1
|
Shakiba M, Faraji M, Jouybar S, Foroozandeh A, Bigham A, Abdouss M, Saidi M, Vatanpour V, Varma RS. Advanced nanofibers for water treatment: Unveiling the potential of electrospun polyacrylonitrile membranes. ENVIRONMENTAL RESEARCH 2025; 276:121403. [PMID: 40158874 DOI: 10.1016/j.envres.2025.121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/26/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The challenges pertaining to the potable water scarcity and pollution motivates us to envision innovative strategies. Industrial wastewater containing hazardous heavy metals, synthetic dyes, and oil exacerbates the pursuit of clean drinking water. Among the array of available technologies, electrospun nanofiber membranes have garnered attention due to their efficiency, high surface-to-volume ratio, cost-effectiveness, scalability, and multifunctionality. These membranes possess distinct physical and chemical attributes that position them as ideal solutions to water purification challenges. Their versatility enables effective contaminant removal through filtration, adsorption, and chemical interactions. Polyacrylonitrile (PAN) emerges as a frontrunner among electrospun polymers due to its affordability, remarkable physical and chemical characteristics, and the ease of production. Research efforts have been dedicated to the study of electrospun PAN membranes, exploring modifications in terms of the functionalization of PAN molecular chain, incorporation of appropriate nanoparticles, and composition with other functional polymers. Parameters such as functional groups, hydrophilicity, mechanical properties, porosity, pore structure, reusability, sustainability, zeta potential, and operational conditions significantly influence the performance of electrospun PAN membranes in treating the contaminated water. Despite progress, challenges surrounding fouling, toxicity, scalability, selectivity, and production costs ought to be addressed strategically to enhance their practicality and real-world viability. This review comprehensively scrutinizes the current landscape of available electrospun PAN membranes in water treatment encompassing diverse range of synthesized entities and experimental outcomes. Additionally, the review delves into various approaches undertaken to optimize the performance of electrospun PAN membranes while proposing potential strategies to overcome the existing hindrances. By carefully analyzing the parameters that impact the performance of these membranes, this overview offers invaluable guidelines for researchers and engineers, thus empowering them to design tailored electrospun nanofiber membranes for specific water purification applications. As the innovative research continues and strategic efforts address the current challenges, these membranes can play a pivotal role in enhancing water quality, mitigating water scarcity, and contributing to environmental sustainability. The widespread application of electrospun nanofiber membranes in water treatment has the potential to create a lasting positive impact on global water resources and the environment. A dedicated effort towards their implementation will undoubtedly mark a crucial step towards a more sustainable and water-secure future.
Collapse
Affiliation(s)
| | - Mehdi Faraji
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| | - Shirzad Jouybar
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Majid Saidi
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| | - Vahid Vatanpour
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Duan C, Zhang P, Qi M. Recent advances in the extraction of nanocellulose from lignocellulosic waste for wastewater treatment applications. Int J Biol Macromol 2025; 304:140761. [PMID: 39922360 DOI: 10.1016/j.ijbiomac.2025.140761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Nano-cellulose is a sustainable and high-performance nanomaterial which developed as a transformative solution in different fields due to its excellent properties, including large surface area, and biodegradability. This review paper explored the different types of nano-cellulose (NC) that are Cellulose Nanocrystals, Cellulose Nano-fibers, and Bacterial NC and their distinctive characteristics that make a suitable for advanced applications and also focused on lignocellulosic materials, abundant renewable resources composed of cellulose, hemicellulose, lignin, and their complex structure, while challenging to analyze, offers significant potential for the extraction of nano-cellulose via the advanced process. Furthermore, this work emphasizes the methods used to extract the NCfrom lignocellulosic waste (LCW) and enzymatic pretreatment techniques that improve the efficiency of the process and highlight the fabrication of nano-cellulose membranes and their incorporation into wastewater treatment applications. The superior adsorption capacity and ability to remove organic pollutants, and pathogens make these membranes a capable solution to address the global water purification problems and also underscore the dual benefit of environmental sustainability. This comprehensive examination of nano-cellulose, its extraction from lignocellulosic biomass, and its application in wastewater treatment covered the way for innovations in renewable resources and green technologies.
Collapse
Affiliation(s)
- Chenxu Duan
- School of Mechanical Engineering, Sichuan University Jinjiang College, Meishan, Sichuan 620860, China.
| | - Pan Zhang
- School of Mechanical Engineering, Sichuan University Jinjiang College, Meishan, Sichuan 620860, China
| | - Min Qi
- School of Liquor -Brewing Engineering, Sichuan University Jinjiang College, Meishan, Sichuan 620860, China
| |
Collapse
|
3
|
Zaman S, Nelson MI, Moores MT, Hai FI. A critical review of the mechanisms of virus removal by membrane bioreactors-Influencing factors and correlation with operating parameters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124945. [PMID: 40101487 DOI: 10.1016/j.jenvman.2025.124945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/14/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Wastewater-borne virus pose significant risks to both environmental ecosystems and public health. Removal of virus from wastewater requires a rigorous treatment regime. Membrane bioreactor (MBR) systems are at the forefront of contemporary wastewater treatment technologies, offering a robust barrier against viruses. This review outlines the dual functionality of MBR systems, which combine membrane filtration with biological processes to efficiently target virus removal. It highlights the significant role of the biofilm (cake and gel layers) formed on the membrane surface, along with the critical influence of membrane pore size. This review further explores various operational parameters that maximize virus removal in MBRs, particularly highlighting the influence of membrane aging and cleaning. The impact of membrane aging varies as the chemical aging due to harsh cleaning agents tends to reduce efficiency by enlarging pores, whereas natural aging can enhance virus capture due to the development of irreversible fouling. The limited research on the effects of membrane flux, pH in the bioreactor and aeration condition on virus removal has resulted in varying and inconclusive findings. This review systematically investigates the correlation between operational parameters such as turbidity, mixed liquor suspended solids, transmembrane pressure, solids retention time, temperature, and hydraulic retention time and their impact on virus removal efficacy. Turbidity and transmembrane pressure are identified as potential indicators for indirectly monitoring virus removal. By integrating these insights, this paper contributes to an in depth understanding of MBR efficacy in virus removal and contributes to the ongoing refinement of operational strategies to ensure water safety and sustainability.
Collapse
Affiliation(s)
- Sharmin Zaman
- Strategic Water Infrastructure Lab, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, New South Wales, 2522, Australia
| | - Mark I Nelson
- School of Mathematics and Applied Statistics, University of Wollongong, New South Wales, 2522, Australia
| | - Matthew T Moores
- School of Mathematics and Applied Statistics, University of Wollongong, New South Wales, 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Lab, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
4
|
Parasnis MS, Fu Y, Deng E, Butler A, Chen CT, Dias R, Lin H, Yao F, Nalam PC. High-Performance Ti 3C 2T x-MXene/Mycelium Hybrid Membrane for Efficient Lead Remediation: Design and Mechanistic Insights. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7838-7848. [PMID: 39851067 DOI: 10.1021/acsami.4c19943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) Ti3C2Tx-MXene layers deposited on dry mycelium membranes. The hybrid Ti3C2Tx-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D Ti3C2Tx-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy. In immersion-based (no-flow) Pb(II) remediation experiments, MyMX membranes demonstrated significantly high Pb(II) removal efficiency (>87-99%) and rapid sorption kinetics across an initial Pb(II) concentration range of 60-1500 ppm in both single-ion and co-ion solutions. The enhanced Pb(II) sorption was attributed to electrostatic interactions and surface complexation assisted by hyphal surface proteins and Ti3C2Tx-MXene functional groups, as confirmed by infrared and X-ray photoelectron spectroscopies. In cross-flow studies, the MyMX membranes achieved a Pb(II) sorption capacity of ∼1347 mg/g while maintaining a high permeation rate of 51,800 L m-2 bar-1 h-1 at 1500 ppm Pb(II), surpassing the performance of various polymer-based and MXene-based microporous membranes for heavy metal remediation. The biomaterial-based hybrid MyMX membrane represents a significant advancement in water treatment technology, providing a cost-effective, sustainable solution for Pb(II) remediation in contaminated water sources.
Collapse
Affiliation(s)
- Mruganka Sandip Parasnis
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Yu Fu
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Erda Deng
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Anthony Butler
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Chu Te Chen
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Ruveen Dias
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Fei Yao
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Prathima C Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States
| |
Collapse
|
5
|
Ahmed S, Islam MS, Antu UB, Islam MM, Rajput VD, Mahiddin NA, Paul JR, Ismail Z, Ibrahim KA, Idris AM. Nanocellulose: A novel pathway to sustainable agriculture, environmental protection, and circular bioeconomy. Int J Biol Macromol 2025; 285:137979. [PMID: 39592042 DOI: 10.1016/j.ijbiomac.2024.137979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Nanocellulose, obtained from natural cellulose, has attracted considerable interest for its distinctive properties and wide-ranging potential applications. Studies suggest that nanocellulose improves the thermal, mechanical, and barrier properties of conventional cellulose. This review investigates the production, properties, approach, and application of nanocellulose from various sources in agriculture. The main role play of cellulose-nanocomposite is discussed as a seed coating agent to improve seed dispersal, germination, protection against fungi and insects, plant growth promoter, adsorption of targeted pollutants, providing water and nutrient retention, and other advantages. As a nobility, we included all mechanical, chemical, and static culture approaches to the production procedure of nanocellulose and its application as a nanocarrier in soil, including the unique properties of nanocellulose, such as its high surface area, inherent hydrophilicity, and ease of surface modification. Here, methods such as melt compounding, solution casting, and in situ polymerization were evaluated to incorporate nanoparticles into cellulose materials and produce nanocellulose and cellulose-nanocomposites with improved strength, stability, water resistance, and reduced gas permeability. The commercialization faces challenges such as high production costs, scalability issues, and the need for more research on environmental impacts and plant interactions. Despite these hurdles, this field is promising, with ongoing advancements likely to yield new and improved agricultural materials. This review thoroughly examines the innovative application of nanocellulose in slow and controlled-release fertilizers and pesticides, to transform nutrient management, boost crop productivity, and minimize the environmental impact.
Collapse
Affiliation(s)
- Sujat Ahmed
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh; East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia.
| | - Uttam Biswas Antu
- Department of Soil Science, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Moshiul Islam
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Nor Aida Mahiddin
- East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia.
| | - Joyti Rani Paul
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Zulhilmi Ismail
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; Department of Water & Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia.
| | - Khalid A Ibrahim
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Center for Environment and Tourism Studies and Research, King Khalid University, Abha, Saudi Arabia.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
6
|
Zeng J, Desmond P, Ngo HH, Lin W, Liu X, Liu B, Li G, Ding A. Membrane modification in enhancement of virus removal: A critical review. J Environ Sci (China) 2024; 146:198-216. [PMID: 38969448 DOI: 10.1016/j.jes.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2024]
Abstract
Many waterborne diseases are related with viruses, and COVID-19 worldwide has raised the concern of virus security in water into the public horizon. Compared to other conventional water treatment processes, membrane technology can achieve satisfactory virus removal with fewer chemicals, and prevent the outbreaks of viruses to a maximal extent. Researchers developed new modification methods to improve membrane performance. This review focused on the membrane modifications that enhance the performance in virus removal. The characteristics of viruses and their removal by membrane filtration were briefly generalized, and membrane modifications were systematically discussed through different virus removal mechanisms, including size exclusion, hydrophilic and hydrophobic interactions, electronic interactions, and inactivation. Advanced functional materials for membrane modification were summarized based on their nature. Furthermore, it is suggested that membranes should be enhanced through different mechanisms mainly based on their ranks of pore size. The current review provided theoretical support regarding membrane modifications in the enhancement of virus removal and avenues for practical application.
Collapse
Affiliation(s)
- Jie Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peter Desmond
- Institute of Environmental Engineering (ISA), RWTH Aachen University, Aachen 52056, Germany
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, Sydney 2007, Australia
| | - Wei Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingsheng Liu
- The Second Construction Co. Ltd. of China Construction Third Engineering Bureau, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Castro K, Abejón R. Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis. MEMBRANES 2024; 14:180. [PMID: 39195432 DOI: 10.3390/membranes14080180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
A bibliometric study to analyze the scientific documents released until 2024 in the database Scopus related to the use of pressure-driven membrane technologies (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) for heavy metal removal was conducted. The work aimed to assess the primary quantitative attributes of the research in this field during the specified period. A total of 2205 documents were identified, and the corresponding analysis indicated an exponential growth in the number of publications over time. The contribution of the three most productive countries (China, India and USA) accounts for more than 47.1% of the total number of publications, with Chinese institutions appearing as the most productive ones. Environmental Science was the most frequent knowledge category (51.9% contribution), followed by Chemistry and Chemical Engineering. The relative frequency of the keywords and a complete bibliometric network analysis allowed the conclusion that the low-pressure technologies (microfiltration and ultrafiltration) have been more deeply investigated than the high-pressure technologies (nanofiltration and reverse osmosis). Although porous low-pressure membranes are not adequate for the removal of dissolved heavy metals in ionic forms, the incorporation of embedded adsorbents within the membrane structure and the use of auxiliary chemicals to form metallic complexes or micelles that can be retained by this type of membrane are promising approaches. High-pressure membranes can achieve rejection percentages above 90% (99% in the case of reverse osmosis), but they imply lower permeate productivity and higher costs due to the required pressure gradients.
Collapse
Affiliation(s)
- Katherinne Castro
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Ricardo Abejón
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| |
Collapse
|
8
|
Saud A, Gupta S, Allal A, Preud’homme H, Shomar B, Zaidi SJ. Progress in the Sustainable Development of Biobased (Nano)materials for Application in Water Treatment Technologies. ACS OMEGA 2024; 9:29088-29113. [PMID: 39005778 PMCID: PMC11238215 DOI: 10.1021/acsomega.3c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 07/16/2024]
Abstract
Water pollution remains a widespread problem, affecting the health and wellbeing of people around the globe. While current advancements in wastewater treatment and desalination show promise, there are still challenges that need to be overcome to make these technologies commercially viable. Nanotechnology plays a pivotal role in water purification and desalination processes today. However, the release of nanoparticles (NPs) into the environment without proper safeguards can lead to both physical and chemical toxicity. Moreover, many methods of NP synthesis are expensive and not environmentally sustainable. The utilization of biomass as a source for the production of NPs has the potential to mitigate issues pertaining to cost, sustainability, and pollution. The utilization of biobased nanomaterials (bio-NMs) sourced from biomass has garnered attention in the field of water purification due to their cost-effectiveness, biocompatibility, and biodegradability. Several research studies have been conducted to efficiently produce NPs (both inorganic and organic) from biomass for applications in wastewater treatment. Biosynthesized materials such as zinc oxide NPs, phytogenic magnetic NPs, biopolymer-coated metal NPs, cellulose nanocrystals, and silver NPs, among others, have demonstrated efficacy in enhancing the process of water purification. The utilization of environmentally friendly NPs presents a viable option for enhancing the efficiency and sustainability of water pollution eradication. The present review delves into the topic of biomass, its origins, and the methods by which it can be transformed into NPs utilizing an environmentally sustainable approach. The present study will examine the utilization of greener NPs in contemporary wastewater and desalination technologies.
Collapse
Affiliation(s)
- Asif Saud
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Soumya Gupta
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | - Ahmed Allal
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | | | - Basem Shomar
- Environmental
Science Center, Qatar University, , P.O. Box 2713, Doha, Qatar
| | - Syed Javaid Zaidi
- UNESCO
Chair on Desalination and Water Treatment, Center for Advanced Materials
(CAM), Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Tang Z, Lin X, Yu M, Mondal AK, Wu H. Recent advances in TEMPO-oxidized cellulose nanofibers: Oxidation mechanism, characterization, properties and applications. Int J Biol Macromol 2024; 259:129081. [PMID: 38161007 DOI: 10.1016/j.ijbiomac.2023.129081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Cellulose is the richest renewable polymer source on the earth. TEMPO-mediated oxidized cellulose nanofibers are deduced from enormously available wood biomass and functionalized with carboxyl groups. The preparation procedure of TOCNFs is more environmentally friendly compared to other cellulose, for example, MFC and CNCs. Due to the presence of functional carboxyl groups, TOCNF-based materials have been studied widely in different fields, including biomedicine, wastewater treatment, bioelectronics and others. In this review, the TEMPO oxidation mechanism, the properties and applications of TOCNFs are elaborated. Most importantly, the recent advanced applications and the beneficial role of TOCNFs in the various abovementioned fields are discussed. Furthermore, the performances and research progress on the fabrication of TOCNFs are summarized. It is expected that this timely review will help further research on the invention of novel material from TOCNFs and its applications in different advanced fields, including biomedicine, bioelectronics, wastewater treatment, and the energy sector.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Xinxing Lin
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Meiqiong Yu
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
10
|
Goswami R, Singh S, Narasimhappa P, Ramamurthy PC, Mishra A, Mishra PK, Joshi HC, Pant G, Singh J, Kumar G, Khan NA, Yousefi M. Nanocellulose: A comprehensive review investigating its potential as an innovative material for water remediation. Int J Biol Macromol 2024; 254:127465. [PMID: 37866583 DOI: 10.1016/j.ijbiomac.2023.127465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Rapid growth in industrialization sectors, the wastewater treatment plants become exhausted and potentially not able to give desirable discharge standards. Many industries discharge the untreated effluent into the water bodies which affects the aquatic diversity and human health. The effective disposal of industrial effluents thus has been an imperative requirement. For decades nanocellulose based materials gained immense attraction towards application in wastewater remediation and emerged out as a new biobased nanomaterial. It is light weighted, cost effective, mechanically strong and easily available. Large surface area, versatile surface functionality, biodegradability, high aspect ratio etc., make them suitable candidate in this field. Majorly cellulose based nanomaterials are used in the form of cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), or bacterial nanocellulose (BNC). This review specifically describes about a variety of extraction methods to produced nanocellulose and also discusses the modification of nanocellulose by adding functionalities in its surface chemistry. We majorly focus on the utilization of nanocellulose based materials in water remediation for the removal of different contaminants such as dyes, heavy metals, oil, microbial colony etc. This review mainly emphasizes in ray of hope towards nanocellulose materials to achieve more advancement in the water remediation fields.
Collapse
Affiliation(s)
- Rekha Goswami
- Department of Environmental Science, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bengaluru 560012, India
| | - Pavithra Narasimhappa
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bengaluru 560012, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bengaluru 560012, India
| | - Abhilasha Mishra
- Department of Chemistry, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Pawan Kumar Mishra
- Department of Computer Science and Engineering, Graphic Era (deemed to be) University, Dehradun, Uttarakhand, India
| | - Harish Chandra Joshi
- Department of Chemistry, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Gaurav Pant
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248007, India.
| | - Joginder Singh
- Department of Botany, Nagaland University, HQRS: Lumami, 798 627, Zunheboto, Nagaland, India
| | - Gaurav Kumar
- Department of Microbiology, Lovely professional University, Phagwara, Punjab 144411, India
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Yang M, Gong X, Wang S, Tian Y, Yin X, Wang X, Yu J, Zhang S, Ding B. Two-Dimensional Nanofibrous Networks by Superspreading-Based Phase Inversion for High-Efficiency Separation. NANO LETTERS 2023; 23:10579-10586. [PMID: 37934045 DOI: 10.1021/acs.nanolett.3c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Two-dimensional (2D) nanomaterials have been widely applied as building blocks of nanoporous materials for high-precision separations. However, most existing 2D nanomaterials suffer from poor continuity and a lack of interior linking, resulting in deteriorated performance when assembled into macroscopic bulk structures. Here, a unique superspreading-based phase inversion technique is proposed to directly construct 2D nanofibrous networks (NFNs) from a polymer solution. By tailoring capillary behavior, polymer solution droplets evolve into ultrathin liquid films through superspreading; manipulating phase instability, subsequently, enables the liquid film to phase invert into continuous nanostructured networks. The assembled single-layered NFNs possess integrated structural superiorities of 1D nanoscale fiber diameter (∼40 nm) and 2D lateral infinity, exhibiting a weblike nanoarchitecture with extremely small through-pores (∼100 nm). Our NFNs show remarkable performances in air filtration (PM0.3 removal) and water purification (microfiltration level). This creation of such attractive 2D fibrous nanomaterials can pave the way for versatile high-performance separation applications.
Collapse
Affiliation(s)
- Ming Yang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Sai Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yucheng Tian
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xia Yin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xianfeng Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
12
|
Liu C, Li Y, Gai X, Xiang Z, Jiang W, He S, Liu Y, Xiao H. Advances in green materials derived from wood for detecting and removing mercury ions in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122351. [PMID: 37567404 DOI: 10.1016/j.envpol.2023.122351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/25/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The issue of mercury pollution in environmental remediation has garnered significant attention due to its severe health hazards to humans. Various strategies have been devised to mitigate the impact of toxic mercury ions, including coagulation, ion exchange, adsorption, membrane technology, and electrochemical treatment. Among these approaches, adsorption has emerged as an efficient and widely employed method for the uptake of low concentrations of mercury ions. It offers convenient operation, high removal efficiency, and facile regeneration of the adsorbent. Wood, being the most abundant renewable and sustainable bioresource, has garnered attention as a promising material for treating heavy metal wastewater. This is attributed to its unique physical and chemical characteristics, encompassing hierarchical pores, aligned channels, active functional groups, biodegradability, and cost-effectiveness. However, a comprehensive examination of the cutting-edge applications of wood and wood-derived biopolymers in the detection and removal of mercury ions from wastewater has yet to be undertaken. Consequently, this article presents a chronological overview of recent advancements in materials and structures derived from bulk wood and its constituents, including cellulose, lignin, hemicellulose, and tannin, with a specific focus on their utility in detecting and eliminating mercury from water sources. Subsequently, the most promising techniques and strategies involving wood and wood-derived biopolymers in addressing the predicament of mercury pollution are explored. Furthermore, this piece offers insights into the existing challenges and future prospects concerning environmentally friendly materials derived from wood, aiming to foster the development of cost-effective mercury adsorbents and detection devices.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China; International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yu Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoqian Gai
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Weikun Jiang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Shuaiming He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Yu Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B5A3, Canada
| |
Collapse
|
13
|
Wen J, Cheng W, Zhang Y, Zhou Y, Zhang Y, Yang L. Highly efficient removal of Cr(VI) from wastewater using electronegative SA/EGCG@Ti/SA/PVDF sandwich membrane. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132073. [PMID: 37467613 DOI: 10.1016/j.jhazmat.2023.132073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
The use of green, non-toxic raw materials is of great significance to the sustainable development of the environment, among which epigallocatechin gallate (EGCG) is a renewable carbon source from plants. At present, there is a lack of research on the metal-polyphenol nanomaterials their use in water decontamination. In this study, a novel SA/EGCG@Ti/SA/PVDF (SESP) sandwich membrane was prepared to effectively solve the problems of difficult recovery of nanomaterials and the leaching of metal ions. The membrane was made by scraping SA on the surface of the PVDF substrate as the bottom protective layer, depositing EGCG@Ti NPs as the functional layer, then coating SA as the surface isolation layer, and finally cross-linking with anhydrous calcium chloride. Results showed that EGCG@Ti NPs dispersed well on the surface of the SA/PVDF basement membrane. SESP sandwich membrane had good hydrothermal and acid-base stability, and it can be applied to wastewater with multiple co-existing heavy metals (e.g., Cu, Pb, Cd, and Ni). The contact angle and pure water flux of the SESP sandwich membrane with a negatively charged surface were 14.0-15.6° and 171.40 L/m2 h, respectively. The pure water flux of the regenerated membrane after BSA pollution recovered to 98.68 L/m2 h, and the interception efficiency and the interception flux of Cr(VI) were 100 % and 72.92 L/m2 h at 40 min of interception, respectively. Additionally, the removal efficiency of Cr(VI) by SESP sandwich membrane was maintained above 83 % for simulated wastewater and 100 % for actual wastewater after five adsorption-desorption cycles. Cr(VI) and Cr(III) can be removed simultaneously with the negatively charged SESP sandwich membrane. EDS and XPS analysis showed that the removal of Cr(VI) was controlled by the Donnan effect, anion exchange, chelation/complexation, and reduction mechanism. In contrast, Cr(III) was mainly influenced by electrostatic attraction and chelation/complexation mechanisms. In conclusion, the newly prepared sandwich membrane has good application potential in treating Cr(VI) wastewater.
Collapse
Affiliation(s)
- Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Research Institute of Hunan University in Chongqing, Chongqing, PR China.
| | - Wenxing Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yaxin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yichen Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lisha Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
14
|
Sepahvand S, Kargarzadeh H, Jonoobi M, Ashori A, Ismaeilimoghadam S, Varghese RT, Chirayl CJ, Azimi B, Danti S. Recent developments in nanocellulose-based aerogels as air filters: A review. Int J Biol Macromol 2023; 246:125721. [PMID: 37419257 DOI: 10.1016/j.ijbiomac.2023.125721] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Today, one of the world's critical environmental issues is air pollution, which is the most important parameter threatening human health and the environment. Synthetic polymers are widely used in industrial air filter production; however, they are incompatible with the environment due to their secondary pollution. Using renewable materials to manufacture air filters is not only environmentally friendly but also essential. Recently, a new generation of biopolymers called cellulose nanofiber (CNF)-based hydrogels have been proposed, with three dimensional (3D) nanofiber networks and unique physical and mechanical properties. CNFs have become a hot research topic for application as air filter materials because they can compete with synthetic nanofibers due to their advantages, such as abundant, renewable, nontoxic, high specific surface area, high reactivity, flexibility, low cost, low density, and network structure formation. The main focus of the current review is the recent progress in the preparation and employment of nanocellulose materials, especially CNF-based hydrogels, to absorb PM and CO2. This study summarizes the preparation methods, modification strategies, fabrications, and further applications of CNF-based aerogels as air filters. Lastly, challenges in the fabrication of CNFs, and trends for future developments are presented.
Collapse
Affiliation(s)
- Sima Sepahvand
- Department of Bio Systems, Faculty of New Technologies and Aerospace Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Poland
| | - Mehdi Jonoobi
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Saeed Ismaeilimoghadam
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Rini Thresia Varghese
- Department of Chemistry, Newman College, Thodupuzha, Kerala 685584, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | | - Bahareh Azimi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
15
|
Qin J, Ziemann E, Bar-Zeev E, Bone SE, Liang Y, Mauter MS, Herzberg M, Bernstein R. Microporous Polyethersulfone Membranes Grafted with Zwitterionic Polymer Brushes Showing Microfiltration Permeance and Ultrafiltration Bacteriophage Removal. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18343-18353. [PMID: 37010122 DOI: 10.1021/acsami.3c01495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Virus removal from water using microfiltration (MF) membranes is of great interest but remains challenging owing to the membranes' mean pore sizes typically being significantly larger than most viruses. We present microporous membranes grafted with polyzwitterionic brushes (N-dimethylammonium betaine) that combine bacteriophage removal in the range of ultrafiltration (UF) membranes with the permeance of MF membranes. Brush structures were grafted in two steps: free-radical polymerization followed by atom transfer radical polymerization (ATRP). Attenuated total reflection Fourier transform infrared (ATR-FTIR) and X-ray photoelectron (XPS) verified that grafting occurred at both sides of the membranes and that the grafting increased with increasing the zwitterion monomer concentration. The log reduction values (LRVs) of the pristine membrane increased from less than 0.5 LRV for T4 (∼100 nm) and NT1 (∼50 nm) bacteriophages to up to 4.5 LRV for the T4 and 3.1 LRV for the NT1 for the brush-grafted membranes with a permeance of about 1000 LMH/bar. The high permeance was attributed to a high-water fraction in the ultra-hydrophilic brush structure. The high measured LRVs of the brush-grafted membranes were attributed to enhanced bacteriophages exclusion from the membrane surface and entrapment of the ones that penetrated the pores due to the membranes' smaller mean pore-size and cross-section porosity than those of the pristine membrane, as seen by scanning electron microscopy (SEM) and measured using liquid-liquid porometry. Micro X-ray fluorescence (μ-XRF) spectrometry and nanoscale secondary ion mass spectrometry showed that 100 nm Si-coated gold nanospheres accumulated on the surface of the pristine membrane but not on the brush-coated membrane and that the nanospheres that penetrated the membranes were entrapped in the brush-grafted membrane but passed the pristine one. These results corroborate the LRVs obtained during filtration experiments and support the inference that the increased removal was due to a combined exclusion mechanism and entrapment. Overall, these microporous brush-grafted membranes show potential for use in advanced water treatment.
Collapse
Affiliation(s)
- Ji Qin
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research of the Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet 84990, Israel
| | - Eric Ziemann
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research of the Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet 84990, Israel
| | - Edo Bar-Zeev
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research of the Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet 84990, Israel
| | - Sharon E Bone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yuanzhe Liang
- Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Meagan S Mauter
- Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research of the Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet 84990, Israel
| | - Roy Bernstein
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research of the Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet 84990, Israel
| |
Collapse
|
16
|
Zhang Z, Jia S, Wu W, Xiao G, Sundarrajan S, Ramakrishna S. Electrospun transparent nanofibers as a next generation face filtration media: A review. BIOMATERIALS ADVANCES 2023; 149:213390. [PMID: 36963249 DOI: 10.1016/j.bioadv.2023.213390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
The development of fascinating materials with functional properties has revolutionized the humankind with materials comfort, stopped the spreading of diseases, relieving the environmental pollution pressure, economized government research funds, and prolonged their serving life. The outbreak of Coronavirus Disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered great global public health concern. Face masks are crucial tools to impede the spreading of SARS-CoV-2 from human to human. However, current face masks exhibit in a variety of colors (opaque), like blue, black, red, etc., leading to a communication barrier between the doctor and the deaf-mute patient when wearing a mask. High optical transparency filters can be utilized for both personal protection and lip-reading. Thus, shaping face air filter into a transparent appearance is an urgent need. Electrospinning technology, as a mature technology, is commonly used to form nanofiber materials utilizing high electrical voltage. With the alteration of the diameters of nanofibers, and proper material selection, it would be possible to make the transparent face mask. In this article, the research progress in the transparent face air filter is reviewed with emphasis on three parts: mechanism of the electrospinning process and light transmission, preparation of transparent face air filter, and their innovative potential. Through the assessment of classic cases, the benefits and drawbacks of various preparation strategies and products are evaluated, to provide general knowledge for the needs of different application scenarios. In the end, the development directions of transparent face masks in protective gear, particularly their novel functional applications and potential contributions in the prevention and control of the epidemic are also proposed.
Collapse
Affiliation(s)
- Zongqi Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Faculty of Mechanical Engineering, National University of Singapore, 117574, Singapore
| | - Shuyue Jia
- Faculty of Mechanical Engineering, National University of Singapore, 117574, Singapore; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wenting Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Guomin Xiao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Subramanian Sundarrajan
- Faculty of Mechanical Engineering, National University of Singapore, 117574, Singapore; Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| | - Seeram Ramakrishna
- Faculty of Mechanical Engineering, National University of Singapore, 117574, Singapore.
| |
Collapse
|
17
|
Kokol V, Kos M, Vivod V, Gunde-Cimerman N. Cationised Fibre-Based Cellulose Multi-Layer Membranes for Sterile and High-Flow Bacteria Retention and Inactivation. MEMBRANES 2023; 13:284. [PMID: 36984670 PMCID: PMC10059598 DOI: 10.3390/membranes13030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Low-cost, readily available, or even disposable membranes in water purification or downstream biopharma processes are becoming attractive alternatives to expensive polymeric columns or filters. In this article, the potential of microfiltration membranes prepared from differently orientated viscose fibre slivers, infused with ultrafine quaternised (qCNF) and amino-hydrophobised (aCNF) cellulose nanofibrils, were investigated for capturing and deactivating the bacteria from water during vacuum filtration. The morphology and capturing mechanism of the single- and multi-layer structured membranes were evaluated using microscopic imaging and colloidal particles. They were assessed for antibacterial efficacy and the retention of selected bacterial species (Escherichia coli, Staphylococcus aureus, Micrococcus luteus), differing in the cell envelope structure, hydrodynamic biovolume (shape and size) and their clustering. The aCNF increased biocidal efficacy significantly when compared to qCNF-integrated membrane, although the latter retained bacteria equally effectively by a thicker multi-layer structured membrane. The retention of bacterial cells occurred through electrostatic and hydrophobic interactions, as well as via interfibrous pore diffusion, depending on their physicochemical properties. For all bacterial strains, the highest retention (up to 100% or log 6 reduction) at >50 L/h∗bar∗m2 flow rate was achieved with a 4-layer gradient-structured membrane containing different aCNF content, thereby matching the performance of industrial polymeric filters used for removing bacteria.
Collapse
Affiliation(s)
- Vanja Kokol
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Monika Kos
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Vera Vivod
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Teshnizi FA, Ghobadinia M, Abbasi F, Hallett PD, Sepehrnia N. Biochar and flow interruption control spatio-temporal dynamics of fecal coliform retention under subsurface drip irrigation. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 253:104128. [PMID: 36603302 DOI: 10.1016/j.jconhyd.2022.104128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Applying wastewater in subsurface drip irrigation helps address water shortage in arid and semi-arid environments. Microbial contamination may result, but soil amendments such as biochar could help protect soil and water resources. To improve understanding, this study investigated spatio-temporal dynamics of fecal coliform retention in a biochar-treated soil under subsurface drip irrigation. Two dripper discharges rates of 2 and 4 l hr-1 containing fecal coliforms (3.99 ± 1.4 × 105 CFU ml-1), three maximum allowable depletion levels (MAD; 30, 50, and 70%), and three biochar levels (0, 0.5 and 1%, w/w) were used. The lysimeters were filled with biochar-treated soil and had drippers located at 20 cm depth. Three irrigations were performed for either Q, and soil samples were taken after each irrigation at different times at the lysimeter centre at 5, 15, 25, and 50 cm depths and at the edge at 20 cm depth (labeled 20 L). Soils containing biochar had much greater recovered coliforms from soil than the unamended controls. The greatest retention was at 15 and 25 cm depth (within 5 cm of the dripper) for 1% biochar, with the recovered cells about 70% for 2 l hr-1 discharge and 60% for 4 l hr-1 discharge. The greatest concentration occurred immediately after irrigation, but over 10 days the number of coliforms gradually decreased and inactivated. Therefore, the coliform residence time, soil depth, and biochar rate all influenced coliform retention if the discharge rates and MADs were considered. We recommend slower subsurface dripper rates with high MAD and biochar amendment to minimize fecal coliform contamination from subsurface field wastewater irrigation.
Collapse
Affiliation(s)
- Forough Abbasi Teshnizi
- Department of Water Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Mahdi Ghobadinia
- Department of Water Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Fariborz Abbasi
- Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Paul D Hallett
- School of Biological Sciences, Cruickshank Building, St Machar Drive Aberdeen, AB24 3UU, Scotland, United Kingdom
| | - Nasrollah Sepehrnia
- School of Biological Sciences, Cruickshank Building, St Machar Drive Aberdeen, AB24 3UU, Scotland, United Kingdom.
| |
Collapse
|
19
|
A Review on Polyacrylonitrile as an Effective and Economic Constituent of Adsorbents for Wastewater Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248689. [PMID: 36557823 PMCID: PMC9784622 DOI: 10.3390/molecules27248689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
Water gets polluted due to the dumping of untreated industrial waste into bodies of water, particularly those containing heavy metals and dyes. Industrial water contains both inorganic and organic wastes. Numerous adsorbents that are inexpensive and easily available can be used to address the issue of water deterioration. This review report is focused on polyacrylonitrile as an efficient constituent of adsorbents to extract toxic ions and dyes. It discusses the various formulations of polyacrylonitrile, such as ion exchange resins, chelating resins, fibers, membranes, and hydrogels, synthesized through different polymerization methods, such as suspension polymerization, electrospinning, grafting, redox, and emulsion polymerization. Moreover, regeneration of adsorbent and heavy metal ions makes the adsorption process more cost-effective and efficient. The literature reporting successful regeneration of the adsorbent is included. The factors affecting the performance and outcomes of the adsorption process are also discussed.
Collapse
|
20
|
Hussain Z, Ullah S, Yan J, Wang Z, Ullah I, Ahmad Z, Zhang Y, Cao Y, Wang L, Mansoorianfar M, Pei R. Electrospun tannin-rich nanofibrous solid-state membrane for wastewater environmental monitoring and remediation. CHEMOSPHERE 2022; 307:135810. [PMID: 35932921 DOI: 10.1016/j.chemosphere.2022.135810] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal, organic dyes, and bacterial contamination in water endanger human/animals' health, and therefore, the detection, adsorption, and capturing of contaminants are essential for environmental safety. Ligand-rich membranes are promising for sensors, adsorption, and bacterial decontamination. Herein, tannin (TA)-reinforced 3-aminopropyltriethoxysilane (APTES) crosslinked polycaprolactone (PCL) based nanofibrous membrane (PCL-TA-APTES) was fabricated via electrospinning. PCL-TA-APTES nanofibers possess superior thermal, mechanical, structural, chemical, and aqueous stability properties than the un-crosslinked membrane. It changed its color from yellowish to black in response to Fe2+/3+ ions due to supramolecular iron-tannin network (FeTA) interaction. Such selective sensing has been noticed after adsorption-desorption cycles. Fe3+ concentration, solution pH, contact time, and ligand concentration influence FeTA coordination. Under optimized conditions followed by image processing, the introduced membrane showed a colorimetric linear relationship against Fe3+ ions (16.58 μM-650 μM) with a limit of detection of 5.47 μM. The PCL-FeTA-APTES membrane could restrain phenolic group oxidation and result in a partial water-insoluble network. The adsorption filtration results showed that the PCL-FeTA-APTES membrane can be reused and had a higher methylene blue adsorption (32.04 mg/g) than the PCL-TA-APTES membrane (14.96 mg/g). The high capture efficiency of nanocomposite against Fe3+-based S. aureus suspension than Fe3+-free suspension demonstrated that Fe3+-bounded bacterium adhered to the nanocomposite through Fe3+/TA-dependent biointerface interactions. Overall, high surface area, rich phenolic ligand, porous microstructure, and super-wetting properties expedite FeTA coordination in the nanocomposite, crucial for Fe2+/3+ ions sensing, methylene blue adsorption-filtration, and capturing of Fe3+-bounded bacterium. These multifunctional properties could promise nanocomposite membrane practicability in wastewater and environmental protection.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Jincong Yan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Zhili Wang
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Ismat Ullah
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Zia Ahmad
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Ye Zhang
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Yi Cao
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Li Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Mojtaba Mansoorianfar
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China.
| |
Collapse
|
21
|
Aoudi B, Boluk Y, Gamal El-Din M. Recent advances and future perspective on nanocellulose-based materials in diverse water treatment applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156903. [PMID: 35753453 DOI: 10.1016/j.scitotenv.2022.156903] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Over the past few years, nanocellulose and its derivatives have drawn attention as promising bio-based materials for water treatment applications due to their high surface area, high strength, and renewable, biocompatible nature. The abundance of hydroxyl functional groups on the surfaces of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) enables a broad range of surface modifications which results in propitious nanocomposites with tunable characteristics. In this context, this review describes the continuously developing applications of nanocellulose-based materials in the areas of adsorption, catalysis, filtration, and flocculation, with a special emphasis on the removal of contaminants such as heavy metals, dyes, and pharmaceutical compounds from diverse water systems. Recent progresses in the diverse forms of application of nanocellulose adsorbents (suspension, hydrogel, aerogel, and membrane) are also highlighted. Finally, challenges and future perspectives on emerging nanocellulose-based materials and their possible industrial applications are presented and discussed.
Collapse
Affiliation(s)
- Bouthaina Aoudi
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Yaman Boluk
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
22
|
Zhang S, Vanessa C, Khan A, Ali N, Malik S, Shah S, Bilal M, Yang Y, Akhter MS, Iqbal HMN. Prospecting cellulose fibre-reinforced composite membranes for sustainable remediation and mitigation of emerging contaminants. CHEMOSPHERE 2022; 305:135291. [PMID: 35760128 DOI: 10.1016/j.chemosphere.2022.135291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Many environmental pollutants caused by uncontrolled urbanization and rapid industrial growth have provoked serious concerns worldwide. These pollutants, including toxic metals, dyes, pharmaceuticals, pesticides, volatile organic compounds, and petroleum hydrocarbons, unenviably compromise the water quality and manifest a severe menace to aquatic entities and human beings. Therefore, it is of utmost importance to acquaint bio-nanocomposites with the capability to remove and decontaminate this extensive range of emerging pollutants. Recently, considerable emphasis has been devoted to developing low-cost novel materials obtained from natural resources accompanied by minimal toxicity to the environment. One such component is cellulose, naturally the most abundant organic polymer found in nature. Given bio-renewable sources, natural abundance, and impressive nanofibril arrangement, cellulose-reinforced composites are widely engineered and utilized for multiple applications, such as wastewater decontamination, energy storage devices, drug delivery systems, paper and pulp industries, construction industries, and adhesives, etc. Environmental remediation prospective is among the fascinating application of these cellulose-reinforced composites. This review discusses the structural attributes of cellulose, types of cellulose fibrils-based nano-biocomposites, preparatory techniques, and the potential of cellulose-based composites to remediate a diverse array of organic and inorganic pollutants in wastewater.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - ChansaKayeye Vanessa
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Sumaira Shah
- Department of Botany, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Yong Yang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico.
| |
Collapse
|
23
|
Jia X, Cheng Q, Tang T, Xia M, Zhou F, Wu Y, Cheng P, Xu J, Liu K, Wang D. Facile plasma grafting of zwitterions onto nanofibrous membrane surface for improved antifouling properties and filtration performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Jain P, De A, Singh NB. Cellulose‐Based Materials for Water Purification. ChemistrySelect 2022. [DOI: 10.1002/slct.202200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Preeti Jain
- Department of Chemistry and Biochemistry School of Basic Sciences and Research Sharda University Greater Noida India
| | - Anindita De
- Department of Chemistry and Biochemistry School of Basic Sciences and Research Sharda University Greater Noida India
| | - Nakshatra Bahadur Singh
- Department of Chemistry and Biochemistry School of Basic Sciences and Research Sharda University Greater Noida India
| |
Collapse
|
25
|
Tang N, Chen Y, Li Y, Yu B. 2D Polymer Nanonets: Controllable Constructions and Functional Applications. Macromol Rapid Commun 2022; 43:e2200250. [PMID: 35524950 DOI: 10.1002/marc.202200250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/24/2022] [Indexed: 11/12/2022]
Abstract
Two-dimensional (2D) polymer nanonets have demonstrated great potential in various application fields due to their integrated advantages of ultrafine diameter, small pore size, high porosity, excellent interconnectivity, and large specific surface area. Here, a comprehensive overview of the controlled constructions of the polymer nanonets derived from electrospinning/netting, direct electronetting, self-assembly of cellulose nanofibers, and nonsolvent-induced phase separation is provided. Then, the widely researched multifunctional applications of polymer nanonets in filtration, sensor, tissue engineering, and electricity are also given. Finally, the challenges and possible directions for further developing the polymer nanonets are also intensively highlighted. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ning Tang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yu Chen
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuyao Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Bin Yu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
26
|
Nasir AM, Adam MR, Mohamad Kamal SNEA, Jaafar J, Othman MHD, Ismail AF, Aziz F, Yusof N, Bilad MR, Mohamud R, A Rahman M, Wan Salleh WN. A review of the potential of conventional and advanced membrane technology in the removal of pathogens from wastewater. Sep Purif Technol 2022; 286:120454. [PMID: 35035270 PMCID: PMC8741333 DOI: 10.1016/j.seppur.2022.120454] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/23/2022]
Abstract
Consumption of pathogenic contaminated water has claimed the lives of many people. Hence, this scenario has emphasized the urgent need for research methods to avoid, treat and eliminate harmful pathogens in wastewater. Therefore, effective water treatment has become a matter of utmost importance. Membrane technology offers purer, cleaner, and pathogen-free water through the water separation method via a permeable membrane. Advanced membrane technology such as nanocomposite membrane, membrane distillation, membrane bioreactor, and photocatalytic membrane reactor can offer synergistic effects in removing pathogen through the integration of additional functionality and filtration in a single chamber. This paper also comprehensively discussed the application, challenges, and future perspective of the advanced membrane technology as a promising alternative in battling pathogenic microbial contaminants, which will also be beneficial and valuable in managing pandemics in the future as well as protecting human health and the environment. In addition, the potential of membrane technology in battling the ongoing global pandemic of coronavirus disease 2019 (COVID-19) was also discussed briefly.
Collapse
Affiliation(s)
- Atikah Mohd Nasir
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Ridhwan Adam
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | - Juhana Jaafar
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Farhana Aziz
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Norhaniza Yusof
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Muhammad Roil Bilad
- Department of Chemistry Education, Universitas Pendidikan Mandalika (UNDIKMA), Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Health Campus,Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mukhlis A Rahman
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Wan Norhayati Wan Salleh
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
27
|
Das R, Lindström T, Sharma PR, Chi K, Hsiao BS. Nanocellulose for Sustainable Water Purification. Chem Rev 2022; 122:8936-9031. [PMID: 35330990 DOI: 10.1021/acs.chemrev.1c00683] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanocelluloses (NC) are nature-based sustainable biomaterials, which not only possess cellulosic properties but also have the important hallmarks of nanomaterials, such as large surface area, versatile reactive sites or functionalities, and scaffolding stability to host inorganic nanoparticles. This class of nanomaterials offers new opportunities for a broad spectrum of applications for clean water production that were once thought impractical. This Review covers substantial discussions based on evaluative judgments of the recent literature and technical advancements in the fields of coagulation/flocculation, adsorption, photocatalysis, and membrane filtration for water decontamination through proper understanding of fundamental knowledge of NC, such as purity, crystallinity, surface chemistry and charge, suspension rheology, morphology, mechanical properties, and film stability. To supplement these, discussions on low-cost and scalable NC extraction, new characterizations including solution small-angle X-ray scattering evaluation, and structure-property relationships of NC are also reviewed. Identifying knowledge gaps and drawing perspectives could generate guidance to overcome uncertainties associated with the adaptation of NC-enabled water purification technologies. Furthermore, the topics of simultaneous removal of multipollutants disposal and proper handling of post/spent NC are discussed. We believe NC-enabled remediation nanomaterials can be integrated into a broad range of water treatments, greatly improving the cost-effectiveness and sustainability of water purification.
Collapse
Affiliation(s)
- Rasel Das
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tom Lindström
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Priyanka R Sharma
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Kai Chi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
28
|
Wu Y, Ye H, You C, Zhou W, Chen J, Xiao W, Garba ZN, Wang L, Yuan Z. Construction of functionalized graphene separation membranes and their latest progress in water purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Wastewater Treatment in Mineral Processing of Non-Ferrous Metal Resources: A Review. WATER 2022. [DOI: 10.3390/w14050726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water used by mining enterprises needs to be comprehensively recovered and utilized to achieve clean production. This requires the effective treatment of mineral processing wastewater. Wastewater produced during non-ferrous metal mineral processing contains a complex mixture of pollutants at high concentrations, making comprehensive treatment difficult. Here, the sources of and hazards posed by wastewater produced during non-ferrous metal mineral processing are introduced and the techniques for removing heavy metal ions and organic chemicals are reviewed. Chemical precipitation and adsorption methods are often used to remove heavy metal ions. Chemical precipitation methods can be divided into hydroxide and sulfide precipitation methods. Organic chemicals are mainly removed using oxidation methods, including electrochemical oxidation, photocatalytic oxidation, and ultrasonic synergistic oxidation. External and internal cyclic utilization methods for treating wastewater produced by mineral processing plants are introduced, and a feasibility analysis is performed.
Collapse
|
30
|
Reshmy R, Philip E, Madhavan A, Pugazhendhi A, Sindhu R, Sirohi R, Awasthi MK, Pandey A, Binod P. Nanocellulose as green material for remediation of hazardous heavy metal contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127516. [PMID: 34689089 DOI: 10.1016/j.jhazmat.2021.127516] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution generated by urban and industrial activities has become a major global concern due to its high toxicity, minimal biodegradability, and persistence in the food chain. These are the severe pollutants that have the potential to harm humans and the environment as a whole. Mercury, chromium, copper, zinc, cadmium, lead, and nickel are the most often discharged hazardous heavy metals. Nanocellulose, reminiscent of many other sustainable nanostructured materials, is gaining popularity for application in bioremediation technologies owing to its many unique features and potentials. The adsorption of heavy metals from wastewaters is greatly improved when cellulose dimension is reduced to nanometric levels. For instance, the adsorption efficiency of Cr3+ and Cr6+ is found to be 42.02% and 5.79% respectively using microcellulose, while nanocellulose adsorbed 62.40% of Cr3+ ions and 5.98% of Cr6+ ions from contaminated water. These nanomaterials are promising in terms of their ease and low cost of regeneration. This review addresses the relevance of nanocellulose as biosorbent, scaffold, and membrane in various heavy metal bioremediation, as well as provides insights into the challenges, future prospects, and updates. The methods of designing better nanocellulose biosorbents to improve adsorption efficiency according to contaminant types are focused.
Collapse
Affiliation(s)
- R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR, Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
31
|
Han S, Li W, Xi H, Yuan R, Long J, Xu C. Plasma-assisted in-situ preparation of graphene-Ag nanofiltration membranes for efficient removal of heavy metal ions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127012. [PMID: 34461540 DOI: 10.1016/j.jhazmat.2021.127012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Graphene-based membranes have been considered as promising separation membranes for water treatments due to their unique two-dimensional confined channels. However, subject to the preparation technology, the effective construction of graphene-based filtration membranes with suitable separation ability on heavy metal ions still face considerable challenges. Herein, we have successfully constructed a kind of graphene-based (reduced graphene oxide, rGO) nanofiltration membranes by adopting a plasma-assisted in-situ photocatalytic reduction method. Graphene oxide-Ag (GO-Ag) composite sheets are prepared firstly and then assembled into membranes by vacuum filtration. With the use of Ag nanoparticles as plasmonic photocatalyst, GO-Ag films can be in-situ reduced, leading to the formation of rGO-based composite membranes. Thanks to the mild in-situ reduction process, the filtration ability on heavy metal ions (Cr(VI), Cr3+, Cu2+ and Pb2+) caused by lamellar structure is well retained in the as-formed rGO-Ag membranes. Especially, when treating the typical toxic Cr(VI) solution, the retention capacity, water flux and stability of rGO-Ag membranes are all improved compared with that of the original GO-Ag ones. In addition, the effectively rejection of Cr(VI) from mixed solutions containing both Cr(VI) and Cr(III) also suggests the good applicability of such rGO-Ag membranes in a complex wastewater system.
Collapse
Affiliation(s)
- Shitong Han
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Wenyue Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Rusheng Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | - Chao Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
32
|
Naragund VS, Panda PK. Electrospun nanofiber-based respiratory face masks-a review. EMERGENT MATERIALS 2022; 5:261-278. [PMID: 35098033 PMCID: PMC8788396 DOI: 10.1007/s42247-022-00350-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/19/2022] [Indexed: 05/05/2023]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic of 2019 forced widespread use of face coverings as a mandatory step towards reducing infection by the virus. The face mask acts as a barrier for transmission of infected aerosols among its user and surrounding people. This has propelled pace of research and development of face masks around the world. This short review is an effort to present advances in materials and designs used for face masks. Details available in scientific literature and company brochures have been accessed and the use of nanomaterials and designs for the new generation of face masks have been discussed. Special attention was given to the face masks based on electrospun nanofiber-based membrane materials due to their nano-sized pores, light weight, and high filtration efficiency; therefore, they are commercially viable and popular among various products available in the market. Incorporation of metal organic framework (MOFs) and graphene have opened avenues to more advanced/multi-functional, reusable, and high capacity adsorption filtration membranes. Rapid prototyping/3-dimensional (3-D) printing techniques have been applied to shorten the time of manufacture of face masks. This review is expected to be very helpful for engineers, scientists, and entrepreneurs working on development of novel face masks required in plenty during this pandemic period.
Collapse
Affiliation(s)
- Veereshgouda S. Naragund
- Materials Science Division, CSIR – National Aerospace Laboratories, HAL Old Airport Road, Kodihalli, Bengaluru, 560017 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - P. K. Panda
- Materials Science Division, CSIR – National Aerospace Laboratories, HAL Old Airport Road, Kodihalli, Bengaluru, 560017 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
33
|
Khraisheh M, Elhenawy S, AlMomani F, Al-Ghouti M, Hassan MK, Hameed BH. Recent Progress on Nanomaterial-Based Membranes for Water Treatment. MEMBRANES 2021; 11:995. [PMID: 34940495 PMCID: PMC8709222 DOI: 10.3390/membranes11120995] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Nanomaterials have emerged as the new future generation materials for high-performance water treatment membranes with potential for solving the worldwide water pollution issue. The incorporation of nanomaterials in membranes increases water permeability, mechanical strength, separation efficiency, and reduces fouling of the membrane. Thus, the nanomaterials pave a new pathway for ultra-fast and extremely selective water purification membranes. Membrane enhancements after the inclusion of many nanomaterials, including nanoparticles (NPs), two-dimensional (2-D) layer materials, nanofibers, nanosheets, and other nanocomposite structural materials, are discussed in this review. Furthermore, the applications of these membranes with nanomaterials in water treatment applications, that are vast in number, are highlighted. The goal is to demonstrate the significance of nanomaterials in the membrane industry for water treatment applications. It was found that nanomaterials and nanotechnology offer great potential for the advancement of sustainable water and wastewater treatment.
Collapse
Affiliation(s)
- Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| | - Salma Elhenawy
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| | - Fares AlMomani
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| | - Mohammad Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar;
| | | | - Bassim H. Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| |
Collapse
|
34
|
Chen C, Guo L, Yang Y, Oguma K, Hou LA. Comparative effectiveness of membrane technologies and disinfection methods for virus elimination in water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149678. [PMID: 34416607 PMCID: PMC8364419 DOI: 10.1016/j.scitotenv.2021.149678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 05/22/2023]
Abstract
The pandemic of the 2019 novel coronavirus disease (COVID-19) has brought viruses into the public horizon. Since viruses can pose a threat to human health in a low concentration range, seeking efficient virus removal methods has been the research hotspots in the past few years. Herein, a total of 1060 research papers were collected from the Web of Science database to identify technological trends as well as the research status. Based on the analysis results, this review elaborates on the state-of-the-art of membrane filtration and disinfection technologies for the treatment of virus-containing wastewater and drinking water. The results evince that membrane and disinfection methods achieve a broad range of virus removal efficiency (0.5-7 log reduction values (LRVs) and 0.09-8 LRVs, respectively) that is attributable to the various interactions between membranes or disinfectants and viruses having different susceptibility in viral capsid protein and nucleic acid. Moreover, this review discusses the related challenges and potential of membrane and disinfection technologies for customized virus removal in order to prevent the dissemination of the waterborne diseases.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Lihui Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Kumiko Oguma
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China; Xi'an High-Tech Institute, Xi'an 710025, China.
| |
Collapse
|
35
|
Mehdipour‐Ataei S, Babanzadeh S, Khodami S. Thin film nanocomposites from a novel poly(keto ether sulfone) to remove metal ions from wastewater. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shahram Mehdipour‐Ataei
- Polyurethane and Advanced Polymeric Materials Iran Polymer and Petrochemical Institute Tehran Iran
| | - Samal Babanzadeh
- Polyurethane and Advanced Polymeric Materials Iran Polymer and Petrochemical Institute Tehran Iran
| | - Samaneh Khodami
- Polyurethane and Advanced Polymeric Materials Iran Polymer and Petrochemical Institute Tehran Iran
| |
Collapse
|
36
|
Salama A, Abouzeid R, Leong WS, Jeevanandam J, Samyn P, Dufresne A, Bechelany M, Barhoum A. Nanocellulose-Based Materials for Water Treatment: Adsorption, Photocatalytic Degradation, Disinfection, Antifouling, and Nanofiltration. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3008. [PMID: 34835769 PMCID: PMC8620168 DOI: 10.3390/nano11113008] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Nanocelluloses are promising bio-nano-materials for use as water treatment materials in environmental protection and remediation. Over the past decades, they have been integrated via novel nanoengineering approaches for water treatment processes. This review aims at giving an overview of nanocellulose requirements concerning emerging nanotechnologies of waster treatments and purification, i.e., adsorption, absorption, flocculation, photocatalytic degradation, disinfection, antifouling, ultrafiltration, nanofiltration, and reverse osmosis. Firstly, the nanocellulose synthesis methods (mechanical, physical, chemical, and biological), unique properties (sizes, geometries, and surface chemistry) were presented and their use for capturing and removal of wastewater pollutants was explained. Secondly, different chemical modification approaches surface functionalization (with functional groups, polymers, and nanoparticles) for enhancing the surface chemistry of the nanocellulose for enabling the effective removal of specific pollutants (suspended particles, microorganisms, hazardous metals ions, organic dyes, drugs, pesticides fertilizers, and oils) were highlighted. Thirdly, new fabrication approaches (solution casting, thermal treatment, electrospinning, 3D printing) that integrated nanocelluloses (spherical nanoparticles, nanowhiskers, nanofibers) to produce water treatment materials (individual composite nanoparticles, hydrogels, aerogels, sponges, membranes, and nanopapers) were covered. Finally, the major challenges and future perspectives concerning the applications of nanocellulose based materials in water treatment and purification were highlighted.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (A.S.); (R.A.)
| | - Ragab Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (A.S.); (R.A.)
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France;
| | - Wei Sun Leong
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore;
| | - Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Pieter Samyn
- Institute for Materials Research (MO-IMOMEC), Applied and Analytical Chemistry, University of Hasselt, B-3590 Diepenbeek, Belgium;
| | - Alain Dufresne
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Helwan 11795, Egypt
- School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland
| |
Collapse
|
37
|
Xu T, Zhang J, Guo H, Zhao W, Li Q, Zhu Y, Yang J, Bai J, Zhang L. Antifouling Fibrous Membrane Enables High Efficiency and High-Flux Microfiltration for Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49254-49265. [PMID: 34633173 DOI: 10.1021/acsami.1c11316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane biofouling has long been a major obstacle to highly efficient water treatment. The modification of the membrane surface with hydrophilic materials can effectively enhance biofouling resistance. However, the water flux of the membranes is often compromised for the improvement of antifouling properties. In this work, a composite membrane composed of a zwitterionic hydrogel and electrospinning fibers was prepared by a spin-coating and UV cross-linking process. At the optimum conditions, the composite membrane could effectively resist the biofouling contaminations, as well as purify polluted water containing bacteria or diatoms with a high flux (1349.2 ± 85.5 L m-2 h-1 for 106 CFU mL-1 of an Escherichia coli solution). Moreover, compared with the commercial poly(ether sulfone) (PES) membrane, the membrane displayed an outstanding long-term filtration performance with a lower water flux decline. Therefore, findings in this work provide an effective antifouling modification strategy for microfiltration membranes and hold great potential for developing antifouling membranes for water treatment.
Collapse
Affiliation(s)
- Tong Xu
- Collage of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jiamin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Hongshuang Guo
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yingnan Zhu
- School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jie Bai
- Collage of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
38
|
R R, Thomas D, Philip E, Paul SA, Madhavan A, Sindhu R, Binod P, Pugazhendhi A, Sirohi R, Tarafdar A, Pandey A. Potential of nanocellulose for wastewater treatment. CHEMOSPHERE 2021; 281:130738. [PMID: 34004518 DOI: 10.1016/j.chemosphere.2021.130738] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 05/26/2023]
Abstract
Wastewater management has significant interest worldwide to establish viable treatment techniques to ensure the availability of clean water. The specialities of nanocellulose for this particular application is due to their high aspect ratio and accessibility of plenty of -OH groups for binding with dyes, heavy metals and other pollutants. This review aggregates the application of nanocellulose for wastewater treatment particularly as adsorbents of dyes and heavy metals, and also as membranes for filtering various other contaminants including microbes. The membrane technologies are proven to be effective relating to their durability and separation effectiveness. The commercial scale application of nanocellulose based materials in water treatment processes depend on various factors like routes of synthesis, surface modifications, hydrophilic/hydrophobic, porosity, durability etc. The recent developments on production of novel adsorbents or membranes encourage the implementation of nanocellulose based cleaner technologies for wastewater treatment.
Collapse
Affiliation(s)
- Reshmy R
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India.
| | - Deepa Thomas
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India
| | - Sherely A Paul
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, 695 014, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019, Kerala, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Ranjna Sirohi
- Department of Post Harvest Process and Food Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263 145, India
| | - Ayon Tarafdar
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226 001, India
| |
Collapse
|
39
|
Huang Y, Yang P, Yang F, Chang C. Self-supported nanoporous lysozyme/nanocellulose membranes for multifunctional wastewater purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Norrrahim MNF, Mohd Kasim NA, Knight VF, Ong KK, Mohd Noor SA, Abdul Halim N, Ahmad Shah NA, Jamal SH, Janudin N, Misenan MSM, Ahmad MZ, Yaacob MH, Wan Yunus WMZ. Emerging Developments Regarding Nanocellulose-Based Membrane Filtration Material against Microbes. Polymers (Basel) 2021; 13:3249. [PMID: 34641067 PMCID: PMC8512566 DOI: 10.3390/polym13193249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
The wide availability and diversity of dangerous microbes poses a considerable problem for health professionals and in the development of new healthcare products. Numerous studies have been conducted to develop membrane filters that have antibacterial properties to solve this problem. Without proper protective filter equipment, healthcare providers, essential workers, and the general public are exposed to the risk of infection. A combination of nanotechnology and biosorption is expected to offer a new and greener approach to improve the usefulness of polysaccharides as an advanced membrane filtration material. Nanocellulose is among the emerging materials of this century and several studies have proven its use in filtering microbes. Its high specific surface area enables the adsorption of various microbial species, and its innate porosity can separate various molecules and retain microbial objects. Besides this, the presence of an abundant OH groups in nanocellulose grants its unique surface modification, which can increase its filtration efficiency through the formation of affinity interactions toward microbes. In this review, an update of the most relevant uses of nanocellulose as a new class of membrane filters against microbes is outlined. Key advancements in surface modifications of nanocellulose to enhance its rejection mechanism are also critically discussed. To the best of our knowledge, this is the first review focusing on the development of nanocellulose as a membrane filter against microbes.
Collapse
Affiliation(s)
- Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia; (M.N.F.N.); (K.K.O.); (S.A.M.N.); (N.J.)
| | - Noor Azilah Mohd Kasim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia; (M.N.F.N.); (K.K.O.); (S.A.M.N.); (N.J.)
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia; (N.A.A.S.); (S.H.J.)
| | - Victor Feizal Knight
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia; (M.N.F.N.); (K.K.O.); (S.A.M.N.); (N.J.)
| | - Keat Khim Ong
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia; (M.N.F.N.); (K.K.O.); (S.A.M.N.); (N.J.)
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia; (N.A.A.S.); (S.H.J.)
| | - Siti Aminah Mohd Noor
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia; (M.N.F.N.); (K.K.O.); (S.A.M.N.); (N.J.)
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia; (N.A.A.S.); (S.H.J.)
| | - Norhana Abdul Halim
- Department of Physics, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - Noor Aisyah Ahmad Shah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia; (N.A.A.S.); (S.H.J.)
| | - Siti Hasnawati Jamal
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia; (N.A.A.S.); (S.H.J.)
| | - Nurjahirah Janudin
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia; (M.N.F.N.); (K.K.O.); (S.A.M.N.); (N.J.)
| | - Muhammad Syukri Mohamad Misenan
- Department of Chemistry, College of Arts and Science, Yildiz Technical University, Davutpasa Campus, Esenler, Istanbul 34220, Turkey;
| | - Muhammad Zamharir Ahmad
- Biotechnology and Nanotechnology Research Centre, Malaysia Agricultural Research and Development Institute, Persiaran MARDI-UPM, Serdang 43400, Selangor, Malaysia;
| | - Mohd Hanif Yaacob
- Wireless and Photonics Network Research Centre (WiPNET), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Wan Md Zin Wan Yunus
- Research Centre for Tropicalisation, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
41
|
Liu Y, Liu H, Shen Z. Nanocellulose Based Filtration Membrane in Industrial Waste Water Treatment: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5398. [PMID: 34576639 PMCID: PMC8464859 DOI: 10.3390/ma14185398] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023]
Abstract
In the field of industrial wastewater treatment, membrane separation technology, as an emerging separation technology, compared with traditional separation technology such as precipitation, adsorption, and ion exchange, has advantages in separation efficiency, low energy consumption, low cost, simple operation, and no secondary pollution. The application has been expanding in recent years, but membrane fouling and other problems have seriously restricted the development of membrane technology. Natural cellulose is one of the most abundant resources in nature. In addition, nanocellulose has characteristics of high strength and specific surface area, surface activity groups, as well as being pollution-free and renewable, giving it a very wide development prospect in many fields, including membrane separation technology. This paper reviews the current status of nanocellulose filtration membrane, combs the widespread types of nanocellulose and its derivatives, and summarizes the current application of cellulose in membrane separation. In addition, for the purpose of nanocellulose filtration membrane in wastewater treatment, nanocellulose membranes are divided into two categories according to the role in filtration membrane: the application of nanocellulose as membrane matrix material and as a modified additive in composite membrane in wastewater treatment. Finally, the advantages and disadvantages of inorganic ceramic filtrations and nanocellulose filtrations are compared, and the application trend of nanocellulose in the filtration membrane direction is summarized and discussed.
Collapse
Affiliation(s)
- Yunxia Liu
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China;
| | - Honghai Liu
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China;
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongrong Shen
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China;
| |
Collapse
|
42
|
Li Y, Gao L, Wang Y, Cheng S, Wu G, Yang X, Wan S. Development of an acidized biochar-supported hydrated Fe(III) oxides for highly efficient cadmium and copper sequestration from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147017. [PMID: 33892318 DOI: 10.1016/j.scitotenv.2021.147017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Biochar-supported metallic oxides are attractive adsorbents for heavy metal cleanup, but the adsorption performance is still unsatisfactory as a result of the self-aggregation of the incorporated metallic oxides. A new hybrid nano-material was prepared through impregnating hydrated ferric oxide (HFO) nanoparticles within biochar bearing high-density charged oxygen-containing groups (e.g., carboxyl and hydroxyl groups) (ABC) derived from HNO3 treatment. The as-made adsorbent, denoted as HFO-ABC, possesses highly dispersed HFO nanoparticles with typical size lower than 20 nm, and exhibits greater sorption capacity for Cd(II) and Cu(II) than the pristine biochar-supported HFO. It also shows great sorption preference toward Cd(II) and Cu(II) in co-presence of high levels of Ca2+, Mg2+ and humic acid (HA). Such prominent performance is put down to the high-density charged functional groups on the host ABC, which not only promote the dispersion of the immobilized HFO nanoparticles but also generate the potential Donnan membrane effect, i.e., the pre-concentration and permeation of target metals prior to their preferable adsorption by nano-HFO. The predicted effective coefficients of intra-particle diffusion for Cu(II) and Cd(II) are 3.83 × 10-9 and 4.33 × 10-9 cm2/s, respectively. HFO-ABC exhibits excellent performance for fixed-bed column application, and yields 513 and 990 BV effluents for Cd(II) and Cu(II) to achieve their discharge standards, respectively. The spent HFO-ABC could be in situ regenerated using binary HCl-CaCl2 solution with desorption efficiency higher than 95%. All results manifest that increasing charged functional groups via HNO3 treatment is an effective measure for boosting sorption performance of biochar-based nanocomposites.
Collapse
Affiliation(s)
- Yan Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; College of Life & Environmental Sciences, Huangshan University, Huangshan 245041, China
| | - Liangmin Gao
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China.
| | - Yu Wang
- College of Life & Environmental Sciences, Huangshan University, Huangshan 245041, China
| | - Shuo Cheng
- College of Life & Environmental Sciences, Huangshan University, Huangshan 245041, China
| | - Guowei Wu
- College of Life & Environmental Sciences, Huangshan University, Huangshan 245041, China
| | - Xuan Yang
- College of Life & Environmental Sciences, Huangshan University, Huangshan 245041, China
| | - Shunli Wan
- College of Life & Environmental Sciences, Huangshan University, Huangshan 245041, China.
| |
Collapse
|
43
|
Preparation of forcespun γ-irradiated chitin from shrimp shell wastes and its evaluation as uranyl ion adsorbent. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Khan FSA, Mubarak NM, Tan YH, Khalid M, Karri RR, Walvekar R, Abdullah EC, Nizamuddin S, Mazari SA. A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125375. [PMID: 33930951 DOI: 10.1016/j.jhazmat.2021.125375] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Industrial effluents contain several organic and inorganic contaminants. Among others, dyes and heavy metals introduce a serious threat to drinking waterbodies. These pollutants can be noxious or carcinogenic in nature, and harmful to humans and different aquatic species. Therefore, it is of high importance to remove heavy metals and dyes to reduce their environmental toxicity. This has led to an extensive research for the development of novel materials and techniques for the removal of heavy metals and dyes. One route to the removal of these pollutants is the utilization of magnetic carbon nanotubes (CNT) as adsorbents. Magnetic carbon nanotubes hold remarkable properties such as surface-volume ratio, higher surface area, convenient separation methods, etc. The suitable characteristics of magnetic carbon nanotubes have led them to an extensive search for their utilization in water purification. Along with magnetic carbon nanotubes, the buckypaper (BP) membranes are also favorable due to their unique strength, high porosity, and adsorption capability. However, BP membranes are mostly used for salt removal from the aqueous phase and limited literature shows their applications for removal of heavy metals and dyes. This study focuses on the existence of heavy metal ions and dyes in the aquatic environment, and methods for their removal. Various fabrication approaches for the development of magnetic-CNTs and CNT-based BP membranes are also discussed. With the remarkable separation performance and ultra-high-water flux, magnetic-CNTs, and CNT-based BP membranes have a great potential to be the leading technologies for water treatment in future.
Collapse
Affiliation(s)
- Fahad Saleem Ahmed Khan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009 Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009 Miri, Sarawak, Malaysia.
| | - Yie Hua Tan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009 Miri, Sarawak, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Rama Rao Karri
- Petroleum, and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Brunei Darussalam
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| | - Ezzat Chan Abdullah
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT) Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | | | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| |
Collapse
|
45
|
Chen C, Hu L. Nanoscale Ion Regulation in Wood-Based Structures and Their Device Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002890. [PMID: 33108027 DOI: 10.1002/adma.202002890] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/05/2020] [Indexed: 05/26/2023]
Abstract
Ion transport and regulation are fundamental processes for various devices and applications related to energy storage and conversion, environmental remediation, sensing, ionotronics, and biotechnology. Wood-based materials, fabricated by top-down or bottom-up approaches, possess a unique hierarchically porous fibrous structure that offers an appealing material platform for multiscale ion regulation. The ion transport behavior in these materials can be regulated through structural and compositional engineering from the macroscale down to the nanoscale, imparting wood-based materials with multiple functions for a range of emerging applications. A fundamental understanding of ion transport behavior in wood-based structures enhances the capability to design high-performance ion-regulating devices and promotes the utilization of sustainable wood materials. Combining this unique ion regulation capability with the renewable and cost-effective raw materials available, wood and its derivatives are the natural choice of materials toward sustainability.
Collapse
Affiliation(s)
- Chaoji Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Center for Materials Innovation, University of Maryland, College Park, MD, 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Center for Materials Innovation, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
46
|
Shah SS, Shaikh MN, Khan MY, Alfasane MA, Rahman MM, Aziz MA. Present Status and Future Prospects of Jute in Nanotechnology: A Review. CHEM REC 2021; 21:1631-1665. [PMID: 34132038 DOI: 10.1002/tcr.202100135] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health-related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco-friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano-lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute-based nanotechnology research in the future.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Mohd Yusuf Khan
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | | | - Mohammad Mizanur Rahman
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
47
|
Pasaoglu ME, Koyuncu I. Substitution of petroleum-based polymeric materials used in the electrospinning process with nanocellulose: A review and future outlook. CHEMOSPHERE 2021; 269:128710. [PMID: 33162162 DOI: 10.1016/j.chemosphere.2020.128710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 05/26/2023]
Abstract
The most fibrous reinforcing materials for engineered composites (e.g. carbon fiber, glass fiber) are solid fibers or loops, garments, and their preforms. In design and fabrication methods, the fiber orientation and design can therefore be regulated broadly. The continuous fibers from biobased materials such as plants are nevertheless growing interest. Nanocelluloses, which are projected to be cheaper than many other nanomaterials and potentially produce in great quantities, are of particular interest recently. They have an impressive strength to weight ratio and have so far demonstrated no care in their unmodified condition with respect to the climate, health and safety. The efficient and effective use of nanocellulose in continuous fibers is, however, difficult and a range of approaches have been studied where either directly or in combination with the polymers spin nanocellulose dispersions. In this study, a variety of approaches are reviewed and a perspective is provided to better understand the body of knowledge in this new and increasing area.
Collapse
Affiliation(s)
- Mehmet Emin Pasaoglu
- Istanbul Technical University Civil Eng, Faculty, Environmental Eng, Dept, 34469 Maslak, Sariyer, Istanbul, Turkey; National Research Center on Membrane Technologies (MEM-TEK), Advanced Technology Center, 34469, Maslak, Sariyer, Istanbul, Turkey.
| | - Ismail Koyuncu
- Istanbul Technical University Civil Eng, Faculty, Environmental Eng, Dept, 34469 Maslak, Sariyer, Istanbul, Turkey; National Research Center on Membrane Technologies (MEM-TEK), Advanced Technology Center, 34469, Maslak, Sariyer, Istanbul, Turkey.
| |
Collapse
|
48
|
Recent Advances in the Synthesis of Nanocellulose Functionalized–Hybrid Membranes and Application in Water Quality Improvement. Processes (Basel) 2021. [DOI: 10.3390/pr9040611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The increasing discharge of voluminous non or partially treated wastewaters characterized by complex contaminants poses significant ecological and health risks. Particularly, this practice impacts negatively on socio-economic, technological, industrial, and agricultural development. Therefore, effective control of water pollution is imperative. Over the past decade, membrane filtration has been established as an effective and commercially attractive technology for the separation and purification of water. The performance of membrane-based technologies relies on the intrinsic properties of the membrane barrier itself. As a result, the development of innovative techniques for the preparation of highly efficient membranes has received remarkable attention. Moreover, growing concerns related to cost-effective and greener technologies have induced the need for eco-friendly, renewable, biodegradable, and sustainable source materials for membrane fabrication. Recently, advances in nanotechnology have led to the development of new high-tech nanomaterials from natural polymers (e.g., cellulose) for the preparation of environmentally benign nanocomposite membranes. The synthesis of nanocomposite membranes using nanocelluloses (NCs) has become a prominent research field. This is attributed to the exceptional characteristics of these nanomaterials (NMs) namely; excellent and tuneable surface chemistry, high mechanical strength, low-cost, biodegradability, biocompatibility, and renewability. For this purpose, the current paper opens with a comprehensive yet concise description of the various types of NCs and their most broadly utilized production techniques. This is closely followed by a critical review of how NC substrates and their surface-modified versions affect the performance of the fabricated NC-based membranes in various filtration processes. Finally, the most recent processing technologies for the preparation of functionalized NCs-based composite membranes are discussed in detail and their hybrid characteristics relevant to membrane filtration processes are highlighted.
Collapse
|
49
|
T M S, Arshad AB, Lin PT, Widakdo J, H K M, Austria HFM, Hu CC, Lai JY, Hung WS. A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues. RSC Adv 2021; 11:9638-9663. [PMID: 35423415 PMCID: PMC8695389 DOI: 10.1039/d1ra00060h] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/19/2021] [Indexed: 01/08/2023] Open
Abstract
With rapid advancement in water filtration materials, several efforts have been made to fabricate electrospun nanofiber membranes (ENMs). ENMs play a crucial role in different areas of water treatment due to their several advantageous properties such as high specific surface area, high interconnected porosity, controllable thickness, mechanical robustness, and wettability. In the broad field of water purification, ENMs have shown tremendous potential in terms of permeability, rejection, energy efficiency, resistance to fouling, reusability and mechanical robustness as compared to the traditional phase inversion membranes. Upon various chemical and physical modifications of ENMs, they have exhibited great potential for emerging applications in environment, energy and health sectors. This review firstly presents an overview of the limiting factors influencing the morphology of electrospun nanofibers. Secondly, it presents recent advancements in electrospinning processes, which helps to not only overcome drawbacks associated with the conventional electrospinning but also to produce nanofibers of different morphology and orientation with an increased rate of production. Thirdly, it presents a brief discussion about the recent progress of the ENMs for removal of various pollutants from aqueous system through major areas of membrane separation. Finally, this review concludes with the challenges and future directions in this vast and fast growing area.
Collapse
Affiliation(s)
- Subrahmanya T M
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Ahmad Bin Arshad
- Department of Mechanical Engineering, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Po Ting Lin
- Department of Mechanical Engineering, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Januar Widakdo
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Makari H K
- Department of Biotechnology, IDSG Government College Chikkamagaluru Karnataka 577102 India
| | - Hannah Faye M Austria
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Chien-Chieh Hu
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Juin-Yih Lai
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Wei-Song Hung
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| |
Collapse
|
50
|
Lencova S, Zdenkova K, Jencova V, Demnerova K, Zemanova K, Kolackova R, Hozdova K, Stiborova H. Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus. NANOMATERIALS 2021; 11:nano11020480. [PMID: 33668651 PMCID: PMC7918127 DOI: 10.3390/nano11020480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/17/2023]
Abstract
Although nanomaterials are used in many fields, little is known about the fundamental interactions between nanomaterials and microorganisms. To test antimicrobial properties and retention ability, 13 electrospun polyamide (PA) nanomaterials with different morphology and functionalization with various concentrations of AgNO3 and chlorhexidine (CHX) were analyzed. Staphylococcus aureus CCM 4516 was used to verify the designed nanomaterials’ inhibition and permeability assays. All functionalized PAs suppressed bacterial growth, and the most effective antimicrobial nanomaterial was evaluated to be PA 12% with 4.0 wt% CHX (inhibition zones: 2.9 ± 0.2 mm; log10 suppression: 8.9 ± 0.0; inhibitory rate: 100.0%). Furthermore, the long-term stability of all functionalized PAs was tested. These nanomaterials can be stored at least nine months after their preparation without losing their antibacterial effect. A filtration apparatus was constructed for testing the retention of PAs. All of the PAs effectively retained the filtered bacteria with log10 removal of 3.3–6.8 and a retention rate of 96.7–100.0%. Surface density significantly influenced the retention efficiency of PAs (p ≤ 0.01), while the effect of fiber diameter was not confirmed (p ≥ 0.05). Due to their stability, retention, and antimicrobial properties, they can serve as a model for medical or filtration applications.
Collapse
Affiliation(s)
- Simona Lencova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
- Correspondence: (S.L.); (H.S.); Tel.: +420-220-44-5196 (S.L.); +420-220-44-5204 (H.S.)
| | - Kamila Zdenkova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
| | - Vera Jencova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic;
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
| | - Klara Zemanova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
| | - Radka Kolackova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
| | | | - Hana Stiborova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
- Correspondence: (S.L.); (H.S.); Tel.: +420-220-44-5196 (S.L.); +420-220-44-5204 (H.S.)
| |
Collapse
|