1
|
Zhao L, Ma G. Chromatography media and purification processes for complex and super-large biomolecules: A review. J Chromatogr A 2025; 1744:465721. [PMID: 39893916 DOI: 10.1016/j.chroma.2025.465721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The biopharmaceutical industry has been one of the most dynamic industries in the world. New biopharmaceuticals are constantly developed, especially for complex and super-large biomolecules including antibodies, virus-like particles (VLPs), viral vectors, DNA, mRNA, and are very promising in drugs, vaccines, cell and gene therapy. Due to complex and unstable structures, as well as low concentration, it is very difficult to purify these complex and super-large biomolecules. Chromatography is the most widely used purification technique in bioseparation, and chromatography media is the key material. This review gives a comprehensive analysis of chromatography media and purification processes for complex and super-large biomolecules. A detailed summary of tailor-made chromatography media is first provided, including particle size and its uniformity, pore structure, spacer arm and polymer grafting, and new ligands and special separation mechanisms. Then the current choices and trends of purification processes for vaccines, VLPs, DNA, mRNA, antibodies and modified therapeutic proteins are reviewed. Finally, a brief overview of continuous biochromatography and computer-assisted chromatographic method development is provided. We hope this review will provide some useful guidance for design of chromatography media and purification of complex biopharmaceuticals.
Collapse
Affiliation(s)
- Lan Zhao
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Ma
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Pineda S, Blanco PM, Staňo R, Košovan P. Patchy Charge Distribution Affects the pH in Protein Solutions during Dialysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5387-5398. [PMID: 39964136 PMCID: PMC11887432 DOI: 10.1021/acs.langmuir.4c04942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
When using dialysis ultra- or diafiltration to purify protein solutions, a dialysis buffer in the permeate is employed to set the pH in the protein solution. Failure to achieve the target pH may cause undesired precipitation of the valuable product. However, the pH in the permeate differs from that in the retentate, which contains the proteins. Experimental optimization of the process conditions is time-consuming and expensive, while accurate theoretical predictions still pose a major challenge. Current models of dialysis account for the Donnan equilibrium, acid-base properties, and ion-protein interactions, but they neglect the patchy distribution of ionizable groups on the proteins and its impact on the solution properties. Here, we present a simple computational model of a colloidal particle with weakly acidic sites on the surface, organized in patches. This minimalistic model allows systematic variation of the relevant parameters, while simultaneously demonstrating the essential physics governing the acid-base equilibria in protein solutions. Using molecular simulations in the Grand-Reaction ensemble, we demonstrate that interactions between ionizable sites significantly affect the nanoparticle charge and thereby contribute to pH difference between the permeate and retentate. We show that the significance of this contribution increases if the ionizable sites are located on a smaller patch. Protein solutions are governed by the same physics as our simple model. In this context, our results show that models which aim to quantitatively predict the pH in protein solutions during dialysis need to account for the patchy distribution of ionizable sites on the protein surface.
Collapse
Affiliation(s)
- Sebastian
P. Pineda
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Pablo M. Blanco
- Department
of Physics, NTNU - Norwegian University
of Science and Technology, NO-7491 Trondheim, Norway
| | - Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse 5, 1090 Vienna, Austrias
| | - Peter Košovan
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| |
Collapse
|
3
|
Mostafavi AH, Chu LK, Qian X, Smelko JP, Zhang D, Zydney A, Wickramasinghe SR. Enhancing the Performance of Tangential Flow Microfiltration for Bioreactor Clarification. MEMBRANES 2025; 15:78. [PMID: 40137030 PMCID: PMC11943935 DOI: 10.3390/membranes15030078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
Tangential flow microfiltration is easily adapted for batch and continuous bioreactor clarification. The permeate can be introduced directly to the subsequent capture step. However, the commercial use of tangential flow filtration (TFF) is limited by membrane fouling, leading to a compromised performance. Here, we explored the possibility of reducing membrane fouling by integrating a hydrocyclone as the primary clarification operation. The overflow from the hydrocyclone was introduced directly as the feed to the microfiltration module. Chinese hamster ovary cells were used as the feed stream to investigate the feasibility of this integrated process. A range of cell viabilities from 0% (cell lysate) to 96% were investigated. The cell densities ranged from 0.9 to 10 million cells per mL. Two commercially available hollow fiber microfiltration membranes were used, an essentially symmetric membrane and a reverse asymmetric membrane where the more open support structure faced the feed stream. The reverse asymmetric membrane was more resistant to fouling in the absence of an integrated hydrocyclone. Integrating a hydrocyclone led to a reduction in the flux decline for the symmetric membrane, but did not affect the performance of the reverse asymmetric membrane. The careful choice of membrane morphology and pore size is important when designing an integrated process.
Collapse
Affiliation(s)
- Amir Hossein Mostafavi
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.H.M.); (D.Z.)
| | - Liang-Kai Chu
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (L.-K.C.); (A.Z.)
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - John Paul Smelko
- Biogen, 5000 Davis Drive, Research Triangle Park, NC 27709, USA;
| | - Da Zhang
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.H.M.); (D.Z.)
| | - Andrew Zydney
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (L.-K.C.); (A.Z.)
| | - Sumith Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.H.M.); (D.Z.)
| |
Collapse
|
4
|
Mandalika AS, Runge TM, Ragauskas AJ. Membrane Separations in Biomass Processing. Chempluschem 2025; 90:e202400497. [PMID: 39466007 PMCID: PMC11826140 DOI: 10.1002/cplu.202400497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 10/29/2024]
Abstract
The development of integrated biorefineries and the greater utilization of biomass resources to reduce dependence on fossil fuel-derived products require research emphasis not just on conversion strategies but also on improving separations associated with biorefining. A significant roadblock towards developing biorefineries is the lack of effective separation techniques evidenced by the relative deficiency of literature in this area. Additionally, high conversion yields may only be realized if effective separations generate feedstock of sufficient purity - this makes research into biomass conversion strategies all the more critical. In this review, the challenges associated with biomass separations are discussed, followed by an overview of the most appropriate separation strategies for processing biomass. One of the unit operations most appealing for biorefining, membrane separations (MS), is then considered along with a review of the recent literature utilizing this technique in biomass processing.
Collapse
Affiliation(s)
- Anurag S. Mandalika
- Assistant Research Professor, Center for Energy StudiesLouisiana State University93 S Quad Dr, 1115Baton RougeLA 70803
| | - Troy M. Runge
- Professor of Biological Systems Engineering and CALS Associate Dean for Research, 2121 Wisconsin Energy Institute BuildingUniversity of Wisconsin-Madison1552 University AveMadisonWI 53726
| | - Arthur J. Ragauskas
- Governor's Chair for Biorefining, Joint Institute for Biological Sciences, Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RoadOak RidgeTN 37831
| |
Collapse
|
5
|
Ren J, Way A, Wang C. Enhancing aggregate reduction using anion exchange hybrid filter in an immunocytokine diabody fusion protein purification process. J Chromatogr A 2025; 1739:465526. [PMID: 39586220 DOI: 10.1016/j.chroma.2024.465526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Significant aggregation challenges were encountered during the manufacturing processing of an immunocytokine diabody fusion protein. To mitigate this issue and reduce aggregates in the purification process, a variety of depth filters were evaluated for harvest clarification and post-Protein A intermediate filtration. Emphaze™ AEX Hybrid Purifier, a fully synthetic quaternary amine functionalized anion exchange (AEX) nonwoven filter, was found to be particularly effective in removing aggregates during both harvest clarification and post-Protein A intermediate filtration steps. Pre-filters were identified to improve Emphaze filter throughput and further enhance aggregate reduction during the harvest clarification. The effect of operating pH and feed stream aggregate level were evaluated for Emphaze filter for the post-Protein A intermediate filtration, and the aggregate binding capacity of the Emphaze filter was assessed to optimize the aggregate removal. The study also elucidated the aggregate binding mechanism, which was primarily attributed to electrostatic interaction. Overall, the implementation of Emphaze filter resulted in greater than 20 % aggregates reduction, which significantly reduced the impurity clearance workload on the downstream chromatography steps, enabling process simplification while achieving desirable product quality for the diabody fusion protein.
Collapse
Affiliation(s)
- Jian Ren
- Purification Development, Biologics Development & Launch (BDL), Product Development Science & Technology (PDS&T), AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Alexander Way
- Purification Development, Biologics Development & Launch (BDL), Product Development Science & Technology (PDS&T), AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Chen Wang
- Analytical Development, BDL, PDS&T, AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA; Previously Purification Development, BDL, PDS&T, AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| |
Collapse
|
6
|
Namila F, Zhou T, Wang L, Jin M. Virus Filtration Development for Adeno-Associated Virus-Based Gene Therapy Products. Biotechnol J 2025; 20:e202400636. [PMID: 39778063 DOI: 10.1002/biot.202400636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Adeno-associated virus (AAV) vectors have become a leading platform for gene delivery. A major portion of gene therapy currently in clinical trials are AAV-based for a wide range of diseases. A commonly used method for AAV production is by mammalian or insect cell culture, with or without added viruses to introduce needed genetic elements for AAV production. There are potential risks of virus contamination from the production cell line, process residuals, or adventitious contamination in the production of biotherapeutics, including AAV-based gene therapy products; therefore, it is imperative to demonstrate that the drug substance manufacturing process has sufficient capability to clear process-related or adventitious viruses. In the AAV-based gene therapy manufacturing process, cell lysis, affinity chromatography, and ion exchange chromatography steps are often effective to inactivate or remove viruses. To increase the viral clearance robustness, virus filtration (VF) is increasingly recommended by regulatory agencies for gene therapy products as a dedicated viral clearance step in the downstream purification process. In the current study, two commercially available virus filters were evaluated in the context of AAV manufacturing. The filter throughput and process yield were assessed under different operational modes. Virus clearance performance was evaluated by spiking in Adenovirus type 5 (Adv-5) and Simian virus 40 (SV-40). The viral filters assessed in this study demonstrated manufacturable throughputs, acceptable process yields, and robust virus clearance capabilities for viruses greater than 40 nm.
Collapse
Affiliation(s)
- Fnu Namila
- Drug Substance Development, Spark Therapeutics, Inc., Philadelphia, USA
| | - Tianyi Zhou
- Drug Substance Development, Spark Therapeutics, Inc., Philadelphia, USA
| | - Lu Wang
- Drug Substance Development, Spark Therapeutics, Inc., Philadelphia, USA
| | - Mi Jin
- Drug Substance Development, Spark Therapeutics, Inc., Philadelphia, USA
| |
Collapse
|
7
|
Labisch JJ, Evangelopoulou M, Schleuß T, Pickl A. Investigating Ultrafiltration Membranes and Operation Modes for Improved Lentiviral Vector Processing. Eng Life Sci 2025; 25:e202400057. [PMID: 39801560 PMCID: PMC11717145 DOI: 10.1002/elsc.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/15/2024] [Accepted: 11/30/2024] [Indexed: 01/16/2025] Open
Abstract
The demand for lentiviral vectors (LVs) as tools for ex vivo gene therapies is ever-increasing. Despite their promising applications, challenges in LV production remain largely due to the fragile envelope, which challenges the maintenance of vector stability. Thus, downstream processing optimization to enhance efficiency, yield, and product quality is necessary. This study investigated the influence of membrane types and filtration devices during ultrafiltration (UF). Nine different membrane materials consisting of polyethersulfone (PES), regenerated cellulose, or Hydrosart, with distinct molecular weight cutoffs, were evaluated in stirred cells, centrifugal ultrafilters, and crossflow cassettes. The evaluation was based on the ability to retain infectious LV particles and remove impurities. The analysis revealed that a reinforced 100 kDa PES and a 300 kDa Hydrosart membrane had the best overall ability to concentrate infectious LVs and remove DNA, especially when operated in a stirred cell. Challenges were seen in the nonoptimized crossflow cassette process, where infectious LV recovery was generally lower compared to other devices. We demonstrated that membrane material and filtration device have a direct impact on the efficiency of LV UF.
Collapse
Affiliation(s)
| | - Maria Evangelopoulou
- Lab Essentials Applications DevelopmentSartoriusGöttingenGermany
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Tobias Schleuß
- Ultrafiltration Membrane TechnologySartoriusGöttingenGermany
| | - Andreas Pickl
- Lab Essentials Applications DevelopmentSartoriusGöttingenGermany
| |
Collapse
|
8
|
Willis LF, Kapur N, Radford SE, Brockwell DJ. Biophysical Analysis of Therapeutic Antibodies in the Early Development Pipeline. Biologics 2024; 18:413-432. [PMID: 39723199 PMCID: PMC11669289 DOI: 10.2147/btt.s486345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
The successful progression of therapeutic antibodies and other biologics from the laboratory to the clinic depends on their possession of "drug-like" biophysical properties. The techniques and the resultant biophysical and biochemical parameters used to characterize their ease of manufacture can be broadly defined as developability. Focusing on antibodies, this review firstly discusses established and emerging biophysical techniques used to probe the early-stage developability of biologics, aimed towards those new to the field. Secondly, we describe the inter-relationships and redundancies amongst developability assays and how in silico methods aid the efficient deployment of developability to bring a new generation of cost-effective therapeutic proteins from bench to bedside more quickly and sustainably.
Collapse
Affiliation(s)
- Leon F Willis
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nikil Kapur
- School of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
9
|
Chen M, Ren M, Zhu M, Zhang H, Chen T, Zhang Y, Yang S. Effect of degree of polymerization on regenerated cellulose ultrafiltration membrane performance through ZnCl 2/AlCl 3 aqueous solvent system. Carbohydr Polym 2024; 345:122557. [PMID: 39227096 DOI: 10.1016/j.carbpol.2024.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
The development of a direct method for preparing regenerated cellulose (RC) ultrafiltration membranes from cellulose is urgently needed. In this study, refined cotton was used as the raw material to successfully prepare RC ultrafiltration membranes at room temperature using a ZnCl2/AlCl3 solvent system combined with a nonsolvent-induced phase separation (NIPS) method. This solvent system effectively degrades cellulose, producing RC ultrafiltration membranes with varying degrees of polymerization (DP). The research results indicate that reducing the DP of cellulose significantly decreases the viscosity of the solution, facilitating the formation of an asymmetric, finger-like pore structures in the membrane. Furthermore, a decrease in DP slightly enlarges the surface pore size and significantly thickens the dense layer. At a DP of 250, the water flux of the DP250-ET membrane reached 630 L·m-2·h-1·bar-1, with a molecular weight cut-off (MWCO) of ~300 kDa, enabling efficient separation of viruses (LRV > 3.91) and IgG. The exposure of more hydroxy groups on the RC enhances the membrane's hydrophilicity, indicated by a water contact angle (WCA) of 39.5°. Compared to commercial polyethersulfone (PES) membranes, the DP250-ET membrane exhibited lower protein adsorption and excellent anti-fouling performance in practical applications (FRR > 80 %). Overall, this work confirms the significant potential of the eco-friendly ZnCl2/AlCl3 solvent system in the fabrication of RC ultrafiltration membranes, where the structure and performance of the membrane can be tailored by adjusting the DP of cellulose.
Collapse
Affiliation(s)
- Ming Chen
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengyu Ren
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Manyao Zhu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haichuan Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianya Chen
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yong Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Xiangshan Knitting Institute, Zhejiang Sci-Tech University, Xiangshan 315700, China
| | - Shujuan Yang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Xiangshan Knitting Institute, Zhejiang Sci-Tech University, Xiangshan 315700, China
| |
Collapse
|
10
|
Wang R, Liu H, Tang Z, Zhu H, Liu H, Guo R, Song Z, Xu H, Li B, Li G, Zhang Y. Effect of the Total Saponins of Bupleurum chinense DC. Water Extracts Following Ultrafiltration Pretreatment on Macroporous Resin Adsorption. Molecules 2024; 29:5153. [PMID: 39519795 PMCID: PMC11547492 DOI: 10.3390/molecules29215153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Macroporous resin is an efficient separation technology that plays a crucial role in the separation and purification of traditional Chinese medicine (TCM). However, the application of macroporous resins in TCM pharmaceuticals is hindered by serious fouling caused by the complex materials used in TCM. This study examines the impact of ultrafiltration (UF) membrane technology on the macroporous resin adsorption behavior of TCM extracts. In this paper, Bupleurum chinense DC. (B. chinense) water extracts were included as an example to study the effect of UF pretreatment on the macroporous resin adsorption of total saponins. The study results indicated that the adsorption of total saponins constituents from the water extracts of B. chinense on the macroporous resin followed the pseudo-second-order kinetic model and the Langmuir model. The thermodynamic parameters of adsorption, including enthalpy changes and Gibbs free energies, were negative, while entropy changes were positive. These results demonstrated that the total saponin components form a monolayer adsorption layer by spontaneous thermal adsorption on the macroporous resin, and that the adsorption rate is not determined by the rate of intraparticle diffusion. Following treatment with a UF membrane with an average molecular weight cut-off of 50 kDa, the protein, starch, pectin, tannin, and other impurities in the water extracts of B. chinense were reduced, while the total saponin content was retained at 82.32%. The adsorption kinetic model of the saponin constituents on the macroporous resin remained unchanged and was consistent with both the second-order kinetic model and the Langmuir model; the adsorption rate of the second-order kinetic model increased by 1.3 times and in the Langmuir model at 25 °C, the adsorption performance improved by 1.16 times compared to the original extracts. This study revealed that UF technology as a pretreatment method can reduce the fouling of macroporous resin by TCM extracts and improve the adsorption performance of macroporous resin.
Collapse
Affiliation(s)
- Ruihong Wang
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- Shaanxi University Engineering Research Center for the Research & Application of Membrane Technology for the Green Manufacturing of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Hongbo Liu
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- Shaanxi University Engineering Research Center for the Research & Application of Membrane Technology for the Green Manufacturing of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Zhishu Tang
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (B.L.); (Y.Z.)
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huan Liu
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- Shaanxi University Engineering Research Center for the Research & Application of Membrane Technology for the Green Manufacturing of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Ran Guo
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- Shaanxi University Engineering Research Center for the Research & Application of Membrane Technology for the Green Manufacturing of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Zhongxing Song
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- Shaanxi University Engineering Research Center for the Research & Application of Membrane Technology for the Green Manufacturing of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Hongbo Xu
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- Shaanxi University Engineering Research Center for the Research & Application of Membrane Technology for the Green Manufacturing of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Bo Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (B.L.); (Y.Z.)
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guolong Li
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- Shaanxi University Engineering Research Center for the Research & Application of Membrane Technology for the Green Manufacturing of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Yue Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (B.L.); (Y.Z.)
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
11
|
Buckland B, Sanyal G, Ranheim T, Pollard D, Searles JA, Behrens S, Pluschkell S, Josefsberg J, Roberts CJ. Vaccine process technology-A decade of progress. Biotechnol Bioeng 2024; 121:2604-2635. [PMID: 38711222 DOI: 10.1002/bit.28703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 05/08/2024]
Abstract
In the past decade, new approaches to the discovery and development of vaccines have transformed the field. Advances during the COVID-19 pandemic allowed the production of billions of vaccine doses per year using novel platforms such as messenger RNA and viral vectors. Improvements in the analytical toolbox, equipment, and bioprocess technology have made it possible to achieve both unprecedented speed in vaccine development and scale of vaccine manufacturing. Macromolecular structure-function characterization technologies, combined with improved modeling and data analysis, enable quantitative evaluation of vaccine formulations at single-particle resolution and guided design of vaccine drug substances and drug products. These advances play a major role in precise assessment of critical quality attributes of vaccines delivered by newer platforms. Innovations in label-free and immunoassay technologies aid in the characterization of antigenic sites and the development of robust in vitro potency assays. These methods, along with molecular techniques such as next-generation sequencing, will accelerate characterization and release of vaccines delivered by all platforms. Process analytical technologies for real-time monitoring and optimization of process steps enable the implementation of quality-by-design principles and faster release of vaccine products. In the next decade, the field of vaccine discovery and development will continue to advance, bringing together new technologies, methods, and platforms to improve human health.
Collapse
Affiliation(s)
- Barry Buckland
- National Institute for Innovation in Manufacturing Biopharmaceuticals, University of Delaware, Newark, Delaware, USA
| | - Gautam Sanyal
- Vaccine Analytics, LLC, Kendall Park, New Jersey, USA
| | - Todd Ranheim
- Advanced Analytics Core, Resilience, Chapel Hill, North Carolina, USA
| | - David Pollard
- Sartorius, Corporate Research, Marlborough, Massachusetts, USA
| | | | - Sue Behrens
- Engineering and Biopharmaceutical Processing, Keck Graduate Institute, Claremont, California, USA
| | - Stefanie Pluschkell
- National Institute for Innovation in Manufacturing Biopharmaceuticals, University of Delaware, Newark, Delaware, USA
| | - Jessica Josefsberg
- Merck & Co., Inc., Process Research & Development, Rahway, New Jersey, USA
| | - Christopher J Roberts
- National Institute for Innovation in Manufacturing Biopharmaceuticals, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
12
|
Ghosh R. A Carrier Phase Ultrafiltration and Backflow Recovery Technique for Purification of Biological Macromolecules. MEMBRANES 2024; 14:188. [PMID: 39330529 PMCID: PMC11433950 DOI: 10.3390/membranes14090188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
A simple carrier phase based ultrafiltration technique that is akin to liquid chromatography and is suitable for medium-to-large volume sample preparation in the laboratory is discussed in this paper. A membrane module was integrated with a liquid chromatography system in a "plug and play" mode for ease of sample handling, and recovery of species retained by the membrane. The sample injector and pump were used for feed injection and for driving ultrafiltration, while the sensors and detectors were used for real-time monitoring of the separation process. The concentration of retained species was enriched by utilizing controlled concentration polarization. The recovery of the retained and enriched species was enhanced by backflow of carrier phase through the membrane using appropriate combination of valves. The backflow of carrier phase also cleaned the membrane and limited the extent of membrane fouling. Proof-of-concept of the proposed technique was provided by conducting different types of protein ultrafiltration experiments. The technique was shown to be suitable for carrying out protein fractionation, desalting, buffer exchange and concentration enrichment. Adoption of this approach is likely to make ultrafiltration easier to use for non-specialized users in biological research laboratories. Other advantages include enhanced product recovery, significant reduction in the number of diavolumes of buffer needed for conducting desalting and buffer exchange, minimal membrane fouling and the potential for repeated use of the same module for multiple separation cycles.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| |
Collapse
|
13
|
Hou G, Li Y, Cui X, Zhao B, Liu L, Zhang Y, Yuan H, Zhang L. Electric Field Assisted Tangential Flow Filtration Device for Highly Effective Isolation of Bioactive Small Extracellular Vesicles from Cell Culture Medium. Anal Chem 2024; 96:13345-13351. [PMID: 39120011 DOI: 10.1021/acs.analchem.4c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Small extracellular vesicles (sEVs) are proven to hold great promise for diverse therapeutic and diagnostic applications. However, batch preparation of sEVs with high purity and bioactivity is a prerequisite for their clinical translations. Herein, we present an electric field assisted tangential flow filtration system (E-TFF), which integrates size-based filtration with electrophoretic migration-based separation to synergistically achieve the isolation of high-quality sEVs from cell culture medium. Compared with the gold-standard ultracentrifugation (UC) method, E-TFF not only improved the purity of sEVs by 1.4 times but also increased the yield of sEVs by 15.8 times. Additionally, the entire isolation process of E-TFF was completed within 1 h, about one-fourth of the time taken by UC. Furthermore, the biological activity of sEVs isolated by E-TFF was verified by co-incubation of sEVs derived from human umbilical cord mesenchymal stem cells (hUCMSCs) with HT22 mouse hippocampal neuronal cells exposed to amyloid-β (Aβ). The results demonstrated that the sEVs isolated by E-TFF exhibited a significant neuroprotective effect. Overall, the E-TFF platform provides a promising and robust strategy for batch preparation of high-quality sEVs, opening up a broad range of opportunities for cell-free therapy and precision medicine.
Collapse
Affiliation(s)
- Guoshan Hou
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilan Li
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Technology, Analysis & Testing Center, Beijing 102488, China
| | - Xulian Cui
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning 110001, China
| | - Baofeng Zhao
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lukuan Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yukui Zhang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiming Yuan
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Perry C, Mujahid N, Takeuchi Y, Rayat ACME. Insights into product and process related challenges of lentiviral vector bioprocessing. Biotechnol Bioeng 2024; 121:2466-2481. [PMID: 37526313 DOI: 10.1002/bit.28498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023]
Abstract
Lentiviral vectors (LVs) are used in advanced therapies to transduce recipient cells for long term gene expression for therapeutic benefit. The vector is commonly pseudotyped with alternative viral envelope proteins to improve tropism and is selected for enhanced functional titers. However, their impact on manufacturing and the success of individual bioprocessing unit operations is seldom demonstrated. To the best of our knowledge, this is the first study on the processability of different Lentiviral vector pseudotypes. In this work, we compared three envelope proteins commonly pseudotyped with LVs across manufacturing conditions such as temperature and pump flow and across steps common to downstream processing. We have shown impact of filter membrane chemistry on vector recoveries with differing envelopes during clarification and observed complete vector robustness in high shear manufacturing environments using ultra scale-down technologies. The impact of shear during membrane filtration in a tangential flow filtration-mimic showed the benefit of employing higher shear rates, than currently used in LV production, to increase vector recovery. Likewise, optimized anion exchange chromatography purification in monolith format was determined. The results contradict a common perception that lentiviral vectors are susceptible to shear or high salt concentration (up to 1.7 M). This highlights the prospects of improving LV recovery by evaluating manufacturing conditions that contribute to vector losses for specific production systems.
Collapse
Affiliation(s)
- Christopher Perry
- Department of Biochemical Engineering, University College London, London, UK
- Division of Infection and Immunology, University College London, London, UK
- Biotherapeutics and Advanced Therapies, Scientific Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, UK
| | - Noor Mujahid
- Department of Biochemical Engineering, University College London, London, UK
| | - Yasu Takeuchi
- Division of Infection and Immunology, University College London, London, UK
- Biotherapeutics and Advanced Therapies, Scientific Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, UK
| | - Andrea C M E Rayat
- Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
15
|
Lavoie J, Fan J, Pourdeyhimi B, Boi C, Carbonell RG. Advances in high-throughput, high-capacity nonwoven membranes for chromatography in downstream processing: A review. Biotechnol Bioeng 2024; 121:2300-2317. [PMID: 37256765 DOI: 10.1002/bit.28457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Nonwoven membranes are highly engineered fibrous materials that can be manufactured on a large scale from a wide range of different polymers, and their surfaces can be modified using a large variety of different chemistries and ligands. The fiber diameters, surface areas, pore sizes, total porosities, and thicknesses of the nonwoven mats can be carefully controlled, providing many opportunities for creative approaches for the development of novel membranes with unique properties to meet the needs of the future of downstream processing. Fibrous membranes are already finding use in ultrafiltration, microfiltration, depth filtration, and, more recently, in membrane chromatography for product capture and impurity removal. This article summarizes the various methods of manufacturing nonwoven fabrics, and the many methods available for the modification of the fiber surfaces. It also reviews recent studies focused on the use of nonwoven fabric devices in membrane chromatography and provides some perspectives on the challenges that need to be overcome to increase binding capacities, decrease residence times, and reduce pressure drops so that eventually they can replace resin column chromatography in downstream process operations.
Collapse
Affiliation(s)
- Joseph Lavoie
- Biomanufacturing Training and Education Center, NC State University, Raleigh, North Carolina, USA
| | - Jinxin Fan
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
| | - Behnam Pourdeyhimi
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
- Nonwovens Institute, NC State University, Raleigh, North Carolina, USA
| | - Cristiana Boi
- Biomanufacturing Training and Education Center, NC State University, Raleigh, North Carolina, USA
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
- Department of Civil, Chemical, Environmental, and Materials Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Ruben G Carbonell
- Biomanufacturing Training and Education Center, NC State University, Raleigh, North Carolina, USA
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
- National Institute for Innovation for Manufacturing Biopharmaceuticals (NIIMBL), University of Delaware, Newark, Delaware, USA
| |
Collapse
|
16
|
Zhang D, Wickramasinghe SR, Zydney AL, Smelko JP, Loman A, Wheeler A, Qian X. Proteomic analysis of host cell protein fouling during bioreactor harvesting. Biotechnol Prog 2024; 40:e3453. [PMID: 38477450 DOI: 10.1002/btpr.3453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Chinese hamster ovary (CHO) cells are among the most common cell lines used for therapeutic protein production. Membrane fouling during bioreactor harvesting is a major limitation for the downstream purification of therapeutic proteins. Host cell proteins (HCP) are the most challenging impurities during downstream purification processes. The present work focuses on identification of HCP foulants during CHO bioreactor harvesting using reverse asymmetrical commercial membrane BioOptimal™ MF-SL. In order to investigate foulants and fouling behavior during cell clarification, for the first time a novel backwash process was developed to effectively elute almost all the HCP and DNA from the fouled membrane filter. The isoelectric points (pIs) and molecular weights (MWs) of major HCP in the bioreactor harvest and fouled on the membrane were successfully characterized using two-dimensional gel electrophoresis (2D SDS-PAGE). In addition, a total of 8 HCP were identified using matrix-assisted laser desorption/ionization-mass spectroscopy (MALDI-MS). The majority of these HCP are enzymes or associated with exosomes, both of which can form submicron-sized particles which could lead to the plugging of the filters.
Collapse
Affiliation(s)
- Da Zhang
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - S Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - John P Smelko
- Biogen, Research Triangle Park, Durham, North Carolina, USA
| | - Abdullah Loman
- Biogen, Research Triangle Park, Durham, North Carolina, USA
| | - April Wheeler
- Asahi Kasei Bioprocess American, Glenview, Illinois, USA
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
17
|
Zhang Y, Madabhushi S, Tang T, Raza H, Busch DJ, Zhao X, Ormes J, Xu S, Moroney J, Jiang R, Lin H, Liu R. Contributions of Chinese hamster ovary cell derived extracellular vesicles and other cellular materials to hollow fiber filter fouling during perfusion manufacturing of monoclonal antibodies. Biotechnol Bioeng 2024; 121:1674-1687. [PMID: 38372655 DOI: 10.1002/bit.28674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Hollow fiber filter fouling is a common issue plaguing perfusion production process for biologics therapeutics, but the nature of filter foulant has been elusive. Here we studied cell culture materials especially Chinese hamster ovary (CHO) cell-derived extracellular vesicles in perfusion process to determine their role in filter fouling. We found that the decrease of CHO-derived small extracellular vesicles (sEVs) with 50-200 nm in diameter in perfusion permeates always preceded the increase in transmembrane pressure (TMP) and subsequent decrease in product sieving, suggesting that sEVs might have been retained inside filters and contributed to filter fouling. Using scanning electron microscopy and helium ion microscopy, we found sEV-like structures in pores and on foulant patches of hollow fiber tangential flow filtration filter (HF-TFF) membranes. We also observed that the Day 28 TMP of perfusion culture correlated positively with the percentage of foulant patch areas. In addition, energy dispersive X-ray spectroscopy-based elemental mapping microscopy and spectroscopy analysis suggests that foulant patches had enriched cellular materials but not antifoam. Fluorescent staining results further indicate that these cellular materials could be DNA, proteins, and even adherent CHO cells. Lastly, in a small-scale HF-TFF model, addition of CHO-specific sEVs in CHO culture simulated filter fouling behaviors in a concentration-dependent manner. Based on these results, we proposed a mechanism of HF-TFF fouling, in which filter pore constriction by CHO sEVs is followed by cake formation of cellular materials on filter membrane.
Collapse
Affiliation(s)
- Yixiao Zhang
- Bioprocess Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Sri Madabhushi
- Bioprocess Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Tiffany Tang
- Bioprocess Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Hassan Raza
- Bioprocess Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - David J Busch
- Bioprocess Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Xi Zhao
- Sterile and Specialty Products, Pharmaceutical Science & Clinical Supply, Merck & Co., Inc., Rahway, New Jersey, USA
| | - James Ormes
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Sen Xu
- Bioprocess Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Joseph Moroney
- Bioprocess Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Rubin Jiang
- Bioprocess Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Henry Lin
- Bioprocess Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Ren Liu
- Bioprocess Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
18
|
Röcker D, Dietmann K, Nägler L, Su X, Fraga-García P, Schwaminger SP, Berensmeier S. Design and characterization of an electrochemically-modulated membrane chromatography device. J Chromatogr A 2024; 1718:464733. [PMID: 38364620 DOI: 10.1016/j.chroma.2024.464733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Membrane separations offer a compelling alternative to traditional chromatographic methods by overcoming mass transport limitations. We introduce an additional degree of freedom in modulating membrane chromatography by using metalized membranes in a potential-driven process. Investigating the impact of a gold coating on membrane characteristics, the sputtered gold layer enhances the surface conductivity with stable electrochemical behavior. However, this comes at the expense of reduced permeability, wettability, and static binding capacity (∼ 474 µg g-1 of maleic acid). The designed device displayed a homogenous flow distribution, and the membrane electrodes exhibit predominantly capacitive behavior during potential application. Modulating the electrical potential during the adsorption and desorption phase strongly influenced the binding and elution behavior of anion-exchange membranes. Switching potentials between ±1.0 V vs. Ag/AgCl induces desorption, confirming the process principle. Elution efficiency reaches up to 58 % at -1.0 V vs. Ag/AgCl in the desorption phase without any alteration of the mobile phase. Increasing the potential perturbation ranging from +1.0 V to -1.0 V vs. Ag/AgCl resulted in reduced peak width and improved elution behavior, demonstrating the feasibility of electrochemically-modulated membrane chromatography. The developed process has great potential as a gentle and sustainable separation step in the biotechnological and chemical industry.
Collapse
Affiliation(s)
- Dennis Röcker
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany; Munich Institute for Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, Garching 85748, Germany
| | - Katharina Dietmann
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany
| | - Larissa Nägler
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Paula Fraga-García
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany
| | - Sebastian P Schwaminger
- Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria; BioTechMed-Graz, Mozartgasse 12/II, Graz 8010, Austria.
| | - Sonja Berensmeier
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany; Munich Institute for Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, Garching 85748, Germany.
| |
Collapse
|
19
|
Li Z, Chen J, Martinez-Fonts K, Rauscher M, Rivera S, Welsh J, Kandula S. Cationic polymer precipitation for enhanced impurity removal in downstream processing. Biotechnol Bioeng 2023. [PMID: 37148495 DOI: 10.1002/bit.28416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Precipitation can be used for the removal of impurities early in the downstream purification process of biologics, with the soluble product remaining in the filtrate through microfiltration. The objective of this study was to examine the use of polyallylamine (PAA) precipitation to increase the purity of product via higher host cell protein removal to enhance polysorbate excipient stability to enable a longer shelf life. Experiments were performed using three monoclonal antibodies (mAbs) with different properties of isoelectric point and IgG subclass. High throughput workflows were established to quickly screen precipitation conditions as a function of pH, conductivity and PAA concentrations. Process analytical tools (PATs) were used to evaluate the size distribution of particles and inform the optimal precipitation condition. Minimal pressure increase was observed during depth filtration of the precipitates. The precipitation was scaled up to 20L size and the extensive characterization of precipitated samples after protein A chromatography showed >75% reduction of host cell protein (HCP) concentrations (by ELISA), >90% reduction of number of HCP species (by mass spectrometry), and >99.8% reduction of DNA. The stability of polysorbate containing formulation buffers for all three mAbs in the protein A purified intermediates was improved at least 25% after PAA precipitation. Mass spectrometry was used to obtain additional understanding of the interaction between PAA and HCPs with different properties. Minimal impact on product quality and <5% yield loss after precipitation were observed while the residual PAA was <9 ppm. These results expand the toolbox in downstream purification to solve HCP clearance issues for programs with purification challenges, while also providing important insights into the integration of precipitation-depth filtration and the current platform process for the purification of biologics.
Collapse
Affiliation(s)
- Zhao Li
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Justin Chen
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Kirby Martinez-Fonts
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Michael Rauscher
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Shannon Rivera
- Analytical Research and Development Mass Spectrometry, Merck & Co., Inc., Rahway, New Jersey, USA
| | - John Welsh
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Sunitha Kandula
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
20
|
Shirataki H, Wickramasinghe SR. Modeling virus filtration based on a multilayer membrane morphology and pore size distribution. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Suh D, Kim M, Lee C, Baek Y. Virus filtration in biopharmaceutical downstream processes: key factors and current limitations. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2143379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dongwoo Suh
- School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process (ICP), Seoul National University (SNU), Gwanak-gu, Republic of Korea
| | - Mina Kim
- Department of Biotechnology, Institute of Basic Science, Sungshin Women’s University, Seoul, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process (ICP), Seoul National University (SNU), Gwanak-gu, Republic of Korea
| | - Youngbin Baek
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| |
Collapse
|
22
|
Alavijeh HN, Baltus RE. Can Hindered Transport Models for Rigid Spheres Predict the Rejection of Single Stranded DNA from Porous Membranes? MEMBRANES 2022; 12:1099. [PMID: 36363653 PMCID: PMC9694696 DOI: 10.3390/membranes12111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In this paper, predictions from a theoretical model describing the rejection of a rigid spherical solute from porous membranes are compared to experimental results for a single stranded DNA (ssDNA) with 60 thymine nucleotides. Experiments were conducted with different pore size track-etched membranes at different transmembrane pressures and different NaCl concentrations. The model includes both hydrodynamic and electrostatic solute-pore wall interactions; predictions were made using different size parameters for the ssDNA (radius of gyration, hydrodynamic radius, and root mean square end-to-end distance). At low transmembrane pressures, experimental results are in good agreement with rejection predictions made using the hard sphere model for the ssDNA when the solute size is described using its root mean square end-to-end distance. When the ssDNA size is characterized using the radius of gyration or the hydrodynamic radius, the hard sphere model under-predicts rejection. Not surprisingly, the model overestimates ssDNA rejection at conditions where flow induced elongation of the DNA is expected. The results from this study are encouraging because they mean that a relatively simple hindered transport model can be used to estimate the rejection of a small DNA from porous membranes.
Collapse
Affiliation(s)
- Hossein Nouri Alavijeh
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904-4259, USA
| | - Ruth E. Baltus
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699-5705, USA
| |
Collapse
|
23
|
|
24
|
Jiang J, Ma B, Yang C, Duan X, Tang Q. Fabrication of anti-fouling and photocleaning PVDF microfiltration membranes embedded with N-TiO2 photocatalysts. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Fan J, Barbieri E, Shastry S, Menegatti S, Boi C, Carbonell RG. Purification of Adeno-Associated Virus (AAV) Serotype 2 from Spodoptera frugiperda (Sf9) Lysate by Chromatographic Nonwoven Membranes. MEMBRANES 2022; 12:membranes12100944. [PMID: 36295703 PMCID: PMC9606886 DOI: 10.3390/membranes12100944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/02/2023]
Abstract
The success of adeno-associated virus (AAV)-based therapeutics in gene therapy poses the need for rapid and efficient processes that can support the growing clinical demand. Nonwoven membranes represent an ideal tool for the future of virus purification: owing to their small fiber diameters and high porosity, they can operate at high flowrates while allowing full access to target viral particles without diffusional limitations. This study describes the development of nonwoven ion-exchange membrane adsorbents for the purification of AAV2 from an Sf9 cell lysate. A strong anion-exchange (AEX) membrane was developed by UV grafting glycidyl methacrylate on a polybutylene terephthalate nonwoven followed by functionalization with triethylamine (TEA), resulting in a quaternary amine ligand (AEX-TEA membrane). When operated in bind-and-elute mode at a pH higher than the pI of the capsids, this membrane exhibited a high AAV2 binding capacity (9.6 × 1013 vp·mL-1) at the residence time of 1 min, and outperformed commercial cast membranes by isolating AAV2 from an Sf9 lysate with high productivity (2.4 × 1013 capsids·mL-1·min-1) and logarithmic reduction value of host cell proteins (HCP LRV ~ 1.8). An iminodiacetic acid cation-exchange nonwoven (CEX-IDA membrane) was also prepared and utilized at a pH lower than the pI of capsids to purify AAV2 in a bind-and-elute mode, affording high capsid recovery and impurity removal by eluting with a salt gradient. To further increase purity, the CEX-IDA and AEX-TEA membranes were utilized in series to purify the AAV2 from the Sf9 cell lysate. This membrane-based chromatography process also achieved excellent DNA clearance and a recovery of infectivity higher that that reported using ion-exchange resin chromatography.
Collapse
Affiliation(s)
- Jinxin Fan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Shriarjun Shastry
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
| | - Cristiana Boi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
- Department of Civil, Chemical Environmental and Materials Engineering, DICAM, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Ruben G. Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
- National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), Newark, DE 19711, USA
| |
Collapse
|
26
|
Messerian KO, Zverev A, Kramarczyk JF, Zydney AL. Pressure-dependent fouling behavior during sterile filtration of mRNA-containing lipid nanoparticles. Biotechnol Bioeng 2022; 119:3221-3229. [PMID: 35906785 DOI: 10.1002/bit.28200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/11/2022]
Abstract
The COVID-19 pandemic has generated growing interest in the development of mRNA-based vaccines and therapeutics. However, the size and properties of the lipid nanoparticles (LNPs) used to deliver the nucleic acids can lead to unique phenomena during manufacturing that are not typical of other biologics. The objective of this study was to develop a more fundamental understanding of the factors controlling the performance of sterile filtration of mRNA-LNPs. Experimental filtration studies were performed with a Moderna mRNA-LNP solution using a commercially available dual-layer polyethersulfone sterile filter, the Sartopore 2 XLG. Unexpectedly, increasing the transmembrane pressure (TMP) from 2 to 20 psi provided more than a two-fold increase in filter capacity. Also surprisingly, the effective resistance of the fouled filter decreased with increasing TMP, in contrast to the pressure-independent behavior expected for an incompressible media and the increase in resistance typically seen for a compressible fouling deposit. The mRNA-LNPs appear to foul the dual-layer filter by blocking the pores in the downstream sterilizing-grade membrane layer, as demonstrated both by scanning electron microscopy (SEM) and derivative analysis of filtration data collected for the two layers independently. These results provide important insights into the mechanisms governing the filtration of mRNA-LNP vaccines and therapeutics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kevork Oliver Messerian
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802
| | | | | | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802
| |
Collapse
|
27
|
Mashiyama Y, Hasunuma Y, Fujimori A. Correlation between Chirality and Spherical Particle Formation Related to the Loss of Function of Thixotropic Additive Molecules. ChemistrySelect 2022. [DOI: 10.1002/slct.202200918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuki Mashiyama
- Graduate School of Science and Engineering Saitama University, 255 Shimo-okubo, Sakura-ku Saitama 338-8570 Japan
| | - Yuka Hasunuma
- Faculty of Engineering Saitama University, 255 Shimo-okubo, Sakura-ku Saitama 338-8570 Japan
| | - Atsuhiro Fujimori
- Graduate School of Science and Engineering Saitama University, 255 Shimo-okubo, Sakura-ku Saitama 338-8570 Japan
| |
Collapse
|
28
|
Cheng P, Huang P, Ji C, Jia X, Guo Q, Xia M, Cheng Q, Xu J, Liu K, Wang D. An EVOH nanofibrous sterile membrane with a robust and antifouling surface for high-performance sterile filtration via glutaraldehyde crosslinking and a plasma-assisted process. SOFT MATTER 2022; 18:4991-5000. [PMID: 35758290 DOI: 10.1039/d2sm00578f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Constructing a sterile membrane with a robust and antifouling surface is a powerful means to improve the sterile filtration efficiency of sterile membranes. In this work, a robust EVOH nanofibrous sterile membrane was facilely fabricated by the method of in situ crosslinking with glutaraldehyde and surface plasma treatment. The resultant EVOH nanofibrous sterile membrane possessed a carboxylated-crosslinked surface, with high hydrophilicity, which generated high chemical stability, high-temperature steam resistance, and an ultrahigh antifouling performance against bovine serum albumin, ribonucleic acid and nanoparticle pollutants. Moreover, the membrane also exhibited a reasonably high primary water permeance (4522.2 LMH bar-1 at 0.2 MPa), as well as an absolute interception rate (100%) of Escherichia coli, Staphylococcus aureus cells and Brevundimonas diminuta superior to the state-of-the-art sterile membrane. Moreover, the modified membrane packed syringe-driven filter presented 100% interception (LRV ≥ 7) to Brevundimonas diminuta and high permeation flux (from 10.8 to 41.8 L·h-1) in a wide operating pressure range of 0.1 MPa to 0.6 MPa, indicating its potential in real bio-separation applications. This work provides a facile strategy for the preparation of a high-performance sterile membrane for biological drug product sterilization.
Collapse
Affiliation(s)
- Pan Cheng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Peng Huang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Cancan Ji
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Xiaodan Jia
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Qihao Guo
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Ming Xia
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Qin Cheng
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Jia Xu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Ke Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Dong Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
29
|
Samaras JJ, Micheletti M, Ding W. Transformation of Biopharmaceutical Manufacturing Through Single-Use Technologies: Current State, Remaining Challenges, and Future Development. Annu Rev Chem Biomol Eng 2022; 13:73-97. [PMID: 35700527 DOI: 10.1146/annurev-chembioeng-092220-030223] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-use technologies have transformed conventional biopharmaceutical manufacturing, and their adoption is increasing rapidly for emerging applications like antibody-drug conjugates and cell and gene therapy products. These disruptive technologies have also had a significant impact during the coronavirus disease 2019 pandemic, helping to advance process development to enable the manufacturing of new monoclonal antibody therapies and vaccines. Single-use systems provide closed plug-and-play solutions and enable process intensification and continuous processing. Several challenges remain, providing opportunities to advance single-use sensors and their integration with single-use systems, to develop novel plastic materials, and to standardize design for interchangeability. Because the industry is changing rapidly, a holistic analysis of the current single-use technologies is required, with a summary of the latest advancements in materials science and the implementation of these technologies in end-to-end bioprocesses.
Collapse
Affiliation(s)
- Jasmin J Samaras
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Martina Micheletti
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Weibing Ding
- Manufacturing Science & Technology, GSK, King of Prussia, Pennsylvania, USA;
| |
Collapse
|
30
|
van Lente JJ, Baig MI, de Vos WM, Lindhoud S. Biocatalytic membranes through aqueous phase separation. J Colloid Interface Sci 2022; 616:903-910. [DOI: 10.1016/j.jcis.2022.02.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 12/31/2022]
|
31
|
Kapavarapu MSRS, Ma Y, Vasudevan S, Chew JW. Economic Analysis of Membrane-Based Separation of Biocatalyst: Mode of Operation and Stage Configuration. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- MSR Sridhar Kapavarapu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Yunqiao Ma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Suraj Vasudevan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Singapore Membrane Technology Centre, Nanyang Environmental and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|
32
|
Abrao-Nemeir I, Zaki O, Meyer N, Lepoitevin M, Torrent J, Janot JM, Balme S. Combining ionic diode, resistive pulse and membrane for detection and separation of anti-CD44 antibody. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Ouimet JA, Xu J, Flores‐Hansen C, Phillip WA, Boudouris BW. Design Considerations for Next‐Generation Polymer Sorbents: From Polymer Chemistry to Device Configurations. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan Aubuchon Ouimet
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Jialing Xu
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Carsten Flores‐Hansen
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
| | - William A. Phillip
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Bryan W. Boudouris
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
- Charles D. Davidson School of Chemical Engineering Purdue University West Lafayette Indiana 47907 United States
| |
Collapse
|
34
|
Taylor N, Ma W(J, Kristopeit A, Wang SC, Zydney AL. Enhancing the performance of sterile filtration for viral vaccines and model nanoparticles using an appropriate prefilter. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Radu ER, Voicu SI. Functionalized Hemodialysis Polysulfone Membranes with Improved Hemocompatibility. Polymers (Basel) 2022; 14:1130. [PMID: 35335460 PMCID: PMC8954096 DOI: 10.3390/polym14061130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/02/2022] Open
Abstract
The field of membrane materials is one of the most dynamic due to the continuously changing requirements regarding the selectivity and the upgradation of the materials developed with the constantly changing needs. Two membrane processes are essential at present, not for development, but for everyday life-desalination and hemodialysis. Hemodialysis has preserved life and increased life expectancy over the past 60-70 years for tens of millions of people with chronic kidney dysfunction. In addition to the challenges related to the efficiency and separative properties of the membranes, the biggest challenge remained and still remains the assurance of hemocompatibility-not affecting the blood during its recirculation outside the body for 4 h once every two days. This review presents the latest research carried out in the field of functionalization of polysulfone membranes (the most used polymer in the preparation of membranes for hemodialysis) with the purpose of increasing the hemocompatibility and efficiency of the separation process itself with a decreasing impact on the body.
Collapse
Affiliation(s)
- Elena Ruxandra Radu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
36
|
Kawka K, Wilton AN, Redmond EJ, Medina MFC, Lichty BD, Ghosh R, Latulippe DR. Comparison of the performance of anion exchange membrane materials for adenovirus purification using laterally-fed membrane chromatography. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
37
|
Tanudjaja HJ, Ng AQQ, Chew JW. Mechanistic insights into the membrane fouling mechanism during ultrafiltration of high-concentration proteins via in-situ electrical impedance spectroscopy (EIS). J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Arshad F, Aubry C, Zou L. Highly Permeable MoS 2 Nanosheet Porous Membrane for Organic Matter Removal. ACS OMEGA 2022; 7:2419-2428. [PMID: 35071929 PMCID: PMC8772329 DOI: 10.1021/acsomega.1c06480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 05/14/2023]
Abstract
MoS2 nanosheets were synthesized by a bottom-up green chemical process where l-cysteine was used as a sulfur precursor. With specific concentrations, molar ratio of reactants, and pre-mixing conditions, MoS2 nanosheets of 200-300 nm in size and 4.2 nm in average thickness were successfully obtained. Porous membranes were then prepared by depositing the MoS2 nanosheet suspension on a 0.1 μm pore size poly(vinylidene difluoride) membrane filter in a multiple batch procedure. The membrane deposited with 12 batches of MoS2 nanosheets achieved 93.78% removal of bovine serum albumin. Acid red removal of 95.65% was also achieved after the second filtration pass. The porous MoS2 nanosheet membrane also demonstrated a high water flux of 182 ± 2.0 L/(m2 h). This result overcame the trade-off between selectivity and permeability faced by polymeric ultrafiltration membranes. The MoS2 nanosheets as building blocks formed not only intersheet slit pores with a narrow half-width to restrict the passage of organic molecules but also macro-channels allowing easy passage of water. The assembled MoS2 nanosheet membrane delivered promising separation of protein molecules and a high flux, attributing to its porous nanostructure, and could be a potential membrane for various water applications.
Collapse
Affiliation(s)
- Fathima Arshad
- Department
of Civil Infrastructure and Environment Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Cyril Aubry
- Department
of Research Laboratories Operations, Khalifa
University of Science and Technology, Abu Dhabi 127788, United
Arab Emirates
| | - Linda Zou
- Department
of Civil Infrastructure and Environment Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
39
|
de Assis DA, Machado C, Matte C, Ayub MAZ. High Cell Density Culture of Dairy Propionibacterium sp. and Acidipropionibacterium sp.: A Review for Food Industry Applications. FOOD BIOPROCESS TECH 2022; 15:734-749. [PMID: 35069966 PMCID: PMC8761093 DOI: 10.1007/s11947-021-02748-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022]
Abstract
The dairy bacteria Propionibacterium sp. and Acidipropionibacterium sp. are versatile and potentially probiotic microorganisms showing outstanding functionalities for the food industry, such as the production of propionic acid and vitamin B12 biosynthesis. They are the only food grade microorganisms able to produce vitamin B12. However, the fermentation batch process using these bacteria present some bioprocess limitations due to strong end-product inhibition, cells slow-growing rates, low product titer, yields and productivities, which reduces the bioprocess prospects for industrial applications. The high cell density culture (HCDC) bioprocess system is known as an efficient approach to overcome most of those problems. The main techniques applied to achieve HCDC of dairy Propionibacterium are the fed-batch cultivation, cell recycling, perfusion, extractive fermentation, and immobilization. In this review, the techniques available and reported to achieve HCDC of Propionibacterium sp. and Acidipropionibacterium sp. are discussed, and the advantages and drawbacks of this system of cultivation in relation to biomass formation, vitamin B12 biosynthesis, and propionic acid production are evaluated.
Collapse
Affiliation(s)
- Dener Acosta de Assis
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| | - Camille Machado
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| | - Carla Matte
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| |
Collapse
|
40
|
Johnson SA, Chen S, Bolton G, Chen Q, Lute S, Fisher J, Brorson K. Virus filtration: A Review of Current and Future Practices in Bioprocessing. Biotechnol Bioeng 2021; 119:743-761. [PMID: 34936091 DOI: 10.1002/bit.28017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/06/2022]
Abstract
For drug products manufactured in mammalian cells, safety assurance practices are needed during production to assure that the final medicinal product is safe from the potential risk of viral contamination. Virus filters provide viral retention for a range of viruses through robust, largely size-based retention mechanism. Therefore, a virus filtration step is commonly utilized in a well-designed recombinant therapeutic protein purification process and is a key component in an overall strategy to minimize the risks of adventitious and endogenous viral particles during the manufacturing of biotechnology products. This review summarizes the history of virus filtration, currently available virus filters and prefilters, and virus filtration integrity test methods and study models. There is also discussion of current understanding and gaps with an eye toward future trends and emerging filtration technologies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sarah A Johnson
- Office of Biotechnology Products, CDER, FDA 10903 New Hampshire Ave., Silver Spring, Maryland, 20903
| | - Shuang Chen
- NGM Biopharmaceuticals Inc., 333 Oyster Point Blvd., South San Francisco, CA, 94080
| | - Glen Bolton
- Amgen Inc., 360 Binney Street, Cambridge, MA, 02142
| | - Qi Chen
- Genentech Inc. One DNA Way,, South San Francisco, CA, 94080
| | - Scott Lute
- Office of Biotechnology Products, CDER, FDA 10903 New Hampshire Ave., Silver Spring, Maryland, 20903
| | - John Fisher
- Genentech Inc. One DNA Way,, South San Francisco, CA, 94080
| | - Kurt Brorson
- Parexel International., 275 Grove Street Suite 101C, Newton, MA, 02466
| |
Collapse
|
41
|
Johnson TF, Jones K, Iacoviello F, Turner S, Jackson NB, Zourna K, Welsh JH, Shearing PR, Hoare M, Bracewell DG. Liposome Sterile Filtration Characterization via X-ray Computed Tomography and Confocal Microscopy. MEMBRANES 2021; 11:membranes11110905. [PMID: 34832134 PMCID: PMC8620169 DOI: 10.3390/membranes11110905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Two high resolution, 3D imaging techniques were applied to visualize and characterize sterilizing grade dual-layer filtration of liposomes, enabling membrane structure to be related with function and performance. Two polyethersulfone membranes with nominal retention ratings of 650 nm and 200 nm were used to filter liposomes of an average diameter of 143 nm and a polydispersity index of 0.1. Operating conditions including differential pressure were evaluated. X-ray computed tomography at a pixel size of 63 nm was capable of resolving the internal geometry of each membrane. The respective asymmetry and symmetry of the upstream and downstream membranes could be measured, with pore network modeling used to identify pore sizes as a function of distance through the imaged volume. Reconstructed 3D digital datasets were the basis of tortuous flow simulation through each porous structure. Confocal microscopy visualized liposome retention within each membrane using fluorescent dyes, with bacterial challenges also performed. It was found that increasing pressure drop from 0.07 MPa to 0.21 MPa resulted in differing fluorescent retention profiles in the upstream membrane. These results highlighted the capability for complementary imaging approaches to deepen understanding of liposome sterilizing grade filtration.
Collapse
Affiliation(s)
- Thomas F. Johnson
- Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK; (T.F.J.); (M.H.)
| | - Kyle Jones
- Pall Corporation 5 Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, UK; (K.J.); (S.T.); (N.B.J.); (K.Z.); (J.H.W.)
| | - Francesco Iacoviello
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (F.I.); (P.R.S.)
| | - Stephen Turner
- Pall Corporation 5 Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, UK; (K.J.); (S.T.); (N.B.J.); (K.Z.); (J.H.W.)
| | - Nigel B. Jackson
- Pall Corporation 5 Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, UK; (K.J.); (S.T.); (N.B.J.); (K.Z.); (J.H.W.)
| | - Kalliopi Zourna
- Pall Corporation 5 Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, UK; (K.J.); (S.T.); (N.B.J.); (K.Z.); (J.H.W.)
| | - John H. Welsh
- Pall Corporation 5 Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, UK; (K.J.); (S.T.); (N.B.J.); (K.Z.); (J.H.W.)
| | - Paul R. Shearing
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (F.I.); (P.R.S.)
| | - Mike Hoare
- Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK; (T.F.J.); (M.H.)
| | - Daniel G. Bracewell
- Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK; (T.F.J.); (M.H.)
- Correspondence: ; Tel.: +44-20-7679-2374
| |
Collapse
|
42
|
Kilmartin CP, Ouimet JA, Dowling AW, Phillip WA. Staged Diafiltration Cascades Provide Opportunities to Execute Highly Selective Separations. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cara P. Kilmartin
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jonathan Aubuchon Ouimet
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Alexander W. Dowling
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William A. Phillip
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
43
|
Effect of Polyphenylsulfone and Polysulfone Incompatibility on the Structure and Performance of Blend Membranes for Ultrafiltration. MATERIALS 2021; 14:ma14195740. [PMID: 34640136 PMCID: PMC8510054 DOI: 10.3390/ma14195740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022]
Abstract
This study deals with the modification of polyphenylsulfone ultrafiltration membranes by introduction of an incompatible polymer polysulfone to the polyphenylsulfone casting solution to improve the permeability. The correlation between properties of the blend polyphenylsulfone/polysulfone solutions and porous anisotropic membranes for ultrafiltration prepared from these solutions was revealed. The blend polyphenylsulfone/polysulfone solutions were investigated using a turbidity spectrum method, optical microscopy and measurements of dynamic viscosity and turbidity. The structure of the prepared blend flat sheet membranes was studied using scanning electron microscopy. Membrane separation performance was investigated in the process of ultrafiltration of human serum albumin buffered solutions. It was found that with the introduction of polysulfone to the polyphenylsulfone casting solution in N-methyl-2-pyrrolidone the size of supramolecular particles significantly increases with the maximum at (40–60):(60:40) polyphenylsulfone:polysulfone blend ratio from 76 nm to 196–354 nm. It was shown that polyphenylsulfone/polysulfone blend solutions, unlike the solutions of pristine polymers, are two-phase systems (emulsions) with the maximum droplet size and highest degree of polydispersity at polyphenylsulfone/polysulfone blend ratios (30–60):(70–40). Pure water flux of the blend membranes passes through a maximum in the region of the most heterogeneous structure of the casting solution, which is associated with the imposition of a polymer-polymer phase separation on the non-solvent induced phase separation upon membrane preparation. The application of polyphenylsulfone/polysulfone blends as membrane-forming polymers and polyethylene glycol (Mn = 400 g·mol−1) as a pore-forming agent to the casting solutions yields the formation of ultrafiltration membranes with high membrane pure water flux (270 L·m−2·h−1 at 0.1MPa) and human serum albumin rejection of 85%.
Collapse
|
44
|
Structure design and performance study on filtration-adsorption bifunctional blood purification membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Rudolph G, Al-Rudainy B, Thuvander J, Jönsson AS. Comprehensive Analysis of Foulants in an Ultrafiltration Membrane Used for the Treatment of Bleach Plant Effluent in a Sulfite Pulp Mill. MEMBRANES 2021; 11:201. [PMID: 33809290 PMCID: PMC7998859 DOI: 10.3390/membranes11030201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/21/2022]
Abstract
Fouling is a major obstacle in the introduction of membrane processes in new applications in the pulping industry. Due to the complex nature of the feed solutions, complementary analysis methods are usually needed to identify the substances involved. Four different methods were used for the comprehensive analysis of a membrane removed from an ultrafiltration plant treating alkaline bleach plant effluent in a sulfite pulp mill to identify the substances causing fouling. Magnesium was detected both on the membrane surface and in the nonwoven membrane backing and a small amount of polysaccharides was detected after acid hydrolysis of the fouled membrane. This study provides information on foulants, which can be used to improve processing conditions and cleaning protocols and thus the membrane performance in pulp mill separation processes. It also provides an overview of the usefulness of various analytical methods.
Collapse
Affiliation(s)
- Gregor Rudolph
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (B.A.-R.); (A.-S.J.)
| | - Basel Al-Rudainy
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (B.A.-R.); (A.-S.J.)
| | - Johan Thuvander
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden;
| | - Ann-Sofi Jönsson
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (B.A.-R.); (A.-S.J.)
| |
Collapse
|