1
|
Wu F, Li Q, Zhang Z, Zhou X, Pang R. A review on antifouling polyamide reverse osmosis membrane for seawater desalination. ENVIRONMENTAL RESEARCH 2025; 274:121305. [PMID: 40054552 DOI: 10.1016/j.envres.2025.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 05/04/2025]
Abstract
Reverse osmosis (RO) membrane technology is well-established in desalination. Aromatic polyamide (PA) thin-film composite (TFC) membrane dominates the commercial RO membrane market due to its high-salt rejection, water flux, and excellent chemical, thermal, and mechanical stabilization. However, membrane fouling is a common problem that has seriously hindered the wide application of RO membrane technology. This paper reviewed the PA RO membrane fouling types, and membrane fouling factors. Antifouling measures for RO membranes were summarized, including pretreatment, periodic cleaning, and modification of the support layer and PA layer. The future development of antifouling RO membranes was clarified.
Collapse
Affiliation(s)
- Feixiang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China; Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215100, China
| | - Qi Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China; Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215100, China
| | - Zhien Zhang
- Department of Geosciences and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Xingfu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Ruizhi Pang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China; Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215100, China.
| |
Collapse
|
2
|
Eltahan A, Ismail N, Khalil M, Ebrahim S, Soliman M, Nassef E, Morsy A. Advanced fabrication and characterization of thin-film composite polyamide membranes for superior performance in reverse osmosis desalination. Sci Rep 2025; 15:15131. [PMID: 40301458 PMCID: PMC12041524 DOI: 10.1038/s41598-025-97871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
Thin film composite (TFC) polyamide membranes are crucial for efficient reverse osmosis (RO) desalination, offering high selectivity and permeability. This study investigates the fabrication and optimization of TFC membranes on polysulfone supports, focusing on their structural, morphological, and performance properties for enhanced desalination efficiency using the phase inversion technique, a method that enables precise control over membrane structure. Key fabrication parameters including the concentrations of m-phenylene diamine (MPD) and trimesoyl chloride (TMC), and the immersion times for both monomers were systematically varied to investigate their impact on membrane hydrophilicity, morphology, and structure. Hydrophilicity was assessed via contact angle measurements, Scanning electron microscopy was used to characterize the morphology (SEM), and structural properties were analyzed by Fourier-transform infrared spectroscopy (FTIR). The RO membranes' desalination performance was evaluated by measuring water flux and salt rejection in a cross-flow setup with saline water (10,000 ppm) under controlled processing conditions. Results indicated that variations in MPD and TMC concentrations, as well as immersion times, significantly influenced membrane hydrophilicity and pore structure, affecting water flux and salt rejection. The maximum salt rejection and water flux for the prepared thin film composite reverse osmosis membrane were 98.6% and 19.1 L/m2 h, respectively obtained at m-phenylenediamine concentration of 2 wt% and tri mesoyl chloride concentration of 0.1 wt/v reacted for 1 min. The study provides insights into optimizing TFC-RO membrane fabrication parameters to enhance desalination efficiency, highlighting the potential of these membranes for high-performance RO desalination applications.
Collapse
Affiliation(s)
- Ayman Eltahan
- Department of Physics, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Marwa Khalil
- Composites and Nano Structured Materials Research Dept., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Shaker Ebrahim
- Materials Science Department, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, El-Shatby, PO Box 832, Alexandria, Egypt
| | - Moataz Soliman
- Materials Science Department, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, El-Shatby, PO Box 832, Alexandria, Egypt
| | - Ehssan Nassef
- Department of Petrochemicals, Faculty of Engineering, Pharos University in Alexandria; Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
| | - Ashraf Morsy
- Materials Science Department, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, El-Shatby, PO Box 832, Alexandria, Egypt.
- Department of Petrochemicals, Faculty of Engineering, Pharos University in Alexandria; Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt.
| |
Collapse
|
3
|
Zhang Y, Cui G, Song X, Li J, Li J, Du J, Chen Y, Li R, Man J. Lubricating Copolymer Brushes Achieving Excellent Antiadhesion and Antibacterial Performance through Hydration and Electrostatic Repulsion Effects. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7406-7423. [PMID: 39854028 DOI: 10.1021/acsami.4c19644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Interventional catheters have been widely applied in diagnostics, therapeutics, and other biomedical areas. The complications caused by catheter-related bacterial infection, venous thrombosis, and vascular abrasion have become the main reasons for the failure of interventional therapy. In this study, polyacrylamide/poly(acrylic acid) lubricating copolymer brushes were constructed on the surface of catheters and efficiently resisted the adhesion of blood components and bacteria through hydration and electrostatic repulsion effects. The copolymer brushes are surface-independently constructed on various substrates through a three-step method. The brushes achieve effective lubricating, antiadhesion, and antibacterial properties. Particularly, the 2PAM/6PAA brushes exhibited the most excellent overall performance with a 94% reduction in coefficient of friction, 87.2 and 78.3% reduction in adhesion levels of bovine serum albumin and bovine blood fibrin, and 92.3, 97.1, and 93.5% reduction in adhesion levels of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The 2PAM/6PAA brushes significantly reduced the adhesion of blood components in the in vitro blood circulation test, demonstrating its practical application efficacy. Additionally, experiments and molecular dynamics simulations were used to reveal the antiadhesion mechanism of the brushes. Thus, the copolymer brushes in this work show great potential in the antithrombotic, antibacterial, and lubrication modification for medical devices contacting with blood.
Collapse
Affiliation(s)
- Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Guanghui Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Jun Du
- Beijing Tsingke Biotech Co., Ltd., Building 3, Unit W, No. 105 Jinghai third Road, Beijing E-Town, Beijing 100176, P.R. China
| | - Yuanyuan Chen
- Beijing Tsingke Biotech Co., Ltd., Building 3, Unit W, No. 105 Jinghai third Road, Beijing E-Town, Beijing 100176, P.R. China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| |
Collapse
|
4
|
Zheng F, Zhang H, Boo C, Wang M, Tan J, Ye S, Lin S, Wang Y. High-Performance Nanofiltration Membrane with Dual Resistance to Gypsum Scaling and Biofouling for Enhanced Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16656-16668. [PMID: 39223699 DOI: 10.1021/acs.est.4c07334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nanofiltration (NF) technology is pivotal for ensuring a sustainable and reliable supply of clean water. To address the critical need for advanced thin-film composite (TFC) polyamide (PA) membranes with exceptional permselectivity and fouling resistance for emerging contaminant purification, we introduce a novel high-performance NF membrane. This membrane features a selective polypiperazine (PIP) layer functionalized with amino-containing quaternary ammonium compounds (QACs) through an in situ interfacial polycondensation reaction. Our investigation demonstrated that precise QAC functionalization enabled the construction of the selective PA layer with increased surface area, enhanced microporosity, stronger electronegativity, and reduced thickness compared to the control PIP membrane. As a result, the QAC NF membrane exhibited an approximately 51% increase in water permeance compared to the control PIP membrane, while achieving superior retention capabilities for divalent salts (>99%) and emerging organic contaminants (>90%). Furthermore, the incorporation of QACs into the PIP selective layer was proved to be effective in mitigating mineral scaling by allowing selective passage of scale-forming cations, while simultaneously exhibiting strong antimicrobial properties to combat biofouling. The in situ QAC incorporation strategy presented in this study provides valuable guidelines for the fit-for-purpose design of the selective PA layer, which is crucial for the development of high-performance NF membranes for efficient water purification.
Collapse
Affiliation(s)
- Fuxin Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hao Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chanhee Boo
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yunkun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Chen Y, Song K, Li Z, Su Y, Yu L, Chen B, Huang Q, Da L, Han Z, Zhou Y, Zhu X, Xu J, Dong R. Antifouling Asymmetric Block Copolymer Nanofilms via Freestanding Interfacial Polymerization for Efficient and Sustainable Water Purification. Angew Chem Int Ed Engl 2024; 63:e202408345. [PMID: 38888253 DOI: 10.1002/anie.202408345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Membrane materials that resist nonspecific or specific adsorption are urgently required in widespread practical applications, such as water purification, food processing, and life sciences. In water purification, inevitable membrane fouling not only limits membrane separation performance, leading to a decline in both permeance and selectivity, but also remarkably increases operation requirements, and augments extra maintenance costs and higher energy consumption. In this work, we report a freestanding interfacial polymerization (IP) fabrication strategy for in situ creation of asymmetric block copolymer (BCP) nanofilms with antifouling properties, greatly outperforming the conventional surface post-modification approaches. The resultant free-standing asymmetric BCP nanofilms with highly-dense, highly-hydrophilic polyethylene glycol (PEG) brushes on one side, can be readily formed via a typical IP process of a well-defined double-hydrophilic BCP composed of a highly-efficient antifouling PEG block and a membrane-forming multiamine block. The asymmetric BCP nanofilms have been applied for efficient and sustainable natural water purification, demonstrating extraordinary antifouling capabilities accompanied with superior separation performance far beyond commercial polyamide nanofiltration membranes. The antifouling behaviors of asymmetric BCP nanofilms derived from the combined effect of the hydration layer, electrostatic repulsion and steric hindrance were further elucidated by water flux and fouling resistance in combination with all-atom molecular dynamics (MD) simulation. This work opens up a new avenue for the large-scale and low-cost creation of broad-spectrum, asymmetric membrane materials with diverse functional "defect-free" surfaces in real-world applications.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education) College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Kaiyuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ziying Li
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yue Su
- School of Chemistry and Chemical Engineering Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Li Yu
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Baiyang Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qijing Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lintai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zeguang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jia Xu
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education) College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Ruijiao Dong
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
6
|
Lin YL, Zheng NY, Hsu YJ. Enhancing membrane separation performance in the conditions of different water electrical conductivity and fouling types via surface grafting modification of a nanofiltration membrane, NF90. ENVIRONMENTAL RESEARCH 2023; 239:117346. [PMID: 37821069 DOI: 10.1016/j.envres.2023.117346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/02/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
A commercialized and widely applied nanofiltration membrane, NF90, was in-situ modified through a surface grafting modification method by using 3-sulfopropyl methacrylate potassium salt and initiators. The effects of water electrical conductivity (EC) and fouling types on membrane separation efficiency were examined before and after membrane modification. Results reveal that both the pristine membrane (PTM) and surface grafting modification membrane (SGMM) had a declining permeate flux and salt (NaCl) removal efficiency but an increasing trend of pharmaceuticals and personal care products (PPCPs) removal with increasing water EC from 250 to 10,000 μs cm-1. However, SGMM exhibited a slightly declining permeate flux but 13%-17% and 1%-42% higher rejection of salt and PPCPs, respectively, compared with PTM, due to electrostatic repulsion and size exclusion provided by the grafted polymer. After sodium alginate (SA) and humic acid (HA) fouling, SGMM had 17%-26% and 16%-32% higher salt rejection and 1%-12% and 1%-51% greater PPCP removal, respectively, compared with PTM due to the additional steric barrier layer contributed by the foulants. The successful grafting and increasing hydrophilicity of the SGMM were confirmed by contact angle analysis, which was beneficial for mitigating membrane fouling. Overall, the proposed in-situ surface grafting modification of NF90 can considerably mitigate organic and biological fouling while raising the rejection of salt and PPCPs at different background water EC, which is beneficial for practical applications in producing clean and high quality water for consumers.
Collapse
Affiliation(s)
- Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 824, Taiwan, ROC.
| | - Nai-Yun Zheng
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 824, Taiwan, ROC
| | - Yu-Jhen Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 824, Taiwan, ROC
| |
Collapse
|
7
|
Xia X, Yuan X, Zhang G, Su Z. Antifouling Surfaces Based on Polyzwitterion Loop Brushes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47520-47530. [PMID: 37773963 DOI: 10.1021/acsami.3c10267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Antifouling surfaces have attracted increasing interest in recent years due to their potential application in various fields. In this work, we report a loop polyzwitterionic coating that exhibits excellent resistance to protein adsorption. Triblock and diblock copolymers of 2-[(2-hydroxyethyl)disulfanyl]ethyl methacrylate) (HSEMA) and 2-(dimethylamino)ethyl methacrylate) (DMAEMA) were synthesized by atom-transferred radical polymerization, followed by betainization of the DMAEMA block with 1,3-propane sultone and reduction of the disulfide bond in HSEMA to yield a triblock copolymer comprising a zwitterionic poly(sulfobetaine methacrylate) (PSBMA) midblock and poly(2-sulfanylethyl methacrylate) (PSEMA) terminal blocks as well as its diblock analogue that was of the same composition as the former and half the chain length. Both copolymers adsorbed to the gold substrate via the thiol groups in the terminal PSEMA block(s), creating loop and linear PSBMA brush coatings of comparable thickness, as revealed by X-ray photoelectron spectroscopy and ellipsometry. Adsorption of bovine serum albumin and fibrinogen as model proteins from solution to these surfaces was investigated by a quartz crystal microbalance with dissipation and confocal laser scanning microscopy (CLSM), and platelet and bacterial adhesions were assessed by scanning electron microscopy and CLSM. The results demonstrate that both linear and loop polyzwitterion brushes are excellent in resisting the adsorption of the foulants, and the loop brushes are superior to the linear analogues.
Collapse
Affiliation(s)
- Xiaoyu Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodie Yuan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Guangyu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Zhaohui Su
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Swain A, Adarsh S, Biswas A, Bose S, Benicewicz BC, Kumar SK, Basu JK. Enhanced efficiency of water desalination in nanostructured thin-film membranes with polymer grafted nanoparticles. NANOSCALE 2023. [PMID: 37366152 DOI: 10.1039/d3nr00777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Polyamide composite (PA-TFC) membranes are the state-of-the-art ubiquitous platforms to desalinate water at scale. We have developed a novel, transformative platform where the performance of such membranes is significantly and controllably improved by depositing thin films of polymethylacrylate [PMA] grafted silica nanoparticles (PGNPs) through the venerable Langmuir-Blodgett method. Our key practically important finding is that these constructs can have unprecedented selectivity values (i.e., ∼250-3000 bar-1, >99.0% salt rejection) at reduced feed water pressure (i.e., reduced cost) while maintaining acceptable water permeance A (= 2-5 L m-2 h-1 Bar-1) with as little as 5-7 PGNP layers. We also observe that the transport of solvent and solute are governed by different mechanisms, unlike gas transport, leading to independent control of A and selectivity. Since these membranes can be formulated using simple and low cost self-assembly methods, our work opens a new direction towards development of affordable, scalable water desalination methods.
Collapse
Affiliation(s)
- Aparna Swain
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| | - S Adarsh
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| | - Ashish Biswas
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science Bangalore, 560012, Karnataka, India
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, 29208, South Carolina, USA
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, 10027, New York, USA
| | - J K Basu
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| |
Collapse
|
9
|
High performance polyvinylidene fluoride membrane functionalized with poly(ionic liquid) brushes for dual resistance to organic and biological fouling. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
10
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
11
|
Hu Q, Yuan Y, Wu Z, Lu H, Li N, Zhang H. The effect of surficial function groups on the anti-fouling and anti-scaling performance of thin-film composite reverse osmosis membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Xie T, Wang H, Chen K, Li F, Zhao S, Sun H, Yang X, Hou Y, Li P, Niu QJ. High-performance polyethyleneimine based reverse osmosis membrane fabricated via spin-coating technology. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
13
|
Regev C, Jiang Z, Kasher R, Miller Y. Distinct Antifouling Mechanisms on Different Chain Densities of Zwitterionic Polymers. Molecules 2022; 27:7394. [PMID: 36364221 PMCID: PMC9654173 DOI: 10.3390/molecules27217394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024] Open
Abstract
Antifouling polymer coating surfaces are used in widespread industries applications. Zwitterionic polymers have been identified as promising materials in developing polymer coating surfaces. Importantly, the density of the polymer chains is crucial for acquiring superior antifouling performance. This study introduces two different zwitterionic polymer density surfaces by applying molecular modeling tools. To assess the antifouling performance, we mimic static adsorption test, by placing the foulant model bovine serum albumin (BSA) on the surfaces. Our findings show that not only the density of the polymer chain affect antifouling performance, but also the initial orientation of the BSA on the surface. Moreover, at a high-density surface, the foulant either detaches from the surface or anchor on the surface. At low-density surface, the foulant does not detach from the surface, but either penetrates or anchors on the surface. The anchoring and the penetrating mechanisms are elucidated by the electrostatic interactions between the foulant and the surface. While the positively charged ammonium groups of the polymer play major role in the interactions with the negatively charged amino acids of the BSA, in the penetrating mechanism the ammonium groups play minor role in the interactions with the contact with the foulant. The sulfonate groups of the polymer pull the foulant in the penetrating mechanism. Our work supports the design of a high-density polymer chain surface coating to prevent fouling phenomenon. Our study provides for the first-time insights into the molecular mechanism by probing the interactions between BSA and the zwitterion surface, while testing high- and low-densities polymer chains.
Collapse
Affiliation(s)
- Clil Regev
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be’er Sheva 84105, Israel
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Roni Kasher
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be’er Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel
| |
Collapse
|
14
|
Yang W, Zhao Z, Pan M, Gong L, Wu F, Huang C, Wang X, Wang J, Zeng H. Mussel-inspired polyethylene glycol coating for constructing antifouling membrane for water purification. J Colloid Interface Sci 2022; 625:628-639. [PMID: 35772200 DOI: 10.1016/j.jcis.2022.06.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 10/31/2022]
Abstract
HYPOTHESIS Polyethylene glycol (PEG) holds considerable potential in the fabrication of antifouling surfaces due to its strong hydration property. However, anchoring PEG polymer as a stable surface coating is still challenging because of its weak surface bonding property. Inspired by the mussel adhesion strategy, it is hypothesized that PEG polymer can be robustly attached onto substrates with the assistance of a "bio-glue" layer. EXPERIMENTS The "bio-glue" layer composited of Levodopa/polyethyleneimine (LP) is firstly deposited onto substrates, followed by covalently anchoring the poly(ethylene glycol) diglycidyl ether (PEGDE) layer via ring-opening reaction. The antifouling property of as-prepared coating was characterized using several techniques including quartz crystal microbalance (QCM) and surface forces apparatus (SFA). Furthermore, the PEGDE/LP coating was applied in membrane functionalization for oil-in-water (O/W) emulsion separation. FINDINGS PEGDE/LP coating shows outstanding stability and superior antifouling properties towards various potential foulants. In the O/W emulsion separation process, the PEGDE/LP-coated membrane maintains its super-hydrophilic property under harsh solution conditions and achieves high water flux (∼3000 L m-2 h-1 bar-1) and 90% water flux recovery ratio for separation of O/W emulsions containing different bio-foulants. This coating strategy provides a promising approach for fabricating stable coating with outstanding antifouling properties in various environmental engineering applications.
Collapse
Affiliation(s)
- Wenshuai Yang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ziqian Zhao
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mingfei Pan
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Feiyi Wu
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Charley Huang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaogang Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jianmei Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Hongbo Zeng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
15
|
Enhanced thermal stability and UV resistance of polyamide 6 filament fabric via in-situ grafting with methyl methacrylate. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Liu Q, Wang J, Duan C, Wang T, Zhou Y. A novel cationic graphene modified cyclodextrin adsorbent with enhanced removal performance of organic micropollutants and high antibacterial activity. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128074. [PMID: 34954431 DOI: 10.1016/j.jhazmat.2021.128074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The coexistence of pathogenic microorganisms and refractory organic chemicals in water nurtures certain biological and chemical risks to human beings and the water environment as a whole. For an environmentally friendly utilization of water cleaning and recycling technologies, a bifunctional cationic cyclodextrin material (GD-DTAC) with adsorption and bactericidal function was designed. By a simple crosslinking method, GD-DTAC was prepared with graphene supported citric acid-β-cyclodextrin polymer (GD) and dimethyldodecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DTAC). Following the introduction of rich quaternary ammonium groups by DTAC, GD-DTAC realized a double regulation of surface positive charge and wettability. The maximum adsorption capacities of Roxarsone (ROX), Methyl Orange (MO) and Bisphenol A (BPA) were 153.59 mg/g, 445.60 mg/g and 237.90 mg/g, respectively. Antibacterial activity tests showed the efficiency of DTAC not only for enhanced adhesion resistance, but it also realized the sterilization function. This work displays the potential of the prepared bifunctional materials for the removal of pollutants from wastewater as well as the suppression of micro-pollutants. The successful preparation of GD-DTAC provided a basis for the bifunctional material, which showed a great potential in adsorption and antibiosis.
Collapse
Affiliation(s)
- Qikai Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Jianyu Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Chengyu Duan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Tong Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, No. 1515 Zhongshan Second North Road, Shanghai 200092, China; National Engineering Research Center of Industrial Wastewater Detoxication and and Resource Recovery, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
17
|
Hu J, He Y, Liu P, Shen X. Antifouling improvement of a polyacrylonitrile membrane blended with an amphiphilic copolymer. INT POLYM PROC 2022. [DOI: 10.1515/ipp-2021-4175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The amphiphilic copolymer polyacrylonitrile-co-poly(hydroxyethyl methacrylate) (PAN-co-PHEMA) was readily blended with polyacrylonitrile (PAN) to fabricate a flat-sheet blending membrane through non-solvent induced phase separation (NIPS). In the membrane-forming process, the hydrophilic PHEMA chains are uniformly distributed on the surface, as revealed by the energy-dispersive X-ray tests. The sponge-like sub-layer embedded with droplet-shaped structures is formed at the cross-sections of membranes, because of the high viscosity of the casting solution. With the increase of copolymer concentration, the mean pore size of the blending membranes increases from 26.9 to 99.8 nm, leading to the increase of membrane flux from 93.6 to 205.4 l/(m2h). The incorporation of PAN-co-PHEMA copolymer endows the blending membrane with a rough surface microstructure and enhanced hydrophilicity. The rejection ratio of membranes for emulsified pump oil reaches 99.9%, indicating a prominent separation performance. In the cycle permeation experiments, the flux recovery ratio of the blending membranes is as high as 99.6%, which is much higher than those of PAN membrane. The irreversible fouling of blending membranes induced by oil adsorption is alleviated, and converted into reversible fouling, owing to the reduction of the adhesion force between foulant and membrane surface. These results suggest that the anti-fouling property of PAN membranes has been dramatically strengthened via the addition of PAN-co-PHEMA copolymer.
Collapse
Affiliation(s)
- Jianlong Hu
- College of Chemistry and Environmental Science , Qujing Normal University , Qujing 655011 , PRC
| | - Yingfang He
- College of Chemistry and Environmental Science , Qujing Normal University , Qujing 655011 , PRC
| | - Peng Liu
- College of Chemistry and Environmental Science , Qujing Normal University , Qujing 655011 , PRC
| | - Xiang Shen
- College of Chemistry and Environmental Science , Qujing Normal University , Qujing 655011 , PRC
| |
Collapse
|
18
|
Zhang X, Zhao M, Yu H, Wang J, Sun W, Li Q, Cao X, Zhang P. Robust In Situ Fouling Control toward Thin-Film Composite Reverse Osmosis Membrane via One-Step Deposition of a Ternary Homogeneous Metal-Organic Hybrid Layer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7208-7220. [PMID: 35089006 DOI: 10.1021/acsami.1c19931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane fouling is one of the persistent headaches for water desalination because of the significant detriment to membrane performance and operating cost control. It is a great challenge to overcome such crisis in a facile and robust manner. This work was dedicated to customizing an antifouling thin-film composite (TFC) reverse osmosis (RO) membrane with a polydopamine (PDA)/β-alanine (βAla)/Cu2+ ternary homogeneous metal-organic hybrid coating. The metal ions were evenly distributed in a continuous organic network via polydentate coordination. The incorporation of βAla enabled a substantial promotion of the Cu2+ loading capacity on the membrane surface. The involved one-step codeposition protocol made the surface engineering practically accessible. The deposition time was optimized to afford an uncompromising permselectivity of the membrane. This novel trinity was a smart blend of anti-adhesive and bactericidal factors, and each component in the all-in-one layer performed its own function. The hydrophilic PDA/βAla phase induced weak deposition propensity of organic foulant and bacteria onto the modified membrane, as elucidated by water flux variation, foulants adhesion profile, and interfacial interaction energy. Meanwhile, the Cu2+-loaded surface strongly inactivated the attached bacteria to further alleviate biofouling. Excellent sustainability and stability implied the reliable performance of such trinity-coated membrane in practical service. Given the simplicity and robustness, this work opened a promising avenue for in situ fouling control of TFC RO membranes during water desalination.
Collapse
Affiliation(s)
- Xiaotai Zhang
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Man Zhao
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Hui Yu
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Jian Wang
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Wei Sun
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Qiang Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xingzhong Cao
- Multi-discipline Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Multi-discipline Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Wang J, Li SL, Guan Y, Zhu C, Gong G, Hu Y. Novel RO membranes fabricated by grafting sulfonamide group: Improving water permeability, fouling resistance and chlorine resistant performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Liu C, Guo Y, Zhou Y, Yang B, Xiao K, Zhao HZ. High-hydrophilic and antifouling reverse osmosis membrane prepared based an unconventional radiation method for pharmaceutical plant effluent treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119838] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Roles of initial bacterial attachment and growth in the biofouling development on the microfiltration membrane: From viewpoints of individual cell and interfacial interaction energy. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Suresh D, Goh PS, Ismail AF, Hilal N. Surface Design of Liquid Separation Membrane through Graft Polymerization: A State of the Art Review. MEMBRANES 2021; 11:832. [PMID: 34832061 PMCID: PMC8621935 DOI: 10.3390/membranes11110832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Surface modification of membranes is an effective approach for imparting unique characteristics and additional functionalities to the membranes. Chemical grafting is a commonly used membrane modification technique due to its versatility in tailoring and optimizing the membrane surface with desired functionalities. Various types of polymers can be precisely grafted onto the membrane surface and the operating conditions of grafting can be tailored to further fine-tune the membrane surface properties. This review focuses on the recent strategies in improving the surface design of liquid separation membranes through grafting-from technique, also known as graft polymerization, to improve membrane performance in wastewater treatment and desalination applications. An overview on membrane technology processes such as pressure-driven and osmotically driven membrane processes are first briefly presented. Grafting-from surface chemical modification approaches including chemical initiated, plasma initiated and UV initiated approaches are discussed in terms of their features, advantages and limitations. The innovations in membrane surface modification techniques based on grafting-from techniques are comprehensively reviewed followed by some highlights on the current challenges in this field. It is concluded that grafting-from is a versatile and effective technique to introduce various functional groups to enhance the surface properties and separation performances of liquid separation membranes.
Collapse
Affiliation(s)
- Deepa Suresh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|