1
|
Yuan X, Lu Z, Jia X, Yang Z, Wang J, Wang X, Lin J, He S. Utilization of Water-Insoluble Carbon Nitride-Phosphotungstic Acid Hybrids in Composite Proton Exchange Membranes. MEMBRANES 2024; 14:195. [PMID: 39330536 PMCID: PMC11433968 DOI: 10.3390/membranes14090195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Phosphotungstic acid (HPW) can retain water in proton exchange membranes to increase proton conductivity; however, its water-soluble nature limits further application. In this work, we combined HPW and graphitic carbon nitride (g-C3N4) via sintering to prepare water-insoluble hybrids (HWN), where HPW was chemically linked to g-C3N4 to fix HPW. Then, HWN fillers were added to a sulfonated polyether ether ketone (SPEEK) matrix to prepare composite membranes. The conductivity of the composite membrane with 10 wt% HWN is up to 0.066 S cm-1 at room temperature, which is 53% higher than that of the SPEEK control membrane (0.043 S cm-1). The composite membrane also showed stable proton conductivity after being immersed in water for 2000 h. Therefore, our study demonstrates that preparing water-insoluble nanofillers containing HPW components through sintering is a promising approach.
Collapse
Affiliation(s)
- Xiancan Yuan
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (X.Y.); (Z.L.); (X.J.); (Z.Y.); (J.W.)
| | - Zhongrui Lu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (X.Y.); (Z.L.); (X.J.); (Z.Y.); (J.W.)
| | - Xiaoyang Jia
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (X.Y.); (Z.L.); (X.J.); (Z.Y.); (J.W.)
| | - Zhuoran Yang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (X.Y.); (Z.L.); (X.J.); (Z.Y.); (J.W.)
| | - Jian Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (X.Y.); (Z.L.); (X.J.); (Z.Y.); (J.W.)
| | - Xiong Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jun Lin
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (X.Y.); (Z.L.); (X.J.); (Z.Y.); (J.W.)
| | - Shaojian He
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (X.Y.); (Z.L.); (X.J.); (Z.Y.); (J.W.)
| |
Collapse
|
2
|
Li W, Liu W, Jia W, Zhang J, Zhang Q, Zhang Z, Zhang J, Li Y, Liu Y, Wang H, Xiang Y, Lu S. Dual-Proton Conductor for Fuel Cells with Flexible Operational Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310584. [PMID: 38160326 DOI: 10.1002/adma.202310584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/20/2023] [Indexed: 01/03/2024]
Abstract
The properties of proton conductors determine the operating temperature range of fuel cells. Typically, phosphoric acid (PA) proton conductors exhibit excellent proton conductivity owing to their high proton dissociation and self-diffusion abilities. However, at low temperatures or high current densities, water-induced PA loss causes rapid degradation of cell performance. Maintaining efficient and stable proton conductivity within a flexible temperature range can significantly reduce the start-up temperature of PA-doped proton exchange membrane fuel cells. In this study, a dual-proton conductor composed of an organic phosphonic acid (ethylenediamine tetramethylene phosphonic acid, EDTMPA) and an inorganic PA is developed for proton exchange membranes. The proposed dual-proton conductor can operate within a flexible temperature range of 80-160 °C, benefiting from the strong interaction between EDTMPA and PA, and the enhanced proton dissociation. Fuel cells with the EDTMPA-PA dual-proton conductor showed excellent cell stability at 80 °C. In particular, under the high current density of 1.5 A cm-2 at 160 °C, the voltage decay rate of the fuel cell with the dual-proton conductor is one-thousandth of that of the fuel cell with PA-only proton conductor, indicating excellent stability.
Collapse
Affiliation(s)
- Wen Li
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Wen Liu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Wendi Jia
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
- State Power Investment Corporation Hydrogen Energy Company, Co., Ltd., Beijing, 102600, P. R. China
| | - Jin Zhang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Qi Zhang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Zhenguo Zhang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jialin Zhang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yunqi Li
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yiyang Liu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Haining Wang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yan Xiang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
3
|
Zhang Y, Song G, Luo T, Yang X, Ren H, Wang X, Zhang Z. Acid-triggered polyether sulfone - Polyvinyl pyrrolidone blend anion exchange membranes for the recovery of titania waste acid via diffusion dialysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Jamil A, Rafiq S, Iqbal T, Khan HAA, Khan HM, Azeem B, Mustafa MZ, Hanbazazah AS. Current status and future perspectives of proton exchange membranes for hydrogen fuel cells. CHEMOSPHERE 2022; 303:135204. [PMID: 35660058 DOI: 10.1016/j.chemosphere.2022.135204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/21/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The world is on the lookout for sustainable and environmentally benign energy generating systems. Fuel cells (FCs) are regarded as environmentally friendly technology since they address a variety of environmental issues, such as hazardous levels of local pollutants, while also delivering economic advantages owing to their high efficiency. A fuel cell is a device that changes chemical energy contained in fuels (such as hydrogen and methanol) into electrical energy. A wide variety of FCs are commercially available; however, proton exchange membranes for hydrogen fuel cells (PEMFCs) have received overwhelming attention owing to their potential to significantly reduce our energy consumption, pollution emissions, and reliance on fossil fuels. The proton exchange membrane (PEM) is a critical element; it is made of semipermeable polymer and serves as a barrier between the cathode and anode during fuel cell construction. Additionally, membranes function as an insulator between the cathode and anode, facilitating proton exchange and inhibiting electron exchange between the electrodes. Due to the excellent features such as durability and proton conductivity, Nafion membranes are commercially viable and have been in use for a long time. However, Nafion membranes are costly, and their proton exchange capacities degrade over time at higher temperatures and low relative humidity. Other types of membranes have been considered in addition to Nafion membranes. This article discusses the problems connected with several types of PEMs, as well as the strategies adopted to improve their characteristics and performance.
Collapse
Affiliation(s)
- Asif Jamil
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Pakistan.
| | - Sikander Rafiq
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Pakistan
| | - Tanveer Iqbal
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Pakistan
| | - Hafiza Aroosa Aslam Khan
- Department of Chemical Engineering, University of Engineering and Technology, Lahore, 54000, Pakistan
| | - Haris Mahmood Khan
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Pakistan
| | - Babar Azeem
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - M Z Mustafa
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Abdulkader S Hanbazazah
- Department of Industrial and Systems Engineering, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Quaternary ammonium-biphosphate ion-pair based copolymers with continuous H+ transport channels for high-temperature proton exchange membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Polyethersulfone/polyvinylpyrrolidone/boron nitride composite membranes for high proton conductivity and long-term stability high-temperature proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Li W, Wang H, Zhang J, Xiang Y, Lu S. Advancements of Polyvinylpyrrolidone-Based Polymer Electrolyte Membranes for Electrochemical Energy Conversion and Storage Devices. CHEMSUSCHEM 2022; 15:e202200071. [PMID: 35318798 DOI: 10.1002/cssc.202200071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Polymer electrolyte membranes (PEMs) play vital roles in electrochemical energy conversion and storage devices, such as polymer electrolyte membrane fuel cell (PEMFC), redox flow battery, and water electrolysis. As the crucial component of these devices, PEMs need to possess high ion conductivity and electronic insulation, remarkable mechanical and chemical stability, and outstanding isolation function for the materials on both sides of the cathode and anode. Polyvinylpyrrolidone has received widespread attention in the research of PEMs owing to its tertiary amine basic groups and exceptional hydrophilic properties. This review focuses on the application status of polyvinylpyrrolidone-based PEMs in PEMFC, vanadium redox flow battery, and alkaline water electrolysis, and describes in detail the key scientific problems in these fields, providing constructive suggestions and guidance for the application of polyvinylpyrrolidone-based PEMs in electrochemical energy conversion and storage devices.
Collapse
Affiliation(s)
- Wen Li
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Haining Wang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Yan Xiang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
8
|
Simultaneous improvement of anion conductivity and cell durability through the formation of dense ion clusters of F-doped graphitic carbon nitride/quaternized poly(phenylene oxide) composite membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Bai H, Zhang J, Wang H, Xiang Y, Lu S. Highly conductive quaternary ammonium-containing cross-linked poly(vinyl pyrrolidone) for high-temperature PEM fuel cells with high-performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Qu E, Jiang J, Xiao M, Han D, Huang S, Huang Z, Wang S, Meng Y. Polybenzimidazole Confined in Semi-Interpenetrating Networks of Crosslinked Poly (Arylene Ether Ketone) for High Temperature Proton Exchange Membrane. NANOMATERIALS 2022; 12:nano12050773. [PMID: 35269265 PMCID: PMC8912004 DOI: 10.3390/nano12050773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022]
Abstract
As a traditional high-temperature proton exchange membrane (HT-PEM), phosphoric acid (PA)-doped polybenzimidazole (PBI) is often subject to severe mechanical strength deterioration owing to the “plasticizing effect” of a large amount of PA. In order to address this issue, we fabricated the HT-PEMs with a crosslinked network of poly (arylene ether ketone) to confine polybenzimidazole in semi-interpenetration network using self-synthesized amino-terminated PBI (PBI-4NH2) as a crosslinker. Compared with the pristine linear poly [2,2′-(p-oxdiphenylene)-5,5′-benzimidazole] (OPBI) membrane, the designed HT-PEMs (semi-IPN/xPBI), in the semi-IPN means that the membranes with a semi-interpenetration structure and x represent the combined weight percentage of PBI-4NH2 and OPBI. In addition, they also demonstrate an enhanced anti-oxidative stability and superior mechanical properties without the sacrifice of conductivity. The semi-IPN/70PBI exhibits a higher proton conductivity than OPBI at temperatures ranging from 80 to 180 °C. The HT-PEMFC with semi-IPN/70PBI exhibits excellent H2/O2 single cell performance with a power density of 660 mW cm−2 at 160 °C with flow rates of 250 and 500 mL min−1 for dry H2 and O2 at a backpressure of 0.03 MPa, which is 18% higher than that of OPBI (561 mW cm−2) under the same test conditions. The results indicate that the introduction of PBI containing crosslinked networks is a promising approach to improve the comprehensive performance of HT-PEMs.
Collapse
Affiliation(s)
- Erli Qu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
| | - Junqiao Jiang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
| | - Min Xiao
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
| | - Dongmei Han
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Sheng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
| | - Zhiheng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
- Correspondence: (S.W.); (Y.M.)
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
- Correspondence: (S.W.); (Y.M.)
| |
Collapse
|
11
|
Vinodh R, Atchudan R, Kim HJ, Yi M. Recent Advancements in Polysulfone Based Membranes for Fuel Cell (PEMFCs, DMFCs and AMFCs) Applications: A Critical Review. Polymers (Basel) 2022; 14:300. [PMID: 35054706 PMCID: PMC8777856 DOI: 10.3390/polym14020300] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 01/12/2023] Open
Abstract
In recent years, ion electrolyte membranes (IEMs) preparation and properties have attracted fabulous attention in fuel cell usages owing to its high ionic conductivity and chemical resistance. Currently, perfluorinatedsulfonicacid (PFSA) membrane has been widely employed in the membrane industry in polymer electrolyte membrane fuel cells (PEMFCs); however, NafionTM suffers reduced proton conductivity at a higher temperature, requiring noble metal catalyst (Pt, Ru, and Pt-Ru), and catalyst poisoning by CO. Non-fluorinated polymers are a promising substitute. Polysulfone (PSU) is an aromatic polymer with excellent characteristics that have attracted membrane scientists in recent years. The present review provides an up-to-date development of PSU based electrolyte membranes and its composites for PEMFCs, alkaline membrane fuel cells (AMFCs), and direct methanol fuel cells (DMFCs) application. Various fillers encapsulated in the PEM/AEM moiety are appraised according to their preliminary characteristics and their plausible outcome on PEMFC/DMFC/AMFC. The key issues associated with enhancing the ionic conductivity and chemical stability have been elucidated as well. Furthermore, this review addresses the current tasks, and forthcoming directions are briefly summarized of PEM/AEMs for PEMFCs, DMFCs, AMFCs.
Collapse
Affiliation(s)
- Rajangam Vinodh
- Department of Electronics Engineering, Pusan National University, Busan 46241, Korea;
| | - Raji Atchudan
- Department of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Hee-Je Kim
- Department of Electrical and Computer Engineering, Pusan National University, Busan 46241, Korea
| | - Moonsuk Yi
- Department of Electronics Engineering, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
12
|
Wang Y, Liu L, Liu Y, Li N, Hu Z, Chen S. Double-filler composite sulfonated poly(aryl ether ketone) membranes with graphite carbon nitride and graphene oxide as polyelectrolyte for fuel cells. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Ma Y, Ren K, Zeng Z, Feng M, Huang Y. Highly selective sulfonated Poly (arylene ether nitrile) composite membranes containing copper phthalocyanine grafted graphene oxide for direct methanol fuel cell. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211039412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To improve the performances of sulfonated poly (arylene ether nitrile) (SPEN)–based proton exchange membranes (PEMs) in direct methanol fuel cells (DMFCs), the copper phthalocyanine grafted graphene oxide (CP-GO) was successfully prepared via in situ polymerization and subsequently incorporated into SPEN as filler to fabricate a series of SPEN/CP-GO-X (X represents for the mass ratio of CP-GO) composite membranes. The water absorption, swelling ratio, mechanical properties, proton conductivity, and methanol permeability of the membranes were systematically studied. CP-GO possesses good dispersion and compatibility with SPEN matrix, which is propitious to the formation of strong interfacial interactions with the SPEN, so as to provide more efficient transport channels for proton transfer in the composite membranes and significantly improve the proton conductivity of the membranes. Besides, the strong π–π conjugation interactions between CP-GO and SPEN matrix can make the composite membranes more compact, blocking the methanol transfer in the membranes, and significantly reducing the methanol permeability. Consequently, the SPEN/CP-GO-1 composite membrane displayed outstanding tensile strength (58 MPa at 100% RH and 25°C), excellent proton conductivity (0.178 S cm−1 at 60°C), and superior selectivity (5.552 × 105 S·cm−3·s). This study proposed a new method and strategy for the preparation of high performance PEMs.
Collapse
Affiliation(s)
- Yan Ma
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Kaixu Ren
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Ziqiu Zeng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Mengna Feng
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, P. R. China
| | - Yumin Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| |
Collapse
|
14
|
Kim EK, Cho K, Lee H, Chung I, Lee JC. Solid electrolyte membranes based on polybenzimidazole containing graphitic carbon nitride moiety (PBICN) for high-temperature fuel cell applications. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Sun C, Wang Z, Zheng H, Chen L, Li F. Biodegradable and re-usable sponge materials made from chitin for efficient removal of microplastics. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126599. [PMID: 34293690 DOI: 10.1016/j.jhazmat.2021.126599] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 05/26/2023]
Abstract
Microplastics have attracted widespread attention due to their detrimental effects on organisms, and their efficient removal poses great challenges, especially those smaller than 3 µm that are more harmful for aquatic biota. Herein, the chitin based sponges with interconnected pores, excellent elasticity and mechanical durability were fabricated and composed with graphene oxide (GO) and oxygen-doped carbon nitride (O-C3N4). The chitin based sponges could effectively remove different functionalized microplastics (~1 µm) at pH 6-8, including carboxylate-modified polystyrene (PS-COOH), amine-modified polystyrene (PS-NH2), and polystyrene (PS). Notably, the removal efficiency of three microplastics by the chitin based sponges reached up to 71.6-92.1% at an environmentally relevant concentration of 1 mg L-1 in water system. The potential driving forces of the adsorption were electrostatic interactions, hydrogen bond interactions, and π-π interactions. In addition, the chitin based sponges are reusable and after re-used for 3 cycles due to their excellent compressibility. The algae toxicity test demonstrated good biocompatibility of the chitin based sponges and they are also biodegradable in a natural soil. This study provides a green and promising method for fabricating environmentally friendly adsorbents for small-size microplastics removal, and expands the insights into the mechanisms of microplastic adsorption onto the sponge materials.
Collapse
Affiliation(s)
- Cuizhu Sun
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Zhenggang Wang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410076, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lingyun Chen
- Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
16
|
Safikhani A, Vatanpour V, Habibzadeh S, Saeb MR. Application of graphitic carbon nitrides in developing polymeric membranes: A review. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Achieving high power density and excellent durability for high temperature proton exchange membrane fuel cells based on crosslinked branched polybenzimidazole and metal-organic frameworks. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119288] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Bagheri B, Pooresmaeil M, Namazi H. Improve the performance of proton exchange membranes based on sulfopropylated amino polyethersulfone/poly [2,2ʹ-(m-pyrazolidene)-5,5ʹ-bibenzimidazole] blend through SiO2 nanoparticles importing. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Peng Q, Li Y, Qiu M, Shi B, He X, Fan C, Mao X, Wu H, Jiang Z. Enhancing Proton Conductivity of Sulfonated Poly(ether ether ketone)-Based Membranes by Incorporating Phosphotungstic-Acid-Coupled Graphene Oxide. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Quan Peng
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yan Li
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ming Qiu
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Benbing Shi
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xueyi He
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chunyang Fan
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xunli Mao
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
20
|
Fellenberg AK, Luchese CL, Marcilio NR, Tessaro IC. Supported carbon membranes using poly(ether sulfone) precursor. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0721-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Choi SY, Cho S, Kim D, Kim J, Song G, Singh R, Kim C. Boosting the proton conduction using protonated imidazole for advanced ion conducting membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Sun S, Ling L, Xiong Y, Zhang Y, Li Z. Trifluoromethanesulfonimide-based hygroscopic semi-interpenetrating polymer network for enhanced proton conductivity of nafion-based proton exchange membranes at low humidity. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Li G, Kujawski W, Rynkowska E. Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC). REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The high-temperature proton exchange membrane fuel cell (HT-PEMFC) offers several advantages, such as high proton conductivity, high CO tolerance, good chemical/thermal stability, good mechanical properties, and low cost. The proton exchange membrane (PEM) is the critical component of HT-PEMFC. This work discusses the methods of current PEMs development for HT-PEMFC including modifications of Nafion® membranes and the advancement in composite PEMs based on non-fluorinated polymers. The modified Nafion®-based membranes can be used at temperatures up to 140 °C. Nevertheless, the application of Nafion®-based membranes is limited by their humidification with water molecules acting as proton carriers and, thus, by the operation conditions of membranes under a relative humidity below 20%. To obtain PEMs applied at higher temperatures under non-humidified conditions, phosphoric acid (PA) or ionic liquids (ILs) are used as proton carriers in PEMs based on non-fluorinated polymers. The research discussed in this work provides the approaches to improving the physicochemical properties and performance fuel cell of PEMs. The effects of polymer blending, crosslinking, and the incorporation of inorganic particles on the membrane properties and fuel cell performance have been scrutinized. The incorporation of inorganic particles modified with ILs might be an effective approach to designing high-performance PEMs for HT-PEMFC.
Collapse
Affiliation(s)
- Guoqiang Li
- Nicolaus Copernicus University in Toruń , Faculty of Chemistry , 7, Gagarina Street , 87-100 Toruń , Poland
| | - Wojciech Kujawski
- Nicolaus Copernicus University in Toruń , Faculty of Chemistry , 7, Gagarina Street , 87-100 Toruń , Poland
- National Research Nuclear University MEPhI , 31, Kashira Hwy , Moscow 115409, Russia
| | - Edyta Rynkowska
- Nicolaus Copernicus University in Toruń , Faculty of Chemistry , 7, Gagarina Street , 87-100 Toruń , Poland
| |
Collapse
|
24
|
Kumru B, Antonietti M. Colloidal properties of the metal-free semiconductor graphitic carbon nitride. Adv Colloid Interface Sci 2020; 283:102229. [PMID: 32795670 DOI: 10.1016/j.cis.2020.102229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
The metal-free, polymeric semiconductor graphitic carbon nitride (g-CN) family is an emerging class of materials and has striking advantages compared to other semiconductors, i.e. ease of tunability, low cost and synthesis from abundant precursors in a chemical environment. Efforts have been done to improve the properties of g-CN, such as photocatalytic efficiency, designing novel composites, processability and scalability towards discovering novel applications as a remedy for the problems that we are facing today. Despite the fact that the main efforts to improve g-CN come from a catalysis perspective, many fundamental possibilities arise from the special colloidal properties of carbon nitride particles, from synthesis to applications. This review will display how typical colloid chemistry tools can be employed to make 'better g-CNs' and how up to now overseen properties can be levered by integrating a colloid and interface perspective into materials chemistry. Establishing a knowledge on the origins of colloidal behavior of g-CN will be the core of the review.
Collapse
Affiliation(s)
- Baris Kumru
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| |
Collapse
|
25
|
Zhang Z, Ren J, Xu J, Wang Z, He W, Wang S, Yang X, Du X, Meng L, Zhao P. Adjust the arrangement of imidazole on the metal-organic framework to obtain hybrid proton exchange membrane with long-term stable high proton conductivity. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118194] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
S. RRR, W. R, M. K, Y. WW, J. P. Recent Progress in the Development of Aromatic Polymer-Based Proton Exchange Membranes for Fuel Cell Applications. Polymers (Basel) 2020; 12:E1061. [PMID: 32384660 PMCID: PMC7285229 DOI: 10.3390/polym12051061] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/24/2022] Open
Abstract
Proton exchange membranes (PEMs) play a pivotal role in fuel cells; conducting protons from the anode to the cathode within the cell's membrane electrode assembles (MEA) separates the reactant fuels and prevents electrons from passing through. High proton conductivity is the most important characteristic of the PEM, as this contributes to the performance and efficiency of the fuel cell. However, it is also important to take into account the membrane's durability to ensure that it canmaintain itsperformance under the actual fuel cell's operating conditions and serve a long lifetime. The current state-of-the-art Nafion membranes are limited due to their high cost, loss of conductivity at elevated temperatures due to dehydration, and fuel crossover. Alternatives to Nafion have become a well-researched topic in recent years. Aromatic-based membranes where the polymer chains are linked together by aromatic rings, alongside varying numbers of ether, ketone, or sulfone functionalities, imide, or benzimidazoles in their structures, are one of the alternatives that show great potential as PEMs due totheir electrochemical, mechanical, and thermal strengths. Membranes based on these polymers, such as poly(aryl ether ketones) (PAEKs) and polyimides (PIs), however, lack a sufficient level of proton conductivity and durability to be practical for use in fuel cells. Therefore, membrane modifications are necessary to overcome their drawbacks. This paper reviews the challenges associated with different types of aromatic-based PEMs, plus the recent approaches that have been adopted to enhance their properties and performance.
Collapse
Affiliation(s)
- Raja Rafidah R. S.
- School of Engineering, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Rashmi W.
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia
| | - Khalid M.
- Graphene and Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia;
| | - Wong W. Y.
- Fuel Cell Institute, UniversitiKebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia
| | - Priyanka J.
- Graphene and Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia;
| |
Collapse
|
27
|
Sulfonated graphitic carbon nitride nanosheets as proton conductor for constructing long-range ionic channels proton exchange membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117908] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Synthesis and Properties of Phosphoric-Acid-Doped Polybenzimidazole with Hyperbranched Cross-Linkers Decorated with Imidazolium Groups as High-Temperature Proton Exchange Membranes. Polymers (Basel) 2020; 12:polym12030515. [PMID: 32120782 PMCID: PMC7182959 DOI: 10.3390/polym12030515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 11/17/2022] Open
Abstract
Highly phosphoric-acid (PA)-doped polybenzimidazole (PBI) membranes exhibit good proton conductivity at high temperatures; however, they suffer from reduced mechanical properties and loss of PA molecules due to the plasticity of PA and the weak interactions between PA and benzimidazoles, especially with the absorption of water. In this work, a series of PBIs with hyperbranched cross-linkers decorated with imidazolium groups (ImOPBI-x, where x is the weight ratio of the hyperbranched cross-linker) as high-temperature proton exchange membranes are designed and synthesized for the first time. We observe how the hyperbranched cross-linkers can endow the membranes with improved oxidative stability and acceptable mechanical performance, and imidazolium groups with strong basicity can stabilize the PA molecules by delocalization and hydrogen bond formation to endow the membranes with an enhanced proton conductivity and a decreased loss of PA molecules. We measured a high proton conductivity of the ImOPBI-x membranes, ranging from 0.058 to 0.089 S cm−1 at 160 °C. In addition, all the ImOPBI-x membranes displayed good mechanical and oxidative properties. At 160 °C, a fuel cell based on the ImOPBI-5 membrane showed a power density of 638 mW cm−2 and good durability under a hydrogen/oxygen atmosphere, indicating its promising use in anhydrous proton exchange membrane applications.
Collapse
|
29
|
Xu J, Zhang Z, Yang K, He W, Yang X, Du X, Meng L, Zhao P, Wang Z. Construction of new transport channels by blending POM-based inorganic-organic complex into sulfonated poly(ether ketone sulfone) for proton exchange membrane fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Hu M, Li T, Neelakandan S, Wang L, Chen Y. Cross-linked polybenzimidazoles containing hyperbranched cross-linkers and quaternary ammoniums as high-temperature proton exchange membranes: Enhanced stability and conductivity. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117435] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
High temperature polymer electrolyte membrane achieved by grafting poly(1-vinylimidazole) on polysulfone for fuel cells application. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117395] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Wang J, Li P, Zhang Y, Liu Y, Wu W, Liu J. Porous Nafion nanofiber composite membrane with vertical pathways for efficient through-plane proton conduction. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
A new high temperature polymer electrolyte membrane based on tri-functional group grafted polysulfone for fuel cell application. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Dong XY, Wang JH, Liu SS, Han Z, Tang QJ, Li FF, Zang SQ. Synergy between Isomorphous Acid and Basic Metal-Organic Frameworks for Anhydrous Proton Conduction of Low-Cost Hybrid Membranes at High Temperatures. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38209-38216. [PMID: 30360073 DOI: 10.1021/acsami.8b12846] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal-organic frameworks (MOFs) embedded in polymer have showed efficiency in improving proton conduction of hybrid membranes under hydrated conditions. However, anhydrous proton conduction of such hybrid membranes over 100 °C remains great challenge. Here, proton conductive hybrid membranes combined acid group (-SO3H)- and basic group (-NH2)-modified isomorphous MOFs, namely UiO-66(SO3H) (abbreviated as A, the initial of acid) and UiO-66(NH2) (abbreviated as B, the initial of basic) and a low-cost polymer (chitosan, CS) were prepared. The proton conductivity of the optimum dual MOF-cofilled hybrid membranes (CS/A + B) reached 3.78 × 10-3 S/cm at 120 °C and under anhydrous conditions, under which each component, that is MOF A, MOF B and CS, and single MOF-filled hybrid membranes (CS/A and CS/B) nearly lost proton conduction without exception, producing unprecedented results of one plus one more greater than two. The synergistic effects among UiO-66(SO3H), UiO-66(NH2), and CS on improving conductivity are also observed under hydrated conditions, the highest proton conductivity of CS/A + B reached 5.2 × 10-2 S/cm, which is 1.86, compared to that of the pure CS membrane at 100 °C and 98% relative humidity. The anhydrous proton conductivity of CS/A + B over 100 °C is one of the highest for MOF-based hybrid membranes. MOFs and hybrid membranes were extensively characterized and the proton conductive mechanism was revealed. The achievements open a new avenue for MOF-based anhydrous proton-conducting membranes and would advance the exploration of future application of these MOFs in fuel cells.
Collapse
Affiliation(s)
- Xi-Yan Dong
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion , Henan Polytechnic University , Jiaozuo 454000 , China
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Jun-Hao Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion , Henan Polytechnic University , Jiaozuo 454000 , China
| | - Shan-Shan Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion , Henan Polytechnic University , Jiaozuo 454000 , China
| | - Zhen Han
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Qing-Jie Tang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion , Henan Polytechnic University , Jiaozuo 454000 , China
| | - Fei-Fei Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion , Henan Polytechnic University , Jiaozuo 454000 , China
| | - Shuang-Quan Zang
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| |
Collapse
|
35
|
Che Q, Fan H, Duan X, Feng F, Mao W, Han X. Layer by layer self-assembly fabrication of high temperature proton exchange membrane based on ionic liquids and polymers. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|