1
|
Liang S, Fu K, Li X, Wang Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv Colloid Interface Sci 2024; 328:103179. [PMID: 38754212 DOI: 10.1016/j.cis.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.
Collapse
Affiliation(s)
- Shuling Liang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Mondal P, Nandan A, Ajithkumar S, Siddiqui NA, Raja S, Kola AK, Balakrishnan D. Sustainable application of nanoparticles in wastewater treatment: Fate, current trend & paradigm shift. ENVIRONMENTAL RESEARCH 2023:116071. [PMID: 37209979 DOI: 10.1016/j.envres.2023.116071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Existing water and wastewater treatment techniques are becoming increasingly difficult to employ due to the discovery of new toxins, the rapid development of population and industrial activities, and the limited quantity of water resources. Treatment of wastewater is a critical need in modern civilization due to a scarcity of water resources and rising industrial activity. Some of the techniques utilized include adsorption, flocculation, filtration, and others, although they are only used for primary wastewater treatment. However, the development and deployment of modern wastewater management with high efficiency and low capitalization are critical in terms of mitigating the environmental consequences of waste. The employment of different nanomaterials in the treatment of wastewater has opened up a world of possibilities for heavy metal and pesticide removal, as well as the treatment of microbes and organic contaminants in wastewater. Nanotechnology is a rapidly evolving technology because of certain nanoparticle's outstanding physiochemical and biological capabilities as contrasted to bulk counterparts. Secondly, it has been established that this is a cost-effective treatment strategy with significant potential in wastewater management, transcending the limitations imposed by currently existing technology. Advances in nanotechnology to reduce water contamination have been presented in this review, including the use of various nanomaterials such as nanocatalysts, nanoadsorbents, and nanomembranes in the treatment of wastewater containing organic contaminants, hazardous metals, and virulent pathogens.
Collapse
Affiliation(s)
- Prasenjit Mondal
- Centre of Excellence in Occupational Health, Safety, Fire and Environment, GD Goenka University, Sohna, Gurgaon, India
| | - Abhishek Nandan
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| | - Sarath Ajithkumar
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
| | - Nihal Anwar Siddiqui
- Centre of Excellence in Occupational Health, Safety, Fire and Environment, GD Goenka University, Sohna, Gurgaon, India
| | - Sivashankar Raja
- Department of Chemical Engineering, National Institute of Technology Warangal, India
| | - Anand Kishore Kola
- Department of Chemical Engineering, National Institute of Technology Warangal, India
| | | |
Collapse
|
3
|
Lim CC, Shuit SH, Ng QH, Rahim SKEA, Hoo PY, Yeoh WM, Goh SW. Sulfonated magnetic multi-walled carbon nanotubes with enhanced bonding stability, high adsorption performance, and reusability for water remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40242-40259. [PMID: 36604398 DOI: 10.1007/s11356-022-25064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In view of the simple and rapid conveniency of magnetic separation, magnetic nanocomposites had notably gained attention from researchers for environmental field applications. In this work, carboxylated magnetic multi-walled carbon nanotubes (c-MMWCNTs) and novel sulfonated MMWCNTs (s-MMWCNTs) were synthesized by a facile solvent-free direct doping method. Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, vibrating sample magnetometer, and point of zero charge analyses confirmed the successful doping of the Fe3O4 nanoparticles into the functionalized MWCNTs to form MMWCNTs. Besides, the bonding stabilities of both c-MMWCNTs and s-MMWCNTs were compared, and results showed that s-MMWCNTs possessed more substantial bonding stability than that of c-MMWCNTs with significantly less leaching amount of Fe3O4. The adsorption capacity of s-MMWCNTs was higher than that of c-MMWCNTs owing to the stronger electronegativity sulfonic group in s-MMWCNTs. Moreover, the reusability experiments proved that the adsorbent remained consistently excellent MB removal efficiency (R > 94%) even reused for twelve cycles of batch adsorption. The finding of the present work highlights the simple fabrication of novel s-MMWCNTs and its potential to be served as a promising and sustainable adsorbent for water remediation owing to its enhanced bonding stability, high adsorption performance, magnetic separability, and supreme recyclability.
Collapse
Affiliation(s)
- Chuan Chuan Lim
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Siew Hoong Shuit
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Qi Hwa Ng
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
- Centre of Excellence for Frontier Materials Research, (CFMR), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Siti Kartini Enche Ab Rahim
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Peng Yong Hoo
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Wei Ming Yeoh
- Department of Petrochemical Engineering, Universiti Tunku Abdul Rahman, 31900, Perak, Kampar, Malaysia
| | - Soon Wah Goh
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| |
Collapse
|
4
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
5
|
Ang B, Sookram A, Devendran C, He V, Tuck K, Cadarso V, Neild A. Glass-embedded PDMS microfluidic device for enhanced concentration of nanoparticles using an ultrasonic nanosieve. LAB ON A CHIP 2023; 23:525-533. [PMID: 36633124 DOI: 10.1039/d2lc00802e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface acoustic wave (SAW) driven devices typically employ polymeric microfluidic channels of low acoustic impedance mismatch to the fluid in contact, to allow precise control of the wave field. Several of these applications, however, can benefit from the implementation of an acoustically reflective surface at the microfluidic channel's ceiling to increase energy retention within the fluid and hence, performance of the device. In this work, we embed a glass insert at the ceiling of the PDMS microfluidic channel used in a SAW activated nanosieve, which utilises a microparticle resonance for enrichment of nanoparticles. Due to the system's independence of performance on channel geometry and wave field pattern, the glass-inserted device allowed for a 30-fold increase in flow rate, from 0.05 μl min-1 to 1.5 μL min-1, whilst maintaining high capture efficiencies of >90%, when compared to its previously reported design. This effectively enables the system to process larger volume samples, which typically is a main limitation of these type of devices. This work demonstrates a simple way to increase the performance and throughput of SAW-based devices, especially within systems that can benefit from the energy retention.
Collapse
Affiliation(s)
- Bryan Ang
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton 3800, VIC, Australia
| | - Ankush Sookram
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
| | - Citsabehsan Devendran
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
| | - Vincent He
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
| | - Kellie Tuck
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Victor Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton 3800, VIC, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
| |
Collapse
|
6
|
Abdel Maksoud MIA, Fahim RA, Bedir AG, Osman AI, Abouelela MM, El-Sayyad GS, Elkodous MA, Mahmoud AS, Rabee MM, Al-Muhtaseb AH, Rooney DW. Engineered magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:519-562. [DOI: 10.1007/s10311-021-01351-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 09/02/2023]
Abstract
AbstractThe rapid urbanization and industrialization is causing worldwide water pollution, calling for advanced cleaning methods. For instance, pollutant adsorption on magnetic oxides is efficient and very practical due to the easy separation from solutions by an magnetic field. Here we review the synthesis and performance of magnetic oxides such as iron oxides, spinel ferrites, and perovskite oxides for water remediation. We present structural, optical, and magnetic properties. Magnetic oxides are also promising photocatalysts for the degradation of organic pollutants. Antimicrobial activities and adsorption of heavy metals and radionucleides are also discussed.
Collapse
|
7
|
Sengupta A, Vu A, Qian X, Wickramasinghe SR. Remote Performance Modulation of Ultrafiltration Membranes by Magnetically and Thermally Responsive Polymer Chains. MEMBRANES 2021; 11:membranes11050340. [PMID: 34064385 PMCID: PMC8147820 DOI: 10.3390/membranes11050340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Ultrafiltration membranes, that respond to an external magnetic field and local temperature have been developed. Surface-initiated activator-generated electron transfer (AGET) atom transfer radical polymerization (ATRP) has been used to graft poly(N-isopropylacrylamide) (PNIPAm) from the surface of 300 kDa regenerated cellulose membranes. The polymerization initiator was selectively attached to the entire membrane surface, only the outer membrane surface or only the inner pore surface. A superparamagnetic nanoparticle was attached to the end of the polymer chain. The DI water flux as well as the flux and rejection of bovine serum albumin were investigated in the absence and presence of a 20 and 1000 Hz oscillating magnetic field. In an oscillating magnetic field, the tethered superparamagnetic nanoparticles can cause movement of the PNIPAm chains or induce heating. A 20 Hz magnetic field maximizes movement of the chains. A 1000 Hz magnetic field leads to greater induced heating. PNIPAm displays a lower critical solution temperature at 32 °C. Heating leads to collapse of the PNIPAm chains above their Lower Critical Solution Temperature (LCST). This work highlights the versatility of selectively grafting polymer chains containing a superparamagnetic nanoparticle from specific membrane locations. Depending on the frequency of the oscillating external magnetic field, membrane properties may be tuned.
Collapse
Affiliation(s)
- Arijit Sengupta
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayettteville, AR 72701, USA; (A.S.); (A.V.)
- Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai 400085, India
| | - Anh Vu
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayettteville, AR 72701, USA; (A.S.); (A.V.)
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayettteville, AR 72701, USA;
| | - S. Ranil Wickramasinghe
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayettteville, AR 72701, USA; (A.S.); (A.V.)
- Correspondence: ; Tel.: +1-479-575-8475
| |
Collapse
|
8
|
Vu A, Sengupta A, Freeman E, Qian X, Ulbricht M, Wickramasinghe SR. Tailoring and Remotely Switching Performance of Ultrafiltration Membranes by Magnetically Responsive Polymer Chains. MEMBRANES 2020; 10:membranes10090219. [PMID: 32882913 PMCID: PMC7558725 DOI: 10.3390/membranes10090219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 11/19/2022]
Abstract
Magnetically responsive ultrafiltration membranes were prepared by grafting poly(2-hydroxyethyl methacrylate) chains from the outer surface of 100-kDa regenerated cellulose ultrafiltration membranes. Surface-initiated atom transfer radical polymerization was used to graft the polymer chains. Grafting from the internal pore surface was suppressed by using glycerol as a pore-filling solvent during initiator immobilization at varied densities. Glycerol suppresses the initiator attachment to the pore surface. Polymerization times of up to four hours were investigated. Superparamagnetic nanoparticles were covalently attached to the chain end. Membrane performance was determined using bovine serum albumin and dextran as model solutes. Increasing the grafted polymer chain density and length led to a decrease in the permeate flux and an increase in the apparent rejection coefficient. In an oscillating magnetic field, movement of the grafted polymer chains led to a decrease in the permeate flux, as well as an increase in the apparent rejection coefficient of the model solutes.
Collapse
Affiliation(s)
- Anh Vu
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.V.); (A.S.); (E.F.)
| | - Arijit Sengupta
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.V.); (A.S.); (E.F.)
- Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Emily Freeman
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.V.); (A.S.); (E.F.)
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany;
| | - S. Ranil Wickramasinghe
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.V.); (A.S.); (E.F.)
- Correspondence:
| |
Collapse
|
9
|
Nguyen H, Ohannesian N, Bandara PC, Ansari A, Deleo CT, Rodrigues D, Martirosyan KS, Shih WC. Magnetic Active Water Filter Membrane for Induced Heating to Remove Biofoulants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10291-10298. [PMID: 31944649 DOI: 10.1021/acsami.9b19641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Filter membrane processes are water purification methods that use a partially permeable membrane to separate contaminants from drinking water and wastewater. Although highly effective, they suffer from biofouling due to the aggregation of bacteria and contaminants from the filtrate, thus rendering the membrane unusable. Consequently, the membrane needs to be replaced on a regular basis, which interrupts filtration operation, reduces throughput, and increases production cost. To address this issue, we have developed a new method to remove biofoulants via induction heating on a modified membrane with magnetite (Fe3O4) magnetic nanoparticles (MNPs) coating. Under applied alternating magnetic field (AMF), the surface temperature of the MNPs coating reaches 180 °C with a heating rate of 1.03 °C/s, which disintegrates biofoulants generated by model bacteria (Bacillus subtilis) and by those present in environmental water samples collected from a local lake. The heating process is capable of cleaning biofoulants for several cycles without damaging the filtration function of the membrane. Furthermore, magnetic induction heating on the modified membrane allows uniform high-intensity heat generation on a large surface in only a few minutes using inexpensive MNPs, which can potentially be scaled up for industrial applications.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Trevino Deleo
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, Texas 78539, United States
| | | | - Karen S Martirosyan
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, Texas 78539, United States
| | | |
Collapse
|
10
|
Improvement of separation and transport performance of ultrafiltration membranes by magnetically active nanolayer. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Study of magnetic-responsive nanoparticle on the membrane surface as a membrane antifouling surface coating. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1734-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Kefeni KK, Mamba BB, Msagati TA. Application of spinel ferrite nanoparticles in water and wastewater treatment: A review. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.07.015] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Krasowska M, Strzelewicz A, Dudek G, Cieśla M. Structure-diffusion relationship of polymer membranes with different texture. Phys Rev E 2017; 95:012155. [PMID: 28208504 DOI: 10.1103/physreve.95.012155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 11/07/2022]
Abstract
Two-dimensional diffusion in heterogenic composite membranes, i.e., materials comprising polymer with dispersed inorganic fillers, composed of ethylcellulose and magnetic powder is studied. In the experimental part, the morphology of membranes is described by the following characteristics: the amount of polymer matrix, the fractal dimension of polymer matrix, the average size of polymer matrix domains, the average number of obstacles in the proximity of each polymer matrix pixel. The simulation work concentrates on the motion of a particle in the membrane environment. The focus is set on the relationship between membranes morphology characterized by polymer matrix density, its fractal dimension, the average size of domains, and the average number of near obstacles and the characteristics of diffusive transport in them. The comparison of diffusion driven by Gaussian random walk and Lévy flights shows that the effective diffusion exponent at long time limits is subdiffusive and it does not depend on the details of the underlying random process causing diffusion. The analysis of the parameters describing the membrane structure shows that the most important factor for the diffusion character is the average size of a domain penetrated by diffusing particles. The presented results may be used in the design and preparation of membrane structures with specific diffusion properties.
Collapse
Affiliation(s)
- Monika Krasowska
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Ks. M. Strzody 9, 44-100 Gliwice, Poland
| | - Anna Strzelewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Ks. M. Strzody 9, 44-100 Gliwice, Poland
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Ks. M. Strzody 9, 44-100 Gliwice, Poland
| | - Michał Cieśla
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-059 Kraków, Poland
| |
Collapse
|
14
|
Song G, Wickramasinghe SR, Qian X. The Effects of Salt Type and Salt Concentration on the Performance of Magnetically Activated Nanofiltration Membranes. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guanghui Song
- Ralph
E Martin Department of Chemical Engineering, and ‡Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - S. Ranil Wickramasinghe
- Ralph
E Martin Department of Chemical Engineering, and ‡Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Xianghong Qian
- Ralph
E Martin Department of Chemical Engineering, and ‡Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
15
|
Fouling mitigation behavior of magnetic responsive nanocomposite membranes in a magnetic membrane bioreactor. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.08.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Lin X, Nguyen Quoc B, Ulbricht M. Magnetoresponsive Poly(ether sulfone)-Based Iron Oxide cum Hydrogel Mixed Matrix Composite Membranes for Switchable Molecular Sieving. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29001-29014. [PMID: 27670686 DOI: 10.1021/acsami.6b09369] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stimuli-responsive membranes that can adjust mass transfer and interfacial properties "on demand" have drawn large interest over the last few decades. Here, we designed and prepared a novel magnetoresponsive separation membrane with remote switchable molecular sieving effect by simple one-step and scalable nonsolvent induced phase separation (NIPS) process. Specifically, poly(ether sulfone) (PES) as matrix for an anisotropic membrane, prefabricated poly(N-isopropylacrylamide) (PNIPAAm) nanogel (NG) particles as functional gates, and iron oxide magnetic nanoparticles (MNP) as localized heaters were combined in a synergistic way. Before membrane casting, the properties of the building blocks, including swelling property and size distribution for NG, and magnetic property and heating efficiency for MNP, were investigated. Further, to identify optimal film casting conditions for membrane preparation by NIPS, in-depth rheological study of the effects of composition and temperature on blend dope solutions was performed. At last, a composite membrane with 10% MNP and 10% NG blended in a porous PES matrix was obtained, which showed a large, reversible, and stable magneto-responsivity. It had 9 times higher water permeability at the "on" state of alternating magnetic field (AMF) than at the "off"-state. Moreover, the molecular weight cutoff of such membrane could be reversibly shifted from ∼70 to 1750 kDa by switching off or on the external AMF, as demonstrated in dextran ultrafiltration tests. Overall, it has been proved that the molecular sieving performance of the novel mixed matrix composite membrane can be controlled by the swollen/shrunken state of PNIPAAm NG embedded in the nanoporous barrier layer of a PES-based anisotropic porous matrix, via the heat generation of nearby MNP. And the structure of such membrane can be tailored by the NIPS process conditions. Such membrane has potential as enabling material for remote-controlled drug release systems or devices for tunable fractionations of biomacromolecule/-particle mixtures.
Collapse
Affiliation(s)
- Xi Lin
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen , 45117 Essen, Germany
- Center for Nanointegration Duisburg-Essen , 47057 Duisburg, Germany
| | - Bao Nguyen Quoc
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen , 45117 Essen, Germany
- Center for Nanointegration Duisburg-Essen , 47057 Duisburg, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen , 45117 Essen, Germany
- Center for Nanointegration Duisburg-Essen , 47057 Duisburg, Germany
| |
Collapse
|
17
|
Ng Q, Lim J, Ahmad A, Low S. Stability and fouling mechanism of magnetophoretic-actuated PES composite membrane in pH-dependent aqueous medium. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|