1
|
Khan AM, Russo F, Macedonio F, Criscuoli A, Curcio E, Figoli A. The State of the Art on PVDF Membrane Preparation for Membrane Distillation and Membrane Crystallization: Towards the Use of Non-Toxic Solvents. MEMBRANES 2025; 15:117. [PMID: 40277987 PMCID: PMC12029554 DOI: 10.3390/membranes15040117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025]
Abstract
Most parts of the earth are covered with water, but only 0.3% of it is available to living beings. Industrial growth, fast urbanization, and poor water management have badly affected the water quality. In recent years, a transition has been seen from the traditional (physical, chemical) wastewater treatment methods towards a greener, sustainable, and scalable membrane technology. Even though membrane technology offers a green pathway to address the wastewater treatment issue on a larger scale, the fabrication of polymeric membranes from toxic solvents is an obstacle in making it a fully green method. The concept of green chemistry has encouraged scientists to engage in research for new biodegradable and non-protic solvents to replace with already existing toxic ones. This review outlines the use of non-toxic solvents for the preparation of PVDF membranes and their application in membrane distillation and membrane crystallization.
Collapse
Affiliation(s)
- Aqsa Mansoor Khan
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
- Department of Environmental Engineering, DIAM, University of Calabria, Via P.Bucci-Cube 44/A, 87036 Rende, CS, Italy;
| | - Francesca Russo
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| | - Francesca Macedonio
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| | - Alessandra Criscuoli
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| | - Efrem Curcio
- Department of Environmental Engineering, DIAM, University of Calabria, Via P.Bucci-Cube 44/A, 87036 Rende, CS, Italy;
| | - Alberto Figoli
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| |
Collapse
|
2
|
Merugu S, Kearney LT, Keum JK, Naskar AK, Ansary J, Herbert A, Islam M, Mondal K, Gupta A. Investigating Permselectivity in PVDF Mixed Matrix Membranes Using Experimental Optimization, Machine Learning Segmentation, and Statistical Forecasting. ACS OMEGA 2024; 9:28764-28775. [PMID: 38973877 PMCID: PMC11223206 DOI: 10.1021/acsomega.4c03024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
This research examines the correlation between interfacial characteristics and membrane distillation (MD) performance of copper oxide (Cu) nanoparticle-decorated electrospun carbon nanofibers (CNFs) polyvinylidene fluoride (PVDF) mixed matrix membranes. The membranes were fabricated by a bottom-up phase inversion method to incorporate a range of concentrations of CNF and Cu + CNF particles in the polymer matrix to tune the porosity, crystallinity, and wettability of the membranes. The resultant membranes were tested for their application in desalination by comparing the water vapor transport and salt rejection rates in the presence of Cu and CNF. Our results demonstrated a 64% increase in water vapor flux and a salt rejection rate of over 99.8% with just 1 wt % loading of Cu + CNF in the PVDF matrix. This was attributed to enhanced chemical heterogeneity, porosity, hydrophobicity, and crystallinity that was confirmed by electron microscopy, tensiometry, and scattering techniques. A machine learning segmentation model was trained on electron microscopy images to obtain the spatial distribution of pores in the membrane. An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) statistical time series model was trained on MD experimental data obtained for various membranes to forecast the membrane performance over an extended duration.
Collapse
Affiliation(s)
- Saketh Merugu
- Department
of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Logan T. Kearney
- Carbon
and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jong K. Keum
- Center
for Nanophase Materials Science, Oak Ridge
National Laboratory, Bethel Valley Rd, Oak Ridge, Tennessee 37830, United States
| | - Amit K. Naskar
- Carbon
and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jamal Ansary
- Department
of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Aidan Herbert
- DigiM
Solution LLC, 500 West
Cummings Park, Suite 3650, Woburn, Massachusetts 01801, United States
| | - Monsur Islam
- IMDEA
Materials Institute, Tecnogetafe, Calle Eric Kandel 2, Getafe, Madrid 28906, Spain
| | - Kunal Mondal
- Nuclear Energy
and Fuel Cycle Division, Oak Ridge National
Laboratory, Bethel Valley
Rd, Oak Ridge, Tennessee 37830, United States
| | - Anju Gupta
- Department
of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
3
|
Jawed AS, Nassar L, Hegab HM, van der Merwe R, Al Marzooqi F, Banat F, Hasan SW. Recent developments in solar-powered membrane distillation for sustainable desalination. Heliyon 2024; 10:e31656. [PMID: 38828351 PMCID: PMC11140715 DOI: 10.1016/j.heliyon.2024.e31656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
The freshwater shortage continues to be one of the greatest challenges affecting our planet. Although traditional membrane distillation (MD) can produce clean water regardless of climatic conditions, the process wastes a lot of energy. The technique of solar-powered membrane distillation (SPMD) has received a lot of interest in the past decade, thanks to the development of photothermal materials. SPMD is a promising replacement for the traditional MD based on fossil fuels, as it can prevent the harmful effects of emissions on the environment. Integrating green solar energy with MD can reduce the cost of the water purification process and secure freshwater production in remote areas. At this point, it is important to consider the most current progress of the SPMD system and highlight the challenges and prospects of this technology. Based on this, the background, recent advances, and principles of MD and SPMD, their configurations and mechanisms, fabrication methods, advantages, and current limitations are discussed. Detailed comparisons between SPMD and traditional MD, assessments of various standards for incorporating photothermal materials with desirable properties, discussions of desalination and other applications of SPMD and MD, and energy consumption rates are also covered. The final section addresses the potential of SPMD to outperform traditional desalination technology while improving water production without requiring a significant amount of electrical or high-grade thermal energy.
Collapse
Affiliation(s)
- Ahmad S. Jawed
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Lobna Nassar
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Hanaa M. Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Riaan van der Merwe
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Faisal Al Marzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Shah P, Hou Y, Butt HJ, Kappl M. Nanofilament-Coated Superhydrophobic Membranes Show Enhanced Flux and Fouling Resistance in Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55119-55128. [PMID: 37962333 PMCID: PMC10694809 DOI: 10.1021/acsami.3c12323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Membrane distillation (MD) is an important technique for brine desalination and wastewater treatment that may utilize waste or solar heat. To increase the distillation rate and minimize membrane wetting and fouling, we deposit a layer of polysiloxane nanofilaments on microporous membranes. In this way, composite membranes with multiscale pore sizes are created. The performance of these membranes in the air gap and direct contact membrane distillation was investigated in the presence of salt solutions, solutions containing bovine serum albumin, and solutions containing the surfactant sodium dodecyl sulfate. In comparison to conventional hydrophobic membranes, our multiscale porous membranes exhibit superior fouling resistance while attaining a higher distillation flux without using fluorinated compounds. This study demonstrates a viable method for optimizing MD processes for wastewater and saltwater treatment.
Collapse
Affiliation(s)
- Prexa Shah
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Youmin Hou
- School
of Power and Mechanical Engineering, Wuhan
University, 430072 Wuhan, China
| | - Hans-Jürgen Butt
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael Kappl
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
5
|
Ghobadi Moghadam A, Hemmati A. Improved water purification by PVDF ultrafiltration membrane modified with GO-PVA-NaAlg hydrogel. Sci Rep 2023; 13:8076. [PMID: 37202452 DOI: 10.1038/s41598-023-35027-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
This work presents a modified polyvinylidene fluoride (PVDF) ultrafiltration membrane blended with graphene oxide-polyvinyl alcohol-sodium alginate (GO-PVA-NaAlg) hydrogel (HG) and polyvinylpyrrolidone (PVP) prepared by the immersion precipitation induced phase inversion approach. Characteristics of the membranes with different HG and PVP concentrations were analyzed by field emission scanning electron microscopy (FESEM), Atomic force microscopy (AFM), contact angle measurement (CA), and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The FESEM images showed an asymmetric structure of the fabricated membranes, and possessing a thin dense layer over the top and a layer finger-like. With increasing HG content, membrane surface roughness increases so that highest surface roughness for the membrane containing 1wt% HG is with a Ra value of 281.4 nm. Also, the contact angle of the membrane reaches from 82.5° in bare PVDF membrane to 65.1° in the membrane containing 1wt% HG. The influences of adding HG and PVP to the casting solution on pure water flux (PWF), hydrophilicity, anti-fouling ability, and dye rejection efficiency were evaluated. The highest water flux reached 103.2 L/m2 h at 3 bar for the modified PVDF membranes containing 0.3 wt% HG and 1.0wt% PVP. This membrane exhibited a rejection efficiency of higher than 92%, 95%, and 98% for Methyl Orange (MO), Conge Red (CR), and Bovine Serum Albumin (BSA), respectively. All nanocomposite membranes possessed a flux recovery ratio (FRR) higher than bare PVDF membranes, and the best anti-fouling performance of 90.1% was relevant to the membrane containing 0.3 wt% HG. The improved filtration performance of the HG-modified membranes was due to the enhanced hydrophilicity, porosity, mean pore size, and surface roughness after introducing HG.
Collapse
Affiliation(s)
- Armin Ghobadi Moghadam
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Alireza Hemmati
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
6
|
Guo H, Gao H, Yan A, Lu X, Wu C, Gao L, Zhang J. Treatment to surfactant containing wastewater with membrane distillation membrane with novel sandwich structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161195. [PMID: 36581298 DOI: 10.1016/j.scitotenv.2022.161195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Surfactant containing wastewater widely exists in textile industry, which hardly to be treated by membrane technology due to its high in salinity and wetting potential. In this study, PVDF membrane was modified by constructing a PDMS-SiO2-PDMS "sandwich" structure on top of its surface via coating to achieve resistance to surfactant induced wetting. The "sandwich" layer was optimized based on the membrane performance during membrane distillation. Compared to the pristine PVDF membrane with contact angle of 92°, the water contact angle of the membrane with a "sandwich" layer of 0.44 μm increased to 153°. For the feed contained 0.5 wt% NaCl and 0.25 wt% surfactant, there was no membrane wetting occurred during the experiment period using the membrane with a "sandwich" structure, in comparison to the pristine PVDF membrane being wetted from beginning. For a challenge experiment to the developed membrane lasting for 100 h using a surfactant containing feed, there is no wetting sign observed and the stable flux is 20 kg·m-2·h-1.
Collapse
Affiliation(s)
- Hanyu Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Haifu Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - An Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xiaolong Lu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Chunrui Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Li Gao
- ISILC, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia; South East Water Corporation, PO Box 2268, Seaford, Victoria 3198, Australia
| | - Jianhua Zhang
- ISILC, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia.
| |
Collapse
|
7
|
New Materials and Phenomena in Membrane Distillation. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In recent decades, membrane-based processes have been extensively applied to a wide range of industrial processes, including gas separation, food industry, drug purification, and wastewater treatment. Membrane distillation is a thermally driven separation process, in which only vapour molecules transfer through a microporous hydrophobic membrane. At the operational level, the performance of membrane distillation is negatively affected by wetting and temperature polarization phenomena. In order to overcome these issues, advanced membranes have been developed in recent years. This review, which focuses specifically on membrane distillation presents the basic concepts associated with the mass and heat transfer through hydrophobic membranes, membrane properties, and advances in membrane materials. Photothermal materials for solar-driven membrane distillation applications are also presented and discussed.
Collapse
|
8
|
Wu C, Dai X, Sun X, Zhang J. Preparation and characterization of fluoroalkyl activated carbons/PVDF composite membranes for water and resources recovery by membrane distillation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Yan X, Yang C, Ma C, Tao H, Cheng S, Chen L, Wang G, Lin X, Yao C. A novel janus membrane modified by MXene for enhanced anti-fouling and anti-wetting in direct contact membrane distillation. CHEMOSPHERE 2022; 307:136114. [PMID: 35998734 DOI: 10.1016/j.chemosphere.2022.136114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Membrane fouling and wetting limit the applications of membrane distillation (MD) for wastewater treatment, especially when treating the wastewater with a high concentration of low surface tension substances such as oil and surfactants. In this paper, virgin polyvinylidene fluoride (PVDF) membrane was modified by polydimethylsiloxane (PDMS) to enhance anti-wetting ability. Then a thin polydopamine (PDA) layer was coated as a reaction platform for further modification. Polyethyleneimine (PEI) was cross-linked with PDA to form a uniform and stable layer, through hydrogen bonds and electrostatic interaction to immobilize hydrophilic MXene, which formed a Janus MXene-PVDF membrane. The MXene layer was the key for superoleophobicity and high liquid entry pressure (LEP) of membrane, capable of mitigating membrane fouling and wetting when dealing with low surface tension wastewater (LSTW). From the experiments results, pristine PVDF membrane showed severe fouling and wetting with flux decline and salt leakage during treatment of LSTW (surfactants containing water, oil-in-water emulsion and sodium dodecyl sulfate stabilized oil-in-water emulsion). However, under the same conditions, the Janus MXene-PVDF membrane exhibited remarkably stable flux (9.3 kg m-2h-1, 9.1 kg m-2h-1, 10.2 kg m-2h-1) and salt rejection (almost 99.9%) after 15 h operation. Excellent fouling and wetting resistance of MXene-PVDF membrane was mainly attributed to its superhydrophilic and superoleophobic top surface (in-air water contact angle: 30.2°, under-water oil contact angle: 169.9°) and hydrophobic substrate (in-air water contact angle: 130.8°), together with high LEP value (91.1 Kpa). This study provides a viable route to fabricated a Janus membrane with outstanding fouling and wetting resistance for LSTW, oily wastewater and it has great potential for sewage treatment in the future.
Collapse
Affiliation(s)
- Xiaoju Yan
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Chengyu Yang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Hui Tao
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Shirong Cheng
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Lin Chen
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Guodong Wang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Xinping Lin
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Chengzhi Yao
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| |
Collapse
|
10
|
Kian LK, Jawaid M, Mahmoud MH, Saba N, Fouad H, Alothman OY, Vaseashta A. Characterization and fabrication of poly(butylene adipate‐co‐terephthalate)/nanocrystalline cellulose composite membranes for heavy metal ion separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.53136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lau Kia Kian
- Laboratory of Biocomposite Technology Institute of Tropical Forestry and Forestry Products (INTROP) Universiti Putra Malaysia 43400 UPM Serdang, Selangor Malaysia
| | - Mohammad Jawaid
- Laboratory of Biocomposite Technology Institute of Tropical Forestry and Forestry Products (INTROP) Universiti Putra Malaysia 43400 UPM Serdang, Selangor Malaysia
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Naheed Saba
- Laboratory of Biocomposite Technology Institute of Tropical Forestry and Forestry Products (INTROP) Universiti Putra Malaysia 43400 UPM Serdang, Selangor Malaysia
| | - Hassan Fouad
- Biomedical Engineering Department, Faculty of Engineering Helwan University Helwan Egypt
| | - Othman Y. Alothman
- Chemical Engineering Department, College of Engineering King Saud University Riyadh Saudi Arabia
| | - Ashok Vaseashta
- Office of Applied Research International Clean Water Institute Manassas Virginia USA
| |
Collapse
|
11
|
Zuo J, Chow CA, Dumée LF, Prince AJ. A Zero-Brine Discharge Seawater Desalination Using a Pilot-Scale Membrane Distillation System Integrated with Crystallizer. MEMBRANES 2022; 12:799. [PMID: 36005714 PMCID: PMC9414708 DOI: 10.3390/membranes12080799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The management of brines generated from reverse osmosis operation remains a critical challenge requiring new approaches and processes to limit the impact of brine discharge onto ecosystems and to enhance both water and valuable resource recovery. The treatment of real seawater reverse osmosis (SWRO) brines (45,000 ppm TDS) obtained from a local Singaporean desalination plant with a crystallizer integrated pilot-scale membrane distillation unit (MDC) was studied. Commercial STOMATE® hollow fiber membranes were used in vacuum membrane distillation (VMD) configuration, leading to an average flux of around 3.7 L/m2-h at a permeate vacuum of 80 kPa and an average feed temperature of 65 °C. Consistent separation operations were achieved for the treatment of real SWRO brine over a period of 280 h; this led to a water recovery of >95% and to the collection of salt slurries, containing up to ~10−20 wt% of moisture, from the crystallizer. This approach demonstrates the potential of MDC systems to achieve zero brine discharge efficiently from seawater desalination systems, providing an environmentally friendly alternative to manage brines by increasing water recovery and generating salt slurries of economic value.
Collapse
Affiliation(s)
- Jian Zuo
- Food Chemical and Biotechnology, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Chin Ann Chow
- Food Chemical and Biotechnology, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Ludovic F. Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Membranes and Advanced Water Treatment (CMAT), Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Antony J. Prince
- Memsift Innovations Pte Ltd., 192 Pandan Loop, Singapore 128381, Singapore
| |
Collapse
|
12
|
Li WP, Paing AT, Chow CA, Qua MS, Mottaiyan K, Lu K, Dhalla A, Chung TS, Gudipati C. Scale Up and Validation of Novel Tri-Bore PVDF Hollow Fiber Membranes for Membrane Distillation Application in Desalination and Industrial Wastewater Recycling. MEMBRANES 2022; 12:573. [PMID: 35736279 PMCID: PMC9229717 DOI: 10.3390/membranes12060573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023]
Abstract
Novel tri-bore polyvinylidene difluoride (PVDF) hollow fiber membranes (TBHF) were scaled-up for fabrication on industrial-scale hollow fiber spinning equipment, with the objective of validating the membrane technology for membrane distillation (MD) applications in areas such as desalination, resource recovery, and zero liquid discharge. The membrane chemistry and spinning processes were adapted from a previously reported method and optimized to suit large-scale production processes with the objective of translating the technology from lab scale to pilot scale and eventual commercialization. The membrane process was successfully optimized in small 1.5 kg batches and scaled-up to 20 kg and 50 kg batch sizes with good reproducibility of membrane properties. The membranes were then assembled into 0.5-inch and 2-inch modules of different lengths and evaluated in direct contact membrane distillation (DCMD) mode, as well as vacuum membrane distillation (VMD) mode. The 0.5-inch modules had a permeate flux >10 L m−2 h−1, whereas the 2-inch module flux dropped significantly to <2 L m−2 h−1 according to testing with 3.5 wt.% NaCl feed. Several optimization trials were carried out to improve the DCMD and VMD flux to >5 L m−2 h−1, whereas the salt rejection consistently remained ≥99.9%.
Collapse
Affiliation(s)
- Weikun Paul Li
- Separation Technologies Applied Research and Translation Center (START), Nanyang Technological University—NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (W.P.L.); (A.T.P.); (C.A.C.); (M.S.Q.); (K.M.); (A.D.)
| | - Aung Thet Paing
- Separation Technologies Applied Research and Translation Center (START), Nanyang Technological University—NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (W.P.L.); (A.T.P.); (C.A.C.); (M.S.Q.); (K.M.); (A.D.)
| | - Chin Ann Chow
- Separation Technologies Applied Research and Translation Center (START), Nanyang Technological University—NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (W.P.L.); (A.T.P.); (C.A.C.); (M.S.Q.); (K.M.); (A.D.)
| | - Marn Soon Qua
- Separation Technologies Applied Research and Translation Center (START), Nanyang Technological University—NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (W.P.L.); (A.T.P.); (C.A.C.); (M.S.Q.); (K.M.); (A.D.)
| | - Karikalan Mottaiyan
- Separation Technologies Applied Research and Translation Center (START), Nanyang Technological University—NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (W.P.L.); (A.T.P.); (C.A.C.); (M.S.Q.); (K.M.); (A.D.)
| | - Kangjia Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore;
| | - Adil Dhalla
- Separation Technologies Applied Research and Translation Center (START), Nanyang Technological University—NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (W.P.L.); (A.T.P.); (C.A.C.); (M.S.Q.); (K.M.); (A.D.)
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore;
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chakravarthy Gudipati
- Separation Technologies Applied Research and Translation Center (START), Nanyang Technological University—NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (W.P.L.); (A.T.P.); (C.A.C.); (M.S.Q.); (K.M.); (A.D.)
| |
Collapse
|
13
|
Qua MS, Zhao Y, Zhang J, Hernandez S, Paing AT, Mottaiyan K, Zuo J, Dhalla A, Chung TS, Gudipati C. Novel Sandwich-Structured Hollow Fiber Membrane for High-Efficiency Membrane Distillation and Scale-Up for Pilot Validation. MEMBRANES 2022; 12:423. [PMID: 35448394 PMCID: PMC9032867 DOI: 10.3390/membranes12040423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023]
Abstract
Hollow fiber membranes were produced from a commercial polyvinylidene fluoride (PVDF) polymer, Kynar HSV 900, with a unique sandwich structure consisting of two sponge-like layers connected to the outer and inner skin layers while the middle layer comprises macrovoids. The sponge-like layer allows the membrane to have good mechanical strength even at low skin thickness and favors water vapor transportation during vacuum membrane distillation (VMD). The middle layer with macrovoids helps to significantly reduce the trans-membrane resistance during water vapor transportation from the feed side to the permeate side. Together, these novel structural characteristics are expected to render the PVDF hollow fiber membranes more efficient in terms of vapor flux as well as mechanical integrity. Using the chemistry and process conditions adopted from previous work, we were able to scale up the membrane fabrication from a laboratory scale of 1.5 kg to a manufacturing scale of 50 kg with consistent membrane performance. The produced PVDF membrane, with a liquid entry pressure (LEPw) of >3 bar and a pure water flux of >30 L/m2·hr (LMH) under VMD conditions at 70−80 °C, is perfectly suitable for next-generation high-efficiency membranes for desalination and industrial wastewater applications. The technology translation efforts, including membrane and module scale-up as well as the preliminary pilot-scale validation study, are discussed in detail in this paper.
Collapse
Affiliation(s)
- Marn Soon Qua
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| | - Yan Zhao
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| | - Junyou Zhang
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| | - Sebastian Hernandez
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| | - Aung Thet Paing
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| | - Karikalan Mottaiyan
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| | - Jian Zuo
- Food, Chemical and Biotechnology Singapore Institute of Technology, Singapore 637141, Singapore;
| | - Adil Dhalla
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 637141, Singapore
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chakravarthy Gudipati
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| |
Collapse
|
14
|
Liu M, Nothling MD, Zhang S, Fu Q, Qiao GG. Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Construction of rough and porous surface of hydrophobic PTFE powder-embedded PVDF hollow fiber composite membrane for accelerated water mass transfer of membrane distillation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Chen J, Low ZX, Feng S, Zhong Z, Xing W, Wang H. Nanoarchitectonics for Electrospun Membranes with Asymmetric Wettability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60763-60788. [PMID: 34913668 DOI: 10.1021/acsami.1c16047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membranes with asymmetric wettability have attracted significant interest by virtue of their unique transport characteristics and functionalities arising from different wetting behaviors of each membrane surface. The cross-sectional wettability distinction enables a membrane to realize directional liquid transport or multifunction integration, resulting in rapid advance in applications, such as moisture management, fog collection, oil-water separation, and membrane distillation. Compared with traditional homogeneous membranes, these membranes possess enhanced transport performance and higher separation efficiency owing to the synergistic or individual effects of asymmetric wettability. This Review covers the recent progress in fabrication, transport mechanisms, and applications of electrospun membranes with asymmetric wettability and provides a perspective on future development in this important area.
Collapse
Affiliation(s)
- Jiwang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Ze-Xian Low
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Shasha Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
Poly(lactic acid)/poly(butylene succinate) dual-layer membranes with cellulose nanowhisker for heavy metal ion separation. Int J Biol Macromol 2021; 192:654-664. [PMID: 34655581 DOI: 10.1016/j.ijbiomac.2021.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022]
Abstract
In this study, poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) dual-layer membranes filled with 0-3 wt% cellulose nanowhisker (CNWs) were fabricated with aim to remove metal ions from wastewater. An integrated method was employed in the membrane fabrication process by combining water vapor-induced and crystallization-induced phase inversions. The membrane thickness was measured in between 11 and 13 μm, which did not pose significant flux deviation during filtration process. The 3% CNW filled membrane showed prominent and well-laminated two layers structure. Meanwhile, the increase in CNWs from 0 to 3% loadings could improve the membrane porosity (43-74%) but reducing pore size (2.45-0.54 μm). The heat resistance of neat membrane enhanced by 1% CNW but decreased with loadings of 2-3% CNWs due to flaming behavior of sulphated nanocellulose. Membrane with 3% CNW displayed the tensile strength (23.5 MPa), elongation at break (7.1%), and Young's modulus (0.75 GPa) as compared to other samples. For wastewater filtration performance, the continuous operation test showed that 3% CNW filled membrane exhibited the highest removal efficiency for both cobalt and nickel metal ions reaching to 83% and 84%, respectively. We concluded that CNWs filled dual-layer membranes have potential for future development in the removal of heavy metal ions from wastewater streams.
Collapse
|
18
|
Bourassi M, Kárászová M, Pasichnyk M, Zazpe R, Herciková J, Fíla V, Macak JM, Gaálová J. Removal of Ibuprofen from Water by Different Types Membranes. Polymers (Basel) 2021; 13:polym13234082. [PMID: 34883586 PMCID: PMC8659068 DOI: 10.3390/polym13234082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022] Open
Abstract
Ibuprofen separation from water by adsorption and pertraction processes has been studied, comparing 16 different membranes. Tailor-made membranes based on Matrimid, Ultem, and diaminobenzene/diaminobenzoic acid with various contents of zeolite and graphene oxide, have been compared to the commercial polystyrene, polypropylene, and polydimethylsiloxane polymeric membranes. Experimental results revealed lower ibuprofen adsorption onto commercial membranes than onto tailor-made membranes (10–15% compared to 50–70%). However, the mechanical stability of commercial membranes allowed the pertraction process application, which displayed a superior quantity of ibuprofen eliminated. Additionally, the saturation of the best-performing commercial membrane, polydimethylsiloxane, was notably prevented by atomic layer deposition of (3-aminopropyl)triethoxysilane.
Collapse
Affiliation(s)
- Mahdi Bourassi
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojova 135, 165 00 Prague, Czech Republic; (M.B.); (M.K.); (M.P.)
- Institute for Environmental Studies, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Institut de Chimie des Milieux et Matériaux de Poitiers, 4 Rue Michel Brunet, TSA 51106, CEDEX 9, 86073 Poitiers, France
| | - Magda Kárászová
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojova 135, 165 00 Prague, Czech Republic; (M.B.); (M.K.); (M.P.)
| | - Mariia Pasichnyk
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojova 135, 165 00 Prague, Czech Republic; (M.B.); (M.K.); (M.P.)
| | - Raul Zazpe
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic; (R.Z.); (J.M.M.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Jana Herciková
- Department of Organic Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic;
| | - Vlastimil Fíla
- Department of Inorganic Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic;
| | - Jan M. Macak
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic; (R.Z.); (J.M.M.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Jana Gaálová
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojova 135, 165 00 Prague, Czech Republic; (M.B.); (M.K.); (M.P.)
- Correspondence: ; Tel.: +420-220390255
| |
Collapse
|
19
|
Membrane distillation & pressure retarded osmosis hybrid system using thermally rearranged nanofibrous membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Ravi J, Othman MHD, Tai ZS, El-badawy T, Matsuura T, Kurniawan TA. Comparative DCMD performance of hydrophobic-hydrophilic dual-layer hollow fibre PVDF membranes incorporated with different concentrations of carbon-based nanoparticles. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Janus membranes for membrane distillation: Recent advances and challenges. Adv Colloid Interface Sci 2021; 289:102362. [PMID: 33607551 DOI: 10.1016/j.cis.2021.102362] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Membrane distillation (MD) is a promising hybrid thermal-membrane separation technology that can efficiently produce freshwater from seawater or contaminated wastewater. However, the relatively low flux and the presence of fouling or wetting agents in feed solution negate the applicability of MD for long term operation. In recent years, 'two-faced' membranes or Janus membranes have shown promising potential to decrease wetting and fouling problem of common MD system as well as enhance the flux performance. In this review, a comprehensive study was performed to investigate the various fabrication, modification, and novel design processes to prepare Janus membranes and discuss their performance in desalination and wastewater treatment utilizing MD. The promising potential, challenges and future prospects relating to the design and use of Janus membranes for MD are also tackled in this review.
Collapse
|
22
|
Nawaz H, Umar M, Ullah A, Razzaq H, Zia KM, Liu X. Polyvinylidene fluoride nanocomposite super hydrophilic membrane integrated with Polyaniline-Graphene oxide nano fillers for treatment of textile effluents. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123587. [PMID: 32791478 DOI: 10.1016/j.jhazmat.2020.123587] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/13/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Water pollution from the fashion industries containing dyes has become a major source of water pollution. These anthropogenic contaminated waters directly enter irrigation and drinking water systems, causing irreversible environmental damage to human health. Nanomembrane technology has attracted extensive attention to remove these toxic chemicals but new approaches are still required for improving removal efficiency and control the channel size. The work deals with the fabrication of a novel hybrid polyvinylidene fluoride (PVDF)-polyaniline (PANI) membrane with graphene oxide (GO). Incorporation of PANI-GO as a nanofiller has significantly improved antifouling properties and a solvent content of the fabricated membrane. Besides, pure water flux also increases from 112 to 454 L m-2 h-1 indicating the hydrophilic nature of the nanocomposite membrane. Among various compositions, the nanocomposites membrane with 0.1 %w/v GO demonstrated a maximum of 98 % dye rejection at 0.1 MPa operating pressure. After multiple testing of the membrane, the flux recovery ratio reached about 94 % and dyes rejection improved with the addition of PANI-GO. The removal efficiency of the composite membrane for Allura red is 98 % and for methyl orange is 95 %. Based on the above results the PVDF/PANI/GO membranes are recommended for practical use in wastewater treatment, particularly for anionic dyes removal from textile effluents.
Collapse
Affiliation(s)
- Hifza Nawaz
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Muhammad Umar
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Azeem Ullah
- Nano Fusion Technology Research Lab, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Matsumoto, Nagano 390-8621, Japan.
| | - Humaira Razzaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Khalid Mahmood Zia
- Department of Applied Chemistry, Government College University, Faisalabad, 38030, Pakistan.
| | - Xuqing Liu
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
23
|
Zou L, Zhang X, Gusnawan P, Zhang G, Yu J. Crosslinked PVDF based hydrophilic-hydrophobic dual-layer hollow fiber membranes for direct contact membrane distillation desalination: from the seawater to oilfield produced water. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Baghali M, Jayathilaka W, Ramakrishna S. The Role of Electrospun Nanomaterials in the Future of Energy and Environment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:558. [PMID: 33503924 PMCID: PMC7865989 DOI: 10.3390/ma14030558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Electrospinning is one of the most successful and efficient techniques for the fabrication of one-dimensional nanofibrous materials as they have widely been utilized in multiple application fields due to their intrinsic properties like high porosity, large surface area, good connectivity, wettability, and ease of fabrication from various materials. Together with current trends on energy conservation and environment remediation, a number of researchers have focused on the applications of nanofibers and their composites in this field as they have achieved some key results along the way with multiple materials and designs. In this review, recent advances on the application of nanofibers in the areas-including energy conversion, energy storage, and environmental aspects-are summarized with an outlook on their materials and structural designs. Also, this will provide a detailed overview on the future directions of demanding energy and environment fields.
Collapse
Affiliation(s)
| | | | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore; (M.B.); (W.A.D.M.J.)
| |
Collapse
|
25
|
Fu Z, Wang Z, Liu M, Cai J, Yuan P, Wang Q, Xing W, Sun S. Dual‐layer membrane with hierarchical hydrophobicity and transport channels for nonpolar organic solvent nanofiltration. AIChE J 2021. [DOI: 10.1002/aic.17138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zheng‐Jun Fu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Zhen‐Yuan Wang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Mei‐Ling Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Jing Cai
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Pu‐An Yuan
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Qian Wang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Weihong Xing
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Shi‐Peng Sun
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
26
|
Kumar R, Ahmed M, Bhadrachari G, Al-Missri A, Thomas JP. The effect of chemistry of nanoparticle modifier groups on the PVDF membranes for membrane distillation. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Zou L, Gusnawan P, Zhang G, Yu J. Study of the effective thickness of the water-intrudable hydrophilic layer in dual-layer hydrophilic-hydrophobic hollow fiber membranes for direct contact membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Preparation of hydrophobic zeolitic imidazolate framework-71 (ZIF-71)/PVDF hollow fiber composite membrane for membrane distillation through dilute solution coating. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. COATINGS 2020. [DOI: 10.3390/coatings10100973] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The increasing global environmental concerns and awareness of renewable green resources is continuously expanding the demand for eco-friendly, sustainable and biodegradable natural fibre reinforced composites (NFRCs). Natural fibres already occupy an important place in the composite industry due to their excellent physicochemical and mechanical properties. Natural fibres are biodegradable, biocompatible, eco-friendly and created from renewable resources. Therefore, they are extensively used in place of expensive and non-renewable synthetic fibres, such as glass fibre, carbon fibre and aramid fibre, in many applications. Additionally, the NFRCs are used in automobile, aerospace, personal protective clothing, sports and medical industries as alternatives to the petroleum-based materials. To that end, in the last few decades numerous studies have been carried out on the natural fibre reinforced composites to address the problems associated with the reinforcement fibres, polymer matrix materials and composite fabrication techniques in particular. There are still some drawbacks to the natural fibre reinforced composites (NFRCs)—for example, poor interfacial adhesion between the fibre and the polymer matrix, and poor mechanical properties of the NFRCs due to the hydrophilic nature of the natural fibres. An up-to-date holistic review facilitates a clear understanding of the behaviour of the composites along with the constituent materials. This article intends to review the research carried out on the natural fibre reinforced composites over the last few decades. Furthermore, up-to-date encyclopaedic information about the properties of the NFRCs, major challenges and potential measures to overcome those challenges along with their prospective applications have been exclusively illustrated in this review work. Natural fibres are created from plant, animal and mineral-based sources. The plant-based cellulosic natural fibres are more economical than those of the animal-based fibres. Besides, these pose no health issues, unlike mineral-based fibres. Hence, in this review, the NFRCs fabricated with the plant-based cellulosic fibres are the main focus.
Collapse
|
30
|
Li Y, Zheng Y, Pionteck J, Pötschke P, Voit B. Tuning the Structure and Performance of Bulk and Porous Vapor Sensors Based on Co-continuous Carbon Nanotube-Filled Blends of Poly(vinylidene fluoride) and Polycarbonates by Varying Melt Viscosity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45404-45419. [PMID: 32985881 DOI: 10.1021/acsami.0c15184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work describes a new concept of porous vapor sensor materials based on co-continuous polycarbonate/poly(vinylidene fluoride)/multiwalled carbon nanotube (PC/PVDF/MWCNT) blend composites. The blend composites were fabricated by melt mixing in a one-step mixing process, and the MWCNT containing component (here PC) was extracted, leaving a MWCNT network on the continuous surface of the remaining component (here PVDF). First, by selecting three PCs with different molecular weights, the blend viscosity ratio and blend fineness and interfacial area were varied. At the chosen blend composition of 40/60 wt %, the desired co-continuous structure was achieved with MWCNTs selectively localized in PC. The conductive polymer composites (CPCs) with low-viscosity PC had the highest conductivity due to a combination of the best MWCNT dispersion and the coarsest blend morphology. The vapor sensing of CPC sensor materials with 1 wt % MWCNT was tested using saturated vapors of dichloromethane, acetone, tetrahydrofuran, and ethyl acetate, showing good interaction with PC. The compact compression molded CPC materials with low-viscosity PC showed the lowest relative resistance changes (Rrel) during the cyclic sensing tests, but a better recovery compared to corresponding CPCs with medium and high viscosity PC. The porous CPC sensors showed remarkable vapor sensing performance compared to the corresponding compact sensors with better sensing stability, reproducibility, and reversibility. Scanning electron microscopy (SEM) confirmed that a fraction of the nanotubes remained on the surface of the continuous, nonsoluble PVDF after PC extraction. The porous sensor material from which the low-viscosity PC was extracted showed the highest Rrel (e.g., around 1300% after 100 s immersion in acetone vapor) compared to all other organic vapors investigated. The difference in vapor measurement between compact and porous sensor materials was attributed to the different sensing mechanisms of polymer swelling for the compact and vapor absorption on the free CNT networks for the porous samples.
Collapse
Affiliation(s)
- Yilong Li
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, Organic Chemistry of Polymers, 01062 Dresden, Germany
| | - Yanjun Zheng
- College of Materials Science and Engineering, the Key Laboratory of Advanced Materials Processing & Mold of Ministry of Education, Zhengzhou University, 450002, Zhengzhou, P. R. China
| | - Jürgen Pionteck
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Petra Pötschke
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, Organic Chemistry of Polymers, 01062 Dresden, Germany
| |
Collapse
|
31
|
Wang ZY, Fu ZJ, Shao DD, Lu MJ, Xia QC, Xiao HF, Su BW, Sun SP. Bridging the miscibility gap to fabricate delamination-free dual-layer nanofiltration membranes via incorporating fluoro substituted aromatic amine. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118270] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Yaacob N, Goh PS, Ismail AF, Mohd Nazri NA, Ng BC, Zainal Abidin MN, Yogarathinam LT. ZrO 2-TiO 2 Incorporated PVDF Dual-Layer Hollow Fiber Membrane for Oily Wastewater Treatment: Effect of Air Gap. MEMBRANES 2020; 10:E124. [PMID: 32560267 PMCID: PMC7345686 DOI: 10.3390/membranes10060124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022]
Abstract
Dual-layer hollow fiber (DLHF) nanocomposite membrane prepared by co-extrusion technique allows a uniform distribution of nanoparticles within the membrane outer layer to enhance the membrane performance. The effects of spinning parameters especially the air gap on the physico-chemical properties of ZrO2-TiO2 nanoparticles incorporated PVDF DLHF membranes for oily wastewater treatment have been investigated in this study. The zeta potential of the nanoparticles was measured to be around -16.5 mV. FESEM-EDX verified the uniform distribution of Ti, Zr, and O elements throughout the nanoparticle sample and the TEM images showed an average nanoparticles grain size of ~12 nm. Meanwhile, the size distribution intensity was around 716 nm. A lower air gap was found to suppress the macrovoid growth which resulted in the formation of thin outer layer incorporated with nanoparticles. The improvement in the separation performance of PVDF DLHF membranes embedded with ZrO2-TiO2 nanoparticles by about 5.7% in comparison to the neat membrane disclosed that the incorporation of ZrO2-TiO2 nanoparticles make them potentially useful for oily wastewater treatment.
Collapse
Affiliation(s)
- Nurshahnawal Yaacob
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; (N.Y.); (P.S.G.); (B.C.N.); (M.N.Z.A.); (L.T.Y.)
- Malaysian Institute of Marine Engineering Technology (MIMET), Universiti Kuala Lumpur, 32200 Lumut, Perak, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; (N.Y.); (P.S.G.); (B.C.N.); (M.N.Z.A.); (L.T.Y.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; (N.Y.); (P.S.G.); (B.C.N.); (M.N.Z.A.); (L.T.Y.)
| | - Noor Aina Mohd Nazri
- Malaysian Institute of Chemical and Bio–Engineering Technology (MICET), Universiti Kuala Lumpur, 78000 Alor Gajah, Melaka, Malaysia;
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; (N.Y.); (P.S.G.); (B.C.N.); (M.N.Z.A.); (L.T.Y.)
| | - Muhammad Nizam Zainal Abidin
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; (N.Y.); (P.S.G.); (B.C.N.); (M.N.Z.A.); (L.T.Y.)
| | - Lukka Thuyavan Yogarathinam
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; (N.Y.); (P.S.G.); (B.C.N.); (M.N.Z.A.); (L.T.Y.)
| |
Collapse
|
33
|
Membrane distillation: Progress in the improvement of dedicated membranes for enhanced hydrophobicity and desalination performance. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Facile preparation of superhydrophobic PVDF microporous membranes with excellent anti-fouling ability for vacuum membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
The enhancement of mechanical properties of P84 hollow fiber membranes by thermally annealing below and above Tg. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Zhao L, Wu C, Lu X, Ng D, Truong YB, Zhang J, Xie Z. Theoretical guidance for fabricating higher flux hydrophobic/hydrophilic dual-layer membranes for direct contact membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Park CH, Lee JH, Kim NU, Kong CI, Kim JH, Kim JH. Solid-state facilitated transport of carbon monoxide through mixed matrix membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Marino T, Galiano F, Molino A, Figoli A. New frontiers in sustainable membrane preparation: Cyrene™ as green bioderived solvent. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.034] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
|
40
|
Hollow fiber (HF) membrane fabrication: A review on the effects of solution spinning conditions on morphology and performance. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
41
|
Fabrication of Hydrophobic Coatings Using Sugarcane Bagasse Waste Ash as Silica Source. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9010190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eco-friendly hydrophobic coatings were fabricated on tiles via the drop-casting process. Sugarcane bagasse waste ash (SBA) was used as a silica source and dimethyldiethoxysilane (DMDEOS) was used as a surface functionalizing agent. The elemental composition of SBA was measured using X-ray fluorescence (XRF) and energy-dispersive spectroscopy (EDS) techniques. The surface morphology of SBA was analyzed through the field-emission scanning electron microscopy (FESEM) technique. The surface wettability of SBA coated tiles was evaluated by determining the static water contact angle (WCA). XRF studies showed that the impurities were removed, and the silica content was enriched by the acid treatment. SBA coated tiles showed good hydrophobicity with a WCA of 135°. The high hydrophobicity of the coated tiles may be attributed to the increase of surface roughness by SBA. Moreover, the SBA coating was successfully tested on various substrates such as tiles, brick, glass, and cotton cloth. SBA coated glass substrate was more durable compared to other substrates at normal room temperature.
Collapse
|
42
|
Wu P, Jiang LY, Hu B. Fabrication of novel PVDF/P(VDF-co-HFP) blend hollow fiber membranes for DCMD. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
43
|
Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0038-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Liu Y, Xiao T, Bao C, Fu Y, Yang X. Fabrication of novel Janus membrane by nonsolvent thermally induced phase separation (NTIPS) for enhanced performance in membrane distillation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Salehi S, Jahanshahi M, Peyravi M. Poly(vinylidene difluoride) Membrane Assisted by Modified ZnO/ZIF Nanoparticles for Membrane Distillation. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201700496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Setareh Salehi
- Babol Noshirvani University of Technology; Department of Chemical Engineering; Shariati Av. 47148-71167 Babol Iran
| | - Mohsen Jahanshahi
- Babol Noshirvani University of Technology; Department of Chemical Engineering; Shariati Av. 47148-71167 Babol Iran
| | - Majid Peyravi
- Babol Noshirvani University of Technology; Department of Chemical Engineering; Shariati Av. 47148-71167 Babol Iran
| |
Collapse
|
46
|
|
47
|
Rezaei M, Warsinger DM, Lienhard V JH, Duke MC, Matsuura T, Samhaber WM. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention. WATER RESEARCH 2018; 139:329-352. [PMID: 29660622 DOI: 10.1016/j.watres.2018.03.058] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/01/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Membrane distillation (MD) is a rapidly emerging water treatment technology; however, membrane pore wetting is a primary barrier to widespread industrial use of MD. The primary causes of membrane wetting are exceedance of liquid entry pressure and membrane fouling. Developments in membrane design and the use of pretreatment have provided significant advancement toward wetting prevention in membrane distillation, but further progress is needed. In this study, a broad review is carried out on wetting incidence in membrane distillation processes. Based on this perspective, the study describes the wetting mechanisms, wetting causes, and wetting detection methods, as well as hydrophobicity measurements of MD membranes. This review discusses current understanding and areas for future investigation on the influence of operating conditions, MD configuration, and membrane non-wettability characteristics on wetting phenomena. Additionally, the review highlights mathematical wetting models and several approaches to wetting control, such as membrane fabrication and modification, as well as techniques for membrane restoration in MD. The literature shows that inorganic scaling and organic fouling are the main causes of membrane wetting. The regeneration of wetting MD membranes is found to be challenging and the obtained results are usually not favorable. Several pretreatment processes are found to inhibit membrane wetting by removing the wetting agents from the feed solution. Various advanced membrane designs are considered to bring membrane surface non-wettability to the states of superhydrophobicity and superomniphobicity; however, these methods commonly demand complex fabrication processes or high-specialized equipment. Recharging air in the feed to maintain protective air layers on the membrane surface has proven to be very effective to prevent wetting, but such techniques are immature and in need of significant research on design, optimization, and pilot-scale studies.
Collapse
Affiliation(s)
- Mohammad Rezaei
- Institute of Process Engineering, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria.
| | - David M Warsinger
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA; Rohsenow Kendall Heat Transfer Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139-4307, USA
| | - John H Lienhard V
- Rohsenow Kendall Heat Transfer Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139-4307, USA
| | - Mikel C Duke
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Melbourne, Victoria 8001, Australia
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Wolfgang M Samhaber
- Institute of Process Engineering, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| |
Collapse
|
48
|
Chen YR, Chen LH, Chen CH, Ko CC, Huang A, Li CL, Chuang CJ, Tung KL. Hydrophobic alumina hollow fiber membranes for sucrose concentration by vacuum membrane distillation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Wang M, Liu G, Yu H, Lee SH, Wang L, Zheng J, Wang T, Yun Y, Lee JK. ZnO Nanorod Array Modified PVDF Membrane with Superhydrophobic Surface for Vacuum Membrane Distillation Application. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13452-13461. [PMID: 29616789 DOI: 10.1021/acsami.8b00271] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The vacuum membrane distillation (VMD) is a promising technology for lots of applications. To solve the membrane fouling and wetting problems, in this paper, a novel ZnO nanorods 1 H,1 H,2 H,2 H-perfluorodecyltriethoxysilane (PDTS) modified poly(vinylidene fluoride) (PVDF) membrane with a micro/nanoscale hierarchical structure and a superhydrophobic surface has been prepared and applied to the VMD process for distilling highly salty water, for the first time. Among these, a pyrolysis-adhesion method is created to obtain the ZnO seeds and fasten them on the PVDF substrate firmly. The novel modified membrane shows a stable superhydrophobic surface with a water contact angle of 152°, easy cleaning property, excellent thermal and mechanical stability, because of the Cassie's state caused by pocketing much air in the hydrophobized ZnO nanorods, the low surface energy of PDTS coating, and the strong adhesion between ZnO nanorods and PVDF membrane, which has built an ideal structure for VMD application. After 8 h VMD of 200 g L-1 NaCl solution, compared to the virgin PVDF membrane, the novel membrane shows a similar permeate flux but a much higher quality permeated liquid because of its unique antifouling and antiwetting caused by the several microns gap between the feed and the membrane. Due to its easy cleaning property, the novel membrane also exhibits an excellent reusability.
Collapse
Affiliation(s)
- Manxiang Wang
- College of Environmental Science and Engineering , Beijing Forestry University , Beijing 100083 , P. R. China
| | | | | | - Sang-Hyup Lee
- Green School , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| | - Lei Wang
- Beijing Key Lab of Cryobiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Jianzhong Zheng
- College of Resources and Environment , University of Chinese Academy of Sciences , 19 A Yuquan Road , Beijing 100049 , P. R. China
| | - Tao Wang
- College of Environmental Science and Engineering , Beijing Forestry University , Beijing 100083 , P. R. China
| | - Yanbin Yun
- College of Environmental Science and Engineering , Beijing Forestry University , Beijing 100083 , P. R. China
| | | |
Collapse
|
50
|
Lu KJ, Zuo J, Chang J, Kuan HN, Chung TS. Omniphobic Hollow-Fiber Membranes for Vacuum Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4472-4480. [PMID: 29561139 DOI: 10.1021/acs.est.8b00766] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Management of produced water from shale gas production is a global challenge. Vacuum membrane distillation (VMD) is considered a promising solution because of its various advantages. However, low-surface-tension species in produced water can easily deposit on the membrane surface and cause severe fouling or wetting problems. To solve the problems, an omniphobic polyvinylidene difluoride (PVDF) hollow-fiber membrane has been developed via silica nanoparticle deposition followed by a Teflon AF 2400 coating in this study. The resultant membrane shows good repellency toward various liquids with different surface tensions and chemistries, including water, ethylene glycol (EG), cooking oil, and ethanol. It also exhibits stable performance in 7 h VMD tests with a feed solution containing up to 0.6 mM of sodium dodecyl sulfate (SDS). In addition, the effects of surface energy and surface morphology as well as nanoparticle size on membrane omniphobicity have been systematically investigated. This work may provide valuable guidance to molecularly design omniphobic VMD membranes for produced water treatment.
Collapse
Affiliation(s)
- Kang Jia Lu
- Department of Chemical & Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Jian Zuo
- Singapore Institute of Technology , 10 Dover Drive , Singapore 138683
| | - Jian Chang
- Department of Chemical & Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Hong Nan Kuan
- Department of Chemical & Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Tai-Shung Chung
- Department of Chemical & Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| |
Collapse
|