1
|
Guo R, Chen MN, Lin QH, Qi HM, Wang XQ, Li BY, Wang S, Xu SJ, Zhang Y, Liu W. LARS1 Promotes Tubular Epithelial Cells Epithelial Mesenchymal Transition in Chronic Kidney Disease by Inhibiting Lipophagy. Inflammation 2025:10.1007/s10753-025-02313-5. [PMID: 40397353 DOI: 10.1007/s10753-025-02313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 05/02/2025] [Indexed: 05/22/2025]
Abstract
Tubulointerstitial fibrosis (TIF), a critical pathological hallmark in progressive chronic kidney disease (CKD), may be potentiated by renal lipid metabolism dysregulation and ectopic lipid deposition, though these processes likely exhibit bidirectional interactions with fibrotic progression Lipophagy is a type of selective autophagy that specifically recognizes lipid droplets and is accountable for lipid stability and metabolism. It serves as a link between lipid metabolism and autophagy. It was found that a positive correlation between elevated LARS1 expression and the severity of renal interstitial fibrosis in CKD patients. In Lars1+/- mice, we observed that the absence of LARS1 significantly reduced lipid deposition and TIF. Mechanistically, stimulation of HK-2 cells with TGF-β1 resulted in LARS1-mediated activation of mTORC1 and suppression of lipophagy, consequently leading to increased lipid accumulation and epithelial mesenchymal transition (EMT) through a defined mechanistic pathway. Collectively, our studies demonstrate that LARS1 plays a pivotal role in renal fibrosis at least in part by inhibiting lipophagy, suggesting that targeting LARS1 may represent a novel therapeutic strategy for patients with CKD.
Collapse
Affiliation(s)
- Rui Guo
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China
- Department of Pathophysiology, Hebei North University, Zhangjiakou, 075000, China
| | - Mei-Ni Chen
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China
| | - Qian-Hui Lin
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China
| | - Hui-Min Qi
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China
| | - Xiao-Qi Wang
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China
| | - Bing-Yu Li
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China
| | - Shuo Wang
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China
| | - Su-Juan Xu
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Yue Zhang
- Department of Diagnostics, Hebei Medical University, No. 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei Province, China.
| | - Wei Liu
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China.
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang, 050017, China.
| |
Collapse
|
2
|
Fan Y, He J, Shi L, Zhang M, Chen Y, Xu L, Han N, Jiang Y. Identification of potential key lipid metabolism-related genes involved in tubular injury in diabetic kidney disease by bioinformatics analysis. Acta Diabetol 2024; 61:1053-1068. [PMID: 38691241 DOI: 10.1007/s00592-024-02278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/19/2024] [Indexed: 05/03/2024]
Abstract
AIMS Accumulating evidences indicate that abnormalities in tubular lipid metabolism play a crucial role in the development of diabetic kidney disease (DKD). We aim to identify novel lipid metabolism-related genes associated with tubular injury in DKD by utilizing bioinformatics approaches. METHODS Differentially expressed genes (DEGs) between control and DKD tubular tissue samples were screened from the Gene Expression Omnibus (GEO) database, and then were intersected with lipid metabolism-related genes. Hub genes were further determined by combined weighted gene correlation network analysis (WGCNA) and protein-protein interaction (PPI) network. We performed enrichment analysis, immune analysis, clustering analysis, and constructed networks between hub genes and miRNAs, transcription factors and small molecule drugs. Receiver operating characteristic (ROC) curves were employed to evaluate the diagnostic efficacy of hub genes. We validated the relationships between hub genes and DKD with external datasets and our own clinical samples. RESULTS There were 5 of 37 lipid metabolism-related DEGs identified as hub genes. Enrichment analysis demonstrated that lipid metabolism-related DEGs were enriched in pathways such as peroxisome proliferator-activated receptors (PPAR) signaling and pyruvate metabolism. Hub genes had potential regulatory relationships with a variety of miRNAs, transcription factors and small molecule drugs, and had high diagnostic efficacy. Immune infiltration analysis revealed that 13 immune cells were altered in DKD, and hub genes exhibited significant correlations with a variety of immune cells. Through clustering analysis, DKD patients could be classified into 3 immune subtypes and 2 lipid metabolism subtypes, respectively. The tubular expression of hub genes in DKD was further verified by other external datasets, and immunohistochemistry (IHC) staining showed that except ACACB, the other 4 hub genes (LPL, AHR, ME1 and ALOX5) exhibited the same results as the bioinformatics analysis. CONCLUSION Our study identified several key lipid metabolism-related genes (LPL, AHR, ME1 and ALOX5) that might be involved in tubular injury in DKD, which provide new insights and perspectives for exploring the pathogenesis and potential therapeutic targets of DKD.
Collapse
Affiliation(s)
- Yuanshuo Fan
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Juan He
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Lixin Shi
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Miao Zhang
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Ye Chen
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Lifen Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Na Han
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yuecheng Jiang
- Guizhou Provincial People's Hospital, Guiyang, 550002, China
| |
Collapse
|
3
|
He Z, Lyu J, Lyu L, Long X, Xu B. Identification of a metabolism-linked genomic signature for prognosis and immunotherapeutic efficiency in metastatic skin cutaneous melanoma. Medicine (Baltimore) 2024; 103:e38347. [PMID: 38847706 PMCID: PMC11155616 DOI: 10.1097/md.0000000000038347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/03/2024] [Indexed: 06/10/2024] Open
Abstract
Metastatic skin cutaneous melanoma (MSCM) is the most rapidly progressing/invasive skin-based malignancy, with median survival rates of about 12 months. It appears that metabolic disorders accelerate disease progression. However, correlations between metabolism-linked genes (MRGs) and prognosis in MSCM are unclear, and potential mechanisms explaining the correlation are unknown. The Cancer Genome Atlas (TCGA) was utilized as a training set to develop a genomic signature based on the differentially expressed MRGs (DE-MRGs) between primary skin cutaneous melanoma (PSCM) and MSCM. The Gene Expression Omnibus (GEO) was utilized as a validation set to verify the effectiveness of genomic signature. In addition, a nomogram was established to predict overall survival based on genomic signature and other clinic-based characteristics. Moreover, this study investigated the correlations between genomic signature and tumor micro-environment (TME). This study established a genomic signature consisting of 3 genes (CD38, DHRS3, and TYRP1) and classified MSCM patients into low and high-risk cohorts based on the median risk scores of MSCM cases. It was discovered that cases in the high-risk cohort had significantly lower survival than cases in the low-risk cohort across all sets. Furthermore, a nomogram containing this genomic signature and clinic-based parameters was developed and demonstrated high efficiency in predicting MSCM case survival times. Interestingly, Gene Set Variation Analysis results indicated that the genomic signature was involved in immune-related physiological processes. In addition, this study discovered that risk scoring was negatively correlated with immune-based cellular infiltrations in the TME and critical immune-based checkpoint expression profiles, indicating that favorable prognosis may be influenced in part by immunologically protective micro-environments. A novel 3-genomic signature was found to be reliable for predicting MSCM outcomes and may facilitate personalized immunotherapy.
Collapse
Affiliation(s)
- Zhongshun He
- Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Jing Lyu
- Department of Physiology, Kunming Medical University, Kunming, Yunnan, China
| | - Lechun Lyu
- Technology Transfer Center, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaolin Long
- Yunnan Bestai Biotechnology Co., Ltd., Kunming, Yunnan, China
| | - Biao Xu
- Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| |
Collapse
|
4
|
Enkler L, Spang A. Functional interplay of lipid droplets and mitochondria. FEBS Lett 2024; 598:1235-1251. [PMID: 38268392 DOI: 10.1002/1873-3468.14809] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Our body stores energy mostly in form of fatty acids (FAs) in lipid droplets (LDs). From there the FAs can be mobilized and transferred to peroxisomes and mitochondria. This transfer is dependent on close opposition of LDs and mitochondria and peroxisomes and happens at membrane contact sites. However, the composition and the dynamics of these contact sites is not well understood, which is in part due to the dependence on the metabolic state of the cell and on the cell- and tissue-type. Here, we summarize the current knowledge on the contacts between lipid droplets and mitochondria both in mammals and in the yeast Saccharomyces cerevisiae, in which various contact sites are well studied. We discuss possible functions of the contact site and their implication in disease.
Collapse
Affiliation(s)
| | - Anne Spang
- Biozentrum, University of Basel, Switzerland
| |
Collapse
|
5
|
Enkler L, Spang A. [ARF1 coordinates fatty acid metabolism and mitochondrial homeostasis]. Med Sci (Paris) 2024; 40:321-323. [PMID: 38651953 DOI: 10.1051/medsci/2024030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Affiliation(s)
| | - Anne Spang
- Biozentrum, Université de Bâle, Bâle, Suisse
| |
Collapse
|
6
|
Yang F, Wu Y, Chen Y, Xi J, Chu Y, Jin J, Yan Y. Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate liver steatosis by promoting fatty acid oxidation and reducing fatty acid synthesis. JHEP Rep 2023; 5:100746. [PMID: 37274776 PMCID: PMC10232730 DOI: 10.1016/j.jhepr.2023.100746] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/07/2023] Open
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) affects nearly a quarter of the population with no approved pharmacological therapy. Liver steatosis is a primary characteristic of NAFLD. Recent studies suggest that human umbilical cord mesenchymal stem cell-derived exosomes (MSC-ex) may provide a promising strategy for treating liver injury; however, the role and underlying mechanisms of MSC-ex in steatosis are not fully understood. Methods Oleic-palmitic acid-treated hepatic cells and high-fat diet (HFD)-induced NAFLD mice were established to observe the effect of MSC-ex. Using non-targeted lipidomics and transcriptome analyses, we analysed the gene pathways positively correlated with MSC-ex. Mass spectrometry and gene knockdown/overexpression analyses were performed to evaluate the effect of calcium/calmodulin-dependent protein kinase 1 (CAMKK1) transferred by MSC-ex on lipid homoeostasis regulation. Results Here, we demonstrate that MSC-ex promote fatty acid oxidation and reduce lipogenesis in oleic-palmitic acid-treated hepatic cells and HFD-induced NAFLD mice. Non-targeted lipidomics and transcriptome analyses suggested that the effect of MSC-ex on lipid accumulation positively correlated with the phosphorylation of AMP-activated protein kinase. Furthermore, mass spectrometry and gene knockdown/overexpression analyses revealed that MSC-ex-transferred CAMKK1 is responsible for ameliorating lipid accumulation in an AMP-activated protein kinase-dependent manner, which subsequently inhibits SREBP-1C-mediated fatty acid synthesis and enhances peroxisome proliferator-activated receptor alpha (PPARα)-mediated fatty acid oxidation. Conclusions MSC-ex may prevent HFD-induced NAFLD via CAMKK1-mediated lipid homoeostasis regulation. Impact and Implications NAFLD includes many conditions, from simple steatosis to non-alcoholic steatohepatitis, which can lead to fibrosis, cirrhosis, and even hepatocellular carcinoma. So far, there is no approved drug for treating liver steatosis of NAFLD. Thus, better therapies are needed to regulate lipid metabolism and prevent the progression from liver steatosis to chronic liver disease. By using a combination of non-targeted lipidomic and transcriptome analyses, we revealed that human umbilical cord mesenchymal stem cell-derived exosomes (MSC-ex) effectively reduced lipid deposition and improved liver function from HFD-induced liver steatosis. Our study highlights the importance of exosomal CAMKK1 from MSC-ex in mediating lipid metabolism regulation via AMPK-mediated PPARα/CPT-1A and SREBP-1C/fatty acid synthase signalling in hepatocytes. These findings are significant in elucidating novel mechanisms related to MSC-ex-based therapies for preventing NAFLD.
Collapse
Affiliation(s)
- Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanshuang Wu
- School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianbo Xi
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, China
| | - Ying Chu
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, China
| | - Jianhua Jin
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, China
| |
Collapse
|
7
|
Xu C, Hong Q, Zhuang K, Ren X, Cui S, Dong Z, Wang Q, Bai X, Chen X. Regulation of pericyte metabolic reprogramming restricts the AKI to CKD transition. Metabolism 2023:155592. [PMID: 37230215 DOI: 10.1016/j.metabol.2023.155592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Acute kidney injury (AKI) is associated with high morbidity and mortality and is recognized as a long-term risk factor for progression to chronic kidney disease (CKD). The AKI to CKD transition is characterized by interstitial fibrosis and the proliferation of collagen-secreting myofibroblasts. Pericytes are the major source of myofibroblasts in kidney fibrosis. However, the underlying mechanism of pericyte-myofibroblast transition (PMT) is still unclear. Here we investigated the role of metabolic reprogramming in PMT. METHODS Unilateral ischemia/reperfusion-induced AKI to CKD mouse model and TGF-β-treated pericyte-like cells were used to detect the levels of fatty acid oxidation (FAO) and glycolysis, and the critical signaling pathways during PMT under the treatment of drugs regulating metabolic reprogramming. RESULTS PMT is characterized by a decrease in FAO and an increase in glycolysis. Enhancement of FAO by the peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α) activator ZLN-005 or suppression of glycolysis by the hexokinase 2 (HK2) inhibitor 2-DG can inhibit PMT, preventing the transition of AKI to CKD. Mechanistically, AMPK modulates various pathways involved in the metabolic switch from glycolysis to FAO. Specifically, the PGC1α-CPT1A pathway activates FAO, while inhibition of the HIF1α-HK2 pathway drives glycolysis inhibition. The modulations of these pathways by AMPK contribute to inhibiting PMT. CONCLUSIONS Metabolic reprogramming controls the fate of pericyte transdifferentiation and targets the abnormal metabolism of pericytes can effectively prevent AKI to CKD transition.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Nephrology, The Second Hospital of Jilin University, Nanguan District, Changchun 130041, Jilin, China; Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China
| | - Quan Hong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China
| | - Kaiting Zhuang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China
| | - Xuejing Ren
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China
| | - Shaoyuan Cui
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China
| | - Zheyi Dong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China
| | - Qian Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China
| | - Xueyuan Bai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, The Second Hospital of Jilin University, Nanguan District, Changchun 130041, Jilin, China; Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China.
| |
Collapse
|
8
|
Liu L, Liu T, Jia R, Zhang L, Lv Z, He Z, Qu Y, Sun S, Tai F. Downregulation of fatty acid oxidation led by Hilpda increases G2/M arrest/delay-induced kidney fibrosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166701. [PMID: 36990128 DOI: 10.1016/j.bbadis.2023.166701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Hypoxia-regulated proximal tubular epithelial cells (PTCs) G2/M phase arrest/delay was involved in production of renal tubulointerstitial fibrosis (TIF). TIF is a common pathological manifestation of progression in patients with chronic kidney disease (CKD), and is often accompanied by lipid accumulation in renal tubules. However, cause-effect relationship between hypoxia-inducible lipid droplet-associated protein (Hilpda), lipid accumulation, G2/M phase arrest/delay and TIF remains unclear. Here we found that overexpression of Hilpda downregulated adipose triglyceride lipase (ATGL) promoted triglyceride overload in the form of lipid accumulation, leading to defective fatty acid β-oxidation (FAO), ATP depletion in a human PTC cell line (HK-2) under hypoxia and in mice kidney tissue treated with unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI). Hilpda-induced lipid accumulation caused mitochondrial dysfunction, enhanced expression of profibrogenic factors TGF-β1, α-SMA and Collagen I elevation, and reduced expression of G2/M phase-associated gene CDK1, as well as increased CyclinB1/D1 ratio, resulted in G2/M phase arrest/delay and profibrogenic phenotypes. Hilpda deficiency in HK-2 cell and kidney of mice with UUO had sustained expression of ATGL and CDK1 and reduced expression of TGF-β1, Collagen I and CyclinB1/D1 ratio, resulting in the amelioration of lipid accumulation and G2/M arrest/delay and subsequent TIF. Expression of Hilpda correlated with lipid accumulation, was positively associated with tubulointerstitial fibrosis in tissue samples from patients with CKD. Our findings suggest that Hilpda deranges fatty acid metabolism in PTCs, which leads to G2/M phase arrest/delay and upregulation of profibrogenic factors, and consequently promote TIF which possibly underlie pathogenesis of CKD.
Collapse
|
9
|
The genetic side of diabetic kidney disease: a review. Int Urol Nephrol 2023; 55:335-343. [PMID: 35974289 DOI: 10.1007/s11255-022-03319-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/24/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is one of the most common complications of diabetes, with approximately 30-40% of patients with type 1 diabetes mellitus and 20% of patients with type 2 diabetes mellitus eventually developing DKD. If DKD is not controlled in the early clinical stage and proteinuria develops, the disease will progress to end-stage renal disease. The pathogenesis of DKD remains largely unknown and is multifactorial, likely due to interactions between genetic and environmental factors. Familial clustering also supports a critical role of hereditary factors in DKD. The development of gene detection technology has promoted the exploration of DKD susceptibility genes in different cohorts of patients with diabetes. Identifying susceptibility genes can provide insights into the pathogenesis of DKD, as well as a basis for its clinical diagnosis and therapy. RESULTS Numerous candidate gene loci have been found to be associated with DKD, many of which play critical regulatory roles in the pathogenesis of this disease, including genes involved in glycol-metabolism, lipid metabolism, the renin-angiotensin-aldosterone system, inflammation and oxidative stress. In this review, we summarize the functions of several susceptibility genes involved in the development of DKD. CONCLUSION Based on our findings, we recommend that studying susceptibility gene polymorphisms can lead to a better understanding of the pathogenesis of DKD and could help prevent this disease or improve its outcomes.
Collapse
|
10
|
Wen W, Huang B, Ye S. Metformin Ameliorates Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells in Diabetes by Increasing Vitamin D Receptor Expression. Diabetes Metab Syndr Obes 2022; 15:4001-4010. [PMID: 36582506 PMCID: PMC9792813 DOI: 10.2147/dmso.s389918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metformin is used as a first-line drug for the treatment of type 2 diabetes. Epithelial-mesenchymal transition (EMT) plays a significant role in the development of renal tubular damage in diabetic kidney disease. However, the underlying mechanisms of EMT in diabetic kidney disease are unclear and how to inhibit this process remains to be explored. METHODS C57 mice were randomly divided into four groups, including the normal control group (NC group), the Type 2 diabetes group (T2DM group), the metformin group (MET group), and glibenclamide group (GLIB). Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), urinary albumin, RBP, PCX, and creatinine were measured. Renal pathology was observed with HE staining. Molecular mechanism of VDR expression are regulated by metformin through wound healing assay, and Western blot analysis of VDR, Ecad, and SMA in HK2 cells. RESULTS In animal experiments, compared with the NC group, the T2DM group showed decreased body weight, increased levels of FBG, HbA1c, UAlb/UCR, URBP/UCR, and UPCX/UCR, decreased levels of VDR protein and mRNA expression in renal tissues (P < 0.05), and significantly increased renal pathological damage in mice in the T2DM group. Compared with the T2DM group, mice in the GLIB and MET groups had higher body weight and lower FBG, HbA1c, UAlb/UCR, URBP/UCR, and UPCX/UCR (P < 0.05). In addition, renal pathological damage was significantly reduced in the MET group compared to the GLIB group. In HK2 cells, high glucose promoted the reduction of VDR and the development of EMT compared to the NC group. In addition, we found that Metformin can up-regulate VDR and inhibit EMT. CONCLUSION Our study shows that the renoprotective effect of metformin is independent of glycemic control and metformin is involved in the progression of EMT by regulating VDR expression.
Collapse
Affiliation(s)
- Wenjie Wen
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China (USTC), Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Bin Huang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China (USTC), Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Shandong Ye
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China (USTC), Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
11
|
Morevati M, Fang EF, Mace ML, Kanbay M, Gravesen E, Nordholm A, Egstrand S, Hornum M. Roles of NAD + in Acute and Chronic Kidney Diseases. Int J Mol Sci 2022; 24:ijms24010137. [PMID: 36613582 PMCID: PMC9820289 DOI: 10.3390/ijms24010137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Nicotinamide adenine dinucleotide (oxidized form, NAD+) is a critical coenzyme, with functions ranging from redox reactions and energy metabolism in mitochondrial respiration and oxidative phosphorylation to being a central player in multiple cellular signaling pathways, organ resilience, health, and longevity. Many of its cellular functions are executed via serving as a co-substrate for sirtuins (SIRTs), poly (ADP-ribose) polymerases (PARPs), and CD38. Kidney damage and diseases are common in the general population, especially in elderly persons and diabetic patients. While NAD+ is reduced in acute kidney injury (AKI) and chronic kidney disease (CKD), mounting evidence indicates that NAD+ augmentation is beneficial to AKI, although conflicting results exist for cases of CKD. Here, we review recent progress in the field of NAD+, mainly focusing on compromised NAD+ levels in AKI and its effect on essential cellular pathways, such as mitochondrial dysfunction, compromised autophagy, and low expression of the aging biomarker αKlotho (Klotho) in the kidney. We also review the compromised NAD+ levels in renal fibrosis and senescence cells in the case of CKD. As there is an urgent need for more effective treatments for patients with injured kidneys, further studies on NAD+ in relation to AKI/CKD may shed light on novel therapeutics.
Collapse
Affiliation(s)
- Marya Morevati
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence:
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Maria L. Mace
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, Istanbul 34010, Turkey
| | - Eva Gravesen
- Department of Pathology, Herlev Hospital, University of Copenhagen, 2730 Copenhagen, Denmark
| | - Anders Nordholm
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Søren Egstrand
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mads Hornum
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Liu HX, Zhao H, Xi C, Li S, Ma LP, Lu X, Yan J, Tian XL, Gao L, Tian M, Liu QJ. CPT1 Mediated Ionizing Radiation-Induced Intestinal Injury Proliferation via Shifting FAO Metabolism Pathway and Activating the ERK1/2 and JNK Pathway. Radiat Res 2022; 198:488-507. [PMID: 36351324 DOI: 10.1667/rade-21-00174.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 07/07/2022] [Indexed: 06/16/2023]
Abstract
The intestinal compensatory proliferative potential is a key influencing factor for susceptibility to radiation-induced intestinal injury. Studies indicated that the carnitine palmitoyltransferase 1 (CPT1) mediated fatty acid β-oxidation (FAO) plays a crucial role in promoting the survival and proliferation of tumor cells. Here, we aimed to explore the effect of 60Co gamma rays on CPT1 mediated FAO in the radiation-induced intestinal injury models, and investigate the role of CPT1 mediated FAO in the survival and proliferation of intestinal cells after irradiation. We detected the changed of FAO in the plasma and small intestine of Sprague Dawley (SD) rats at 24 h after 60Co gamma irradiation (0, 5 and 10 Gy), using target metabolomics, qRT-PCR, immunohistochemistry (IHC), western blot (WB) and related enzymatic activity kits. We then analyzed the FAO changes in radiation-induced intestinal injury models regardless of ex vivo (mice enteroids), or in vitro (normal human intestinal epithelial cell lines, HIEC-6). HIEC-6 cells were transduced with lentivirus vector GV392 and treated with puromycin for obtaining CPT1 stable knockout cell lines, named CPT1 KO. CPT1 enzymatic activities of HIEC-6 cells and mice enteroids were also inhibited by pharmaceutical inhibitor ST1326 and Etomoxir (ETO), to study the function of CPT1 in the survival and proliferation of HIEC-6 cells after 60Co gamma irradiation. We found that CPT1 mediated FAO was altered in the small intestine of the SD rats after irradiation, especially, the expression level and enzymatic activity of CPT1 were significantly increased. Similarly, the expression levels of CPT1 were also remarkably enhanced in mice enteroids and HIEC-6 cells after irradiation. CPT1 inhibition decreased the proliferation of the HIEC-6 cells and mice enteroids after irradiation partially by reducing the extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways activation, CPT1 inhibition also reduced the proliferation of mice enteroids after irradiation partially by down-regulating the Wnt/β-catenin signaling activity. In conclusion, our study indicated that CPT1 plays a crucial role in promoting intestinal epithelial cell proliferation after irradiation.
Collapse
Affiliation(s)
- Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Cong Xi
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Li-Ping Ma
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Juan Yan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xue-Lei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
13
|
Kayampilly P, Roeser N, Rajendiran TM, Pennathur S, Afshinnia F. Acetyl Co-A Carboxylase Inhibition Halts Hyperglycemia Induced Upregulation of De Novo Lipogenesis in Podocytes and Proximal Tubular Cells. Metabolites 2022; 12:940. [PMID: 36295842 PMCID: PMC9610518 DOI: 10.3390/metabo12100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
The effect of glycemic stress on de novo lipogenesis (DNL) in podocytes and tubular epithelial cells is understudied. This study is aimed (A) to show the effect of glycemic stress on DNL, and (B) to assess the effect of acetyl-Co A (ACC) inhibition on halting upregulation of DNL, on the expression of other lipid regulatory genes in the DNL pathway, and on markers of fibrosis and apoptosis in podocytes and tubular epithelial cells. We used cultured mouse primary tubular epithelial cells, mouse proximal tubular (BUMPT) cells, and immortal mouse podocytes and measured their percentage of labeled 13C2-palmitate as a marker of DNL after incubation with 13C2 acetate in response to high glucose concentration (25 mM). We then tested the effect of ACC inhibition by complimentary strategies utilizing CRISPR/cas9 deletion or incubation with Acaca and Acacb GapmeRs or using a small molecule inhibitor on DNL under hyperglycemic concentration. Exposure to high glucose concentration (25 mM) compared to osmotic controlled low glucose concentration (5.5 mM) significantly increased labeled palmitate after 24 h up to 72 h in podocytes and primary tubular cells. Knocking out of the ACC coding Acaca and Acacb genes by CRISPR/cas9, downregulation of Acaca and Acacb by specific antisense LNA GapmeRs and inhibition of ACC by firsocostat similarly halted/mitigated upregulation of DNL and decreased markers of fibrosis and programmed cell death in podocytes and various tubular cells. ACC inhibition is a potential therapeutic target to mitigate or halt hyperglycemia-induced upregulation of DNL in podocytes and tubular cells.
Collapse
Affiliation(s)
- Pradeep Kayampilly
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Nancy Roeser
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Thekkelnaycke M Rajendiran
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI 48105, USA
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Farsad Afshinnia
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
14
|
Raeisi M, Zehtabi M, Velaei K, Fayyazpour P, Aghaei N, Mehdizadeh A. Anoikis in cancer: The role of lipid signaling. Cell Biol Int 2022; 46:1717-1728. [DOI: 10.1002/cbin.11896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Mortaza Raeisi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Velaei
- Department of Anatomical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Parisa Fayyazpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Negar Aghaei
- Department of Psycology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Imam Sajjad Hospital Tabriz Azad University Tabriz Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
15
|
Dozio E, Maffioli E, Vianello E, Nonnis S, Grassi Scalvini F, Spatola L, Roccabianca P, Tedeschi G, Corsi Romanelli MM. A Wide-Proteome Analysis to Identify Molecular Pathways Involved in Kidney Response to High-Fat Diet in Mice. Int J Mol Sci 2022; 23:ijms23073809. [PMID: 35409168 PMCID: PMC8999052 DOI: 10.3390/ijms23073809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
The etiopathogenesis of obesity-related chronic kidney disease (CKD) is still scarcely understood. To this aim, we assessed the effect of high-fat diet (HF) on molecular pathways leading to organ damage, steatosis, and fibrosis. Six-week-old male C57BL/6N mice were fed HF diet or normal chow for 20 weeks. Kidneys were collected for genomic, proteomic, histological studies, and lipid quantification. The main findings were as follows: (1) HF diet activated specific pathways leading to fibrosis and increased fatty acid metabolism; (2) HF diet promoted a metabolic shift of lipid metabolism from peroxisomes to mitochondria; (3) no signs of lipid accumulation and/or fibrosis were observed, histologically; (4) the early signs of kidney damage seemed to be related to changes in membrane protein expression; (5) the proto-oncogene MYC was one of the upstream transcriptional regulators of changes occurring in protein expression. These results demonstrated the potential usefulness of specific selected molecules as early markers of renal injury in HF, while histomorphological changes become visible later in obesity-related CDK. The integration of these information with data from biological fluids could help the identification of biomarkers useful for the early detection and prevention of tissue damage in clinical practice.
Collapse
Affiliation(s)
- Elena Dozio
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.D.); (M.M.C.R.)
| | - Elisa Maffioli
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (P.R.); (G.T.)
| | - Elena Vianello
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.D.); (M.M.C.R.)
- Correspondence: ; Tel.: +39-02-50315342
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (P.R.); (G.T.)
- CRC “Innovation for Well-Being and Environment” (I-WE), Università degli Studi di Milano, 29133 Milan, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (P.R.); (G.T.)
| | - Leonardo Spatola
- Division of Nephrology, Dialysis and Renal Transplantation, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy;
| | - Paola Roccabianca
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (P.R.); (G.T.)
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (P.R.); (G.T.)
- CRC “Innovation for Well-Being and Environment” (I-WE), Università degli Studi di Milano, 29133 Milan, Italy
| | - Massimiliano Marco Corsi Romanelli
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.D.); (M.M.C.R.)
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| |
Collapse
|
16
|
Quantifying the Patterns of Metabolic Plasticity and Heterogeneity along the Epithelial–Hybrid–Mesenchymal Spectrum in Cancer. Biomolecules 2022; 12:biom12020297. [PMID: 35204797 PMCID: PMC8961667 DOI: 10.3390/biom12020297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer metastasis is the leading cause of cancer-related mortality and the process of the epithelial-to-mesenchymal transition (EMT) is crucial for cancer metastasis. Both partial and complete EMT have been reported to influence the metabolic plasticity of cancer cells in terms of switching among the oxidative phosphorylation, fatty acid oxidation and glycolysis pathways. However, a comprehensive analysis of these major metabolic pathways and their associations with EMT across different cancers is lacking. Here, we analyse more than 180 cancer cell datasets and show the diverse associations of these metabolic pathways with the EMT status of cancer cells. Our bulk data analysis shows that EMT generally positively correlates with glycolysis but negatively with oxidative phosphorylation and fatty acid metabolism. These correlations are also consistent at the level of their molecular master regulators, namely AMPK and HIF1α. Yet, these associations are shown to not be universal. The analysis of single-cell data for EMT induction shows dynamic changes along the different axes of metabolic pathways, consistent with general trends seen in bulk samples. Further, assessing the association of EMT and metabolic activity with patient survival shows that a higher extent of EMT and glycolysis predicts a worse prognosis in many cancers. Together, our results reveal the underlying patterns of metabolic plasticity and heterogeneity as cancer cells traverse through the epithelial–hybrid–mesenchymal spectrum of states.
Collapse
|
17
|
Jiang WJ, Xu CT, Du CL, Dong JH, Xu SB, Hu BF, Feng R, Zang DD, Meng XM, Huang C, Li J, Ma TT. Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy. Theranostics 2022; 12:324-339. [PMID: 34987648 PMCID: PMC8690920 DOI: 10.7150/thno.63735] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Macrophage infiltration around lipotoxic tubular epithelial cells (TECs) is a hallmark of diabetic nephropathy (DN). However, how these two types of cells communicate remains obscure. We previously demonstrated that LRG1 was elevated in the process of kidney injury. Here, we demonstrated that macrophage-derived, LRG1-enriched extracellular vesicles (EVs) exacerbated DN. Methods: We induced an experimental T2DM mouse model with a HFD diet for four months. Renal primary epithelial cells and macrophage-derived EVs were isolated from T2D mice by differential ultracentrifugation. To investigate whether lipotoxic TEC-derived EV (EVe) activate macrophages, mouse bone marrow-derived macrophages (BMDMs) were incubated with EVe. To investigate whether activated macrophage-derived EVs (EVm) induce lipotoxic TEC apoptosis, EVm were cocultured with primary renal tubular epithelial cells. Subsequently, we evaluated the effect of LRG1 in EVe by investigating the apoptosis mechanism. Results: We demonstrated that incubation of primary TECs of DN or HK-2 mTECs with lysophosphatidyl choline (LPC) increased the release of EVe. Interestingly, TEC-derived EVe activated an inflammatory phenotype in macrophages and induced the release of macrophage-derived EVm. Furthermore, EVm could induce apoptosis in TECs injured by LPC. Importantly, we found that leucine-rich α-2-glycoprotein 1 (LRG1)-enriched EVe activated macrophages via a TGFβR1-dependent process and that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-enriched EVm induced apoptosis in injured TECs via a death receptor 5 (DR5)-dependent process. Conclusion: Our findings indicated a novel cell communication mechanism between tubular epithelial cells and macrophages in DN, which could be a potential therapeutic target.
Collapse
|
18
|
Liu HX, Lu X, Zhao H, Li S, Gao L, Tian M, Liu QJ. Enhancement of Acylcarnitine Levels in Small Intestine of Abdominal Irradiation Rats Might Relate to Fatty Acid β-Oxidation Pathway Disequilibration. Dose Response 2022; 20:15593258221075118. [PMID: 35221822 PMCID: PMC8874182 DOI: 10.1177/15593258221075118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/24/2021] [Indexed: 11/21/2022]
Abstract
Objective This study aims to analyze the alteration of carnitine profile in the small intestine of abdominal irradiation-induced intestinal injury rats and explore the possible reason for the altered carnitine profile. Methods The abdomens of 15 male Sprague Dawley (SD) rats were irradiated with 0, 10, and 15 Gy of 60Co gamma rays. The carnitine profile in the small intestine and plasma samples of SD rats at 72 h after abdominal irradiated with 0 Gy or 10 Gy of 60Co gamma rays were measured by targeted metabolomics. The changes of fatty acid β-oxidation (FAO), including the expression of carnitine palmitoyltransferase 1 (CPT1) and acyl-CoA dehydrogenases, were analyzed in the small intestine samples of SD rats after exposed to 0, 10, and 15 Gy groups. Results There were eleven acylcarnitines in the small intestine and fourteen acylcarnitines in the plasma of the rat model significantly enhanced, respectively (P < .05). The expression level and activity of CPT1 in the small intestine were remarkably increased (P < .05), and the activity of acyl-CoA dehydrogenase in the small intestine was noticeably reduced (P < .01) after abdominal irradiation. Conclusion The enhanced acylcarnitine levels in the small intestine of abdominal irradiation rats might relate to the FAO pathway disequilibration.
Collapse
Affiliation(s)
- Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
19
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Lipid droplet - mitochondria coupling: A novel lipid metabolism regulatory hub in diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1017387. [PMID: 36387849 PMCID: PMC9640443 DOI: 10.3389/fendo.2022.1017387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) involves serious lipid metabolism disorder, and renal ectopic lipid deposition aggravates DN progression. However, the molecular mechanism of renal lipid deposition in DN remains unclear. Lipid droplets (LDs) are lipid pools in cells that change dynamically in response to the cellular energy needs. The LDs and mitochondria are connected through a part of the mitochondria known as the peridroplet mitochondria (PDM). In this review, we summarize the definition, detection methods, and function of the PDM. Finally, we discuss the research status of PDM in DN and the possibility of its use as a therapeutic target.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xi Wang,
| |
Collapse
|
20
|
Chen S, Chen J, Li S, Guo F, Li A, Wu H, Chen J, Pan Q, Liao S, Liu HF, Pan Q. High-Fat Diet-Induced Renal Proximal Tubular Inflammatory Injury: Emerging Risk Factor of Chronic Kidney Disease. Front Physiol 2021; 12:786599. [PMID: 34950058 PMCID: PMC8688947 DOI: 10.3389/fphys.2021.786599] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Nowadays, with the improvements in living standards and changes in living habits, high-fat diet (HFD) has become much more common in the populations worldwide. Recent studies have shown that HFD could induce lipid accumulation, and structural and functional abnormalities, accompanied by the release of large amounts of pro-inflammatory cytokines, in proximal tubular epithelial cells (PTECs). These findings indicate that, as an emerging risk factor, PTEC injury-induced by HFD may be closely related to inflammation; however, the potential mechanisms underlying this phenomenon is still not well-known, but may involve the several inflammatory pathways, including oxidative stress-related signaling pathways, mitochondrial dysfunction, the myeloid differentiation factor 2/Toll like receptor 4 (MD2/TLR4) signaling pathway, the ERK1/2-kidney injury molecule 1 (KIM-1)-related pathway, and nuclear factor-κB (NF-κB) activation, etc., and the detailed molecular mechanisms underlying these pathways still need further investigated in the future. Based on lipid abnormalities-induced inflammation is closely related to the development and progression of chronic kidney disease (CKD), to summarize the potential mechanisms underlying HFD-induced renal proximal tubular inflammatory injury, may provide novel approaches for CKD treatment.
Collapse
Affiliation(s)
- Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinxia Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shangmei Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Han Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
21
|
Wang H, Zhang S, Guo J. Lipotoxic Proximal Tubular Injury: A Primary Event in Diabetic Kidney Disease. Front Med (Lausanne) 2021; 8:751529. [PMID: 34760900 PMCID: PMC8573085 DOI: 10.3389/fmed.2021.751529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
The pathogenesis of diabetic nephropathy is a complex process that has a great relationship with lipotoxicity. Since the concept of “nephrotoxicity” was proposed, many studies have confirmed that lipotoxicity plays a significant role in the progression of diabetic nephropathy and causes various renal dysfunction. This review will make a brief summary of renal injury caused by lipotoxicity that occurs primarily and predominantly in renal tubules during diabetic progression, further leading to glomerular dysfunction. The latest research suggests that lipotoxicity-mediated tubular injury may be a major event in diabetic nephropathy.
Collapse
Affiliation(s)
- Hua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Nephrology, Nephropathy Research Institutes of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Lovisa S. Epithelial-to-Mesenchymal Transition in Fibrosis: Concepts and Targeting Strategies. Front Pharmacol 2021; 12:737570. [PMID: 34557100 PMCID: PMC8454779 DOI: 10.3389/fphar.2021.737570] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT), an embryonic program relaunched during wound healing and in pathological conditions such as fibrosis and cancer, continues to gain the attention of the research community, as testified by the exponential trend of publications since its discovery in the seventies. From the first description as a mesenchymal transformation, the concept of EMT has been substantially refined as an in-depth comprehension of its functional role has recently emerged thanks to the implementation of novel mouse models as well as the use of sophisticated mathematical modeling and bioinformatic analysis. Nevertheless, attempts to targeting EMT in fibrotic diseases are at their infancy and continue to pose several challenges. The aim of this mini review is to recapitulate the most recent concepts in the EMT field and to summarize the different strategies which have been exploited to target EMT in fibrotic disorders.
Collapse
Affiliation(s)
- Sara Lovisa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy.,IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| |
Collapse
|
23
|
Chen J, Li T, Vladmir C, Yuan Y, Sun Z. Renal lipid accumulation induced by high-fat diet regulates glucose homeostasis via sodium-glucose cotransporter 2. Diabetes Res Clin Pract 2021; 179:109027. [PMID: 34454004 DOI: 10.1016/j.diabres.2021.109027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/20/2022]
Abstract
AIMS Visceral lipid accumulation is involved in a variety of physiological aberrations. In the current study, we aimed to investigate whether lipid accumulation had an impact on glucose reabsorption in the kidney. METHODS We examined renal lipid content and renal threshold for glucose (RTG) of each subject. We compared sodium-glucose cotransporter 2 (SGLT2) and sterol regulatory element-binding protein 1c (SREBP1c) levels in kidneys between rats fed with high fat diet (HFD) and normal chow diet. In vitro, HK2 cells were treated with palmitic acid (PA). Intracellular lipid droplet deposition, glucose uptake, SGLT2 and SREBP1c expression were examined. RESULTS Renal fat fraction was positively associated with RTG among the recruited subjects. Moreover, renal lipid content was significantly increased in HFD rats, as well as SGLT2 expression. Accompanied with lipid droplet deposition in HK2 cells, PA stimulated SGLT2 expression and glucose uptake. In addition, after PA treatment, SREBP1c expression was significantly enhanced. However, transfection with siRNA-SREBP1c resulted in significant amelioration of lipid accumulation induced by PA in HK2 cells. Further examination indicated that accompanied with improvement of lipid deposition, SGLT2 expression and glucose uptake were attenuated. CONCLUSIONS The results of our study demonstrate the involvement of renal lipid accumulation in glucose homeostasis.
Collapse
Affiliation(s)
- Juan Chen
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China; Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, China
| | - Tingting Li
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Carvalho Vladmir
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Yang Yuan
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China.
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
24
|
Wang Q, Zhao B, Zhang J, Sun J, Wang S, Zhang X, Xu Y, Wang R. Faster lipid β-oxidation rate by acetyl-CoA carboxylase 2 inhibition alleviates high-glucose-induced insulin resistance via SIRT1/PGC-1α in human podocytes. J Biochem Mol Toxicol 2021; 35:e22797. [PMID: 33957017 DOI: 10.1002/jbt.22797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Diabetic nephropathy (DN) is becoming a research hotspot in recent years because the prevalence is high and the prognosis is poor. Lipid accumulation in podocytes induced by hyperglycemia has been shown to be a driving mechanism underlying the development of DN. However, the mechanism of lipotoxicity remains unclear. Increasing evidence shows that acetyl-CoA carboxylase 2 (ACC2) plays a crucial role in the metabolism of fatty acid, but its effect in podocyte injury of DN is still unclear. In this study, we investigated whether ACC2 could be a therapeutic target of lipid deposition induced by hyperglycemia in the human podocytes. Our results showed that high glucose (HG) triggered significant lipid deposition with a reduced β-oxidation rate. It also contributed to the downregulation of phosphorylated ACC2 (p-ACC2), which is an inactive form of ACC2. Knockdown of ACC2 by sh-RNA reduced lipid deposition induced by HG. Additionally, ACC2-shRNA restored the expression of glucose transporter 4 (GLUT4) on the cell surface, which was downregulated in HG and normalized in the insulin signaling pathway. We verified that ACC2-shRNA alleviated cell injury, apoptosis, and restored the cytoskeleton disturbed by HG. Mechanistically, SIRT1/PGC-1α is close related to the insulin metabolism pathway. ACC2-shRNA could restore the expression of SIRT1/PGC-1α, which was downregulated in HG. Rescue experiment revealed that inhibition of SIRT1 by EX-527 counteracted the effect of ACC2-shRNA. Taken together, our data suggest that podocyte injury mediated by HG-induced insulin resistance and lipotoxicity could be alleviated by ACC2 inhibition via SIRT1/PGC-1α.
Collapse
Affiliation(s)
- Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Zhao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jie Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jingshu Sun
- Department of Nephrology, Weifang people's hospital, Weifang, Shandong, China
| | - Simeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ying Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
25
|
Yang M, Han Y, Luo S, Xiong X, Zhu X, Zhao H, Jiang N, Xiao Y, Wei L, Li C, Yang J, Sun L. MAMs Protect Against Ectopic Fat Deposition and Lipid-Related Kidney Damage in DN Patients. Front Endocrinol (Lausanne) 2021; 12:609580. [PMID: 33679616 PMCID: PMC7933555 DOI: 10.3389/fendo.2021.609580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ectopic fat deposition (EFD) in the kidney plays a key role in the development of diabetic nephropathy (DN). Mitochondria-associated ER membranes (MAMs) are structures that connect to the endoplasmic reticulum (ER) and are involved in lipid metabolism. However, there are few studies on MAMs in the field of kidney disease, and the relationship between EFD and MAMs in DN is still unclear. In this study, increased EFD in the kidneys of DN patients was observed, and analysis showed that the degree of EFD was positively correlated with renal damage. Then, the MAMs were quantified by an in situ proximity ligation assay (PLA). The MAMs in the kidneys were found to gradually decrease through the different stages of DN, while the expression of ADRP (a marker of lipid droplets) and tubulointerstitial damage increased. Moreover, correlation analysis showed that the MAMs were negatively correlated with serum lipid levels, the EFD in the kidney and renal damage. Finally, we observed decreased expression of MAM-control proteins (DsbA-L, PACS-2, and MFN-2) in different stages of DN and they were associated with lipid deposition and renal damage. These data showed that the destruction of MAMs in DN might be the cause of EFD and interstitial damage in the kidney.
Collapse
|
26
|
Jiang M, Bai M, Lei J, Xie Y, Xu S, Jia Z, Zhang A. Mitochondrial dysfunction and the AKI-to-CKD transition. Am J Physiol Renal Physiol 2020; 319:F1105-F1116. [PMID: 33073587 DOI: 10.1152/ajprenal.00285.2020] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI) has been widely recognized as an important risk factor for the occurrence and development of chronic kidney disease (CKD). Even milder AKI has adverse consequences and could progress to renal fibrosis, which is the ultimate common pathway for various terminal kidney diseases. Thus, it is urgent to develop a strategy to hinder the transition from AKI to CKD. Some mechanisms of the AKI-to-CKD transition have been revealed, such as nephron loss, cell cycle arrest, persistent inflammation, endothelial injury with vascular rarefaction, and epigenetic changes. Previous studies have elucidated the pivotal role of mitochondria in acute injuries and demonstrated that the fitness of this organelle is a major determinant in both the pathogenesis and recovery of organ function. Recent research has suggested that damage to mitochondrial function in early AKI is a crucial factor leading to tubular injury and persistent renal insufficiency. Dysregulation of mitochondrial homeostasis, alterations in bioenergetics, and organelle stress cross talk contribute to the AKI-to-CKD transition. In this review, we focus on the pathophysiology of mitochondria in renal recovery after AKI and progression to CKD, confirming that targeting mitochondria represents a potentially effective therapeutic strategy for the progression of AKI to CKD.
Collapse
Affiliation(s)
- Mingzhu Jiang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Lei
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yifan Xie
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shuang Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Sheng L, Zhuang S. New Insights Into the Role and Mechanism of Partial Epithelial-Mesenchymal Transition in Kidney Fibrosis. Front Physiol 2020; 11:569322. [PMID: 33041867 PMCID: PMC7522479 DOI: 10.3389/fphys.2020.569322] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is described as the process in which injured renal tubular epithelial cells undergo a phenotype change, acquiring mesenchymal characteristics and morphing into fibroblasts. Initially, it was widely thought of as a critical mechanism of fibrogenesis underlying chronic kidney disease. However, evidence that renal tubular epithelial cells can cross the basement membrane and become fibroblasts in the renal interstitium is rare, leading to debate about the existence of EMT. Recent research has demonstrated that after injury, renal tubular epithelial cells acquire mesenchymal characteristics and the ability to produce a variety of profibrotic factors and cytokines, but remain attached to the basement membrane. On this basis, a new concept of “partial epithelial-mesenchymal transition (pEMT)” was proposed to explain the contribution of renal epithelial cells to renal fibrogenesis. In this review, we discuss the concept of pEMT and the most recent findings related to this process, including cell cycle arrest, metabolic alternation of epithelial cells, infiltration of immune cells, epigenetic regulation as well as the novel signaling pathways that mediate this disturbed epithelial-mesenchymal communication. A deeper understanding of the role and the mechanism of pEMT may help in developing novel therapies to prevent and halt fibrosis in kidney disease.
Collapse
Affiliation(s)
- Lili Sheng
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
28
|
An Overview of Lipid Metabolism and Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4020249. [PMID: 32733940 PMCID: PMC7383338 DOI: 10.1155/2020/4020249] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The occurrence of nonalcoholic fatty liver disease (NAFLD) is associated with major abnormalities of hepatic lipid metabolism. We propose that lipid abnormalities directly or indirectly contribute to NAFLD, especially fatty acid accumulation, arachidonic acid metabolic disturbance, and ceramide overload. The effects of lipid intake and accumulation on NAFLD and NAFLD treatment are explained with theoretical and experimental details. Overall, these findings provide further understanding of lipid metabolism in NAFLD and may lead to novel therapies.
Collapse
|
29
|
Console L, Scalise M, Giangregorio N, Tonazzi A, Barile M, Indiveri C. The Link Between the Mitochondrial Fatty Acid Oxidation Derangement and Kidney Injury. Front Physiol 2020; 11:794. [PMID: 32733282 PMCID: PMC7363843 DOI: 10.3389/fphys.2020.00794] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
Renal proximal tubular cells are high energy-demanding cells mainly relying on fatty acid oxidation. In stress conditions, such as transient hypoxia, fatty acid oxidation (FAO) decreases and carbohydrate catabolism fails to compensate for the energy demand. In this scenario, the surviving tubular cells exhibit the peculiar phenotype associated with fibrosis that is the histological manifestation of a process culminating in chronic and end-stage kidney disease. Genome-wide transcriptome analysis revealed that, together with inflammation, FAO is the top dysregulated pathway in kidney diseases with a decreased expression of key FAO enzymes and regulators. Another evidence that links the derangement of FAO to fibrosis is the progressive decrease of the expression of peroxisome proliferator-activated receptor α (PPARα) in aged people, that triggers the age-associated renal fibrosis. To allow FAO completion, a coordinate network of enzymes and transport proteins is required. Indeed, the mitochondrial inner membrane is impermeable to fatty acyl-CoAs and a specialized system, well known as carnitine shuttle, is needed for translocating fatty acids moieties, conjugated with carnitine, into mitochondrial matrix for the β-oxidation. The first component of this system is the carnitine palmitoyltransferase 1 (CPT1) responsible for transfer acyl moieties to carnitine. Several studies indicated that the stimulation of CPT1 activity and expression has a protective effect against renal fibrosis. Therefore, the network of enzymes and transporters linked to FAO may represent potential pharmacological targets deserving further attention in the development of new drugs to attenuate renal dysfunction.
Collapse
Affiliation(s)
- Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Rende, Italy
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Rende, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Maria Barile
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Rende, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| |
Collapse
|
30
|
Su B, Han H, Ji C, Hu W, Yao J, Yang J, Fan Y, Li J. MiR-21 promotes calcium oxalate-induced renal tubular cell injury by targeting PPARA. Am J Physiol Renal Physiol 2020; 319:F202-F214. [PMID: 32628541 DOI: 10.1152/ajprenal.00132.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Kidney stone disease is a crystal concretion formed in the kidneys that has been associated with an increased risk of chronic kidney disease. MicroRNAs are functionally involved in kidney injury. Data mining using a microRNA array database suggested that miR-21 may be associated with calcium oxalate monohydrate (COM)-induced renal tubular cell injury. Here, we confirmed that COM exposure significantly upregulated miR-21 expression, inhibited proliferation, promoted apoptosis, and caused lipid accumulation in an immortalized renal tubular cell line (HK-2). Moreover, inhibition of miR-21 enhanced proliferation and decreased apoptosis and lipid accumulation in HK-2 cells upon COM exposure. In a glyoxylate-induced mouse model of renal calcium oxalate deposition, increased miR-21 expression, lipid accumulation, and kidney injury were also observed. In silico analysis and subsequent experimental validation confirmed the peroxisome proliferator-activated receptor (PPAR)-α gene (PPARA) a key gene in fatty acid oxidation, as a direct miR-21 target. Suppression of miR-21 by miRNA antagomiR or activation of PPAR-α by its selective agonist fenofibrate significantly reduced renal lipid accumulation and protected against renal injury in vivo. In addition, miR-21 was significantly increased in urine samples from patients with calcium oxalate renal stones compared with healthy volunteers. In situ hybridization of biopsy samples from patients with nephrocalcinosis revealed that miR-21 was also significantly upregulated compared with normal kidney tissues from patients with renal cell carcinoma who underwent radical nephrectomy. These results suggested that miR-21 promoted calcium oxalate-induced renal tubular cell injury by targeting PPARA, indicating that miR-21 could be a potential therapeutic target and biomarker for nephrolithiasis.
Collapse
Affiliation(s)
- Boxing Su
- Department of Urology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Haibo Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Clinical Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chaoyue Ji
- Department of Urology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Weiguo Hu
- Department of Urology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jingjing Yao
- Department of Pathology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jianghui Yang
- Department of Pathology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yunfei Fan
- Department of Urology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jianxing Li
- Department of Urology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
31
|
Hou B, He P, Ma P, Yang X, Xu C, Lam SM, Shui G, Yang X, Zhang L, Qiang G, Du G. Comprehensive Lipidome Profiling of the Kidney in Early-Stage Diabetic Nephropathy. Front Endocrinol (Lausanne) 2020; 11:359. [PMID: 32655493 PMCID: PMC7325916 DOI: 10.3389/fendo.2020.00359] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic changes associated with diabetes are reported to lead to the onset of early-stage diabetic nephropathy (DN). Furthermore, lipotoxicity is implicated in renal dysfunction. Most studies of DN have focused on a single or limited number of lipids, and the lipidome of the kidney during early-stage DN remains to be elucidated. In the present study, we aimed to comprehensively identify lipid abnormalities during early-stage DN; to this end, we established an early-stage DN rat model by feeding a high-sucrose and high-fat diet combined with administration of low-dose streptozotocin. Using a high-coverage, targeted lipidomic approach, we established the lipid profile, comprising 437 lipid species and 25 lipid classes, of the kidney cortex in normal rats and the DN rat model. Our findings additionally confirmed that the DN rat model had been successfully established. We observed distinct lipidomic signatures in the DN kidney, with characteristic alterations in side chain composition and degree of unsaturation. Glyceride lipids, especially cholesteryl esters, showed a significant increase in the DN kidney cortex. The levels of most phospholipids exhibited a decline, except those of phospholipids with side chain of 36:1. Furthermore, the levels of lyso-phospholipids and sphingolipids, including ceramide and its derivatives, were dramatically elevated in the present DN rat model. Our findings, which provide a comprehensive lipidome of the kidney cortex in rats with DN, are expected to be useful for the identification of pathologically relevant lipid species in DN. Furthermore, the results represent novel insights into the mechanistic basis of DN.
Collapse
Affiliation(s)
- Biyu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Ping He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunyang Xu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Sin Man Lam
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
32
|
GCN5L1 controls renal lipotoxicity through regulating acetylation of fatty acid oxidation enzymes. J Physiol Biochem 2019; 75:597-606. [PMID: 31760589 DOI: 10.1007/s13105-019-00711-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/31/2019] [Indexed: 01/25/2023]
Abstract
Dyslipidemia is a common risk factor of chronic kidney disease (CKD). Current notion suggests that insufficient intracellular fatty acid oxidation (FAO) and subsequently enhanced fatty acid esterification within renal resident cells, a process termed as renal lipotoxicity, is the key pathogenic event responsible for dyslipidemia-induced kidney injury. However, the detailed mechanism is not fully elucidated. Recently, accumulating data indicated that acetylation modification is an important regulating manner for both mitochondrial function and energy metabolism, while whether acetylation modification is involved in renal lipotoxicity is of little known. In the present study, the expression level of global lysine acetylation was detected by immunohistochemistry in high-fat diet mice and western blot in palmitic acid (PA) stimulated HK-2 cells. The acetylation levels of long-chain acyl-CoA dehydrogenases (LCAD) and β-hydroxyacyl-CoA dehydrogenase (β-HAD) were measured by immunoprecipitation. And a multifunction microplate reader was applied to detect FAO rate, triglyceride and acyl-CoA contents, and the enzyme activities, with cellular lipid accumulation identified by Oil Red O staining. We evidenced the acetylation levels of LCAD and β-HAD that were enhanced, which led to decreased enzymatic activities and impaired FAO rate. Furthermore, renal protein hyperacetylation induced by lipid overload was associated with increased expression of GCN5L1. And the silence of GCN5L1 in tubular epithelial cells resulted in deacetylation and activation of LCAD and β-HAD. Finally, excess lipids induced lipotoxicity and epithelial-mesenchymal transition (EMT) were ameliorated by GCN5L1 suppression, suggesting GCN5L1-mediated mitochondrial LCAD and β-HAD acetylation might be a key pathogenic event underlying excess lipids induced FAO impairment.
Collapse
|
33
|
Yang T, Shu F, Yang H, Heng C, Zhou Y, Chen Y, Qian X, Du L, Zhu X, Lu Q, Yin X. YY1: A novel therapeutic target for diabetic nephropathy orchestrated renal fibrosis. Metabolism 2019; 96:33-45. [PMID: 31028762 DOI: 10.1016/j.metabol.2019.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/01/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Renal fibrosis promotes the development of diabetic nephropathy (DN). A growing number of studies have reported that Yin Yang 1 (YY1), which is involved in cellular proliferation and differentiation, plays a crucial role in the pathogenesis of many diseases, such as pulmonary fibrosis, hepatic steatosis and cancer. METHODS We detected the expression of YY1 under various glucose concentration and time gradient conditions. Rapamycin was used to verify the mTORC1/p70S6K/YY1 signaling pathway in HK-2 cells. We used db/db mice to examine the connection between renal fibrosis and YY1. A luciferase assay and chromatin immunoprecipitation (ChIP) assay were used to identify whether YY1 directly regulated α-SMA by binding to the α-SMA promoter. RNA silencing and overexpression were performed by using a YY1 expression/knockdown plasmid to investigate the function of YY1 in renal fibrosis of DN. RESULTS YY1 expression and subsequent nuclear translocation were upregulated in a glucose- and time-dependent manner via the mTORC1/p70S6K signaling pathway in HK-2 cells. YY1 expression and nuclear translocation was significantly upregulated in db/db mice. Furthermore, YY1 upregulated α-SMA expression and activity in high-glucose-cultured HK-2 cells. Overexpression of YY1 promoted renal fibrosis in db/m mice mainly by upregulating α-SMA expression and inducing epithelial-mesenchymal transition (EMT) in vitro and in vivo. Finally, downregulation of YY1 reversed renal fibrosis by improving EMT in vivo and in vitro. CONCLUSIONS These results reveal that upregulation of YY1 plays a critical role in HG-induced deregulation of EMT-associated protein expression, which finally results in renal fibrosis of DN. Therefore, decreasing YY1 expression might represent a new therapeutic target for diabetic nephropathy-induced renal fibrosis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Fanglin Shu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Cai Heng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yibing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xuan Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
34
|
Kang H, Kim H, Lee S, Youn H, Youn B. Role of Metabolic Reprogramming in Epithelial⁻Mesenchymal Transition (EMT). Int J Mol Sci 2019; 20:ijms20082042. [PMID: 31027222 PMCID: PMC6514888 DOI: 10.3390/ijms20082042] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Activation of epithelial–mesenchymal transition (EMT) is thought to be an essential step for cancer metastasis. Tumor cells undergo EMT in response to a diverse range of extra- and intracellular stimulants. Recently, it was reported that metabolic shifts control EMT progression and induce tumor aggressiveness. In this review, we summarize the involvement of altered glucose, lipid, and amino acid metabolic enzyme expression and the underlying molecular mechanisms in EMT induction in tumor cells. Moreover, we propose that metabolic regulation through gene-specific or pharmacological inhibition may suppress EMT and this treatment strategy may be applied to prevent tumor progression and improve anti-tumor therapeutic efficacy. This review presents evidence for the importance of metabolic changes in tumor progression and emphasizes the need for further studies to better understand tumor metabolism.
Collapse
Affiliation(s)
- Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
35
|
Chen X, Han Y, Gao P, Yang M, Xiao L, Xiong X, Zhao H, Tang C, Chen G, Zhu X, Yuan S, Liu F, Dong LQ, Liu F, Kanwar YS, Sun L. Disulfide-bond A oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy. Kidney Int 2019; 95:880-895. [PMID: 30791996 DOI: 10.1016/j.kint.2018.10.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022]
Abstract
Ectopic fat deposition (EFD) in the kidney has been shown to play a causal role in diabetic nephropathy; however, the mechanism underlying EFD remains elusive. By transcriptome analysis, we found decreased expression levels of disulfide-bond A oxidoreductase-like protein (DsbA-L) in the kidneys of diabetic mice (induced by high-fat diet plus Streptozotocin) compared with control mice. Increased expression of adipocyte differentiation-related protein and abnormal levels of collagen I, fibronectin, and phosphorylated 5'AMP-activated kinase (p-AMPK), adipose triglyceride lipase (p-ATGL), and HMG-CoA reductase (p-HMGCR) were also observed in diabetic mice. These alterations were accompanied by deposition of lipid droplets in the kidney, and were more pronounced in diabetic DsbA-L knockout mice. In vitro, overexpression of DsbA-L ameliorated high glucose-induced intracellular lipid droplet deposition in a human proximal tubular cell line, and DsbA-L siRNA aggravated lipid droplet deposition and reduced the levels of p-AMPK, p-ATGL, and p-HMGCR. High glucose and palmitic acid treatment enhanced the expression of interleukin-1β and interleukin-18; these enhancements were further increased after treatment with DsbA-L siRNA but alleviated by co-treatment with an AMPK activator. In kidney biopsy tissue from patients with diabetic nephropathy, DsbA-L expression was negatively correlated with EFD and tubular damage. Collectively, these results suggest that DsbA-L has a protective role against EFD and lipid-related kidney damage in diabetic nephropathy. Activation of the AMPK pathway is a potential mechanism underlying DsbA-L action in the kidney.
Collapse
Affiliation(s)
- Xianghui Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peng Gao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaofen Xiong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuguang Yuan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lily Q Dong
- Department of Cell Systems & Anatomy, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Feng Liu
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Yashpal S Kanwar
- Departments of Pathology & Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
36
|
Tan Y, Lin K, Zhao Y, Wu Q, Chen D, Wang J, Liang Y, Li J, Hu J, Wang H, Liu Y, Zhang S, He W, Huang Q, Hu X, Yao Z, Liang B, Liao W, Shi M. Adipocytes fuel gastric cancer omental metastasis via PITPNC1-mediated fatty acid metabolic reprogramming. Theranostics 2018; 8:5452-5468. [PMID: 30555557 PMCID: PMC6276097 DOI: 10.7150/thno.28219] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/04/2018] [Indexed: 01/12/2023] Open
Abstract
Omental metastasis occurs frequently in gastric cancer (GC) and is considered one of the major causes of gastric cancer-related mortality. Recent research indicated that omental adipocytes might mediate this metastatic predilection. Phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1) was identified to have a crucial role in metastasis. However, whether PITPNC1 participates in the interaction between adipocytes and GC omental metastasis is unclear. Methods: We profiled and analyzed the expression of PITPNC1 through analysis of the TCGA database as well as immunohistochemistry staining using matched GC tissues, adjacent normal gastric mucosa tissues (ANTs), and omental metastatic tissues. The regulation of PITPNC1 by adipocytes was explored by co-culture systems. By using both PITPNC1 overexpression and silencing methods, the role of PITPNC1 in anoikis resistance and metastasis was determined through in vitro and in vivo experiments. Results: PITPNC1 was expressed at higher rates in GC tissues than in ANTs; notably, it was higher in omental metastatic lesions. Elevated expression of PITPNC1 predicted higher rates of omental metastasis and a poor prognosis. PITPNC1 promoted anoikis resistance through fatty acid metabolism by upregulating CD36 and CPT1B expression. Further, PITPNC1 was elevated by adipocytes and facilitated GC omental metastasis. Lastly, in vivo studies showed that PITPNC1 was a therapeutic indicator of fatty acid oxidation (FAO) inhibition. Conclusion: Elevated expression of PITPNC1 in GC is correlated with an advanced clinical stage and a poor prognosis. PITPNC1 promotes anoikis resistance through enhanced FAO, which is regulated by omental adipocytes and consequently facilitates GC omental metastasis. Targeting PITPNC1 might present a promising strategy to treat omental metastasis.
Collapse
Affiliation(s)
- Yujing Tan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kelin Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qijing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongping Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, China
| | - Jin Wang
- Department of Abdominal Surgery, Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, China
| | - Yanxiao Liang
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou, China
| | - Jingyu Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiazhu Hu
- Department of Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Hao Wang
- Department of Pathology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yajing Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuyi Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanming He
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiong Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingbin Hu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqi Yao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bishan Liang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Yu XH, Ren XH, Liang XH, Tang YL. Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (Review). Mol Med Rep 2018; 18:5307-5316. [PMID: 30365095 DOI: 10.3892/mmr.2018.9577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/19/2018] [Indexed: 02/05/2023] Open
Abstract
Fatty acid (FA) metabolism, including the uptake, de novo synthesis and oxidation of FAs, is critical for the survival, proliferation, differentiation and metastasis of cancer cells. Several bodies of evidence have confirmed the metabolic reprogramming of FAs that occurs during cancer development. The present review aimed to evaluate FAs in terms of how the hallmarks of cancer are gradually established in tumourigenesis and tumour progression, and consider the auxo‑action and exact mechanisms of FA metabolism in these processes. In addition, this interaction in the tumour microenvironment was also discussed. Based on the role of FA metabolism in tumour development, targeting FA metabolism may effectively target cancer, affecting a number of important characteristics of cancer progression and survival.
Collapse
Affiliation(s)
- Xiang-Hua Yu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Xiao-Hua Ren
- Department of Stomatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Xin-Hua Liang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
38
|
Wei L, Xiao Y, Li L, Xiong X, Han Y, Zhu X, Sun L. The Susceptibility Genes in Diabetic Nephropathy. KIDNEY DISEASES 2018; 4:226-237. [PMID: 30574499 DOI: 10.1159/000492633] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
Abstract
Background Diabetes mellitus (DM) poses a severe threat to global public health. Diabetic nephropathy (DN) is one of the most common complications of diabetes and the leading cause of end-stage renal disease (ESRD). Approximately 30-40% of DM patients in the world progress to ESRD, which emphasizes the effect of genetic factors on DN. Family clustering also supports the important role of hereditary factors in DN and ESRD. Therefore, a large number of genetic studies have been carried out to identify susceptibility genes in different diabetic cohorts. Extensive susceptibility genes of DN and ESRD have not been identified until recently. Summary and Key Messages Some of these associated genes function as pivotal regulators in the pathogenesis of DN, such as those related to glycometabolism and lipid metabolism. However, the functions of most of these genes remain unclear. In this article, we review several susceptibility genes according to their genetic functions to make it easier to determine their exact effect on DN and to provide a better understanding of the advancements from genetic studies. However, several challenges associated with investigating the genetic factors of DN still exist. For instance, it is difficult to determine whether these variants affect the expression of the protein they encode or other cytokines. More efforts should be made to determine how these genes influence the progression of DN. In addition, many results could not be replicated among races, suggesting that the association between genetic polymorphisms and DN is race-specific. Therefore, large, well-designed studies involving more relevant variables and ethnic groups and more relevant functional studies are urgently needed. These studies may be beneficial and retard the progression of DN by early intervention, especially for patients who carry certain risk alleles or genotypes.
Collapse
Affiliation(s)
- Ling Wei
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Xiao
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Li
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaofen Xiong
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yachun Han
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuejing Zhu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Yan Q, Song Y, Zhang L, Chen Z, Yang C, Liu S, Yuan X, Gao H, Ding G, Wang H. Autophagy activation contributes to lipid accumulation in tubular epithelial cells during kidney fibrosis. Cell Death Discov 2018; 4:2. [PMID: 30062051 PMCID: PMC6060103 DOI: 10.1038/s41420-018-0065-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022] Open
Abstract
Sustained activation of autophagy and lipid accumulation in tubular epithelial cells (TECs) are both associated with the kidney fibrosis progression. Autophagy has been found involved in the lipid metabolism regulation through a bi-directional mechanism of inducing lipolysis as well as promoting lipid droplet formation. However, whether and how autophagy influences lipid accumulation in kidney fibrosis remain unclear. In the current study, we show that UUO-induced lipid accumulation in tubular cells was significantly reduced when the pharmacological inhibitor 3-MA or CQ was administrated both in vivo and in vitro. Of interest, colocalization of LDs and autophagosomes, as well as colocalization of LDs and lysosomes were undetected in UUO-induced fibrotic kidneys, although lysosome function remained robust, indicating the lipid accumulation is lipophagy-lysosome pathway independent. TGF-β1-induced lipid droplets formation in HK-2 cells were decreased when the Beclin-1 expression was silenced, implying that autophagy-upregulated lipid droplets formation is Beclin-1 dependent. Finally, CQ treatment of UUO-induced fibrotic kidneys reduced the expression of α-SMA and tubular cell apoptosis and rescued the expression of E-cadherin, which was associated with the ameliorated lipid deposition. Therefore, our work documented that autophagy promotes lipid droplet formation in TECs in a Beclin-1-dependent manner, which causes renal lipotoxicity and contributes to the progression of kidney fibrosis.
Collapse
Affiliation(s)
- Qi Yan
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China.,2Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Song
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Lu Zhang
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Zhaowei Chen
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Cheng Yang
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Shan Liu
- 3Department of Nephrology, University Hospital of Hubei University for Nationalities, Enshi, China
| | - Xiaohan Yuan
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Hongyu Gao
- 2Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohua Ding
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Huiming Wang
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Wang Q, Yang X, Xu Y, Shen Z, Cheng H, Cheng F, Liu X, Wang R. RhoA/Rho-kinase triggers epithelial-mesenchymal transition in mesothelial cells and contributes to the pathogenesis of dialysis-related peritoneal fibrosis. Oncotarget 2018; 9:14397-14412. [PMID: 29581852 PMCID: PMC5865678 DOI: 10.18632/oncotarget.24208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Peritoneal fibrosis (PF) with associated peritoneal dysfunction is almost invariably observed in long-term peritoneal dialysis (PD) patients. Advanced glycation end products (AGEs) are pro-oxidant compounds produced in excess during the metabolism of glucose and are present in high levels in standard PD solutions. The GTPase RhoA has been implicated in PF, but its specific role remains poorly understood. Here, we studied the effects of RhoA/Rho-kinase signaling in AGEs-induced epithelial-mesenchymal transition (EMT) in human peritoneal mesothelial cells (HPMCs), and evaluated morphological and molecular changes in a rat model of PD-related PF. Activation of RhoA/Rho-kinase and activating protein-1 (AP-1) was assessed in HPMCs using pull-down and electrophoretic mobility shift assays, respectively, while expression of transforming growth factor-β, fibronectin, α-smooth muscle actin, vimentin, N-cadherin, and E-cadherin expression was assessed using immunohistochemistry and western blot. AGEs exposure activated Rho/Rho-kinase in HPMCs and upregulated EMT-related genes via AP-1. These changes were prevented by the Rho-kinase inhibitors fasudil and Y-27632, and by the AP-1 inhibitor curcumin. Importantly, fasudil normalized histopathological and molecular alterations and preserved peritoneal function in rats. These data support the therapeutic potential of Rho-kinase inhibitors in PD-related PF.
Collapse
Affiliation(s)
- Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaowei Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhenwei Shen
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, China
| | - Hongxia Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Fajuan Cheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiang Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
41
|
Autophagy upregulation ameliorates cell injury in Sequestosome 1 knockout podocytes in vitro. Biochem Biophys Res Commun 2017; 490:98-103. [DOI: 10.1016/j.bbrc.2017.05.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022]
|
42
|
Musso G, De Michieli F, Bongiovanni D, Parente R, Framarin L, Leone N, Berrutti M, Gambino R, Cassader M, Cohney S, Paschetta E. New Pharmacologic Agents That Target Inflammation and Fibrosis in Nonalcoholic Steatohepatitis-Related Kidney Disease. Clin Gastroenterol Hepatol 2017; 15:972-985. [PMID: 27521506 DOI: 10.1016/j.cgh.2016.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
Epidemiologic data show an association between the prevalence and severity of nonalcoholic fatty liver disease and the incidence and stage of chronic kidney disease (CKD); furthermore, nonalcoholic steatohepatitis (NASH)-related cirrhosis has a higher risk of renal failure, a greater necessity for simultaneous liver-kidney transplantation, and a poorer renal outcome than cirrhosis of other etiologies even after simultaneous liver-kidney transplantation. These data suggest that NASH and CKD share common proinflammatory and profibrotic mechanisms of progression, which are targeted incompletely by current treatments. We reviewed therapeutic approaches to late preclinical/early clinical stage of development in NASH and/or CKD, focusing on anti-inflammatory and antifibrotic treatments, which could slow the progression of both disease conditions. Renin inhibitors and angiotensin-converting enzyme-2 activators are new renin-angiotensin axis modulators that showed incremental advantages over angiotensin-converting enzyme inhibitors/angiotensin-receptor blockers in preclinical models. Novel, potent, and selective agonists of peroxisome proliferator-activated receptors and of farnesoid X receptor, designed to overcome limitations of older compounds, showed promising results in clinical trials. Epigenetics, heat stress response, and common effectors of redox regulation also were subjected to intensive research, and the gut was targeted by several approaches, including synbiotics, antilipopolysaccharide antibodies, Toll-like receptor-4 antagonists, incretin mimetics, and fibroblast growth factor 19 analogs. Promising anti-inflammatory therapies include inhibitors of NOD-like receptor family, pyrin domain containing 3 inflammasome, of nuclear factor-κB, and of vascular adhesion protein-1, chemokine antagonists, and solithromycin, and approaches targeting common profibrogenic pathways operating in the liver and the kidney include galectin-3 antagonists, and inhibitors of rho-associated protein kinase and of epidermal growth factor activation. The evidence, merits, and limitations of each approach for the treatment of NASH and CKD are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicola Leone
- Gradenigo Hospital, University of Turin, Turin, Italy
| | - Mara Berrutti
- Gradenigo Hospital, University of Turin, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Maurizio Cassader
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Solomon Cohney
- Department of Nephrology, Royal Melbourne and Western Hospital, Victoria, University of Melbourne, Australia
| | | |
Collapse
|
43
|
Qiu F, Xie L, Ma JE, Luo W, Zhang L, Chao Z, Chen S, Nie Q, Lin Z, Zhang X. Lower Expression of SLC27A1 Enhances Intramuscular Fat Deposition in Chicken via Down-Regulated Fatty Acid Oxidation Mediated by CPT1A. Front Physiol 2017; 8:449. [PMID: 28706492 PMCID: PMC5489693 DOI: 10.3389/fphys.2017.00449] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/14/2017] [Indexed: 01/11/2023] Open
Abstract
Intramuscular fat (IMF) is recognized as the predominant factor affecting meat quality due to its positive correlation with tenderness, juiciness, and flavor. Chicken IMF deposition depends on the balance among lipid synthesis, transport, uptake, and subsequent metabolism, involving a lot of genes and pathways, however, its precise molecular mechanisms remain poorly understood. In the present study, the breast muscle tissue of female Wenchang chickens (WC) (higher IMF content, 1.24 in D120 and 1.62 in D180) and female White Recessive Rock chickens (WRR; lower IMF content, 0.53 in D120 and 0.90 in D180) were subjected to RNA-sequencing (RNA-seq) analysis. Results showed that many genes related to lipid catabolism, such as SLC27A1, LPL, ABCA1, and CPT1A were down-regulated in WC chickens, and these genes were involved in the PPAR signaling pathway and formed an IPA® network related to lipid metabolism. Furthermore, SLC27A1 was more down-regulated in WRR.D180.B than in WRR.D120.B. Decreased cellular triglyceride (TG) and up-regulated CPT1A were observed in the SLC27A1 overexpression QM-7 cells, and increased cellular triglyceride (TG) and down-regulated CPT1A were observed in the SLC27A1 knockdown QM-7 cells. These results suggest that lower lipid catabolism exists in WC chickens but not in WRR chickens, and lower expression of SLC27A1 facilitate IMF deposition in chicken via down-regulated fatty acid oxidation mediated by CPT1A. These findings indicate that reduced lipid catabolism, rather than increased lipid anabolism, contributes to chicken IMF deposition.
Collapse
Affiliation(s)
- Fengfang Qiu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,School of Chemistry, Biology and Material Science, East China University of TechnologyNanchang, China
| | - Liang Xie
- Department of Poultry Science, Institute of Animal Science and Veterinary, Hainan Academy of Agricultural SciencesHaikou, China
| | - Jing-E Ma
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| | - Wen Luo
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| | - Li Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| | - Zhe Chao
- Department of Poultry Science, Institute of Animal Science and Veterinary, Hainan Academy of Agricultural SciencesHaikou, China
| | - Shaohao Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| | - Qinghua Nie
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| | - Zhemin Lin
- Department of Poultry Science, Institute of Animal Science and Veterinary, Hainan Academy of Agricultural SciencesHaikou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
44
|
Sciacovelli M, Frezza C. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J 2017; 284:3132-3144. [PMID: 28444969 DOI: 10.1111/febs.14090] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/23/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
Abstract
Several lines of evidence indicate that during transformation epithelial cancer cells can acquire mesenchymal features via a process called epithelial-to-mesenchymal transition (EMT). This process endows cancer cells with increased invasive and migratory capacity, enabling tumour dissemination and metastasis. EMT is associated with a complex metabolic reprogramming, orchestrated by EMT transcription factors, which support the energy requirements of increased motility and growth in harsh environmental conditions. The discovery that mutations in metabolic genes such as FH, SDH and IDH activate EMT provided further evidence that EMT and metabolism are intertwined. In this review, we discuss the role of EMT in cancer and the underpinning metabolic reprogramming. We also put forward the hypothesis that, by altering chromatin structure and function, metabolic pathways engaged by EMT are necessary for its full activation.
Collapse
Affiliation(s)
- Marco Sciacovelli
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, UK
| |
Collapse
|
45
|
Feng L, Gu C, Li Y, Huang J. High Glucose Promotes CD36 Expression by Upregulating Peroxisome Proliferator-Activated Receptor γ Levels to Exacerbate Lipid Deposition in Renal Tubular Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1414070. [PMID: 28497039 PMCID: PMC5405368 DOI: 10.1155/2017/1414070] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/19/2017] [Accepted: 04/02/2017] [Indexed: 02/06/2023]
Abstract
Diabetic kidney disease (DKD) appears to be closely related to lipid deposition in kidney. The aim of this study was to determine whether high glucose (HG) exacerbated lipid deposition by increasing CD36 expression via AKT-PPARγ signaling pathway. Our results showed that HG activated AKT signaling pathway, followed by an increase in PPARγ that induced CD36 overexpression, ultimately causing lipid deposition in HK-2 cells. We also found that inhibition of AKT-PPARγ signaling pathway or knockdown of CD36 could reduce HG-induced lipid accumulation in HK-2 cells. These results indicated that AKT-PPARγ signaling pathway mediated HG-induced lipid deposition by upregulating CD36 expression in HK-2 cells and that inhibition of AKT-PPARγ signaling pathway had the potential beneficial effects of reducing lipid deposition in diabetic kidney.
Collapse
Affiliation(s)
- Lei Feng
- Graduate School, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chengwu Gu
- Hospital Infection Control Department, The Suining Central Hospital, Suining 629000, China
| | - Yanxia Li
- Hospital Infection Control Department, The Suining Central Hospital, Suining 629000, China
| | - Jiasui Huang
- Hospital Infection Control Department, The Suining Central Hospital, Suining 629000, China
| |
Collapse
|
46
|
Chen W, Zhang Q, Cheng S, Huang J, Diao G, Han J. Atgl gene deletion predisposes to proximal tubule damage by impairing the fatty acid metabolism. Biochem Biophys Res Commun 2017; 487:160-166. [PMID: 28400046 DOI: 10.1016/j.bbrc.2017.03.170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022]
Abstract
Fibrosis is the final common pathway of chronic kidney disease (CKD). Normal lipid metabolism is integral to renal physiology, and disturbances of renal lipid metabolism are increasingly being linked with CKD, including the fibrosis. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis. In the present study, we used Atgl-/- mice to investigate whether ATGL played a role in the regulation of proximal convoluted tubule (PCT) lipid metabolism and renal fibrosis development. ATGL deficiency led to lipid vacuolation of PCT and tubulointerstitial fibrosis, accompanied by massive albuminuria and decreased creatinine clearance rate (Ccr). In vitro experiments indicated that inhibition of ATGL in proximal tubular cell line HK-2 promoted intracellular lipid deposition, reactive oxygen species (ROS) accumulation and cell apoptosis. Both in vitro and in vivo experiments showed that ATGL inhibition decreased the renal peroxisome proliferator-activated receptorα(PPARα) expression, which implied the suppressed lipid metabolism. The antioxidant N-acetylcysteine (NAC) could partially reverse the effect of ROS accumulation and cell apoptosis, but could not restore the PPARαdecrease. These data raise the possibility that ATGL deficiency could impair the renal fatty acid metabolism though inhibiting PPARαexpression, which may lead to lipid deposition and cell apoptosis of PCT, and finally contribute to the renal fibrosis and dysfunction.
Collapse
Affiliation(s)
- Wen Chen
- Department of Endocrinology, The 303th Hospital of PLA, Nanning, Guangxi Province 530000, China
| | - Qiong Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Diseases Proteomics, Chongqing 400038, China
| | - Shiwu Cheng
- Department of Endocrinology, The 303th Hospital of PLA, Nanning, Guangxi Province 530000, China
| | - Jie Huang
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ge Diao
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jian Han
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
47
|
Chen W, Jiang Y, Han J, Hu J, He T, Yan T, Huang N, Zhang Q, Mei H, Liao Y, Huang Y, Chen B. Atgl deficiency induces podocyte apoptosis and leads to glomerular filtration barrier damage. FEBS J 2017; 284:1070-1081. [PMID: 28194887 DOI: 10.1111/febs.14038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 01/16/2017] [Accepted: 02/10/2017] [Indexed: 12/31/2022]
Abstract
Abnormal lipid metabolism, renal lipid accumulation and lipotoxicity are associated with the pathological features of glomerulopathy. However, the mechanisms by which lipid accumulation leads to the development or progression of this disease have not been fully elucidated. In this work, we have identified a role for the rate-limiting enzyme in lipolysis, adipose triglyceride lipase (ATGL; also called patatin-like phospholipase domain-containing protein 2), in renal lipid metabolism and kidney disease. ATGL-deficient (Atgl(-/-)) mice displayed albuminuria, accompanied by ectopic deposition of fat in the kidney. Magnetic resonance imaging demonstrated that the contrast agent gadopentetic acid was retained in kidney tissue, suggesting defects in the glomerular filtration barrier. Furthermore, transmission electron microscopy revealed lipid deposits in the podocyte, along with foot process fusion and morphological changes suggestive of apoptosis. Indeed, shRNA-mediated depletion of ATGL promoted podocyte apoptosis, accompanied by increased levels of intracellular reactive oxygen species (ROS) and F-actin fibre redistribution. These effects could be partially reversed by treatment with the antioxidant N-acetylcysteine. These data suggest that ATGL deficiency induces renal lipid accumulation, proteinuria and glomerular filtration barrier dysfunction and implicate increased intracellular ROS levels in inducing podocyte F-actin rearrangement, foot process fusion and apoptosis that underlie these pathological features. ENZYMES Adipose triglyceride lipase, EC3.1.1.3.
Collapse
Affiliation(s)
- Wen Chen
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Youzhao Jiang
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian Han
- Department of Gynaecology and Obstetrics, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jiongyu Hu
- Department of Endocrinology, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Ting He
- Department of Burns and Plastic Surgery, the General Hospital of the Chinese People's Armed Police Forces, Beijing, China
| | - Tiantian Yan
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Na Huang
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Hao Mei
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, CT, USA
| | - Yong Liao
- Department of Endocrinology, 169th Hospital of PLA, Hengyang, Hunan, China
| | - Yuesheng Huang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Bing Chen
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
48
|
Park J, Kwon OS, Cho SY, Paick JS, Kim SW. Chronic administration of atorvastatin could partially ameliorate erectile function in streptozotocin-induced diabetic rats. PLoS One 2017; 12:e0172751. [PMID: 28245261 PMCID: PMC5330475 DOI: 10.1371/journal.pone.0172751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 02/04/2017] [Indexed: 01/17/2023] Open
Abstract
The efficacy of statins is related to the ‘common soil’ hypothesis, which proposes oxidative stress and inflammation as main pathophysiologic processes in the disease group of diabetes and endothelial dysfunction. This study evaluated the recovery of erectile function after administration of chronic statin alone in streptozotocin (STZ)-induced diabetes mellitus (DM) rats, focusing on the anti-oxidative effects and consequentially recuperated endothelial function. A total of 45 male Sprague-Dawley rats (8 weeks old) were divided into three groups (n = 15 each): an age-matched normal control group (Control group), an uncontrolled DM group (DM group), and a statin-treated group (Statin group). The rats in the DM and Statin group received an injection of STZ (60 mg/kg). Beginning 10 weeks after the establishment of DM, the Statin group received daily treatment with atorvastatin (10 mg/kg) via oral gavage for four weeks. After 14 weeks, the results of the experiment were evaluated. The ratios of intracavernosal pressure (ICP) to mean arterial pressure (MAP) were recorded with cavernosometry (20 Hz, 3 V, 0.2 msec for 30 seconds) before and after the intravenous administration of udenafil (1 mg/kg). Expression of alpha-smooth muscle actin (α-SMA) was evaluated using cavernosal tissue. In addition, changes in RhoA translocation ratio and myosin phosphatase target subunit 1 (MYPT1) phosphorylation were evaluated with western blot. Superoxide dismutase (SOD) and malondialdehyde (MDA) levels were also analyzed as measurements of oxidative stress levels. The ICP/MAP and area under the curve (AUC)/MAP ratios of the Statin group were obviously superior to the DM group, but were not comparable to the Control group (P<0.001). The level of oxidative stress, namely SOD activity, was also significantly lower in the Statin group than in the DM group (P = 0.015), and was comparable to the Control group. In contrast, MDA levels were not considerably different among the groups (P = 0.217). The RhoA translocation ratio was not significantly different among the groups (P = 0.668), whereas MYPT1 phosphorylation in the Statin group was significantly lower than in the DM group (P = 0.030), and similar to the Control group. Expression of α-SMA in the Statin group was higher than in the DM group (P<0.001), and comparable to the Control group. Chronic statin treatment alone showed anti-oxidative effects and helped to restore the erectile mechanism, but did not lead to the full recovery of erectile function in STZ-induced DM rats. Therefore, combination therapy rather than a single agent should be the preferred treatment strategy for DM-associated erectile dysfunction, especially in the setting of severe diabetes.
Collapse
Affiliation(s)
- Juhyun Park
- Department of Urology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Oh Seong Kwon
- Department of Urology, Hallym University Hangang Sacred Heart Hospital, Seoul, Korea
| | - Sung Yong Cho
- Department of Urology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Jae-Seung Paick
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Soo Woong Kim
- Department of Urology, Seoul National University Hospital, Seoul, Korea
- * E-mail:
| |
Collapse
|
49
|
RETRACTED ARTICLE: Casticin inhibits epithelial-mesenchymal transition of EBV-infected human retina pigmental epithelial cells through the modulation of intracellular lipogenesis. Graefes Arch Clin Exp Ophthalmol 2016; 255:557. [PMID: 27838737 DOI: 10.1007/s00417-016-3551-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/30/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022] Open
|
50
|
Musso G, Cassader M, Cohney S, De Michieli F, Pinach S, Saba F, Gambino R. Fatty Liver and Chronic Kidney Disease: Novel Mechanistic Insights and Therapeutic Opportunities. Diabetes Care 2016; 39:1830-45. [PMID: 27660122 DOI: 10.2337/dc15-1182] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/10/2016] [Indexed: 02/03/2023]
Abstract
Chronic kidney disease (CKD) is a risk factor for end-stage renal disease (ESRD) and cardiovascular disease (CVD). ESRD or CVD develop in a substantial proportion of patients with CKD receiving standard-of-care therapy, and mortality in CKD remains unchanged. These data suggest that key pathogenetic mechanisms underlying CKD progression go unaffected by current treatments. Growing evidence suggests that nonalcoholic fatty liver disease (NAFLD) and CKD share common pathogenetic mechanisms and potential therapeutic targets. Common nutritional conditions predisposing to both NAFLD and CKD include excessive fructose intake and vitamin D deficiency. Modulation of nuclear transcription factors regulating key pathways of lipid metabolism, inflammation, and fibrosis, including peroxisome proliferator-activated receptors and farnesoid X receptor, is advancing to stage III clinical development. The relevance of epigenetic regulation in the pathogenesis of NAFLD and CKD is also emerging, and modulation of microRNA21 is a promising therapeutic target. Although single antioxidant supplementation has yielded variable results, modulation of key effectors of redox regulation and molecular sensors of intracellular energy, nutrient, or oxygen status show promising preclinical results. Other emerging therapeutic approaches target key mediators of inflammation, such as chemokines; fibrogenesis, such as galectin-3; or gut dysfunction through gut microbiota manipulation and incretin-based therapies. Furthermore, NAFLD per se affects CKD through lipoprotein metabolism and hepatokine secretion, and conversely, targeting the renal tubule by sodium-glucose cotransporter 2 inhibitors can improve both CKD and NAFLD. Implications for the treatment of NAFLD and CKD are discussed in light of this new therapeutic armamentarium.
Collapse
Affiliation(s)
- Giovanni Musso
- Humanitas Gradenigo Hospital, University of Turin, Turin, Italy
| | - Maurizio Cassader
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Solomon Cohney
- Department of Nephrology, Western & Royal Melbourne Hospitals, Melbourne, VIC, Australia
| | - Franco De Michieli
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Silvia Pinach
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Francesca Saba
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| |
Collapse
|