption is enhanced by functionalizing to 5.7 and 6.8 mmol Cr g−1 at the L and UV, respectively, as well as improving the sorption kinetics to 35 and 30 min for both techniques, respectively. The PFORE, and (Langmuir and Sips equations) fit the kinetics and isotherms, respectively.
Collapse
|
10
|
Huang TS, Wen HY, Chen YY, Hung PH, Hsieh TL, Huang WY, Chang MY. Ionomer Membranes Produced from Hexaarylbenzene-Based Partially Fluorinated Poly(arylene ether) Blends for Proton Exchange Membrane Fuel Cells. MEMBRANES 2022; 12:membranes12060582. [PMID: 35736289 PMCID: PMC9231265 DOI: 10.3390/membranes12060582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/25/2023]
Abstract
In this study, a series of high molecular weight ionomers of hexaarylbenzene- and fluorene-based poly(arylene ether)s were synthesized conveniently through condensation and post-sulfonation modification. The use a of blending method might increase the stacking density of chains and affect the formation both of interchain and intrachain proton transfer clusters. Multiscale phase separation caused by the dissolution and compatibility differences of blend ionomer in high-boiling-point solvents was examined through analysis and simulations. The blend membranes produced in this study exhibited a high proton conductivity of 206.4 mS cm−1 at 80 °C (increased from 182.6 mS cm−1 for precursor membranes), excellent thermal resistance (decomposition temperature > 200 °C), and suitable mechanical properties with a tensile strength of 73.8−77.4 MPa. As a proton exchange membrane for fuel cell applications, it exhibits an excellent power efficiency of approximately 1.3 W cm−2. Thus, the ionomer membranes have strong potential for use in proton exchange membrane fuel cells and other electrochemical applications.
Collapse
Affiliation(s)
- Tzu-Sheng Huang
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (T.-S.H.); (Y.-Y.C.); (P.-H.H.)
| | - Hsin-Yi Wen
- Department of Green Energy and Environmental Resources, Chang Jung Christian University, Tainan City 71101, Taiwan;
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Yi-Yin Chen
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (T.-S.H.); (Y.-Y.C.); (P.-H.H.)
| | - Po-Hao Hung
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (T.-S.H.); (Y.-Y.C.); (P.-H.H.)
| | - Tung-Li Hsieh
- General Education Center, Wenzao Ursuline University of Languages, Kaohsiung 80793, Taiwan;
| | - Wen-Yao Huang
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (T.-S.H.); (Y.-Y.C.); (P.-H.H.)
- Correspondence: (W.-Y.H.); (M.-Y.C.)
| | - Mei-Ying Chang
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (T.-S.H.); (Y.-Y.C.); (P.-H.H.)
- Correspondence: (W.-Y.H.); (M.-Y.C.)
| |
Collapse
|
11
|
Hamza MF, Abdel-Rahman AAH, Negm AS, Hamad DM, Khalafalla MS, Fouda A, Wei Y, Amer HH, Alotaibi SH, Goda AES. Grafting of Thiazole Derivative on Chitosan Magnetite Nanoparticles for Cadmium Removal—Application for Groundwater Treatment. Polymers (Basel) 2022; 14:polym14061240. [PMID: 35335569 PMCID: PMC8954473 DOI: 10.3390/polym14061240] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis and developments of magnetic chitosan nanoparticles for high efficiency removal of the cadmium ions from aquatic medium are one of the most challenging techniques. Highly adsorptive composite (MCH-ATA) was produced by the reaction of chitosan with formaldehyde and amino thiazole derivative. The sorbent was characterized by FTIR, elemental analyses (EA), SEM-EDX, TEM analysis, TGA and titration (volumetric). The modified material includes high nitrogen and sulfur contents (i.e., 4.64 and 1.35 mmol g−1, respectively), compared to the pristine material (3.5 and 0 mmol g−1, respectively). The sorption was investigated for the removal of Cd(II) ions from synthetic (prepared) solution before being tested towards naturally contaminated groundwater in an industrial area. The functionalized sorbent shows a high loading capacity (1.78 mmol Cd g−1; 200 mg Cd g−1) compared to the pristine material (0.61 mmol Cd g−1; 68.57 mg Cd g−1), while removal of about 98% of Cd with capacity (6.4 mg Cd g−1) from polymetallic contaminated groundwater. The sorbent displays fast sorption kinetics compared to the non-modified composite (MCH); 30 min is sufficient for complete sorption for MCH-ATA, while 60–90 min for the MCH. PFORE fits sorption kinetics for both sorbents, whereas the Langmuir equation fits for MCH and Langmuir and Sips for MCH-ATA for sorption isotherms. The TEM analysis confirms the nano scale size, which limits the diffusion to intraparticle sorption properties. The 0.2 M HCl solution is a successful desorbing agent for the metal ions. The sorbent was applied for the removal of cadmium ions from the contaminated underground water and appears to be a promising process for metal decontamination and water treatment.
Collapse
Affiliation(s)
- Mohammed F. Hamza
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
- Semi Pilot Plant Department, Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo 11728, Egypt;
- Correspondence: (M.F.H.); (Y.W.); Tel.: +20-1116681228 (M.F.H.); +86-771-322-4990 (Y.W.)
| | - Adel A.-H. Abdel-Rahman
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom 32511, Egypt; (A.A.-H.A.-R.); (A.S.N.); (D.M.H.)
| | - Alyaa S. Negm
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom 32511, Egypt; (A.A.-H.A.-R.); (A.S.N.); (D.M.H.)
| | - Doaa M. Hamad
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom 32511, Egypt; (A.A.-H.A.-R.); (A.S.N.); (D.M.H.)
| | - Mahmoud S. Khalafalla
- Semi Pilot Plant Department, Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo 11728, Egypt;
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (M.F.H.); (Y.W.); Tel.: +20-1116681228 (M.F.H.); +86-771-322-4990 (Y.W.)
| | - Hamada H. Amer
- Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.H.A.); (S.H.A.)
| | - Saad H. Alotaibi
- Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.H.A.); (S.H.A.)
| | - Adel E.-S. Goda
- Tanta Higher Institute of Engineering and Technology, Tanta 31739, Egypt;
| |
Collapse
|
12
|
Photocatalytic Efficacy of Heterocyclic Base Grafted Chitosan Magnetite Nanoparticles on Sorption of Pb(II); Application on Mining Effluent. Catalysts 2022. [DOI: 10.3390/catal12030330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Development of bio-based sorbents (i.e., chitosan moieties) at nanoscale size for the removal of metal contaminants is the main target of this research. Grafting with thiazole heterocyclic derivative gives fast kinetics sorption, highly metal loading, and good recyclability for mining leaching solution. Different analyses tools including (thermogravimetric analysis (TGA), scanning electron microscope and energy dispersive spectroscopy (SEM-EDX), X-ray diffraction (XRD), Fourier transform infrared (FTIR), BET surface area (nitrogen sorption desorption), titration, and TEM (transmission electron microscopy)) were used to investigate the chemical and textural properties of the functionalized sorbent. The sorption was measured in normal visible light and under UV emission. The highest capacity was measured at pH 5, which reached 0.251 mmol Pb g−1 in visible light compared with 0.346 mmol Pb g−1 under UV for the pristine crosslinked chitosan (MCc). The sorption performances were improved by functionalization; (0.7814 and 1.014 mmol Pb g−1) for the functionalized sorbent (MCa-ATA) under visible light and UV, respectively. PFORE (pseudo-first-order rate equation) and RIDE (resistance to intraparticle diffusion) fit kinetics, the Sips equation is the most fit profile for the sorption isotherms for the MCc in either light and UV processes, while PFORE and RIDE for kinetics under light and UV for MCa-ATA and Sips in light and Sips and Langmuir under the UV emission. Finally, the sorbent was investigated toward a raffinate solution from ore processing and shows promising extraction tools for the most interesting elements.
Collapse
|
13
|
Efficient Synthesis of Biodiesel Catalyzed by Chitosan-Based Catalysts. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/8971613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Catalysts play an important role in the preparation of biodiesel. It is of great significance to study catalysts with high efficiency, low cost, and easy preparation. Compared with the homogeneous catalyst system, the heterogeneous catalyst is easy to separate and has a better catalytic effect. In heterogeneous catalysts, supports and preparation methods have important effects on the dispersion of active centers and the overall performance of catalysts. However, the supports of existing solid catalysts have defects in porosity, structural uniformity, stability, and specific surface area, and the preparation methods cannot stabilize covalent bonds or ionic bonds to bind catalytic sites. Considering the activity, preparation method, and cost of the catalyst, biomass-based catalyst is the best choice, but the specific surface area of the biomass-based catalyst is relatively low, the distribution of active centers is uneven, and it is easy to lose. Therefore, the hybrid carrier of biomass-based catalyst and other materials can not only improve the specific surface area but also make the distribution of active centers uniform and the catalytic activity better. Based on this, we summarized the application of chitosan hybrid material catalysts in biodiesel. The preparation, advantages and disadvantages, reaction conditions, and so on of chitosan-based catalysts were mainly concerned. At the same time, exploring the effects of different types of chitosan-based catalysts on the preparation of biodiesel and exploring the process technology with high efficiency and low consumption is the focus of this paper.
Collapse
|
14
|
Chitosan with Sulfonic Groups: A Catalyst for the Esterification of Caprylic Acid with Methanol. Polymers (Basel) 2021; 13:polym13223924. [PMID: 34833223 PMCID: PMC8624900 DOI: 10.3390/polym13223924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Esterification of caprylic acid with methanol was performed over chitosan with sulfonic acid groups, as a catalyst, at 60 °C. The sulfonic acid groups were introduced into chitosan (CH) by using chlorosulfonic acid. Catalysts were characterized by scanning electron microscopy (SEM), elemental analysis, thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and acid–base titration. Catalytic activity increased with the amount of sulfonic acid groups present on chitosan. The 4–CH–SO3H catalyst (chitosan with sulfonic acid groups—sample 4 prepared) showed the highest activity of all materials. The esterification of caprylic acid with methanol was optimized using a 4–CH–SO3H catalyst. Under optimized reaction conditions, it was found that, at 60 °C, with 0.2 g of catalyst loading and with a molar ratio methanol to caprylic acid equal 1:95, a caprylic acid conversion of about 83%, after 4 h could be obtained. Catalytic stability of the 4–CH–SO3H material was evaluated through consecutive batch runs. After the second batch, the catalytic activity stabilized.
Collapse
|
15
|
Abu-Saied MA, Soliman EA, Abualnaj KM, El Desouky E. Highly Conductive Polyelectrolyte Membranes Poly(vinyl alcohol)/Poly(2-acrylamido-2-methyl propane sulfonic acid) (PVA/PAMPS) for Fuel Cell Application. Polymers (Basel) 2021; 13:2638. [PMID: 34451178 PMCID: PMC8401712 DOI: 10.3390/polym13162638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022] Open
Abstract
In this study, chemically cross-linked PVA/PAMPS membranes have been prepared to be used in direct methanol fuel cells (DMFCs). The structural properties of the resultant membrane were characterized by use FTIR and SEM. Additionally, their thermal stability was assessed using TGA. Moreover, the mechanical properties and methanol and water uptake of membrane was studied. The obtained FTIR of PVA/PAMPS membranes revealed a noticeable increase in the intensity of adsorption peaks appearing at 1062 and 1220 cm-1, which correspond to sulfonic groups with the increasing proportion of PAMPS. The thermograms of these polyelectrolyte membranes showed that their thermal stability was lower than that of PVA membrane, and total weight loss gradually decreased with increasing the PAMPS. Additionally, the functional properties and efficiency of these polyelectrolyte membranes were significantly improved with increasing PAMPS proportion in these blends. The IEC of polymer blend membrane prepared using PVA/PAMPS ratio of 1:1 was 2.64 meq/g. The same membrane recorded also a methanol permeability coefficient of 2.5 × 10-8 cm2/s and thus, its efficiency factor was 4 × 105 greater than that previously reported for the commercial polyelectrolyte membrane, Nafion® (2.6 × 105). No significant increase in this efficiency factor was observed with a further amount of PAMPS. These results proved that the PVA:PAMPS ratio of 1:1 represents the optimum mass ratio to develop the cost-effective and efficient PVA/PAMPS blend membranes for DMFCs applications.
Collapse
Affiliation(s)
- M. A. Abu-Saied
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City, Alexandria 21934, Egypt;
| | - Emad Ali Soliman
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City, Alexandria 21934, Egypt;
| | - Khamael M. Abualnaj
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Eman El Desouky
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21568, Egypt;
| |
Collapse
|
16
|
Jia M, Kim J, Nguyen T, Duong T, Rolandi M. Natural biopolymers as proton conductors in bioelectronics. Biopolymers 2021; 112:e23433. [PMID: 34022064 DOI: 10.1002/bip.23433] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Bioelectronic devices sense or deliver information at the interface between living systems and electronics by converting biological signals into electronic signals and vice-versa. Biological signals are typically carried by ions and small molecules. As such, ion conducting materials are ideal candidates in bioelectronics for an optimal interface. Among these materials, ion conducting polymers that are able to uptake water are particularly interesting because, in addition to ionic conductivity, their mechanical properties can closely match the ones of living tissue. In this review, we focus on a specific subset of ion-conducting polymers: proton (H+ ) conductors that are naturally derived. We first provide a brief introduction of the proton conduction mechanism, and then outline the chemical structure and properties of representative proton-conducting natural biopolymers: polysaccharides (chitosan and glycosaminoglycans), peptides and proteins, and melanin. We then highlight examples of using these biopolymers in bioelectronic devices. We conclude with current challenges and future prospects for broader use of natural biopolymers as proton conductors in bioelectronics and potential translational applications.
Collapse
Affiliation(s)
- Manping Jia
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Jinhwan Kim
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Tiffany Nguyen
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA.,Department of Biomedical Engineering, California State University Long Beach, Long Beach, California, USA
| | - Thi Duong
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA.,Department of Mechanical and Aerospace Engineering, The Henry Samueli School of Engineering, University of California, Irvine, California, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
17
|
Eco-friendly polyelectrolyte nanocomposite membranes based on chitosan and sulfonated chitin nanowhiskers for fuel cell applications. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-020-00895-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Composite Proton Exchange Membranes Based on Chitosan and Phosphotungstic Acid Immobilized One-Dimensional Attapulgite for Direct Methanol Fuel Cells. NANOMATERIALS 2020; 10:nano10091641. [PMID: 32825738 PMCID: PMC7558724 DOI: 10.3390/nano10091641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 11/30/2022]
Abstract
In order to obtain biopolymer chitosan-based proton exchange membranes with excellent mechanical properties as well as high ionic conductivity at the same time, natural attapulgite (AT) with one-dimensional (1D) structure was loaded with a strong heteropolyacid and also a super proton conductor, phosphotungstic acid (PWA), using a facial method. The obtained PWA anchored attapulgite (WQAT) was then doped into the chitosan matrix to prepare a series of Chitosan (CS)/WQAT composite membranes. The PWA coating could improve the dispersion and interfacial bonding between the nano-additive and polymer matrix, thus increasing the mechanical strength. Moreover, the ultra-strong proton conduction ability of PWA together with the interaction between positively charged CS chains and negatively charged PWA can construct effective proton transport channels with the help of 1D AT. The proton conductivity of the composite membrane (4 wt.% WQAT loading) reached 35.3 mS cm−1 at 80 °C, which was 31.8% higher than that of the pure CS membrane. Moreover, due to the decreased methanol permeability and increased conductivity, the composite membrane with 4% WQAT content exhibited a peak power density of 70.26 mW cm−2 fed at 2 M methanol, whereas the pure CS membrane displayed only 40.08 mW cm−2.
Collapse
|
19
|
Rosli NAH, Loh KS, Wong WY, Yunus RM, Lee TK, Ahmad A, Chong ST. Review of Chitosan-Based Polymers as Proton Exchange Membranes and Roles of Chitosan-Supported Ionic Liquids. Int J Mol Sci 2020; 21:ijms21020632. [PMID: 31963607 PMCID: PMC7014316 DOI: 10.3390/ijms21020632] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 02/02/2023] Open
Abstract
Perfluorosulphonic acid-based membranes such as Nafion are widely used in fuel cell applications. However, these membranes have several drawbacks, including high expense, non-eco-friendliness, and low proton conductivity under anhydrous conditions. Biopolymer-based membranes, such as chitosan (CS), cellulose, and carrageenan, are popular. They have been introduced and are being studied as alternative materials for enhancing fuel cell performance, because they are environmentally friendly and economical. Modifications that will enhance the proton conductivity of biopolymer-based membranes have been performed. Ionic liquids, which are good electrolytes, are studied for their potential to improve the ionic conductivity and thermal stability of fuel cell applications. This review summarizes the development and evolution of CS biopolymer-based membranes and ionic liquids in fuel cell applications over the past decade. It also focuses on the improved performances of fuel cell applications using biopolymer-based membranes and ionic liquids as promising clean energy.
Collapse
Affiliation(s)
- Nur Adiera Hanna Rosli
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
| | - Kee Shyuan Loh
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
- Correspondence:
| | - Wai Yin Wong
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
| | - Rozan Mohamad Yunus
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
| | - Tian Khoon Lee
- Department of Chemistry–Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden;
| | - Azizan Ahmad
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia;
| | - Seng Tong Chong
- College of Energy Economics and Social Sciences, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
| |
Collapse
|
20
|
Mohanapriya S, Rambabu G, Bhat S, Raj V. Pectin based nanocomposite membranes as green electrolytes for direct methanol fuel cells. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
21
|
Efficient Production of Methyl Oleate Using a Biomass-Based Solid Polymeric Catalyst with High Acid Density. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/4041631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biomass-based polymers are eco-friendly, nontoxic and biodegradable materials. In this work, in order to prepare green, low-cost and high-efficient catalysts under mild conditions, we chose biomass-based chitosan as raw material and prepared a new solid acidic catalyst by an acid functionalization method. FT-IR, XRD, SEM, TGA, BET, neutralization titration and other analytical methods were used to characterize the catalyst. The results showed that CS-SO3H morphology exhibited a sphere of about 10 μm diameter, and the acid density was as high as 3.81 mmol/g. The catalyst exhibits good catalytic activity in the esterification of oleic acid and methanol, which is a model reaction of the pre-esterification process in the preparation of biodiesel from feedstocks with high acid values. Under the optimum reaction conditions (15/1 methanol/oleic acid mole ratio and 3 wt% catalyst dosage at 75°C for 3 h), the yield of methyl oleate can reach 95.7%. Even if the mass of oleic acid in the reactant increased to 20 g, solid acid showed good catalytic performance, and the yield of methyl oleate was 94.4%. After four times of reuse, the yield of the catalyst can still reach 85.7%, which indicates that the catalyst has good catalytic activity and stability, and has potential application prospects.
Collapse
|
22
|
Yadav V, Kulshrestha V. Boron nitride: a promising material for proton exchange membranes for energy applications. NANOSCALE 2019; 11:12755-12773. [PMID: 31267118 DOI: 10.1039/c9nr03094h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Boron nitride (BN) is an exciting material and has drawn the attention of researchers for the last decade due to its surprising properties, including large surface area, thermomechanical stability, and high chemical resistance. Functionalization of BN is a new area of interest to build up novel properties and applications of BN. BN and functionalized BN are promising membrane materials and show enormous advantages ascribed to their simple synthesis, high surface area, mechanical and thermal stability, and distinctive mechanical properties. BN-based proton exchange membranes show improvement in their physicochemical, electrochemical, thermal, mechanical, and barrier properties. Only a few research studies have been carried out on BN-based highly stable proton exchange membranes (PEMs) for various electrochemical applications. In this review, we discuss the recent advances in the functionalization of BN by different methods. The synthesis of different proton exchange membranes has also been discussed in this article. In addition, the potential applications of hybrid proton exchange membranes have also been mentioned.
Collapse
Affiliation(s)
- Vikrant Yadav
- CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar- 364002, Gujarat, India and Academy of Scientific and Innovative Research, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar- 364002, Gujarat, India.
| | - Vaibhav Kulshrestha
- CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar- 364002, Gujarat, India and Academy of Scientific and Innovative Research, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar- 364002, Gujarat, India.
| |
Collapse
|
23
|
Dhanapal D, Xiao M, Wang S, Meng Y. A Review on Sulfonated Polymer Composite/Organic-Inorganic Hybrid Membranes to Address Methanol Barrier Issue for Methanol Fuel Cells. NANOMATERIALS 2019; 9:nano9050668. [PMID: 31035423 PMCID: PMC6566683 DOI: 10.3390/nano9050668] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/31/2019] [Accepted: 04/22/2019] [Indexed: 11/16/2022]
Abstract
This paper focuses on a literature analysis and review of sulfonated polymer (s-Poly) composites, sulfonated organic, inorganic, and organic-inorganic hybrid membranes for polymer electrolyte membrane fuel cell (PEM) systems, particularly for methanol fuel cell applications. In this review, we focused mainly on the detailed analysis of the distinct segment of s-Poly composites/organic-inorganic hybrid membranes, the relationship between composite/organic- inorganic materials, structure, and performance. The ion exchange membrane, their size distribution and interfacial adhesion between the s-Poly composites, nanofillers, and functionalized nanofillers are also discussed. The paper emphasizes the enhancement of the s-Poly composites/organic-inorganic hybrid membrane properties such as low electronic conductivity, high proton conductivity, high mechanical properties, thermal stability, and water uptake are evaluated and compared with commercially available Nafion® membrane.
Collapse
Affiliation(s)
- Duraibabu Dhanapal
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Min Xiao
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Shuanjin Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yuezhong Meng
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
24
|
Zhao C, Zhang M, Liu Z, Guo Y, Zhang Q. Salt-Tolerant Superabsorbent Polymer with High Capacity of Water-Nutrient Retention Derived from Sulfamic Acid-Modified Starch. ACS OMEGA 2019; 4:5923-5930. [PMID: 31459741 PMCID: PMC6648645 DOI: 10.1021/acsomega.9b00486] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 05/04/2023]
Abstract
The application of superabsorbent polymers (SAPs) is hindered because their absorption capability is greatly affected by the electrolytes in a solution. A novel modified water-absorbent polymer was fabricated by solution polymerization of sulfamic acid-modified starch and acrylic acid; the swelling ratios of this absorbent polymer were 1026 g/g in deionized water and 145 g/g in 0.9% sodium chloride solution and increased by 99.5 and 13.4%, respectively, when compared with ordinary starch-grafted acrylic SAPs. The water absorption capacity was measured in water at different pH values, salt concentrations, and temperatures. In addition, water and fertilizer retentions were studied by simulated leaching tests in a soil column. The results showed that water absorption capacities of the modified SAP in salt solutions were improved due to the adsorption and transfer of water molecules by the sulfonic acid groups. Compared to the losses when there was no superabsorbent treatment, the water, nitrate, ammonium nitrogen, and water-soluble potassium losses during the salt-tolerant superabsorbent treatment were significantly reduced by 18.5, 22.8, 88.0, and 63.8%, respectively. The method introduced in this study could guide the development and wide application of salt-tolerant SAPs in agriculture and horticulture.
Collapse
Affiliation(s)
- Chenhao Zhao
- National
Engineering Laboratory for Efficient Utilization of Soil and Fertilizer
Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Min Zhang
- National
Engineering Laboratory for Efficient Utilization of Soil and Fertilizer
Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, Shandong 271018, China
- Kingenta
Ecological Engineering Group Co., Ltd., Linshu, Shandong 276700, China
- E-mail: . Phone/Fax: +86-538-8241531 (M.Z.)
| | - Zhiguang Liu
- National
Engineering Laboratory for Efficient Utilization of Soil and Fertilizer
Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, Shandong 271018, China
- E-mail: (Z.L.)
| | - Yanle Guo
- National
Engineering Laboratory for Efficient Utilization of Soil and Fertilizer
Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Qiang Zhang
- Kingenta
Ecological Engineering Group Co., Ltd., Linshu, Shandong 276700, China
| |
Collapse
|
25
|
Ahmed S, Ali M, Cai Y, Lu Y, Ahmad Z, Khannal S, Xu S. Novel sulfonated multi-walled carbon nanotubes filled chitosan composite membrane for fuel-cell applications. J Appl Polym Sci 2019. [DOI: 10.1002/app.47603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Saad Ahmed
- Shanghai Key Laboratory of Advanced Polymeric Material, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Muhammad Ali
- Shanghai Key Laboratory of Advanced Polymeric Material, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Yangben Cai
- Shanghai Key Laboratory of Advanced Polymeric Material, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Yunhua Lu
- Shanghai Key Laboratory of Advanced Polymeric Material, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Zaheer Ahmad
- Department of Chemistry; University of Wah; Wah Cantt 47040 Pakistan
| | - Santosh Khannal
- Shanghai Key Laboratory of Advanced Polymeric Material, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Shiai Xu
- Shanghai Key Laboratory of Advanced Polymeric Material, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
- Department of Chemical Engineering; Qinghai University; Xining 810016 China
| |
Collapse
|
26
|
Amdursky N, Głowacki ED, Meredith P. Macroscale Biomolecular Electronics and Ionics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802221. [PMID: 30334284 DOI: 10.1002/adma.201802221] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/25/2018] [Indexed: 05/18/2023]
Abstract
The conduction of ions and electrons over multiple length scales is central to the processes that drive the biological world. The multidisciplinary attempts to elucidate the physics and chemistry of electron, proton, and ion transfer in biological charge transfer have focused primarily on the nano- and microscales. However, recently significant progress has been made on biomolecular materials that can support ion and electron currents over millimeters if not centimeters. Likewise, similar transport phenomena in organic semiconductors and ionics have led to new innovations in a wide variety of applications from energy generation and storage to displays and bioelectronics. Here, the underlying principles of conduction on the macroscale in biomolecular materials are discussed, highlighting recent examples, and particularly the establishment of accurate structure-property relationships to guide rationale material and device design. The technological viability of biomolecular electronics and ionics is also discussed.
Collapse
Affiliation(s)
- Nadav Amdursky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, SE-60174, Norrköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, 58183, Linköping, Sweden
| | - Paul Meredith
- Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
27
|
Wafiroh S, Abdulloh A, Widati AA. Phosphorylated Zeolite-A/Chitosan Composites as Proton Exchange Membrane Fuel Cell. CHEMISTRY & CHEMICAL TECHNOLOGY 2018. [DOI: 10.23939/chcht12.02.229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Devi AU, Divya K, Kaleekkal NJ, Rana D, Nagendran A. Tailored SPVdF-co-HFP/SGO nanocomposite proton exchange membranes for direct methanol fuel cells. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Xiao FX, Pagliaro M, Xu YJ, Liu B. Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: a new perspective for rational construction of multilayer assemblies. Chem Soc Rev 2017; 45:3088-121. [PMID: 27003471 DOI: 10.1039/c5cs00781j] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past few decades, layer-by-layer (LbL) assembly of multilayer thin films has garnered considerable interest on account of its ability to modulate nanometer control over film thickness and its extensive choice of usable materials for coating planar and particulate substrates, thus allowing for the fabrication of responsive and functional thin films for their potential applications in a myriad of fields. Herein, we provide elaborate information on the current developments of LbL assembly techniques including different properties, molecular interactions, and assembly methods associated with this promising bottom-up strategy. In particular, we highlight the principle for rational design and fabrication of a large variety of multilayer thin film systems including multi-dimensional capsules or spatially hierarchical nanostructures based on the LbL assembly technique. Moreover, we discuss how to judiciously choose the building block pairs when exerting the LbL assembly buildup which enables the engineering of multilayer thin films with tailor-made physicochemical properties. Furthermore, versatile applications of the diverse LbL-assembled nanomaterials are itemized and elucidated in light of specific technological fields. Finally, we provide a brief perspective and potential future challenges of the LbL assembly technology. It is anticipated that our current review could provide a wealth of guided information on the LbL assembly technique and furnish firm grounds for rational design of LbL assembled multilayer assemblies toward tangible applications.
Collapse
Affiliation(s)
- Fang-Xing Xiao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62, Nanyang Drive, 637459, Singapore.
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR via U. La Malfa 153, 90146 Palermo, Italy.
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China and College of Chemistry, Fuzhou University, New Campus, Fuzhou 350108, P. R. China.
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62, Nanyang Drive, 637459, Singapore.
| |
Collapse
|
30
|
Rikame SS, Mungray AA, Mungray AK. Synthesis, characterization and application of phosphorylated fullerene/sulfonated polyvinyl alcohol (PFSP) composite cation exchange membrane for copper removal. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview. Adv Colloid Interface Sci 2017; 240:15-30. [PMID: 28024645 DOI: 10.1016/j.cis.2016.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 11/23/2022]
Abstract
In the context of many applications, such as polymer composites, energy-related materials, sensors, 'paper'-like materials, field-effect transistors (FET), and biomedical applications, chemically modified graphene was broadly studied during the last decade, due to its excellent electrical, mechanical, and thermal properties. The presence of reactive oxygen functional groups in the grapheme oxide (GO) responsible for chemical functionalization makes it a good candidate for diversified applications. The main objectives for developing a GO based nanohybrid proton exchange membrane (PEM) include: improved self-humidification (water retention ability), reduced fuel crossover (electro-osmotic drag), improved stabilities (mechanical, thermal, and chemical), enhanced proton conductivity, and processability for the preparation of membrane-electrode assembly. Research carried on this topic may be divided into protocols for covalent grafting of functional groups on GO matrix, preparation of free-standing PEM or choice of suitable polymer matrix, covalent or hydrogen bonding between GO and polymer matrix etc. Herein, we present a brief literature survey on GO based nano-hybrid PEM for fuel cell applications. Different protocols were adopted to produce functionalized GO based materials and prepare their free-standing film or disperse these materials in various polymer matrices with suitable interactions. This review article critically discussed the suitability of these PEMs for fuel cell applications in terms of the dependency of the intrinsic properties of nanohybrid PEMs. Potential applications of these nanohybrid PEMs, and current challenges are also provided along with future guidelines for developing GO based nanohybrid PEMs as promising materials for fuel cell applications.
Collapse
|
32
|
Eco-friendly methanesulfonic acid and sodium salt of dodecylbenzene sulfonic acid doped cross-linked chitosan based green polymer electrolyte membranes for fuel cell applications. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.09.058] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Chen P, Hao L, Wu W, Li Y, Wang J. Polymer-inorganic hybrid proton conductive membranes: Effect of the interfacial transfer pathways. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Jafari Sanjari A, Asghari M. A Review on Chitosan Utilization in Membrane Synthesis. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201500020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Embedding sulfonated lithium ion-sieves into polyelectrolyte membrane to construct efficient proton conduction pathways. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Azzahari AD, Yusuf SNF, Selvanathan V, Yahya R. Artificial Neural Network and Response Surface Methodology Modeling in Ionic Conductivity Predictions of Phthaloylchitosan-Based Gel Polymer Electrolyte. Polymers (Basel) 2016; 8:polym8020022. [PMID: 30979129 PMCID: PMC6432590 DOI: 10.3390/polym8020022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/07/2016] [Accepted: 01/14/2016] [Indexed: 11/22/2022] Open
Abstract
A gel polymer electrolyte system based on phthaloylchitosan was prepared. The effects of process variables, such as lithium iodide, caesium iodide, and 1-butyl-3-methylimidazolium iodide were investigated using a distance-based ternary mixture experimental design. A comparative approach was made between response surface methodology (RSM) and artificial neural network (ANN) to predict the ionic conductivity. The predictive capabilities of the two methodologies were compared in terms of coefficient of determination R2 based on the validation data set. It was shown that the developed ANN model had better predictive outcome as compared to the RSM model.
Collapse
Affiliation(s)
| | | | - Vidhya Selvanathan
- Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Rosiyah Yahya
- Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Centre of Ionics, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
37
|
Xu X, Wang H, Lu S, Peng S, Xiang Y. A phosphotungstic acid self-anchored hybrid proton exchange membrane for direct methanol fuel cells. RSC Adv 2016. [DOI: 10.1039/c6ra07318b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DMFCs based on a phosphotungstic acid self-anchored membrane exhibit comparable performance with that of Nafion212.
Collapse
Affiliation(s)
- Xin Xu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space and Environment
- Beihang University
- Beijing 100191
- PR China
| | - Haining Wang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space and Environment
- Beihang University
- Beijing 100191
- PR China
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space and Environment
- Beihang University
- Beijing 100191
- PR China
| | | | - Yan Xiang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space and Environment
- Beihang University
- Beijing 100191
- PR China
| |
Collapse
|
38
|
Partially sulfonated polyaniline induced high ion-exchange capacity and selectivity of Nafion membrane for application in direct methanol fuel cells. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.09.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.12.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Yuan T, Pu L, Huang Q, Zhang H, Li X, Yang H. An effective methanol-blocking membrane modified with graphene oxide nanosheets for passive direct methanol fuel cells. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.11.063] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Narayanaswamy Venkatesan P, Dharmalingam S. Characterization and performance study on chitosan-functionalized multi walled carbon nano tube as separator in microbial fuel cell. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.01.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Organically modified montmorillonite and chitosan–phosphotungstic acid complex nanocomposites as high performance membranes for fuel cell applications. J Solid State Electrochem 2013. [DOI: 10.1007/s10008-013-2074-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Ma J, Sahai Y. Chitosan biopolymer for fuel cell applications. Carbohydr Polym 2012; 92:955-75. [PMID: 23399116 DOI: 10.1016/j.carbpol.2012.10.015] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 11/29/2022]
Abstract
Fuel cell is an electrochemical device which converts chemical energy stored in a fuel into electrical energy. Fuel cells have been receiving attention due to its potential applicability as a good alternative power source. Recently, cost-effective and eco-friendly biopolymer chitosan has been extensively studied as a material for membrane electrolytes and electrodes in low to intermediate temperature hydrogen polymer electrolyte fuel cell, direct methanol fuel cell, alkaline fuel cell, and biofuel cell. This paper reviews structure and property of chitosan with respect to its applications in fuel cells. Recent achievements and prospect of its applications have also been included.
Collapse
Affiliation(s)
- Jia Ma
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | | |
Collapse
|
44
|
Xiang Y, Lu S, Jiang SP. Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. Chem Soc Rev 2012; 41:7291-321. [PMID: 22945597 DOI: 10.1039/c2cs35048c] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As one of the most effective synthesis tools, layer-by-layer (LbL) self-assembly technology can provide a strong non-covalent integration and accurate assembly between homo- or hetero-phase compounds or oppositely charged polyelectrolytes, resulting in highly-ordered nanoscale structures or patterns with excellent functionalities and activities. It has been widely used in the developments of novel materials and nanostructures or patterns from nanotechnologies to medical fields. However, the application of LbL self-assembly in the development of highly efficient electrocatalysts, specific functionalized membranes for proton exchange membrane fuel cells (PEMFCs) and electrode materials for supercapacitors is a relatively new phenomenon. In this review, the application of LbL self-assembly in the development and synthesis of key materials of PEMFCs including polyelectrolyte multilayered proton-exchange membranes, methanol-blocking Nafion membranes, highly uniform and efficient Pt-based electrocatalysts, self-assembled polyelectrolyte functionalized carbon nanotubes (CNTs) and graphenes will be reviewed. The application of LbL self-assembly for the development of multilayer nanostructured materials for use in electrochemical supercapacitors will also be reviewed and discussed (250 references).
Collapse
Affiliation(s)
- Yan Xiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, PR China.
| | | | | |
Collapse
|
45
|
Zhang H, Shen PK. Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chem Rev 2012; 112:2780-832. [DOI: 10.1021/cr200035s] [Citation(s) in RCA: 659] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongwei Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies and Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Pei Kang Shen
- State Key Laboratory of Optoelectronic Materials and Technologies and Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
46
|
Nataraj SK, Wang CH, Huang HC, Du HY, Wang SF, Chen YC, Chen LC, Chen KH. Highly proton-selective biopolymer layer-coated ion-exchange membrane for direct methanol fuel cells. CHEMSUSCHEM 2012; 5:392-395. [PMID: 22308103 DOI: 10.1002/cssc.201100366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 01/11/2011] [Indexed: 05/31/2023]
|
47
|
Chi WS, Patel R, Hwang H, Shul YG, Kim JH. Preparation of poly(vinylidene fluoride) nanocomposite membranes based on graft polymerization and sol–gel process for polymer electrolyte membrane fuel cells. J Solid State Electrochem 2011. [DOI: 10.1007/s10008-011-1519-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Gümüşoğlu T, Arı GA, Deligöz H. Investigation of salt addition and acid treatment effects on the transport properties of ionically cross-linked polyelectrolyte complex membranes based on chitosan and polyacrylic acid. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.03.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Design of an effective methanol-blocking membrane with purple membrane for direct methanol fuel cells. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2010.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Xiang Y, Yang M, Zhang J, Lan F, Lu S. Phosphotungstic acid (HPW) molecules anchored in the bulk of Nafion as methanol-blocking membrane for direct methanol fuel cells. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2010.11.049] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|