1
|
Liu H, Foo ZH, She Q. The Potential of Electrodialysis with Mediating Solution (EDM) for Eliminating Alkaline Scaling: Experimental Validation and Mechanistic Elucidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6307-6318. [PMID: 40117558 DOI: 10.1021/acs.est.4c12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Alkaline scaling in the cathode chambers of conventional electrodialysis (ED) stacks presents significant challenges when desalinating solutions containing divalent cations. This scaling, resulting from the combined effects of water electrolysis and the migration of divalent cations from the feedwater into the catholyte, further extends from the cathode chamber to the surfaces of both the cation exchange membrane (CEM) and the anion exchange membrane (AEM) in the adjacent dilute chamber. This study aims to mitigate alkaline scaling, without pretreatment or antiscalant dosing, by optimizing the ED stack design to restrict divalent cation transport toward the cathode. We evaluated three ED stack configurations, each forming the cathode chamber with a distinct ion transport control mechanism: (1) a monovalent selective cation exchange membrane (SCEM), (2) a bipolar membrane (BPM), and (3) a mediating solution chamber adjacent to the cathode chamber (EDM). Our results indicated that stacks employing the SCEM or BPM partially restricted divalent cation migration but remained vulnerable to scaling under higher feed salinities, due to weakened Donnan exclusion within the SCEM, and strong internal ion polarization at the BPM interface. In contrast, the EDM stack exhibited superior antiscaling performance by combining strong Donnan exclusion through an AEM with ionic buffering in the mediating solution chamber, effectively blocking cation transport and eliminating conditions conducive to scaling. Additionally, the EDM stack maintained low electrical resistance and high operational stability, making it a simple, efficient, and cost-effective solution for scaling mitigation in ED systems.
Collapse
Affiliation(s)
- Hong Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Zi Hao Foo
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Qianhong She
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|
2
|
Patel SK, Iddya A, Pan W, Qian J, Elimelech M. Approaching infinite selectivity in membrane-based aqueous lithium extraction via solid-state ion transport. SCIENCE ADVANCES 2025; 11:eadq9823. [PMID: 40020050 PMCID: PMC11870030 DOI: 10.1126/sciadv.adq9823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
As the gap between lithium supply and demand continues to widen, the need to develop ion-selective technologies, which can efficiently extract lithium from unconventional water sources, grows increasingly crucial. In this study, we investigated the fundamentals of applying a solid-state electrolyte (SSE), typically used in battery technologies, as a membrane material for aqueous lithium extraction. We find that the anhydrous hopping of lithium ions through the ordered and confined SSE lattice is highly distinct from ion migration through the hydrated free volumes of conventional nanoporous membranes, thus culminating in unique membrane transport properties. Notably, we reveal that the SSE provides unparalleled performance with respect to ion-ion selectivity, consistently demonstrating lithium ion selectivity values that are immeasurable by even the part-per-billion detection limit of mass spectrometry. Such exceptional selectivity is shown to be the result of the characteristic size and charge exclusion mechanisms of solid-state ion transport, which may be leveraged in the design of next-generation membranes for resource recovery.
Collapse
Affiliation(s)
- Sohum K. Patel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | | | | | | | | |
Collapse
|
3
|
Haflich HM, Singleton JW, Coronell O. Relative contributions of mobility and partitioning to volatile fatty acid flux during electrodialysis. J Memb Sci 2024; 711:123204. [PMID: 39345865 PMCID: PMC11426417 DOI: 10.1016/j.memsci.2024.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Economically valuable volatile fatty acids (VFAs) are sustainably produced via fermentation processes. To use VFAs downstream, they must be recovered using technologies like electrodialysis (ED). Solute transport properties (i.e., partition coefficient (K), diffusion coefficient (D), and permeability (P=KD)) govern flux in ED. Therefore, to advance understanding of VFA flux through anion exchange membranes (AEMs) in ED, we aimed to elucidate the relative contributions of VFA partitioning and mobility to their flux. Accordingly, for VFAs of different sizes (C1-C5) and inorganic anions (Cl-, Br-), we measured their fluxes during ED, permeabilities, and partition coefficients, and calculated the diffusion coefficients. We then evaluated the correlations between flux and transport properties and between transport properties and anion physicochemical properties. Results showed VFA flux had a strong correlation with permeability (R2=0.94, p<0.01), consistent with flux described by the Nernst-Planck equation. Further, while there was a negative correlation between VFA flux and partition coefficient (R2=0.46, p=0.21), there was a positive correlation between VFA flux and diffusion coefficient (R2=0.95, p<0.01) which showed VFA mobility governed VFA flux. We observed a negative correlation between VFA diffusion coefficient and carbon-chain length which was attributed to steric hindrance, and a positive correlation between partition coefficient and carbon chain-length which we attributed to hydrophobicity and polarizability. This work provides fundamental insight on interactions between VFAs and AEMs which affect anion flux during ED.
Collapse
Affiliation(s)
- Holly M Haflich
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431
| | - Joshua W Singleton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431
| |
Collapse
|
4
|
Foo ZH, Lee TR, Wegmueller JM, Heath SM, Lienhard JH. Toward a Circular Lithium Economy with Electrodialysis: Upcycling Spent Battery Leachates with Selective and Bipolar Ion-Exchange Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19486-19500. [PMID: 39420454 PMCID: PMC11526793 DOI: 10.1021/acs.est.4c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Recycling spent lithium-ion batteries offers a sustainable solution to reduce ecological degradation from mining and mitigate raw material shortages and price volatility. This study investigates using electrodialysis with selective and bipolar ion-exchange membranes to establish a circular economy for lithium-ion batteries. An experimental data set of over 1700 ion concentration measurements across five current densities, two solution compositions, and three pH levels supports the techno-economic analysis. Selective electrodialysis (SED) isolates lithium ions from battery leachates, yielding a 99% Li-pure retentate with 68.8% lithium retention, achieving relative ionic fluxes up to 2.41 for Li+ over transition metal cations and a selectivity of 5.64 over monovalent cations. Bipolar membrane electrodialysis (BMED) converts LiCl into high-purity LiOH and HCl, essential for battery remanufacturing and reducing acid consumption via acid recycling. High current densities reduce ion leakage, achieving lithium leakage as low as 0.03%, though hydronium and hydroxide leakage in BMED remains high at 11-20%. Our analysis projects LiOH production costs between USD 1.1 and 3.6 per kilogram, significantly lower than current prices. Optimal SED and BMED conditions are identified, emphasizing the need to control proton transport in BMED and improve cobalt-lithium separation in SED to enhance cost efficiency.
Collapse
Affiliation(s)
- Zi Hao Foo
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center
for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Trent R. Lee
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jakob M. Wegmueller
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel M. Heath
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John H. Lienhard
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Golubenko D, Ahmed FE, Hilal N. Novel Crosslinked Anion Exchange Membranes Based on Thermally Cured Epoxy Resin: Synthesis, Structure and Mechanical and Ion Transport Properties. MEMBRANES 2024; 14:138. [PMID: 38921505 PMCID: PMC11205850 DOI: 10.3390/membranes14060138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Limitations in existing anion exchange membranes deter their use in the efficient treatment of industrial wastewater effluent. This work presents an approach to fabricating novel anion-conducting membranes using epoxy resin monomers like hydrophobic or hydrophilic diglycidyl ether and quaternized polyethyleneimine (PEI). Manipulating the diglycidyl ether nature, the quantitative composition of the copolymer and the conditions of quaternization allows control of the physicochemical properties of the membranes, including water uptake (20.0-330%), ion exchange capacity (1.5-3.7 mmol/g), ionic conductivity (0.2-17 mS/cm in the Cl form at 20 °C), potentiostatic transport numbers (75-97%), as well as mechanical properties. A relationship was established between copolymer structure and conductivity/selectivity trade-off. The higher the quaternized polyethyleneimine, diluent fraction, and hydrophilicity of diglycidyl ether, the higher the conductivity and the lower the permselectivity. Hydrophobic diglycidyl ether gives a much better conductivity/selectivity ratio since it provides a lower degree of hydration than hydrophilic diglycidyl ether. Different mesh and non-woven reinforcing materials were also examined. The developed membranes demonstrate good stability in both neutral and acidic environments, and their benchmark characteristics in laboratory electrodialysis cells and batch-mode dialysis experiments are similar to or superior to, commercial membranes such as Neosepta© AMX, FujiFilm© Type1, and Fumasep FAD-PET.
Collapse
Affiliation(s)
| | | | - Nidal Hilal
- New York University Abu Dhabi Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.G.); (F.E.A.)
| |
Collapse
|
6
|
Tian X, Yue D, Hou T, Xiao F, Wang Z, Cai W. Separation of Chloride and Sulfate Ions from Desulfurization Wastewater Using Monovalent Anions Selective Electrodialysis. MEMBRANES 2024; 14:73. [PMID: 38668101 PMCID: PMC11051948 DOI: 10.3390/membranes14040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
The high concentration of chloride ions in desulphurization wastewater is the primary limiting factor for its reusability. Monovalent anion selective electrodialysis (S-ED) enables the selective removal of chloride ions, thereby facilitating the reuse of desulfurization wastewater. In this study, different concentrations of NaCl and Na2SO4 were used to simulate different softened desulfurization wastewater. The effects of current density and NaCl and Na2SO4 concentration on ion flux, permselectivity (PSO42-Cl-) and specific energy consumption were studied. The results show that Selemion ASA membrane exhibits excellent permselectivity for Cl- and SO42-, with a significantly lower flux observed for SO42- compared to Cl-. Current density exerts a significant influence on ion flux; as the current density increases, the flux of SO42- also increases but at a lower rate than that of Cl-, resulting in an increase in permselectivity. When the current density reaches 25 mA/cm2, the permselectivity reaches a maximum of 50.4. The increase in NaCl concentration leads to a decrease in the SO42- flux; however, the permselectivity is reduced due to the elevated Cl-/SO42- ratio. The SO42- flux increases with the increase in Na2SO4 concentration, while the permselectivity increases with the decrease in Cl-/SO42- ratio.
Collapse
Affiliation(s)
- Xufeng Tian
- School of Environment, Tsinghua University, Beijing 100084, China; (X.T.); (D.Y.)
- Horizon (Beijing) Environmental Engineering Co., Ltd., Beijing 101299, China;
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China; (X.T.); (D.Y.)
| | - Tao Hou
- Horizon (Beijing) Environmental Engineering Co., Ltd., Beijing 101299, China;
| | - Fuyuan Xiao
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China; (F.X.); (Z.W.)
| | - Zhiping Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China; (F.X.); (Z.W.)
| | - Weibin Cai
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China; (F.X.); (Z.W.)
| |
Collapse
|
7
|
Patel SK, Lee B, Westerhoff P, Elimelech M. The potential of electrodialysis as a cost-effective alternative to reverse osmosis for brackish water desalination. WATER RESEARCH 2024; 250:121009. [PMID: 38118256 DOI: 10.1016/j.watres.2023.121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
While electrodialysis (ED) demonstrates lower energy consumption than reverse osmosis (RO) in the desalination of low salinity waters, RO continues to be the predominant technology for brackish water desalination. In this study, we probe this skewed market share and project the potential for future disruption by ED through systematic assessment of the levelized cost of water (LCOW). Using rigorous process- and economic-models, we minimize the LCOW of RO and ED systems, highlighting important tradeoffs between capital and operating expenditure for each technology. With optimized current state-of-the-art systems, we find that ED is more economical than RO for feed salinities ≤ 3 g L-1, albeit to a minor extent. Considering that RO is a highly mature technology, we focus on predicting the future potential of ED by evaluating plausible avenues for capital and operating cost reduction. Specifically, we find that reduction in the price of ion-exchange membranes (i.e., < 60 USD m-2) can ensure competitiveness with RO for feed salinities up to 5 g L-1. For higher feed salinities (≥ 5 g L-1) we reveal that the LCOW of ED may effectively be reduced by decreasing ion-exchange membrane resistance, while preserving high current efficiency. Through extensive assessment of structure-property-performance relationships, we precisely identify target membrane charge densities and diffusion coefficients which optimize the LCOW of ED, thus providing novel guidance for future membrane material development. Overall, we emphasize that with a unified approach - whereby ion-exchange membrane price is reduced and performance is enhanced - ED can become the economically preferable technology compared to RO across the entire brackish water salinity range.
Collapse
Affiliation(s)
- Sohum K Patel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT)
| | - Boreum Lee
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA; Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT).
| |
Collapse
|
8
|
Dischinger S, Miller DJ, Vermaas DA, Kingsbury RS. Unifying the Conversation: Membrane Separation Performance in Energy, Water, and Industrial Applications. ACS ES&T ENGINEERING 2024; 4:277-289. [PMID: 38357245 PMCID: PMC10862477 DOI: 10.1021/acsestengg.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
Dense polymer membranes enable a diverse range of separations and clean energy technologies, including gas separation, water treatment, and renewable fuel production or conversion. The transport of small molecular and ionic solutes in the majority of these membranes is described by the same solution-diffusion mechanism, yet a comparison of membrane separation performance across applications is rare. A better understanding of how structure-property relationships and driving forces compare among applications would drive innovation in membrane development by identifying opportunities for cross-disciplinary knowledge transfer. Here, we aim to inspire such cross-pollination by evaluating the selectivity and electrochemical driving forces for 29 separations across nine different applications using a common framework grounded in the physicochemical characteristics of the permeating and rejected solutes. Our analysis shows that highly selective membranes usually exhibit high solute rejection, rather than fast solute permeation, and often exploit contrasts in the size and charge of solutes rather than a nonelectrostatic chemical property, polarizability. We also highlight the power of selective driving forces (e.g., the fact that applied electric potential acts on charged solutes but not on neutral ones) to enable effective separation processes, even when the membrane itself has poor selectivity. We conclude by proposing several research opportunities that are likely to impact multiple areas of membrane science. The high-level perspective of membrane separation across fields presented herein aims to promote cross-pollination and innovation by enabling comparisons of solute transport and driving forces among membrane separation applications.
Collapse
Affiliation(s)
- Sarah
M. Dischinger
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Daniel J. Miller
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - David A. Vermaas
- Department
of Chemical Engineering, Delft University
of Technology, 2629HZ Delft, The
Netherlands
| | - Ryan S. Kingsbury
- Energy
Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering and the Andlinger Center for
Energy and the Environment, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
9
|
Wang R, Lin S. Membrane Design Principles for Ion-Selective Electrodialysis: An Analysis for Li/Mg Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38324772 PMCID: PMC10882969 DOI: 10.1021/acs.est.3c08956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Selective electrodialysis (ED) is a promising membrane-based process to separate Li+ from Mg2+, which is the most critical step for Li extraction from brine lakes. This study theoretically compares the ED-based Li/Mg separation performance of different monovalent selective cation exchange membranes (CEMs) and nanofiltration (NF) membranes at the coupon scale using a unified mass transport model, i.e., a solution-friction model. We demonstrated that monovalent selective CEMs with a dense surface thin film like a polyamide film are more effective in enhancing the Li/Mg separation performance than those with a loose but highly charged thin film. Polyamide film-coated CEMs when used in ED have a performance similar to that of polyamide-based NF membranes when used in NF. NF membranes, when expected to replace monovalent selective CEMs in ED for Li/Mg separation, will require a thin support layer with low tortuosity and high porosity to reduce the internal concentration polarization. The coupon-scale performance analysis and comparison provide new insights into the design of composite membranes used for ED-based selective ion-ion separation.
Collapse
Affiliation(s)
- Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| |
Collapse
|
10
|
Huang Y, Fan H, Yip NY. Mobility of Condensed Counterions in Ion-Exchange Membranes: Application of Screening Length Scaling Relationship in Highly Charged Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:836-846. [PMID: 38147509 DOI: 10.1021/acs.est.3c06068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Ion-exchange membranes (IEMs) are widely used in water, energy, and environmental applications, but transport models to accurately simulate ion permeation are currently lacking. This study presents a theoretical framework to predict ionic conductivity of IEMs by introducing an analytical model for condensed counterion mobility to the Donnan-Manning model. Modeling of condensed counterion mobility is enabled by the novel utilization of a scaling relationship to describe screening lengths in the densely charged IEM matrices, which overcame the obstacle of traditional electrolyte chemistry theories breaking down at very high ionic strength environments. Ionic conductivities of commercial IEMs were experimentally characterized in different electrolyte solutions containing a range of mono-, di-, and trivalent counterions. Because the current Donnan-Manning model neglects the mobility of condensed counterions, it is inadequate for modeling ion transport and significantly underestimated membrane conductivities (by up to ≈5× difference between observed and modeled values). Using the new model to account for condensed counterion mobilities substantially improved the accuracy of predicting IEM conductivities in monovalent counterions (to as small as within 7% of experimental values), without any adjustable parameters. Further adjusting the power law exponent of the screen length scaling relationship yielded reasonable precision for membrane conductivities in multivalent counterions. Analysis reveals that counterions are significantly more mobile in the condensed phase than in the uncondensed phase because electrostatic interactions accelerate condensed counterions but retard uncondensed counterions. Condensed counterions still have lower mobilities than ions in bulk solutions due to impedance from spatial effects. The transport framework presented here can model ion migration a priori with adequate accuracy. The findings provide insights into the underlying phenomena governing ion transport in IEMs to facilitate the rational development of more selective membranes.
Collapse
Affiliation(s)
- Yuxuan Huang
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027-6623, United States
| | - Hanqing Fan
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027-6623, United States
| | - Ngai Yin Yip
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027-6623, United States
- Columbia Water Center, Columbia University, New York, New York 10027-6623, United States
| |
Collapse
|
11
|
Mani AM, Chaudhury S, Meena G. Current Density Dependence of Transport Selectivity of Metal Ions in the Electrodriven Process across the Cation Exchange Membrane. J Phys Chem B 2023; 127:8879-8887. [PMID: 37792016 DOI: 10.1021/acs.jpcb.3c05051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Understanding the mechanisms leading to the selective transport of cations in an electrodriven process across a cation exchange membrane is important to design and control the potential gradient-based separation process. In this study, a comprehensive description of the current density (I, over a broad current regime) dependence of transport selectivity (Si) between cations of the same/different valence is presented. The role of conventional transport mechanisms such as diffusion, electromigration, and electroconvection in controlling the Si was identified theoretically as well as by multiple experimental approaches. These parameters were found to be dependent on the limiting current density (Ilim). In general, irrespective of the cations involved, Si (over Na+) decreased gradually with increasing I and then increased slowly (and saturated) after Ilim. This extent of variation of Si was heavily dependent on the charge and hydration state of the cations. At I < Ilim, both diffusion and electromigration processes contributed and, notably, the sorption selectivity outweighed the migration selectivity. At I → Ilim, diffusion was the solitary mechanism responsible for cation transport and migration selectivity was the major contributor in Si. At I > Ilim, as also validated by the Peclet numbers, the overall transport was dictated by electroconvection.
Collapse
Affiliation(s)
- Agnes Maria Mani
- Chemical Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sanhita Chaudhury
- Chemical Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Ghanshyam Meena
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
12
|
Platek-Mielczarek A, Lang J, Töpperwien F, Walde D, Scherer M, Taylor DP, Schutzius TM. Engineering Electrode Rinse Solution Fluidics for Carbon-Based Reverse Electrodialysis Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48826-48837. [PMID: 37812816 PMCID: PMC10591279 DOI: 10.1021/acsami.3c10680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Natural salinity gradients are a promising source of so-called "blue energy", a renewable energy source that utilizes the free energy of mixing for power generation. One promising blue energy technology that converts these salinity gradients directly into electricity is reverse electrodialysis (RED). Used at its full potential, it could provide a substantial portion of the world's electricity consumption. Previous theoretical and experimental works have been done on optimizing RED devices, with the latter often focusing on precious and expensive metal electrodes. However, in order to rationally design and apply RED devices, we need to investigate all related transport phenomena─especially the fluidics of salinity gradient mixing and the redox electrolyte at various concentrations, which can have complex intertwined effects─in a fully functioning and scalable system. Here, guided by fundamental electrochemical and fluid dynamics theories, we work with an iron-based redox electrolyte with carbon electrodes in a RED device with tunable microfluidic environments and study the fundamental effects of electrolyte concentration and flow rate on the potential-driven redox activity and power output. We focus on optimizing the net power output, which is the difference between the gross power output generated by the RED device and the pumping power input, needed for salinity gradient mixing and redox electrolyte reactions. We find through this holistic approach that the electrolyte concentration in the electrode rinse solution is crucial for increasing the electrical current, while the pumping power input depends nonlinearly on the membrane separation distance. Finally, from this understanding, we designed a five cell-pair (CP) RED device that achieved a net power density of 224 mW m-2 CP-1, a 60% improvement compared to the nonoptimized case. This study highlights the importance of the electrode rinse solution fluidics and composition when rationally designing RED devices based on scalable carbon-based electrodes.
Collapse
Affiliation(s)
- Anetta Platek-Mielczarek
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Johanna Lang
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Feline Töpperwien
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Dario Walde
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Muriel Scherer
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - David P. Taylor
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Thomas M. Schutzius
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
- Department
of Mechanical Engineering, University of
California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Foo ZH, Thomas JB, Heath SM, Garcia JA, Lienhard JH. Sustainable Lithium Recovery from Hypersaline Salt-Lakes by Selective Electrodialysis: Transport and Thermodynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14747-14759. [PMID: 37721998 DOI: 10.1021/acs.est.3c04472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Evaporative technology for lithium mining from salt-lakes exacerbates freshwater scarcity and wetland destruction, and suffers from protracted production cycles. Electrodialysis (ED) offers an environmentally benign alternative for continuous lithium extraction and is amenable to renewable energy usage. Salt-lake brines, however, are hypersaline multicomponent mixtures, and the impact of the complex brine-membrane interactions remains poorly understood. Here, we quantify the influence of the solution composition, salinity, and acidity on the counterion selectivity and thermodynamic efficiency of electrodialysis, leveraging 1250 original measurements with salt-lake brines that span four feed salinities, three pH levels, and five current densities. Our experiments reveal that commonly used binary cation solutions, which neglect Na+ and K+ transport, may overestimate the Li+/Mg2+ selectivity by 250% and underpredict the specific energy consumption (SEC) by a factor of 54.8. As a result of the hypersaline conditions, exposure to salt-lake brine weakens the efficacy of Donnan exclusion, amplifying Mg2+ leakage. Higher current densities enhance the Donnan potential across the solution-membrane interface and ameliorate the selectivity degradation with hypersaline brines. However, a steep trade-off between counterion selectivity and thermodynamic efficiency governs ED's performance: a 6.25 times enhancement in Li+/Mg2+ selectivity is accompanied by a 71.6% increase in the SEC. Lastly, our analysis suggests that an industrial-scale ED module can meet existing salt-lake production capacities, while being powered by a photovoltaic farm that utilizes <1% of the salt-flat area.
Collapse
Affiliation(s)
- Zi Hao Foo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John B Thomas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel M Heath
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jason A Garcia
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John H Lienhard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Rastgar M, Moradi K, Burroughs C, Hemmati A, Hoek E, Sadrzadeh M. Harvesting Blue Energy Based on Salinity and Temperature Gradient: Challenges, Solutions, and Opportunities. Chem Rev 2023; 123:10156-10205. [PMID: 37523591 DOI: 10.1021/acs.chemrev.3c00168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Greenhouse gas emissions associated with power generation from fossil fuel combustion account for 25% of global emissions and, thus, contribute greatly to climate change. Renewable energy sources, like wind and solar, have reached a mature stage, with costs aligning with those of fossil fuel-derived power but suffer from the challenge of intermittency due to the variability of wind and sunlight. This study aims to explore the viability of salinity gradient power, or "blue energy", as a clean, renewable source of uninterrupted, base-load power generation. Harnessing the salinity gradient energy from river estuaries worldwide could meet a substantial portion of the global electricity demand (approximately 7%). Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are more prominent technologies for blue energy harvesting, whereas thermo-osmotic energy conversion (TOEC) is emerging with new promise. This review scrutinizes the obstacles encountered in developing osmotic power generation using membrane-based methods and presents potential solutions to overcome challenges in practical applications. While certain strategies have shown promise in addressing some of these obstacles, further research is still required to enhance the energy efficiency and feasibility of membrane-based processes, enabling their large-scale implementation in osmotic energy harvesting.
Collapse
Affiliation(s)
- Masoud Rastgar
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Kazem Moradi
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Cassie Burroughs
- Department of Chemical & Materials Engineering, University of Alberta, 12-263 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Arman Hemmati
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Eric Hoek
- Department of Civil & Environmental Engineering, University of California Los Angeles (UCLA), Los Angeles, California 90095-1593, United States
- Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
15
|
Tekinalp Ö, Zimmermann P, Holdcroft S, Burheim OS, Deng L. Cation Exchange Membranes and Process Optimizations in Electrodialysis for Selective Metal Separation: A Review. MEMBRANES 2023; 13:566. [PMID: 37367770 DOI: 10.3390/membranes13060566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
The selective separation of metal species from various sources is highly desirable in applications such as hydrometallurgy, water treatment, and energy production but also challenging. Monovalent cation exchange membranes (CEMs) show a great potential to selectively separate one metal ion over others of the same or different valences from various effluents in electrodialysis. Selectivity among metal cations is influenced by both the inherent properties of membranes and the design and operating conditions of the electrodialysis process. The research progress and recent advances in membrane development and the implication of the electrodialysis systems on counter-ion selectivity are extensively reviewed in this work, focusing on both structure-property relationships of CEM materials and influences of process conditions and mass transport characteristics of target ions. Key membrane properties, such as charge density, water uptake, and polymer morphology, and strategies for enhancing ion selectivity are discussed. The implications of the boundary layer at the membrane surface are elucidated, where differences in the mass transport of ions at interfaces can be exploited to manipulate the transport ratio of competing counter-ions. Based on the progress, possible future R&D directions are also proposed.
Collapse
Affiliation(s)
- Önder Tekinalp
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Pauline Zimmermann
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Steven Holdcroft
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Odne Stokke Burheim
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
16
|
DuChanois RM, Mazurowski L, Fan H, Verduzco R, Nir O, Elimelech M. Precise Cation Separations with Composite Cation-Exchange Membranes: Role of Base Layer Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6331-6341. [PMID: 37023347 DOI: 10.1021/acs.est.3c00445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Separation of specific ions from water could enable recovery and reuse of essential metals and nutrients, but established membrane technologies lack the high-precision selectivity needed to facilitate a circular resource economy. In this work, we investigate whether the cation/cation selectivity of a composite cation-exchange membrane (CEM), or a thin polymer selective layer on top of a CEM, may be limited by the mass transfer resistance of the underlying CEM. In our analysis, we utilize a layer-by-layer technique to modify CEMs with a thin polymer selective layer (∼50 nm) that has previously shown high selectivity toward copper over similarly sized metals. While these composite membranes have a CuCl2/MgCl2 selectivity up to 33 times larger than unmodified CEMs in diffusion dialysis, our estimates suggest that eliminating resistance from the underlying CEM could further increase selectivity twofold. In contrast, the CEM base layer has a smaller effect on the selectivity of these composite membranes in electrodialysis, although these effects could become more pronounced for ultrathin or highly conductive selective layers. Our results highlight that base layer resistance prevents selectivity factors from being comparable across diffusion dialysis and electrodialysis, and CEMs with low resistance are necessary for providing highly precise separations with composite CEMs.
Collapse
Affiliation(s)
- Ryan M DuChanois
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
| | - Lauren Mazurowski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
| | - Hanqing Fan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Rafael Verduzco
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Oded Nir
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
| |
Collapse
|
17
|
Foo ZH, Rehman D, Bouma AT, Monsalvo S, Lienhard JH. Lithium Concentration from Salt-Lake Brine by Donnan-Enhanced Nanofiltration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6320-6330. [PMID: 37027336 DOI: 10.1021/acs.est.2c08584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Membranes offer a scalable and cost-effective approach to ion separations for lithium recovery. In the case of salt-lake brines, however, the high feed salinity and low pH of the post-treated feed have an uncertain impact on nanofiltration's selectivity. Here, we adopt experimental and computational approaches to analyze the effect of pH and feed salinity and elucidate key selectivity mechanisms. Our data set comprises over 750 original ion rejection measurements, spanning five salinities and two pH levels, collected using brine solutions that model three salt-lake compositions. Our results demonstrate that the Li+/Mg2+ selectivity of polyamide membranes can be enhanced by 13 times with acid-pretreated feed solutions. This selectivity enhancement is attributed to the amplified Donnan potential from the ionization of carboxyl and amino moieties under low solution pH. As feed salinities increase from 10 to 250 g L-1, the Li+/Mg2+ selectivity decreases by ∼43%, a consequence of weakening exclusion mechanisms. Further, our analysis accentuates the importance of measuring separation factors using representative solution compositions to replicate the ion-transport behaviors with salt-lake brine. Consequently, our results reveal that predictions of ion rejection and Li+/Mg2+ separation factors can be improved by up to 80% when feed solutions with the appropriate Cl-/SO42- molar ratios are used.
Collapse
Affiliation(s)
- Zi Hao Foo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Danyal Rehman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew T Bouma
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sebastian Monsalvo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John H Lienhard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Ahmad M, Ahmed M. Characterization and applications of ion-exchange membranes and selective ion transport through them: a review. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
19
|
Stenina I, Yurova P, Achoh A, Zabolotsky V, Wu L, Yaroslavtsev A. Improvement of Selectivity of RALEX-CM Membranes via Modification by Ceria with a Functionalized Surface. Polymers (Basel) 2023; 15:polym15030647. [PMID: 36771946 PMCID: PMC9919321 DOI: 10.3390/polym15030647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Ion exchange membranes are widely used for water treatment and ion separation by electrodialysis. One of the ways to increase the efficiency of industrial membranes is their modification with various dopants. To improve the membrane permselectivity, a simple strategy of the membrane surface modification was proposed. Heterogeneous RALEX-CM membranes were surface-modified by ceria with a phosphate-functionalized surface. Despite a decrease in ionic conductivity of the prepared composite membranes, their cation transport numbers slightly increase. Moreover, the modified membranes show a threefold increase in Ca2+/Na+ permselectivity (from 2.1 to 6.1) at low current densities.
Collapse
Affiliation(s)
- Irina Stenina
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky Prospect 31, 119991 Moscow, Russia
| | - Polina Yurova
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky Prospect 31, 119991 Moscow, Russia
| | - Aslan Achoh
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia
| | - Victor Zabolotsky
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia
| | - Liang Wu
- School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky Prospect 31, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
20
|
Mareev S, Gorobchenko A, Ivanov D, Anokhin D, Nikonenko V. Ion and Water Transport in Ion-Exchange Membranes for Power Generation Systems: Guidelines for Modeling. Int J Mol Sci 2022; 24:34. [PMID: 36613476 PMCID: PMC9820504 DOI: 10.3390/ijms24010034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Artificial ion-exchange and other charged membranes, such as biomembranes, are self-organizing nanomaterials built from macromolecules. The interactions of fragments of macromolecules results in phase separation and the formation of ion-conducting channels. The properties conditioned by the structure of charged membranes determine their application in separation processes (water treatment, electrolyte concentration, food industry and others), energy (reverse electrodialysis, fuel cells and others), and chlore-alkali production and others. The purpose of this review is to provide guidelines for modeling the transport of ions and water in charged membranes, as well as to describe the latest advances in this field with a focus on power generation systems. We briefly describe the main structural elements of charged membranes which determine their ion and water transport characteristics. The main governing equations and the most commonly used theories and assumptions are presented and analyzed. The known models are classified and then described based on the information about the equations and the assumptions they are based on. Most attention is paid to the models which have the greatest impact and are most frequently used in the literature. Among them, we focus on recent models developed for proton-exchange membranes used in fuel cells and for membranes applied in reverse electrodialysis.
Collapse
Affiliation(s)
- Semyon Mareev
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrey Gorobchenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dimitri Ivanov
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, Jean Starcky, 15, F-68057 Mulhouse, France
- Center for Genetics and Life Science, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Denis Anokhin
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Institute of Chemical Physics Problems of RAS, Acad. Semenov Av., 1, 142432 Chernogolovka, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
21
|
Prediction of equilibrium water uptake and ions diffusivities in ion-exchange membranes combining molecular dynamics and analytical models. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Interfacial interactions between polymers and selective adsorbents influence ion transport properties of boron scavenging ion-exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Eti M, Cihanoğlu A, Güler E, Gomez-Coma L, Altıok E, Arda M, Ortiz I, Kabay N. Further Development of Polyepichlorohydrin Based Anion Exchange Membranes for Reverse Electrodialysis by Tuning Cast Solution Properties. MEMBRANES 2022; 12:membranes12121192. [PMID: 36557099 PMCID: PMC9786065 DOI: 10.3390/membranes12121192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/01/2023]
Abstract
Recently, there have been several studies done regarding anion exchange membranes (AEMs) based on polyepichlorohydrin (PECH), an attractive polymer enabling safe membrane fabrication due to its inherent chloromethyl groups. However, there are still undiscovered properties of these membranes emerging from different compositions of cast solutions. Thus, it is vital to explore new membrane properties for sustainable energy generation by reverse electrodialysis (RED). In this study, the cast solution composition was easily tuned by varying the ratio of active polymer (i.e., blend ratio) and quaternary agent (i.e., excess diamine ratio) in the range of 1.07-2.00, and 1.00-4.00, respectively. The membrane synthesized with excess diamine ratio of 4.00 and blend ratio of 1.07 provided the best results in terms of ion exchange capacity, 3.47 mmol/g, with satisfactory conductive properties (area resistance: 2.4 Ω·cm2, electrical conductivity: 6.44 mS/cm) and high hydrophilicity. RED tests were performed by AEMs coupled with the commercially available Neosepta CMX cation exchange membrane (CEMs).
Collapse
Affiliation(s)
- Mine Eti
- Department of Chemical Engineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey
| | - Aydın Cihanoğlu
- Department of Chemical Engineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey
| | - Enver Güler
- Department of Chemical Engineering, Atılım University, 06830 Ankara, Turkey
| | - Lucia Gomez-Coma
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros 46, 39005 Santander, Spain
| | - Esra Altıok
- Department of Chemical Engineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey
| | - Müşerref Arda
- Department of Chemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros 46, 39005 Santander, Spain
| | - Nalan Kabay
- Department of Chemical Engineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey
| |
Collapse
|
24
|
Huang Y, Fan H, Yip NY. Influence of electrolyte on concentration-induced conductivity-permselectivity tradeoff of ion-exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Liu H, She Q. Influence of membrane structure-dependent water transport on conductivity-permselectivity trade-off and salt/water selectivity in electrodialysis: Implications for osmotic electrodialysis using porous ion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Wu I, Park RJ, Ghosh R, Kuo MC, Seifert S, Coughlin EB, Herring AM. Enhancing desalination performance by manipulating block ratios in a polyethylene-based triblock copolymer anion exchange membrane for electrodialysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Zhang X, Wang J, Zhang Z, Du X, Gao F, Hao X, Abudula A, Guan G, Liu Z, Li J. Modelling of pseudocapacitive ion adsorption of electrochemically switched ion exchange based on electroactive site concentration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Kitto D, Kamcev J. Manning condensation in ion exchange membranes: A review on ion partitioning and diffusion models. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- David Kitto
- Department of Chemical Engineering University of Michigan, North Campus Research Complex B28 Ann Arbor Michigan USA
| | - Jovan Kamcev
- Department of Chemical Engineering University of Michigan, North Campus Research Complex B28 Ann Arbor Michigan USA
- Macromolecular Science and Engineering University of Michigan, North Campus Research Complex B28 Ann Arbor Michigan USA
| |
Collapse
|
29
|
Kingsbury R, Hegde M, Wang J, Kusoglu A, You W, Coronell O. Tunable Anion Exchange Membrane Conductivity and Permselectivity via Non-Covalent, Hydrogen Bond Cross-Linking. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52647-52658. [PMID: 34705410 PMCID: PMC9043033 DOI: 10.1021/acsami.1c15474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ion exchange membranes (IEMs) are a key component of electrochemical processes that purify water, generate clean energy, and treat waste. Most conventional polymer IEMs are covalently cross-linked, which results in a challenging tradeoff relationship between two desirable properties─high permselectivity and high conductivity─in which one property cannot be changed without negatively affecting the other. In an attempt to overcome this limitation, in this work we synthesized a series of anion exchange membranes containing non-covalent cross-links formed by a hydrogen bond donor (methacrylic acid) and a hydrogen bond acceptor (dimethylacrylamide). We show that these monomers act synergistically to improve both membrane permselectivity and conductivity relative to a control membrane without non-covalent cross-links. Furthermore, we show that the hydrogen bond donor and acceptor loading can be used to tune permselectivity and conductivity relatively independently of one another, escaping the tradeoff observed in conventional membranes.
Collapse
Affiliation(s)
- Ryan Kingsbury
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Maruti Hegde
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jingbo Wang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ahmet Kusoglu
- Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wei You
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
30
|
Kamcev J. Reformulating the
permselectivity‐conductivity
tradeoff relation in
ion‐exchange
membranes. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jovan Kamcev
- Department of Chemical Engineering, Macromolecular Science and Engineering University of Michigan, North Campus Research Complex Ann Arbor Michigan USA
| |
Collapse
|
31
|
Jiang S, Sun H, Wang H, Ladewig BP, Yao Z. A comprehensive review on the synthesis and applications of ion exchange membranes. CHEMOSPHERE 2021; 282:130817. [PMID: 34091294 DOI: 10.1016/j.chemosphere.2021.130817] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Ion exchange membranes (IEMs) are undergoing prosperous development in recent years. More than 30,000 papers which are indexed by Science Citation Index Expanded (SCIE) have been published on IEMs during the past twenty years (2001-2020). Especially, more than 3000 papers are published in the year of 2020, revealing researchers' great interest in this area. This paper firstly reviews the different types (e.g., cation exchange membrane, anion exchange membrane, proton exchange membrane, bipolar membrane) and electrochemical properties (e.g., permselectivity, electrical resistance/ionic conductivity) of IEMs and the corresponding working principles, followed by membrane synthesis methods, including the common solution casting method. Especially, as a promising future direction, green synthesis is critically discussed. IEMs are extensively applied in various applications, which can be generalized into two big categories, where the water-based category mainly includes electrodialysis, diffusion dialysis and membrane capacitive deionization, while the energy-based category mainly includes reverse electrodialysis, fuel cells, redox flow battery and electrolysis for hydrogen production. These applications are comprehensively discussed in this paper. This review may open new possibilities for the future development of IEMs.
Collapse
Affiliation(s)
- Shanxue Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Bradley P Ladewig
- Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom; Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
32
|
Zou Z, Wu L, Luo T, Yan Z, Wang X. Assessment of anion exchange membrane selectivity with ionic membrane conductivity, revised with Manning's theory or the Kohlrausch's law. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
A practical approach to measuring the ion-transport number of cation-exchange membranes: Effects of junction potential and analyte concentration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Hohenadel A, Gangrade AS, Holdcroft S. Spectroelectrochemical Detection of Water Dissociation in Bipolar Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46125-46133. [PMID: 34542264 DOI: 10.1021/acsami.1c12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The potentials at which water dissociation occurs in bipolar membranes (BPM) and the relationship between water dissociation and current-voltage curve characteristics are explored using a novel spectroelectrochemical approach in which an anion exchange membrane is doped with a pH indicator. Using this method, we visually detect a pH change in the BPM resulting from OH- formed during the water dissociation reaction. The color change is measured with a UV/vis spectrometer, while electrochemical characterization of the BPM is performed simultaneously. Additional measurements were performed on BPMs with varying anion and cation exchange membrane layer thickness. Our measurements provide direct evidence of water dissociation occurring within a BPM at cross-membrane potentials below 0.5 V, within the first limiting current density region. We also show that the effects of changing bulk anion and cation exchange layer thickness is highly dependent on the permselectivity of these layers.
Collapse
Affiliation(s)
- Amelia Hohenadel
- Dept. of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | | | - Steven Holdcroft
- Dept. of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
35
|
DuChanois RM, Porter CJ, Violet C, Verduzco R, Elimelech M. Membrane Materials for Selective Ion Separations at the Water-Energy Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101312. [PMID: 34396602 DOI: 10.1002/adma.202101312] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Indexed: 06/13/2023]
Abstract
Synthetic polymer membranes are enabling components in key technologies at the water-energy nexus, including desalination and energy conversion, because of their high water/salt selectivity or ionic conductivity. However, many applications at the water-energy nexus require ion selectivity, or separation of specific ionic species from other similar species. Here, the ion selectivity of conventional polymeric membrane materials is assessed and recent progress in enhancing selective transport via tailored free volume elements and ion-membrane interactions is described. In view of the limitations of polymeric membranes, three material classes-porous crystalline materials, 2D materials, and discrete biomimetic channels-are highlighted as possible candidates for ion-selective membranes owing to their molecular-level control over physical and chemical properties. Lastly, research directions and critical challenges for developing bioinspired membranes with molecular recognition are provided.
Collapse
Affiliation(s)
- Ryan M DuChanois
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, TX, 77005, USA
| | - Cassandra J Porter
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Camille Violet
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Rafael Verduzco
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, TX, 77005, USA
- Department of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, TX, 77005, USA
| |
Collapse
|
36
|
Kim H, Choi J, Jeong N, Jung YG, Kim H, Kim D, Yang S. Correlations between Properties of Pore-Filling Ion Exchange Membranes and Performance of a Reverse Electrodialysis Stack for High Power Density. MEMBRANES 2021; 11:609. [PMID: 34436372 PMCID: PMC8400206 DOI: 10.3390/membranes11080609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
The reverse electrodialysis (RED) stack-harnessing salinity gradient power mainly consists of ion exchange membranes (IEMs). Among the various types of IEMs used in RED stacks, pore-filling ion exchange membranes (PIEMs) have been considered promising IEMs to improve the power density of RED stacks. The compositions of PIEMs affect the electrical resistance and permselectivity of PIEMs; however, their effect on the performance of large RED stacks have not yet been considered. In this study, PIEMs of various compositions with respect to the RED stack were adopted to evaluate the performance of the RED stack according to stack size (electrode area: 5 × 5 cm2 vs. 15 × 15 cm2). By increasing the stack size, the gross power per membrane area decreased despite the increase in gross power on a single RED stack. The electrical resistance of the PIEMs was the most important factor for enhancing the power production of the RED stack. Moreover, power production was less sensitive to permselectivities over 90%. By increasing the RED stack size, the contributions of non-ohmic resistances were significantly increased. Thus, we determined that reducing the salinity gradients across PIEMs by ion transport increased the non-ohmic resistance of large RED stacks. These results will aid in designing pilot-scale RED stacks.
Collapse
Affiliation(s)
- Hanki Kim
- Jeju Global Research Center, Korea Institute of Energy Research, Jeju-si 63357, Korea; (H.K.); (J.C.); (N.J.)
| | - Jiyeon Choi
- Jeju Global Research Center, Korea Institute of Energy Research, Jeju-si 63357, Korea; (H.K.); (J.C.); (N.J.)
| | - Namjo Jeong
- Jeju Global Research Center, Korea Institute of Energy Research, Jeju-si 63357, Korea; (H.K.); (J.C.); (N.J.)
| | - Yeon-Gil Jung
- School of Materials Science and Engineering, Changwon National University, Changwon-si 51140, Korea; (Y.-G.J.); (H.K.); (D.K.)
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon-si 51140, Korea
| | - Haeun Kim
- School of Materials Science and Engineering, Changwon National University, Changwon-si 51140, Korea; (Y.-G.J.); (H.K.); (D.K.)
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon-si 51140, Korea
| | - Donghyun Kim
- School of Materials Science and Engineering, Changwon National University, Changwon-si 51140, Korea; (Y.-G.J.); (H.K.); (D.K.)
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon-si 51140, Korea
| | - SeungCheol Yang
- School of Materials Science and Engineering, Changwon National University, Changwon-si 51140, Korea; (Y.-G.J.); (H.K.); (D.K.)
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon-si 51140, Korea
| |
Collapse
|
37
|
Percival SJ, Russo S, Priest C, Hill RC, Ohlhausen JA, Small LJ, Rempe SB, Spoerke ED. Bio-inspired incorporation of phenylalanine enhances ionic selectivity in layer-by-layer deposited polyelectrolyte films. SOFT MATTER 2021; 17:6315-6325. [PMID: 33982047 DOI: 10.1039/d1sm00134e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The addition of a common amino acid, phenylalanine, to a Layer-by-Layer (LbL) deposited polyelectrolyte (PE) film on a nanoporous membrane can increase its ionic selectivity over a PE film without the added amino acid. The addition of phenylalanine is inspired by detailed knowledge of the structure of the channelrhodopsins family of protein ion channels, where phenylalanine plays an instrumental role in facilitating sodium ion transport. The normally deposited and crosslinked PE films increase the cationic selectivity of a support membrane in a controllable manner where higher selectivity is achieved with thicker PE coatings, which in turn also increases the ionic resistance of the membrane. The increased ionic selectivity is desired while the increased resistance is not. We show that through incorporation of phenylalanine during the LbL deposition process, in solutions of NaCl with concentrations ranging from 0.1 to 100 mM, the ionic selectivity can be increased independently of the membrane resistance. Specifically, the addition is shown to increase the cationic transference of the PE films from 81.4% to 86.4%, an increase on par with PE films that are nearly triple the thickness while exhibiting much lower resistance compared to the thicker coatings, where the phenylalanine incorporated PE films display an area specific resistance of 1.81 Ω cm2 in 100 mM NaCl while much thicker PE membranes show a higher resistance of 2.75 Ω cm2 in the same 100 mM NaCl solution.
Collapse
Affiliation(s)
- Stephen J Percival
- Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185, USA.
| | - Sara Russo
- Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185, USA.
| | - Chad Priest
- Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185, USA.
| | - Ryan C Hill
- Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185, USA.
| | - James A Ohlhausen
- Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185, USA.
| | - Leo J Small
- Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185, USA.
| | - Susan B Rempe
- Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185, USA.
| | - Erik D Spoerke
- Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185, USA.
| |
Collapse
|
38
|
Dong F, Xu S, Wu X, Jin D, Wang P, Wu D, Leng Q. Cross-linked poly(vinyl alcohol)/sulfosuccinic acid (PVA/SSA) as cation exchange membranes for reverse electrodialysis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Krishna B A, Lindhoud S, de Vos WM. Hot-pressed polyelectrolyte complexes as novel alkaline stable monovalent-ion selective anion exchange membranes. J Colloid Interface Sci 2021; 593:11-20. [DOI: 10.1016/j.jcis.2021.02.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
|
40
|
Principles of reverse electrodialysis and development of integrated-based system for power generation and water treatment: a review. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Reverse electrodialysis (RED) is among the evolving membrane-based processes available for energy harvesting by mixing water with different salinities. The chemical potential difference causes the movement of cations and anions in opposite directions that can then be transformed into the electrical current at the electrodes by redox reactions. Although several works have shown the possibilities of achieving high power densities through the RED system, the transformation to the industrial-scale stacks remains a challenge particularly in understanding the correlation between ion-exchange membranes (IEMs) and the operating conditions. This work provides an overview of the RED system including its development and modifications of IEM utilized in the RED system. The effects of modified membranes particularly on the psychochemical properties of the membranes and the effects of numerous operating variables are discussed. The prospects of combining the RED system with other technologies such as reverse osmosis, electrodialysis, membrane distillation, heat engine, microbial fuel cell), and flow battery have been summarized based on open-loop and closed-loop configurations. This review attempts to explain the development and prospect of RED technology for salinity gradient power production and further elucidate the integrated RED system as a promising way to harvest energy while reducing the impact of liquid waste disposal on the environment.
Collapse
|
41
|
Yang K, Qin M. The Application of Cation Exchange Membranes in Electrochemical Systems for Ammonia Recovery from Wastewater. MEMBRANES 2021; 11:membranes11070494. [PMID: 34208972 PMCID: PMC8305737 DOI: 10.3390/membranes11070494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Electrochemical processes are considered promising technologies for ammonia recovery from wastewater. In electrochemical processes, cation exchange membrane (CEM), which is applied to separate compartments, plays a crucial role in the separation of ammonium nitrogen from wastewater. Here we provide a comprehensive review on the application of CEM in electrochemical systems for ammonia recovery from wastewater. Four kinds of electrochemical systems, including bioelectrochemical systems, electrochemical stripping, membrane electrosorption, and electrodialysis, are introduced. Then we discuss the role CEM plays in these processes for ammonia recovery from wastewater. In addition, we highlight the key performance metrics related to ammonia recovery and properties of CEM membrane. The limitations and key challenges of using CEM for ammonia recovery are also identified and discussed.
Collapse
Affiliation(s)
| | - Mohan Qin
- Correspondence: ; Tel.: +1-(608)-265-9733
| |
Collapse
|
42
|
Kim K, Candeago R, Rim G, Raymond D, Park AHA, Su X. Electrochemical approaches for selective recovery of critical elements in hydrometallurgical processes of complex feedstocks. iScience 2021; 24:102374. [PMID: 33997673 PMCID: PMC8091062 DOI: 10.1016/j.isci.2021.102374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Critical minerals are essential for the ever-increasing urban and industrial activities in modern society. The shift to cost-efficient and ecofriendly urban mining can be an avenue to replace the traditional linear flow of virgin-mined materials. Electrochemical separation technologies provide a sustainable approach to metal recovery, through possible integration with renewable energy, the minimization of external chemical input, as well as reducing secondary pollution. In this review, recent advances in electrochemically mediated technologies for metal recovery are discussed, with a focus on rare earth elements and other key critical materials for the modern circular economy. Given the extreme heterogeneity of hydrometallurgically-derived media of complex feedstocks, we focus on the nature of molecular selectivity in various electrochemically assisted recovery techniques. Finally, we provide a perspective on the challenges and opportunities for process intensification in critical materials recycling, especially through combining electrochemical and hydrometallurgical separation steps.
Collapse
Affiliation(s)
- Kwiyong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Riccardo Candeago
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guanhe Rim
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.,Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York, NY 10027, USA
| | - Darien Raymond
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ah-Hyung Alissa Park
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.,Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York, NY 10027, USA
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
43
|
Uliana AA, Bui NT, Kamcev J, Taylor MK, Urban JJ, Long JR. Ion-capture electrodialysis using multifunctional adsorptive membranes. Science 2021; 372:296-299. [PMID: 33859036 DOI: 10.1126/science.abf5991] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Technologies that can efficiently purify nontraditional water sources are needed to meet rising global demand for clean water. Water treatment plants typically require a series of costly separation units to achieve desalination and the removal of toxic trace contaminants such as heavy metals and boron. We report a series of robust, selective, and tunable adsorptive membranes that feature porous aromatic framework nanoparticles embedded within ion exchange polymers and demonstrate their use in an efficient, one-step separation strategy termed ion-capture electrodialysis. This process uses electrodialysis configurations with adsorptive membranes to simultaneously desalinate complex water sources and capture diverse target solutes with negligible capture of competing ions. Our methods are applicable to the development of efficient and selective multifunctional separations that use adsorptive membranes.
Collapse
Affiliation(s)
- Adam A Uliana
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ngoc T Bui
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jovan Kamcev
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Mercedes K Taylor
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Jeffrey J Urban
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jeffrey R Long
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA. .,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
44
|
Yang Y, Sun Y, Song X, Yu J. Separation of mono- and di-valent ions from seawater reverse osmosis brine using selective electrodialysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18754-18767. [PMID: 32651781 DOI: 10.1007/s11356-020-10014-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
As water scarcity has become a serious global issue, seawater reverse osmosis (SWRO) is considered as a promising technique to expand traditional water supplies. However, the reject brine from SWRO systems is still a major environmental concern. In this research, the monovalent selective electrodialysis (S-ED) was used to separate and recover one of the primary components, i.e., sodium chloride, from the SWRO brine, thereby avoiding the direct discharge of the brine and achieving the brine valorization. The permselectivity of selective ion-exchange membranes (IEMs) was elucidated by comparing with the standard IEMs in structure-property via membrane characterization techniques. Results indicated that the permselectivity of Selemion CSO membrane was attributed to the positive-charged layer with a low sulfonate/ammonium ratio of 1.28. Whereas the permselectivity of Selemion ASV membrane resulted from the highly cross-linked layer, according to the similar content of the fixed quaternary amines and the shift of the C‑N absorption peak. In addition, the effects of the current density and temperature on the membrane performance were studied, including permselectivity ([Formula: see text] and [Formula: see text]), Na+ recovery, and specific energy consumption (ESEC). Finally, the NaCl-rich brine with the total dissolved solid (TDS) value of 167.5 ± 3.3 g/L was obtained using SWRO brine with the initial TDS of 76.8 g/L. The Na+/Mg2+ mass ratio of the concentrate was 222.4, compared with the initial value of 9.7 in SWRO brine.
Collapse
Affiliation(s)
- Ye Yang
- Engineering Research Center of Resource Process Engineering, Ministry of Education, Shanghai, China
- National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuzhu Sun
- Engineering Research Center of Resource Process Engineering, Ministry of Education, Shanghai, China.
- National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Xingfu Song
- Engineering Research Center of Resource Process Engineering, Ministry of Education, Shanghai, China
- National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianguo Yu
- Engineering Research Center of Resource Process Engineering, Ministry of Education, Shanghai, China.
- National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
45
|
Wang L, Wang Z, Patel SK, Lin S, Elimelech M. Nanopore-Based Power Generation from Salinity Gradient: Why It Is Not Viable. ACS NANO 2021; 15:4093-4107. [PMID: 33497186 DOI: 10.1021/acsnano.0c08628] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, the development of nanopore-based membranes has revitalized the prospect of harvesting salinity gradient (blue) energy. In this study, we systematically analyze the energetic performance of nanopore-based power generation (NPG) at various process scales, beginning with a single nanopore, followed by a multipore membrane coupon, and ending with a full-scale system. We confirm the high power densities attainable by a single nanopore and demonstrate that, at the coupon scale and above, concentration polarization severely hinders the power density of NPG, revealing the common, yet significant, error in linearly extrapolating single-pore performance to multipore membranes. Through our consideration of concentration polarization, we also importantly show that the development of materials with exceptional nanopore properties provides limited enhancement of practical process performance. For a full-scale NPG membrane module, we find an inherent tradeoff between power density and thermodynamic energy efficiency, whereby achieving a high power density sacrifices the energy efficiency. Furthermore, we derive a simple expression for the theoretical maximum energy efficiency of NPG, showing it is solely related to the membrane selectivity (i.e., S2/2). Through this relation, it is apparent that the energy efficiency of NPG is limited to only 50% (for a completely selective membrane, i.e., S = 1), reinforcing our optimistic full-scale simulations which result in a (practical) maximum energy efficiency of 42%. Finally, we assess the net extractable energy of a full-scale NPG system which mixes river water and seawater by including the energy losses from pretreatment and pumping, revealing that the NPG process-both in its current state of development and in the case of highly optimistic performance with minimized external energy losses-is not viable for power generation.
Collapse
Affiliation(s)
- Li Wang
- Department of Chemical and Environmental Engineering, Yale University, P.O. Box 208268, New Haven, Connecticut 06520, United States
| | - Zhangxin Wang
- Department of Chemical and Environmental Engineering, Yale University, P.O. Box 208268, New Haven, Connecticut 06520, United States
| | - Sohum K Patel
- Department of Chemical and Environmental Engineering, Yale University, P.O. Box 208268, New Haven, Connecticut 06520, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, P.O. Box 208268, New Haven, Connecticut 06520, United States
| |
Collapse
|
46
|
Ma L, Gutierrez L, Verbeke R, D'Haese A, Waqas M, Dickmann M, Helm R, Vankelecom I, Verliefde A, Cornelissen E. Transport of organic solutes in ion-exchange membranes: Mechanisms and influence of solvent ionic composition. WATER RESEARCH 2021; 190:116756. [PMID: 33387949 DOI: 10.1016/j.watres.2020.116756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Ion-exchange membrane (IEM)-based processes are used in the industry or in the drinking water production to achieve selective separation. The transport mechanisms of organic solutes/micropollutants (i.e., paracetamol, clofibric acid, and atenolol) at a single-membrane level in diffusion cells were similar to that of salts (i.e., diffusion, convection, and electromigration). The presence of an equal concentration of salts at both sides of the membrane slightly decreased the transport of organics due to lower diffusion coefficients of organics in salts and the increase of hindrance and/or decrease of partitioning in the membrane phase. In the presence of a salt gradient, diffusion was the main transport mechanism for non-charged organics, while the counter-transport of salts promoted the transport of charged organics through electromigration (electroneutrality). Conversely, the co-transport of salts hindered the transport of charged organics, where diffusion was the main transport mechanism of the latter. Although convection played a role in the transport of non-charged organics, its influence on the charged solutes was minimal due to the dominant electromigration. Positron annihilation lifetime spectroscopy showed a bimodal size distribution of free-volume elements of IEMs, with both classes of free-volume elements contributing to salt transport, while larger organics can only transport through the larger class.
Collapse
Affiliation(s)
- Lingshan Ma
- Particle and Interfacial Technology Group, Ghent University, Belgium.
| | - Leonardo Gutierrez
- Particle and Interfacial Technology Group, Ghent University, Belgium; Facultad del Mar y Medio Ambiente, Universidad del Pacifico, Ecuador
| | - Rhea Verbeke
- Membrane Technology Group, Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, KU Leuven, Belgium
| | - Arnout D'Haese
- Particle and Interfacial Technology Group, Ghent University, Belgium
| | - Muhammad Waqas
- Particle and Interfacial Technology Group, Ghent University, Belgium
| | - Marcel Dickmann
- Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Germany
| | - Ricardo Helm
- Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Germany
| | - Ivo Vankelecom
- Membrane Technology Group, Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, KU Leuven, Belgium
| | - Arne Verliefde
- Particle and Interfacial Technology Group, Ghent University, Belgium
| | - Emile Cornelissen
- Particle and Interfacial Technology Group, Ghent University, Belgium; KWR Water Research Institute, Netherlands.
| |
Collapse
|
47
|
Advancing the conductivity-permselectivity tradeoff of electrodialysis ion-exchange membranes with sulfonated CNT nanocomposites. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118259] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Investigation of Itaconic Acid Separation by Operating a Commercialized Electrodialysis Unit with Bipolar Membranes. Processes (Basel) 2020. [DOI: 10.3390/pr8091031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nowadays, the merging of membrane and fermentation technologies is receiving significant attention such as in the case of itaconic acid (IA) production, which is considered as a value-added chemical. Its biotechnological production is already industrially established; however, the improvements of its fermentative and recovery steps remain topics of significant interest due to sustainable development trends. With an adequate downstream process, the total price of IA production can be reduced. For the task of IA recovery, a contemporary electro-membrane separation processes, electrodialysis with bipolar membranes (EDBM), was proposed and employed in this work. In the experiments, the laboratory-scale, commercialized EDBM unit (P EDR-Z/4x) was operated to separate IA from various model solutions compromised of IA (5–33 g/L), glucose (varied in 15–33 g/L as a residual substrate during IA fermentation) and malic acid (varied in 0–1 g/L as a realistic by-product of IA fermentation) under different initial pH (2–5) and applied potential conditions (10–30 V). Unambiguously negative effects related to the glucose and malic acid as impurities were found neither on the IA recovery ratio nor on the current efficiency, falling into the ranges of 90–97% and 74.3–98.5%, respectively. The highest IA recovery ratios of 97% and 98.5% of current efficiency were obtained with the model fermentation solution containing 33 g/L IA, 33 g/L glucose at 20 V and an initial pH of 5. However, the selective separation of IA needs further investigations with a real fermentation broth, and the findings of this research may contribute to further studies in this field.
Collapse
|
49
|
McNair R, Cseri L, Szekely G, Dryfe R. Asymmetric Membrane Capacitive Deionization Using Anion-Exchange Membranes Based on Quaternized Polymer Blends. ACS APPLIED POLYMER MATERIALS 2020; 2:2946-2956. [PMID: 32905369 PMCID: PMC7469241 DOI: 10.1021/acsapm.0c00432] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Membrane capacitive deionization (MCDI) for water desalination is an innovative technique that could help to solve the global water scarcity problem. However, the development of the MCDI field is hindered by the limited choice of ion-exchange membranes. Desalination by MCDI removes the salt (solute) from the water (solvent); this can drastically reduce energy consumption compared to traditional desalination practices such as distillation. Herein, we outline the fabrication and characterization of quaternized anion-exchange membranes (AEMs) based on polymer blends of polyethylenimine (PEI) and polybenzimidazole (PBI) that provides an efficient membrane for MCDI. Flat sheet polymer membranes were prepared by solution casting, heat treatment, and phase inversion, followed by modification to impart anion-exchange character. Scanning electron microscopy (SEM), atomic force microscopy (AFM), nuclear magnetic resonance (NMR), and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the morphology and chemical composition of the membranes. The as-prepared membranes displayed high ion-exchange capacity (IEC), hydrophilicity, permselectivity and low area resistance. Due to the addition of PEI, the high density of quaternary ammonium groups increased the IEC and permselectivity of the membranes, while reducing the area resistance relative to pristine PBI AEMs. Our PEI/PBI membranes were successfully employed in asymmetric MCDI for brackish water desalination and exhibited an increase in both salt adsorption capacity (>3×) and charge efficiency (>2×) relative to membrane-free CDI. The use of quaternized polymer blend membranes could help to achieve greater realization of industrial scale MCDI.
Collapse
Affiliation(s)
- Robert McNair
- Department
of Chemical Engineering & Analytical Science, University of Manchester, The Mill, Sackville Street, Manchester, M1 3BB, U.K.
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Levente Cseri
- Department
of Chemical Engineering & Analytical Science, University of Manchester, The Mill, Sackville Street, Manchester, M1 3BB, U.K.
| | - Gyorgy Szekely
- Department
of Chemical Engineering & Analytical Science, University of Manchester, The Mill, Sackville Street, Manchester, M1 3BB, U.K.
- Advanced
Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Robert Dryfe
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
- National
Graphene Institute, University of Manchester, Booth Street East, Manchester, M13 9PL, U.K.
- Henry
Royce Institute for Advanced Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| |
Collapse
|
50
|
Chen GQ, Wei K, Hassanvand A, Freeman BD, Kentish SE. Single and binary ion sorption equilibria of monovalent and divalent ions in commercial ion exchange membranes. WATER RESEARCH 2020; 175:115681. [PMID: 32171098 DOI: 10.1016/j.watres.2020.115681] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
The co-ion and counter-ion sorption of monovalent (Na+, K+, Cl- and NO3-) and divalent ions (Ca2+ and SO42-) in commercial Neosepta ion exchange membranes were systemically studied in both single and binary salt systems. The new generation of Neosepta cation exchange membrane (CSE) showed a significant difference in water uptake and co-ion sorption compared to the earlier generation (CMX). Use of the Manning model confirmed that there were significant differences between these membranes, with the estimated value of the Manning parameter changing from 1.0 ± 0.1 for CMX to 2.8 ± 0.5 for CSE. There were fewer differences between the two Neosepta anion exchange membranes, AMX and ASE. In single salt solutions, potassium sorbed most strongly into the cation exchange membranes, but in binary salt mixtures, calcium dominated due to Donnan exclusion at low concentrations. While these trends were expected, the sorption behaviour in the anion exchange membranes was more complex. The water uptake of both AMX and ASE was shown to be the greatest in Na2SO4 solutions. This strong water uptake was reflected in strong sorption of sulphate ions in a single salt solution. Conversely, in a binary salt mixture with NaCl, sulphate sorption fell significantly at higher concentrations. This was possibly caused by ion pairing within the solution, as well as the strongly hydrophobic nature of styrene in the charged polymer. Water uptake was lowest in NaNO3 solutions, even though sorption of the nitrate ion was comparable to that of chloride in these single salt solutions. In the binary mixture, nitrate was absorbed more strongly than chloride. These results could be due to the low surface charge density of this ion allowing it to bond more strongly with the hydrophobic polymeric backbone at the exclusion of water and other ions.
Collapse
Affiliation(s)
- G Q Chen
- Department of Chemical Engineering, The University of Melbourne, Victoria, 3010, Australia
| | - K Wei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - A Hassanvand
- Department of Chemical Engineering, The University of Melbourne, Victoria, 3010, Australia
| | - B D Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E, Dean Keeton St., Stop C0400, Austin, TX, 78712-1589, United States
| | - S E Kentish
- Department of Chemical Engineering, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|