1
|
Duncan TJ, Behera H, Meng MF, Zhang Z, Marioni N, Tadesse M, Kumar M, Ganesan V. Side-Chain and Ring-Size Effects on Permeability in Artificial Water Channels. J Phys Chem B 2025; 129:659-670. [PMID: 39745026 DOI: 10.1021/acs.jpcb.4c05244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Artificial water channels (AWCs) have emerged as a promising framework for stable water permeation, with water transport rates comparable to aquaporins (3.4-40.3 × 108 H2O/channel/s). In this study, we probe the influence of ring-size and side-chain length on the water permeability observed within a class of AWCs termed ligand-appended pillar[n]arenes (LAPs) that have an adjustable ring-size (m) and side-chain length (n). Through all-atom molecular dynamics simulations, we calculate the permeability of these channels using the collective diffusion model and find their permeabilities. We characterize the mechanistic influence of pillar[n]arene ring-size and side-chain length on the channel water permeability by analyzing the characteristics of the internal permeating water-wire and the surrounding channel structure. We observe that water permeability decreases as a function of increasing ring-size due to increases in hydrophilic contacts between the permeating water-wire and the oxygen groups on the channel wall. Further, we observe an increase in water permeability as a function of side-chain length due to increased partitioning of the channel terminal groups into the hydrophilic blocks of the surrounding bilayer. For the LAP6 channel, with increase in side-chain length, the distance between terminal groups increases and leads to an increase in pore size, thereby enhancing water permeability. In the case of LAP5, as side-chain length increases, the channel displays a compensatory effect between tilt and bend angle due to the flexible side-chains. Such flexibility leads to higher terminal group partitioning in the hydrophilic blocks of the bilayer and extends the permeating water-wire. This increase in water-wire length and hydrophilic block access overcomes the nonmonotonic pore size trend in pillar[5]arene channels.
Collapse
Affiliation(s)
- Tyler J Duncan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Harekrushna Behera
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael F Meng
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nico Marioni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Meron Tadesse
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Ye X, Zhang R, Zhou J, Qiu S, Wang Y. Interfacial Constructing Poly(ionic liquids) on Nanoporous Block Copolymers for Antifouling Ultrafiltration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:945-954. [PMID: 39810353 DOI: 10.1021/acs.langmuir.4c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The remarkable flexibility in structural tunability and designability of poly(ionic liquids) (PILs) has garnered significant attention. Integration of PILs with membranes, novel properties, and functionalities is anticipated for applications in the fields of membrane separation. Here, we develop a facile method to prepare PIL-functionalized membranes in a one-step process by combining selective swelling-induced pore generation and ionic liquid functionalization. The block copolymer of poly(2-dimethylaminoethyl methacrylate)-block-polystyrene (PDMAEMA-b-PS, abbreviated as SDMA) films is immersed in a mixture of ethanol and bromopropane. In addition to the formation of nanoporous structures, an interfacial quaternization reaction between the PDMAEMA blocks and bromopropane occurs to generate poly(methacrylatoethyl propyl dimethylammonium bromide), resulting in the PIL-Br-functionalized membrane (SIL-Br) during the swelling process. It is noteworthy that bromopropane acting as a reactant also promotes the process of selective swelling. The water permeability of the resulting SIL-Br membrane is several times higher than that of the SDMA membrane, which is attributed to the increased pore size and significantly higher hydrophilicity of the SIL-Br membrane. In addition, the anion exchange of SIL-Br with l-proline (l-Pro) readily forms SIL-Pro-functionalized membranes (SIL-Pro), which exhibit exceptional electrical neutrality. Antifouling tests demonstrate that both SIL-Br and SIL-Pro have excellent resistance to proteins compared to the non-PIL-functionalization SDMA membrane, implying their great potential as antifouling membranes for water treatment.
Collapse
Affiliation(s)
- Xiangyue Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Ruotong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Shoutian Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| |
Collapse
|
3
|
Appold M, Rangou S, Glass S, Lademann B, Filiz V. Enhanced UV Penetration and Cross-Linking of Isoporous Block Copolymer and Commercial Ultrafiltration Membranes using Isorefractive Solvent. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403288. [PMID: 38946670 PMCID: PMC11434031 DOI: 10.1002/advs.202403288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Indexed: 07/02/2024]
Abstract
Amphiphilic block copolymers are promising candidates for the fabrication of ultrafiltration membranes with an isoporous integral asymmetric structure. The membranes are typically fabricated by the combination of block copolymer self-assembly and the non-solvent-induced phase separation (SNIPS) process resulting in isoporous integral asymmetric membranes. Certainly, all these membranes lack thermal and chemical stability limiting the usage of such materials. Within this study, the fabrication of completely cross-linked isoporous integral asymmetric block copolymer membranes is demonstrated by UV cross-linking resulting in chemical and thermal stable ultrafiltration membranes. The UV cross-linking process of PVBCB-b-P4VP (poly(4-vinylbenzocyclobutene)-b-poly(4vinylpyridine)) block copolymer membranes in dependency of irradiation time, intensity, distance between membrane and UV source and the wavelength is investigated. Furthermore, it is shown that the penetration depths can be increased by soaking the membranes in wave-guiding solutions before UV cross-linking is carried out. Moreover, a completely new and easy cross-linking strategy is developed based on isorefractive solvents resulting in thermal and chemically stable membranes that are cross-linked through the whole membrane thickness. Finally, the new cross-linking strategy in isorefractive solutions is transferred to commercial PVDF and PAN-co-PVC polymer membranes paving the way for more stable and sustainable ultrafiltration membranes.
Collapse
Affiliation(s)
- Michael Appold
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str.1, 21502, Geesthacht, Germany
| | - Sofia Rangou
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str.1, 21502, Geesthacht, Germany
| | - Sarah Glass
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str.1, 21502, Geesthacht, Germany
| | - Brigitte Lademann
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str.1, 21502, Geesthacht, Germany
| | - Volkan Filiz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str.1, 21502, Geesthacht, Germany
| |
Collapse
|
4
|
Lair L, Ouimet JA, Dougher M, Boudouris BW, Dowling AW, Phillip WA. Critical Mineral Separations: Opportunities for Membrane Materials and Processes to Advance Sustainable Economies and Secure Supplies. Annu Rev Chem Biomol Eng 2024; 15:243-266. [PMID: 38663030 DOI: 10.1146/annurev-chembioeng-100722-114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sustainable energy solutions and electrification are driving increased demand for critical minerals. Unfortunately, current mineral processing techniques are resource intensive, use large quantities of hazardous chemicals, and occur at centralized facilities to realize economies of scale. These aspects of existing technologies are at odds with the sustainability goals driving increased demand for critical minerals. Here, we argue that the small footprint and modular nature of membrane technologies position them well to address declining concentrations in ores and brines, the variable feed concentrations encountered in recycling, and the environmental issues associated with current separation processes; thus, membrane technologies provide new sustainable pathways to strengthening resilient critical mineral supply chains. The success of creating circular economies hinges on overcoming diverse barriers across the molecular to infrastructure scales. As such, solving these challenges requires the convergence of research across disciplines rather than isolated innovations.
Collapse
Affiliation(s)
- Laurianne Lair
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Jonathan Aubuchon Ouimet
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Molly Dougher
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Bryan W Boudouris
- 2Charles D. Davidson School of Chemical Engineering and Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
| | - Alexander W Dowling
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - William A Phillip
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| |
Collapse
|
5
|
Wang W, Shu Z, Wei H, Yan W, Yi Z, Gao C. Hyper-crosslinked Isoporous Block Copolymer Membranes with Robust Solvent Resistance and Customized Pore Sizes for Precise Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308171. [PMID: 38095505 DOI: 10.1002/smll.202308171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Indexed: 05/18/2024]
Abstract
Isoporous block copolymer membranes are viewed as the next-generation separation membranes for their unique structures and urgent application in precise separation. However, an obvious weakness for such membranes is their poor solvent-resistance which limits their applications to aqueous solution, and isoporous membranes with superior solvent-resistance and tunable pore size have been rarely prepared before. Herein, self-supporting isoporous membranes with excellent solvent resistance are prepared by the facile yet robust hyper-crosslinking approach which is able to create a rigid network in whole membranes. The hyper-crosslinking is found to be a novel and non-destructive approach that does not change pore size and isoporous structure during the reaction, and the resulting hyper-crosslinked isoporous membranes display superior structural and separation stability to a broad range of solvents with varied polarities for months to years. More importantly, hyper-crosslinking has proved to be a universal strategy that is applicable to isoporous membranes with varied pore size and pore chemistry, offering an important opportunity to prepare solvent-resistant isoporous membranes with customizable pore size and pore functionality that are important to realize their accurate separations in organic solvents. This concept is demonstrated finally by precise and on-demand separation of nanoparticles with the prepared membranes.
Collapse
Affiliation(s)
- Wenjing Wang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhe Shu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongxing Wei
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wentao Yan
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhuan Yi
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, 310014, China
- Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water treatment, Hong Feng Road, Huzhou, 313000, China
| | - Congjie Gao
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
6
|
Burke DW, Jiang Z, Livingston AG, Dichtel WR. 2D Covalent Organic Framework Membranes for Liquid-Phase Molecular Separations: State of the Field, Common Pitfalls, and Future Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300525. [PMID: 37014260 DOI: 10.1002/adma.202300525] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/21/2023] [Indexed: 06/19/2023]
Abstract
2D covalent organic frameworks (2D COFs) are attractive candidates for next-generation membranes due to their robust linkages and uniform, tunable pores. Many publications have claimed to achieve selective molecular transport through COF pores, but reported performance metrics for similar networks vary dramatically, and in several cases the reported experiments are inadequate to support such conclusions. These issues require a reevaluation of the literature. Published examples of 2D COF membranes for liquid-phase separations can be broadly divided into two categories, each with common performance characteristics: polycrystalline COF films (most >1 µm thick) and weakly crystalline or amorphous films (most <500 nm thick). Neither category has demonstrated consistent relationships between the designed COF pore structure and separation performance, suggesting that these imperfect materials do not sieve molecules through uniform pores. In this perspective, rigorous practices for evaluating COF membrane structures and separation performance are described, which will facilitate their development toward molecularly precise membranes capable of performing previously unrealized chemical separations. In the absence of this more rigorous standard of proof, reports of COF-based membranes should be treated with skepticism. As methods to control 2D polymerization improve, precise 2D polymer membranes may exhibit exquisite and energy efficient performance relevant for contemporary separation challenges.
Collapse
Affiliation(s)
- David W Burke
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Zhiwei Jiang
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Department of Membrane Research, Exactmer Limited, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, RM10 7FN, UK
| | - Andrew G Livingston
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
7
|
Kazi OA, Chen W, Eatman JG, Gao F, Liu Y, Wang Y, Xia Z, Darling SB. Material Design Strategies for Recovery of Critical Resources from Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300913. [PMID: 37000538 DOI: 10.1002/adma.202300913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Population growth, urbanization, and decarbonization efforts are collectively straining the supply of limited resources that are necessary to produce batteries, electronics, chemicals, fertilizers, and other important products. Securing the supply chains of these critical resources via the development of separation technologies for their recovery represents a major global challenge to ensure stability and security. Surface water, groundwater, and wastewater are emerging as potential new sources to bolster these supply chains. Recently, a variety of material-based technologies have been developed and employed for separations and resource recovery in water. Judicious selection and design of these materials to tune their properties for targeting specific solutes is central to realizing the potential of water as a source for critical resources. Here, the materials that are developed for membranes, sorbents, catalysts, electrodes, and interfacial solar steam generators that demonstrate promise for applications in critical resource recovery are reviewed. In addition, a critical perspective is offered on the grand challenges and key research directions that need to be addressed to improve their practical viability.
Collapse
Affiliation(s)
- Omar A Kazi
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Wen Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jamila G Eatman
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Feng Gao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yining Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuqin Wang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Zijing Xia
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Seth B Darling
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
8
|
Abdollahi SA, Andarkhor A, Pourahmad A, Alibak AH, Alobaid F, Aghel B. Simulating and Comparing CO 2/CH 4 Separation Performance of Membrane-Zeolite Contactors by Cascade Neural Networks. MEMBRANES 2023; 13:membranes13050526. [PMID: 37233587 DOI: 10.3390/membranes13050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Separating carbon dioxide (CO2) from gaseous streams released into the atmosphere is becoming critical due to its greenhouse effect. Membrane technology is one of the promising technologies for CO2 capture. SAPO-34 filler was incorporated in polymeric media to synthesize mixed matrix membrane (MMM) and enhance the CO2 separation performance of this process. Despite relatively extensive experimental studies, there are limited studies that cover the modeling aspects of CO2 capture by MMMs. This research applies a special type of machine learning modeling scenario, namely, cascade neural networks (CNN), to simulate as well as compare the CO2/CH4 selectivity of a wide range of MMMs containing SAPO-34 zeolite. A combination of trial-and-error analysis and statistical accuracy monitoring has been applied to fine-tune the CNN topology. It was found that the CNN with a 4-11-1 topology has the highest accuracy for the modeling of the considered task. The designed CNN model is able to precisely predict the CO2/CH4 selectivity of seven different MMMs in a broad range of filler concentrations, pressures, and temperatures. The model predicts 118 actual measurements of CO2/CH4 selectivity with an outstanding accuracy (i.e., AARD = 2.92%, MSE = 1.55, R = 0.9964).
Collapse
Affiliation(s)
| | - AmirReza Andarkhor
- Department of Chemistry, Payam Noor University (Bushehr Branch), Bushehr 1688, Iran
| | - Afham Pourahmad
- Department of Polymer Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Ali Hosin Alibak
- Chemical Engineering Department, Faculty of Engineering, Soran University, Soran 44008, Iraq
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| | - Falah Alobaid
- Institut Energiesysteme und Energietechnik, Technische Universität Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
| | - Babak Aghel
- Institut Energiesysteme und Energietechnik, Technische Universität Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
- Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah 6715685420, Iran
| |
Collapse
|
9
|
Siwy ZS, Bruening ML, Howorka S. Nanopores: synergy from DNA sequencing to industrial filtration - small holes with big impact. Chem Soc Rev 2023; 52:1983-1994. [PMID: 36794856 DOI: 10.1039/d2cs00894g] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Nanopores in thin membranes play important roles in science and industry. Single nanopores have provided a step-change in portable DNA sequencing and understanding nanoscale transport while multipore membranes facilitate food processing and purification of water and medicine. Despite the unifying use of nanopores, the fields of single nanopores and multipore membranes differ - to varying degrees - in terms of materials, fabrication, analysis, and applications. Such a partial disconnect hinders scientific progress as important challenges are best resolved together. This Viewpoint suggests how synergistic crosstalk between the two fields can provide considerable mutual benefits in fundamental understanding and the development of advanced membranes. We first describe the main differences including the atomistic definition of single pores compared to the less defined conduits in multipore membranes. We then outline steps to improve communication between the two fields such as harmonizing measurements and modelling of transport and selectivity. The resulting insight is expected to improve the rational design of porous membranes. The Viewpoint concludes with an outlook of other developments that can be best achieved by collaboration across the two fields to advance the understanding of transport in nanopores and create next-generation porous membranes tailored for sensing, filtration, and other applications.
Collapse
Affiliation(s)
- Zuzanna S Siwy
- Department of Physics and Astronomy, University of California, Irvine, USA.
| | - Merlin L Bruening
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, USA.
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, UK.
| |
Collapse
|
10
|
Sharma U, Pandey R, Basu S, Saravanan P. Facile monomer interlayered MOF based thin film nanocomposite for efficient arsenic separation. CHEMOSPHERE 2022; 309:136634. [PMID: 36202371 DOI: 10.1016/j.chemosphere.2022.136634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The thin film nanocomposites (TFN) based membranes are sensitive to the synergy between the polymer and nanoparticles. TFN incorporating metal-organic frameworks (MOFs) have shown tremendous enhancement in permeability. This study investigates alternate MOF positioning during TFC fabrication for a highly selective membrane. Co-Zn-based mixed metal-organic framework (mMOF) was interlayered between m-phenylenediamine (MPD) and trimesoyl chloride (TMC) to form a polyamide (PA) selective layer. The practiced method conveniently allowed exact loading of mMOF and thus prevented the loss. Owing to the mMOF's placement between MPD and TMC, an increase in PA cross-linking was observed. The mMOF-MPD monomer compatibility allowed homogeneous distribution and formation of a defect-free PA layer. The surface morphology showed a more pronounced formation of leaves-like features due to interfacial degassing. Neutral solute-based filtration tests determined mean pore size, probability distribution, and MWCO. The incorporation of mMOF led to formation of additional nanochannels in the membrane surface. The perm-selectivity studies performed on a dead-end filtration unit resulted in 94% As5+ retention with 2.5 times higher permeance than the control. The current study pronounced the viability of the monomer interlayer method to form a highly selective TFN for water separation and related applications.
Collapse
Affiliation(s)
- Uttkarshni Sharma
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| | - Rohit Pandey
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| | - Subhankar Basu
- Department of Applied Science and Humanities, National Institute of Advanced Manufacturing Technology Ranchi, Jharkhand 834003, India.
| | - Pichiah Saravanan
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|
11
|
Improving the permselectivity of asymmetric isoporous membranes by blending the micro-sized metal-organic frameworks(MOFs) crystals with block copolymer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Zhang Z, Chen C, Zhang S, Ye X, Zhou J, Wang Y. Large-area homoporous membranes (HOMEs) enabled by multiple annealing. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
He G, Li M, Li X, Wang Q, Xie Z, Xue Y, Wang K, Yu J, Sun G, Yu H, Qiu X. Isoporous membrane from PS-b-PAA/MWCNT-Ag composite with high photothermal conversion efficiency. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
A realistic approach for determining the pore size distribution of nanofiltration membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Shefer I, Lopez K, Straub AP, Epsztein R. Applying Transition-State Theory to Explore Transport and Selectivity in Salt-Rejecting Membranes: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7467-7483. [PMID: 35549171 DOI: 10.1021/acs.est.2c00912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Membrane technologies using reverse osmosis (RO) and nanofiltration (NF) have been widely implemented in water purification and desalination processes. Separation between species at the molecular level is achievable in RO and NF membranes due to a complex and poorly understood combination of transport mechanisms that have attracted the attention of researchers within and beyond the membrane community for many years. Minimizing existing knowledge gaps in transport through these membranes can improve the sustainability of current water-treatment processes and expand the use of RO and NF membranes to other applications that require high selectivity between species. Since its establishment in 1949, and with growing popularity in recent years, Eyring's transition-state theory (TST) for transmembrane permeation has been applied in numerous studies to mechanistically explore molecular transport in membranes including RO and NF. In this review, we critically assess TST applied to transmembrane permeation in salt-rejecting membranes, focusing on mechanistic insights into transport under confinement that can be gained from this framework and the key limitations associated with the method. We first demonstrate and discuss the limited ability of the commonly used solution-diffusion model to mechanistically explain transport and selectivity trends observed in RO and NF membranes. Next, we review important milestones in the development of TST, introduce its underlying principles and equations, and establish the connection to transmembrane permeation with a focus on molecular-level enthalpic and entropic barriers that govern water and solute transport under confinement. We then critically review the application of TST to explore transport in RO and NF membranes, analyzing trends in measured enthalpic and entropic barriers and synthesizing new data to highlight important phenomena associated with the temperature-dependent measurement of the activation parameters. We also discuss major limitations of the experimental application of TST and propose specific solutions to minimize the uncertainties surrounding the current approach. We conclude with identifying future research needs to enhance the implementation and maximize the benefit of TST application to transmembrane permeation.
Collapse
Affiliation(s)
- Idit Shefer
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Kian Lopez
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0428, United States
| | - Anthony P Straub
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0428, United States
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
16
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
17
|
Zhang Z, Rahman MM, Bajer B, Scharnagl N, Abetz V. Highly selective isoporous block copolymer membranes with tunable polyelectrolyte brushes in soft nanochannels. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Xiong Z, Dai L, Wang Y, Qu K, Xia Y, Lei L, Huang K, Xu Z. Two-dimensional sub-nanometer confinement channels enabled by functional carbon dots for ultra-permeable alcohol dehydration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Ouimet JA, Liu X, Brown DJ, Eugene EA, Popps T, Muetzel ZW, Dowling AW, Phillip WA. DATA: Diafiltration Apparatus for high-Throughput Analysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Zhang C, Zhou J, Ye X, Li Z, Wang Y. CO2-responsive membranes prepared by selective swelling of block copolymers and their behaviors in protein ultrafiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Zhang Z, Simon A, Abetz C, Held M, Höhme A, Schneider ES, Segal‐Peretz T, Abetz V. Hybrid Organic-Inorganic-Organic Isoporous Membranes with Tunable Pore Sizes and Functionalities for Molecular Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105251. [PMID: 34580938 PMCID: PMC11469200 DOI: 10.1002/adma.202105251] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/28/2021] [Indexed: 05/26/2023]
Abstract
Accomplishing on-demand molecular separation with a high selectivity and good permeability is very desirable for pollutant removal and chemical and pharmaceutical processing. The major challenge for sub-10 nm filtration of particles and molecules is the fabrication of high-performance membranes with tunable pore size and designed functionality. Here, a versatile top-down approach is demonstrated to produce such a membrane using isoporous block copolymer membranes with well-defined pore sizes combined with growth of metal oxide using sequential infiltration synthesis and atomic layer deposition (SIS and ALD). The pore size of the membranes is tuned by controlled metal oxide growth within and onto the polymer channels, enabling up to twofold pore diameter reduction. Following the growth, the distinct functionalities are readily incorporated along the membrane nanochannels with either hydrophobic, cationic, or anionic groups via straightforward and scalable gas/liquid-solid interface reactions. The hydrophilicity/hydrophobicity of the membrane nanochannel is significantly changed by the introduction of hydrophilic metal oxide and hydrophobic fluorinated groups. The functionalized membranes exhibit a superior selectivity and permeability in separating 1-2 nm organic molecules and fractionating similar-sized proteins based on size, charge, and hydrophobicity. This demonstrates the great potential of organic-inorganic-organic isoporous membranes for high-performance molecular separation in numerous applications.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Helmholtz‐Zentrum HereonInstitute of Membrane ResearchMax‐Planck‐Str. 121502GeesthachtGermany
| | - Assaf Simon
- Department of Chemical EngineeringTechnion‐ Israel Institute of TechnologyHaifa3200003Israel
| | - Clarissa Abetz
- Helmholtz‐Zentrum HereonInstitute of Membrane ResearchMax‐Planck‐Str. 121502GeesthachtGermany
| | - Martin Held
- Helmholtz‐Zentrum HereonInstitute of Membrane ResearchMax‐Planck‐Str. 121502GeesthachtGermany
| | - Anke‐Lisa Höhme
- Helmholtz‐Zentrum HereonInstitute of Membrane ResearchMax‐Planck‐Str. 121502GeesthachtGermany
| | - Erik S. Schneider
- Helmholtz‐Zentrum HereonInstitute of Membrane ResearchMax‐Planck‐Str. 121502GeesthachtGermany
| | - Tamar Segal‐Peretz
- Department of Chemical EngineeringTechnion‐ Israel Institute of TechnologyHaifa3200003Israel
| | - Volker Abetz
- Helmholtz‐Zentrum HereonInstitute of Membrane ResearchMax‐Planck‐Str. 121502GeesthachtGermany
- Universität HamburgInstitute of Physical ChemistryMartin‐Luther‐King‐Platz 620146HamburgGermany
| |
Collapse
|
22
|
Yu Y, Zhang K. Size-sieving separation of hard-sphere gases at low concentrations through cylindrically porous membranes. SOFT MATTER 2021; 17:10025-10031. [PMID: 34661595 DOI: 10.1039/d1sm01158h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membranes are compelling devices for many industrial separation processes, which are all subject to the intrinsic permeability-selectivity tradeoff. A general strategy to enhance separation performance is to reduce the pore size distribution and, ideally, make the membrane isoporous. In this study, we focus on a minimal model for regularly porous membranes, which consists of hard spheres moving through cylindrical pores. The collision dynamics is solved exactly and implemented in nonequilibrium event-driven molecular dynamics simulations. For such size-sieving porous membranes, we show that the permeability P of hard spheres of size σ through cylindrical pores of size d follows the hindered diffusion mechanism due to size exclusion as P ∝ (1 - σ/d)2. According to this law, the separation of binary mixtures of large and small particles exhibits a linear relationship between α-1/2 and P-1/2, where α and P are the selectivity and permeability of the smaller particle, respectively. The mean permeability through polydisperse pores is the average of the permeabilities of individual pores, weighted by the fraction of the single pore area over the total pore area.
Collapse
Affiliation(s)
- Yue Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215300, China.
| | - Kai Zhang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215300, China.
- Data Science Research Center (DSRC), Duke Kunshan University, Kunshan, Jiangsu, 215300, China
| |
Collapse
|