1
|
Chen J, Zhou Q, Su L, Ni L. Mitochondrial dysfunction: the hidden catalyst in chronic kidney disease progression. Ren Fail 2025; 47:2506812. [PMID: 40441691 PMCID: PMC12123951 DOI: 10.1080/0886022x.2025.2506812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 05/10/2025] [Indexed: 06/02/2025] Open
Abstract
Chronic kidney disease (CKD) represents a global health epidemic, with approximately one-third of affected individuals ultimately necessitating renal replacement therapy or transplantation. The kidney, characterized by its exceptionally high energy demands, exhibits significant sensitivity to alterations in energy supply and mitochondrial function. In CKD, a compromised capacity for mitochondrial ATP synthesis has been documented. As research advances, the multifaceted roles of mitochondria, extending beyond their traditional functions in oxygen sensing and energy production, are increasingly acknowledged. Empirical studies have demonstrated a strong association between mitochondrial dysfunction and the pathogenesis of fibrosis and cellular apoptosis in CKD. Targeting mitochondrial dysfunction holds substantial therapeutic promise, with emerging insights into its epigenetic regulation in CKD, particularly involving non-coding RNAs and DNA methylation. This article presents a comprehensive review of contemporary research on mitochondrial dysfunction in relation to the onset and progression of CKD. It elucidates the associated molecular mechanisms across various renal cell types and proposes novel research avenues for CKD treatment.
Collapse
Affiliation(s)
- Jinhu Chen
- Department of Nephrology, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuyuan Zhou
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, Liang Ping People’s Hospital of Chongqing, Chongqing, People’s Republic of China
| | - Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Wang J, Zhuang H, Li C, Cai R, Shi H, Pang B, Guo Z, Ong SB, Nie Y, Du Y, Zhou H, Chang X. Ligustrazine nano-drug delivery system ameliorates doxorubicin-mediated myocardial injury via piezo-type mechanosensitive ion channel component 1-prohibitin 2-mediated mitochondrial quality surveillance. J Nanobiotechnology 2025; 23:383. [PMID: 40426179 PMCID: PMC12117932 DOI: 10.1186/s12951-025-03420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Doxorubicin (DOX) demonstrates significant therapeutic and anticancer efficacy. Nevertheless, it demonstrates significant cardiotoxicity, resulting in permanent cardiac damage. Ligustrazine (LIG) is a bioactive alkaloid derived from the rhizome of the medicinal plant Ligusticum chuanxiong Hort. The alkaloid has exhibited cardioprotective properties. The therapeutic application of LIG is constrained by inadequate water solubility, fast breakdown, and low bioavailability. Nanoparticle drug delivery technologies effectively address these constraints by encapsulating LIG into nanocarriers, significantly enhancing its solubility and bioavailability, hence maximizing its therapeutic efficacy. Consequently, this study employed tetrahedral backbone nucleic acid molecules as LIG carriers. Furthermore, animal models and single-cell sequencing analyses were employed to forecast the mechanisms and targets of pertinent studies. A mouse model genetically modified for the piezo type mechanosensitive ion channel component 1 (PIEZO1), transmembrane BAX inhibitor motif containing 6 (TMBIM6), and prohibitin 2 (PHB2), along with an in vivo and in vitro model of DOX-induced cardiomyopathy (DIC), was established, and a gene-modified cellular system comprising upstream genes and downstream effector targets was constructed. The mechanism of LIG was validated by molecular biology and integrated pharmacology with the implementation of the LIG nano-drug loading method. RESULTS LIG nano-delivery enhanced DOX-induced cardiac dysfunction and mitochondrial impairment by modulating the PHB2Ser91/Ser176 phosphorylation axis through PIEZO1-TMBIM6, and significantly suppressed cardiomyocyte pyroptosis resulting from mitochondrial homeostasis dysregulation. The findings indicate that LIG nano-delivery is a promising therapeutic approach for addressing DIC. CONCLUSION The PHB2Ser91/Ser176 phosphorylation axis regulated by PIEZO1-TMBIM6 is an important target for LIG nano-drug delivery systems to improve mitochondrial damage in DIC.
Collapse
Affiliation(s)
- Junyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Haowen Zhuang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Chun Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Ruiqi Cai
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China
| | - Hongshuo Shi
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Boxian Pang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
| | - Zhijiang Guo
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong, SAR, China
| | - Sang-Bing Ong
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong, SAR, China
| | - Yifeng Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China.
| | - Yingzhen Du
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China.
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
3
|
Zeng J, Liu Y, Dong C, Chong S, Liu Y, Bian Z, Chen X, Fan S. Sialyltransferase ST3GAL4 directs a dual mechanism to promote pancreatic ductal adenocarcinoma progression by regulating endoplasmic reticulum stress and mitochondrial homeostasis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167900. [PMID: 40381815 DOI: 10.1016/j.bbadis.2025.167900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/21/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) exhibits a highly aggressive solid malignancy characterized by dismal prognosis and limited therapeutic strategies. Emerging evidence underscores that aberrant hypersialylation exists in PDAC, and suggests that it is closely associated with the pathophysiological alterations of PDAC. ST3GAL4, one of the sialyltransferases catalyzing the α2,3-sialylation of glycans, has been found to be significantly overexpressed in PDAC. Nevertheless, its role and underlying mechanisms driving malignant progression of PDAC remain unexplored. METHODS The oncogenic potential of ST3GAL4 in facilitating the proliferation and metastasis of PDAC cells was assessed through phenotypic analysis. Subsequently, we investigated the mechanistic interplay between ST3GAL4 and endoplasmic reticulum stress (ERS)-driven PDAC cell death using the lectin blotting, co-immunoprecipitation, and Western blotting assays. Additionally, electron microscopy, confocal microscopy, and Western blotting assays were performed to investigate the association between ST3GAL4 and mitochondrial-related cell death in PDAC. RESULTS Our study identifies ST3GAL4 overexpression significantly promotes PDAC cell proliferation and metastasis by systematically upregulating global cellular sialylation. Meanwhile, knockdown of ST3GAL4 reduces the sialylation level of PRKR-like ER kinase (PERK) and increases its phosphorylation, which in turn activates the PERK-eIF2α-ATF4 signaling pathway and ultimately induces ERS-related PDAC cell death. Furthermore, ST3GAL4 suppression interferes with the ER-to-mitochondrial Ca2+ flux and induces VDAC1 oligomerization, eventually triggering mitochondrial-associated reprogrammed cell death in PDAC. CONCLUSION The overexpression of ST3GAL4 modulates ER stress and mitochondrial homeostasis within PDAC via hypersialylation, which may offer a new insight into the potential therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Jiayue Zeng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yijing Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenfei Dong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Suli Chong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yang Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ziming Bian
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoming Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Sairong Fan
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Zhang W, Pan X, Wang L, Li W, Dai X, Zheng M, Guo H, Chen X, Xu Y, Wu H, He Q, Yang B, Ding L. Selective BCL-2 inhibitor triggers STING-dependent antitumor immunity via inducing mtDNA release. J Immunother Cancer 2025; 13:e010889. [PMID: 40300857 PMCID: PMC12056644 DOI: 10.1136/jitc-2024-010889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND The stimulator of interferon genes (STING) signaling pathway has been demonstrated to propagate the cancer-immunity cycle and remodel the tumor microenvironment and has emerged as an appealing target for cancer immunotherapy. Interest in STING agonist development has increased, and the candidates hold significant promise; however, most are still in the early stages of human clinical trials. We found that ABT-199 activated the STING pathway to enhance the immunotherapeutic effect, and provided a ready-to-use small molecule drug for STING signaling activation. METHODS Phosphorylation of STING, TBK1, and IRF3, as well as activation of the interferon-I (IFN-I) signaling pathway, were detected following ABT-199 treatment in various colorectal cancer cells. C57BL/6J and BALB/c mice with subcutaneous tumors were employed to evaluate the in vivo therapeutic effects of the ABT-199 and anti-PD-L1 combination. Flow cytometry and ELISA were employed to analyze the level and activity of tumor-infiltrating T lymphocytes. Immunofluorescence and quantitative real-time PCR were conducted to assess the source and accumulation of double stranded DNA (dsDNA) in the cytoplasm. Chemical cross-linking assay, co-immunoprecipitation, and CRISPR/Cas9-mediated knockout were performed to investigate the molecular mechanism underlying ABT-199-induced voltage-dependent anion channel protein 1 (VDAC1) oligomerization and mitochondrial DNA (mtDNA) release. RESULTS ABT-199 significantly activated the STING signaling pathway in various colorectal cancer cells, which was evidenced by increased phosphorylation of TBK1 and IRF3, and upregulation of C-C motif chemokine ligand 5 (CCL5), C-X-C motif chemokine ligand 10 (CXCL10), and interferon beta transcription. By promoting chemokine expression and cytotoxic T-cell infiltration, ABT-199 promoted antitumor immunity and synergized with anti-PD-L1 therapy to improve antitumor efficacy. ABT-199 induced mtDNA accumulation in the cytoplasm and triggered STING signaling via the canonical pathway. cGAS or STING-KO models significantly abolished both STING signaling activation and the antitumor efficacy of ABT-199. Mechanically, ABT-199 promoted VDAC1 oligomerization by disturbing the binding between BCL-2 and VDAC1, thereby facilitating mtDNA release into the cytoplasm. ABT-199-triggered STING signaling was attenuated when VADC1 was knocked out. Consistently, the antitumor effect of ABT-199 in vivo was abolished in the absence of VDAC1. CONCLUSIONS Our results identify a ready-to-use small molecule compound for STING activation, reveal the underlying molecular mechanism through which ABT-199 activates the STING signaling pathway, and provide a theoretical basis for the use of ABT-199 in cancer immunotherapy.
Collapse
Affiliation(s)
- Wenxin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohui Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Longsheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyang Dai
- Center of Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingming Zheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongjie Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xi Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanjun Xu
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Honghai Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ling Ding
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Chang X, Zhou S, Huang Y, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R. Zishen Huoxue decoction (ZSHX) alleviates ischemic myocardial injury (MI) via Sirt5-β-tubulin mediated synergistic mechanism of "mitophagy-unfolded protein response" and mitophagy. Chin J Nat Med 2025; 23:311-321. [PMID: 40122661 DOI: 10.1016/s1875-5364(25)60838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 03/25/2025]
Abstract
Zishen Huoxue decoction (ZSHX) enhances cardiomyocyte viability following hypoxic stress; however, its upstream therapeutic targets remain unclear. Network pharmacology and RNA sequencing analyses revealed that ZSHX target genes were closely associated with mitophagy and apoptosis in the mitochondrial pathway. In vitro, ZSHX inhibited pathological mitochondrial fission following hypoxic stress, regulated FUN14 domain-containing protein 1 (FUNDC1)-related mitophagy, and increased the levels of mitophagy lysosomes and microtubule-associated protein 1 light chain 3 beta II (LC3II)/translocase of outer mitochondrial membrane 20 (TOM20) expression while inhibiting the over-activated mitochondrial unfolded protein response. Additionally, ZSHX regulated the stability of beta-tubulin through Sirtuin 5 (SIRT5) and could modulate FUNDC1-related synergistic mechanisms of mitophagy and unfolded protein response in the mitochondria (UPRmt) via the SIRT5 and -β-tubulin axis. This targeting pathway may be crucial for cardiomyocytes to resist hypoxia. Collectively, these findings suggest that ZSHX can protect against cardiomyocyte injury via the SIRT5-β-tubulin axis, which may be associated with the synergistic protective mechanism of SIRT5-β-tubulin axis-related mitophagy and UPRmt on cardiomyocytes.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Siyuan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Yu Huang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053,.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053,.
| |
Collapse
|
6
|
Yu X, Gao J, Zhang C. Sepsis-induced cardiac dysfunction: mitochondria and energy metabolism. Intensive Care Med Exp 2025; 13:20. [PMID: 39966268 PMCID: PMC11836259 DOI: 10.1186/s40635-025-00728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Sepsis is a life-threatening multi-organ dysfunction syndrome caused by dysregulated host response to infection, posing a significant global healthcare challenge. Sepsis-induced myocardial dysfunction (SIMD) is a common complication of sepsis, significantly increasing mortality due to its high energy demands and low compensatory reserves. The substantial mitochondrial damage rather than cell apoptosis in SIMD suggests disrupted cardiac energy metabolism as a crucial pathophysiological mechanism. Therefore, we systematically reviewed the mechanisms underlying energy metabolism dysfunction in SIMD, including alterations in myocardial cell energy metabolism substrates, excitation-contraction coupling processes, mitochondrial dysfunction, and mitochondrial autophagy and biogenesis, summarizing potential therapeutic targets within them.
Collapse
Affiliation(s)
- Xueting Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China.
- Department of Cardiology, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China.
- FACC, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
7
|
Chen H, Guo L. Exercise in Diabetic Cardiomyopathy: Its Protective Effects and Molecular Mechanism. Int J Mol Sci 2025; 26:1465. [PMID: 40003929 PMCID: PMC11855851 DOI: 10.3390/ijms26041465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the cardiovascular complications of diabetes, characterized by the development of ventricular systolic and diastolic dysfunction due to factors such as inflammation, oxidative stress, fibrosis, and disordered glucose metabolism. As a sustainable therapeutic approach, exercise has been reported in numerous studies to regulate blood glucose and improve abnormal energy metabolism through various mechanisms, thereby ameliorating left ventricular diastolic dysfunction and mitigating DCM. This review summarizes the positive impacts of exercise on DCM and explores its underlying molecular mechanisms, providing new insights and paving the way for the development of tailored exercise programs for the prophylaxis and therapy of DCM.
Collapse
Affiliation(s)
- Humin Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China;
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China;
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
8
|
Zi C, Ma X, Zheng M, Zhu Y. VDAC1-NF-κB/p65-mediated S100A16 contributes to myocardial ischemia/reperfusion injury by regulating oxidative stress and inflammatory response via calmodulin/CaMKK2/AMPK pathway. Eur J Pharmacol 2025; 987:177158. [PMID: 39613175 DOI: 10.1016/j.ejphar.2024.177158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
Myocardial injury triggers intense inflammatory reactions and oxidative stress responses. S100 calcium-binding protein A16 (S100A16), a multi-functional calcium (Ca2+)-binding protein, participates in inflammatory responses and contributes to ischemia/reperfusion (I/R) injury. Nevertheless, the precise mechanism by which S100A16 operates in myocardial I/R injury remains uncertain. Cardiac I/R injury was produced by ligation/release of the left anterior descending artery, and mouse cardiac cells were subjected to hypoxia/reoxygenation (H/R) to determine the biological effects in vitro. We demonstrated that S100A16 was upregulated in the ischemic hearts and cardiac cells after I/R and H/R injury. Adenovirus-mediated S100A16 inhibition led to a considerable improvement in cardiac function with a reduced infarct size, accompanied by a reduction in cardiomyocyte apoptosis. Similar effects of S100A16 inhibition on inflammation and reactive oxygen species (ROS) production were observed in cultured cardiomyocytes. Importantly, we showed that I/R and H/R treatment upregulated the expression of voltage-dependent anion channel 1 (VDAC1), which subsequently activated NF-κB/p65 to facilitate the binding of NF-κB/p65 to the S100A16 promoter, thereby activating the transcription and expression of S100A16. Mechanically, S100A16 responded to increasing Ca2+ and interacted with calmodulin (CaM) to regulate the activation of calcium/calmodulin-dependent protein kinase 2 (CAMKK2)/AMPK pathway. In conclusion, VDAC1 sustained the NF-κB p65 pathway activation to elicit increased S100A16 expression, contributing to myocardial damage and heart failure post-I/R via the CaM/CaMKK2/AMPK pathway. This study revealed a crucial role of the VDAC1-S100A16 axis in the process of myocardial I/R injury, providing novel molecular targets for the treatment of cardiac conditions associated with I/R injury.
Collapse
Affiliation(s)
- Congna Zi
- Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China.
| | - Xian Ma
- Department of Blood Transfusion, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China.
| | - Maodong Zheng
- Department of Pharmacy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Ying Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| |
Collapse
|
9
|
Xue J, Zhou N, Li Q, Wang R, Li Y, Zhu H, Lv C. Exploring the pathogenesis of sepsis-induced cardiomyopathy: Multilayered mechanisms and clinical responses. Sci Prog 2025; 108:368504251329190. [PMID: 40112325 PMCID: PMC11926820 DOI: 10.1177/00368504251329190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Sepsis-induced cardiomyopathy (SIC), as a common complication in the intensive care unit, not only increases the complexity of patient care but also greatly enhances the risk of death. Currently, clinical management of SIC remains challenging, mainly due to the complexity of its pathogenesis and the lack of targeted therapies. Although the specific etiology of SIC is not yet fully understood, existing studies have revealed several vital pathological processes that are intertwined and contribute to the progression of the disease. This narrative review summarizes the existing pathogenesis of SIC, which involves multiple aspects including the inflammatory response, mitochondrial dysfunction, cell death mechanisms, immune regulation, and calcium homeostasis imbalance. Given the multifactorial pathogenesis of SIC, future studies need to explore the interactions between these mechanisms and how to intervene to develop more precise and effective therapeutic strategies to reduce mortality and improve prognosis in patients with SIC.
Collapse
Affiliation(s)
- Jinfang Xue
- Emergency Department, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
| | - Ning Zhou
- Emergency Department, Central People's Hospital of Zhanjiang, Chikan District, Zhanjiang, Guangdong, China
| | - Quan Li
- Emergency Department, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
| | - Ruijie Wang
- Emergency Department, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
| | - Yan Li
- Emergency Department, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huadong Zhu
- Emergency Department, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chuanzhu Lv
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| |
Collapse
|
10
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Song JQ, Shen LJ, Wang HJ, Liu QB, Ye LB, Liu K, Shi L, Cai B, Lin HS, Pang T. Discovery of Balasubramide Derivative with Tissue-Specific Anti-Inflammatory Activity Against Acute Lung Injury by Targeting VDAC1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410550. [PMID: 39556713 DOI: 10.1002/advs.202410550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/29/2024] [Indexed: 11/20/2024]
Abstract
Macrophage-mediated inflammatory responses including pyroptosis are involved in the pathogenesis of sepsis and acute lung injury (ALI), for which there are currently no effective therapeutic treatments. The natural product (+)-Balasubramide is an eight-membered lactam compound extracted from the leaves of the Sri Lanka plant Clausena Indica and has shown anti-inflammatory activities, but its poor pharmacokinetic properties limit its further application for ALI. In this study, a compound (+)3C-20 is discovered with improved both pharmacokinetic properties and anti-inflammatory activity from a series of (+)-Balasubramide derivatives. The compound (+)3C-20 exhibits a markedly enhanced inhibitory effect against LPS-induced expressions of pro-inflammatory factors in mouse macrophages and human PBMCs from ALI patients and shows a preferable lung tissue distribution in mice. (+)3C-20 remarkably attenuates LPS-induced ALI through lung tissue-specific anti-inflammatory actions. Mechanistically, a chemical proteomics study shows that (+)3C-20 directly binds to mitochondrial VDAC1 and inhibits VDAC1 oligomerization to block mtDNA release, further preventing NLRP3 inflammasome activation. These findings identify (+)3C-20 as a novel VDAC1 inhibitor with promising therapeutic potential for ALI associated with inflammation.
Collapse
Affiliation(s)
- Jin-Qian Song
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Li-Juan Shen
- Intensive Care Unit, Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, P. R. China
| | - Hao-Jie Wang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Qi-Bing Liu
- Department of Pharmacy, the First Affiliated Hospital of Hainan Medical University & Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, Hainan Medical University, Haikou, 571199, P.R. China
| | - Lian-Bao Ye
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Kui Liu
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Lei Shi
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian, 116044, P. R. China
| | - Bin Cai
- Intensive Care Unit, Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, P. R. China
| | - Han-Sen Lin
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
12
|
Wang J, Pu X, Zhuang H, Guo Z, Wang M, Yang H, Li C, Chang X. Astragaloside IV alleviates septic myocardial injury through DUSP1-Prohibitin 2 mediated mitochondrial quality control and ER-autophagy. J Adv Res 2024:S2090-1232(24)00471-5. [PMID: 39550027 DOI: 10.1016/j.jare.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024] Open
Abstract
INTRODUCTION Septic cardiomyopathy (SCM) is a complication of myocardial injury in patients with severe sepsis. OBJECTIVES This study highlights the potential of Astragaloside IV(AS) in the treatment of septic cardiomyopathy and provides a reference for developing cardioprotective drugs targeting DUSP1-PHB2-related mitochondria-ER interaction. METHODS Dual specificity phosphatase-1 (DUSP1)/Prohibitin 2 cardiomyocyte-specific knockout mice (DUSP1/PHB2CKO) /DUSP1 transgenic mice (DUSP1/PHB2TG) were used to generate LPS-induced sepsis models. The pathological mechanism by which AS-IV improves heart injury was detected using cardiac ultrasound, fluorescence staining, transmission electron microscopy, and western blotting. After siRNA treatment of cardiomyocytes with DUSP-1/PHB2, changes in mitochondrial function and morphology were determined using qPCR, western blotting, ELISA, and laser confocal microscopy, and the targeted therapeutic effects of AS-IV were further examined. RESULTS SCM treatment leads to severe mitochondrial dysfunction. However, Astragaloside IV (AS) treatment normalizes mitochondrial homeostasis and ER function. Notably, the protective effect was blocked in DUSP1/Prohibitin 2 cardiomyocyte-specific knockout mice (DUSP1/PHB2CKO) but remained unaffected in DUSP1 transgenic mice (DUSP1/PHB2TG). CONCLUSION This study highlights the potential of AS in the treatment of septic cardiomyopathy and provides a reference for developing cardioprotective drugs targeting DUSP1-PHB2 related mitochondria-ER interaction.
Collapse
Affiliation(s)
- Junyan Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiangyi Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haowen Zhuang
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mengyuan Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huaihong Yang
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China.
| | - Chun Li
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin 519000, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
13
|
Wang Y, Huang X, Huo H, Cai Z, Ji Q, Jiang Y, Zhuang F, Li Y, Shen L, Wang X, He B. Deletion of MAPL ameliorates septic cardiomyopathy by mitigating mitochondrial dysfunction. J Transl Med 2024; 22:1012. [PMID: 39529130 PMCID: PMC11552119 DOI: 10.1186/s12967-024-05836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
AIM Mitochondrial dysfunction is a critical factor in the pathogenesis of septic cardiomyopathy (SCM). Mitochondrial anchored protein ligase (MAPL), a small ubiquitin-like modifier (SUMO) E3 ligase, plays a significant role in mitochondrial function. However, the role of MAPL in SCM remains unclear. METHODS To investigate the role of MAPL in SCM, cardiomyocyte-specific MAPL knockout mice were generated. A cecal ligation and puncture (CLP) procedure was employed to induce a sepsis-like condition. RESULTS The expression of MAPL in heart tissues and H9C2 cardiomyocytes was elevated following CLP challenge or lipopolysaccharide (LPS) stimulation. MAPL deficiency ameliorated CLP-induced cardiac injury, dysfunction, and inflammation, and also improved the survival rate of mice following CLP operation. Additionally, MAPL deficiency or knockdown inhibited LPS-induced cardiomyocyte apoptosis, improved mitochondrial structural abnormalities, and increased ATP production. Furthermore, MAPL knockdown mitigated LPS-induced reductions in mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) production. Mechanistically, the expression of dynamin-related protein 1 (drp1) in the mitochondria of heart tissues or H9C2 cardiomyocytes was elevated under septic conditions. Accordingly, the SUMOylation of drp1 in heart tissues or H9C2 cardiomyocytes was increased under sepsis conditions, which was reduced by MAPL knockout or knockdown. CONCLUSION Our results reveal that MAPL promotes cardiac injury/dysfunction and inflammation in SCM. Deficiency or knockdown of MAPL alleviates SCM by reducing drp1 SUMOylation as well as drp1-mediated mitochondrial dysfunction. These findings suggest that targeting MAPL may represent a therapeutic strategy for patients with SCM.
Collapse
Affiliation(s)
- Yinghua Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiying Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanhuan Huo
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqi Ji
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Jiang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Zhuang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Shen Q, Yuan Y, Li Z, Ling Y, Wang J, Gao M, Wang P, Li M, Lai L, Jin J. Berberine ameliorates septic cardiomyopathy through protecting mitochondria and upregulating Notch1 signaling in cardiomyocytes. Front Pharmacol 2024; 15:1502354. [PMID: 39568588 PMCID: PMC11576164 DOI: 10.3389/fphar.2024.1502354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Septic cardiomyopathy (SCM) arises as a consequence of sepsis-associated cardiovascular dysfunction, for which there is currently no specific targeted therapy available. Previous studies have demonstrated the beneficial therapeutic effect of berberine (BBR) on SCM; however, the underlying mechanisms of action remain unclear. The objective of this is to elucidate how BBR alleviates SCM. Methods Septic cardiomyopathy rat model was established by performing cecal ligation and puncture (CLP), while a cardiomyocyte injury model was provoked in H9C2 cells using lipopolysaccharide (LPS). Cardiac function was assessed through echocardiography, and myocardial histopathology was examined with hematoxylin-eosin (HE) staining. Cardiomyocyte viability was determined through Cell Counting Kit-8 (CCK8) assay, and measurement of ATP levels was done with an ATP assay kit. Mitochondrial ultrastructure was observed using transmission electron microscopy. Real-time polymerase chain reaction (RT-PCR) and Western blotting were employed to analyze the expression of Notch1 signaling pathway components and downstream molecules in myocardial tissues and cells. Result In vivo, BBR markedly improved symptoms and cardiac function in SCM rats, leading to enhanced ATP content, and ameliorated mitochondrial structure. Additionally, BBR increased Notch1 protein expression in myocardial tissue of the rats. In vitro, BBR elevated the survival rates of H9C2 cell, improved mitochondrial morphology, and raised ATP levels. The mRNA expression of Notch1, Hes1, and Hes2, and Notch1 protein expression was upregulated by BBR. While these effects were reversed upon inhibiting the Notch1 signaling pathway. Conclusion BBR improves septic cardiomyopathy by modulating Notch1 signaling to protect myocardial mitochondria.
Collapse
Affiliation(s)
- Qi Shen
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yufan Yuan
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zelin Li
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ying Ling
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jian Wang
- Department of Basic Research of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingjing Gao
- Department of Automation, Tsinghua University, Beijing, China
| | - Peng Wang
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mengli Li
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lizhong Lai
- Department of Pathology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinlan Jin
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
15
|
Li X, Sun H, Zhang L, Liang H, Zhang B, Yang J, Peng X, Sun J, Zhou Y, Zhai M, Jiang L, Zhu H, Duan W. GDF15 attenuates sepsis-induced myocardial dysfunction by inhibiting cardiomyocytes ferroptosis via the SOCS1/GPX4 signaling pathway. Eur J Pharmacol 2024; 982:176894. [PMID: 39147013 DOI: 10.1016/j.ejphar.2024.176894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome triggered by infection, presenting with symptoms such as fever, increased heart rate, and low blood pressure. In severe cases, it can lead to multiple organ dysfunction, posing a life-threatening risk. Sepsis-induced cardiomyopathy (SIC) is a critical factor in the poor prognosis of septic patients, leading to myocardial dysfunction characterized by cell death, inflammation, and diminished cardiac function. Ferroptosis, an iron-dependent form of programmed cell death, is a key mechanism causing cardiomyocyte damage in SIC. Growth differentiation factor 15 (GDF15), a member of the TGF-β superfamily, is associated with various cardiovascular diseases and can inhibit oxidative stress, reduce reactive oxygen species (ROS), and suppress ferroptosis. Elevated serum GDF15 levels in sepsis are correlated with organ injuries, suggesting its potential as a therapeutic target. However, its role and mechanisms in SIC remain unclear. Glutathione peroxidase 4 (GPX4), the only enzyme capable of reducing lipid peroxides within cells, protects cells by reducing lipid peroxidation levels and inhibiting ferroptosis. Investigating the regulatory factors of GPX4 may provide a theoretical basis for SIC treatment. In this study, a mouse SIC model revealed that elevated GDF15 exerts a protective effect. Antagonizing GDF15 exacerbates myocardial damage. Through transcriptomic analysis and other methods, we confirmed that GDF15 inhibits the expression of SOCS1 by activating the ALK5-SMAD2/3 pathway, thereby activates the JAK2/STAT3 pathway, promotes the transcription of GPX4, inhibits ferroptosis in cardiomyocytes, and plays a myocardial protective role in SIC.
Collapse
Affiliation(s)
- Xiayun Li
- College of Life Sciences, Northwest University, Xi'an, 710069, China; Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - He Sun
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Liyun Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Hongliang Liang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Bin Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China; Department of Surgery, The 954th Hospital of the Chinese People's Liberation Army, Shannan, 856100, China
| | - Jiachang Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Xiangyan Peng
- School of Medicine, Northwest University, Xi'an, 710069, China
| | - Jingwei Sun
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Yang Zhou
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Liqing Jiang
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Hanzhao Zhu
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
16
|
Zhou H, Gong H, Liu H, Jing G, Xia Y, Wang Y, Wu D, Yang C, Zuo J, Wang Y, Wu X, Song X. Erbin alleviates sepsis-induced cardiomyopathy by inhibiting RIPK1-dependent necroptosis through activating PKA/CREB pathway. Cell Signal 2024; 123:111374. [PMID: 39216682 DOI: 10.1016/j.cellsig.2024.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Sepsis is a systemic inflammatory disease that can cause multiple organ damage. Septic patients with cardiac dysfunction have a significantly higher mortality. Based on the results of bioinformatics analysis, weighted gene co-expression network analysis (WGCNA), we found that Erbin is vital in cardiomyocyte. However, the function of Erbin in sepsis-induced cardiomyopathy (SIC) has not been explicitly studied. We discussed the role of Erbin in SIC by employing the Erbin-/- mice and HL-1 cardiomyocyte. An in vitro model of inflammation in HL-1 was used to confirm stimulation with lipopolysaccharide (LPS) and a mouse model of cecal ligation and puncture (CLP) to study the molecular mechanisms under SIC. Transmission electron microscopy (TEM) was used to characterize the morphological characteristics at the ultrastructural level. The expressions of Erbin, p-RIPK1, RIPK1, p-RIPK3, RIPK3, p-MLKL, MLKL, p-PKA, PKA, p-CREB and CREB were detected by western blot. qPCR analysis was applied to detect TNF-α, IL-1β, IL-6, RIPK1 and MLKL mRNA expression. Cell survival was detected by CCK-8 assay and the levels of c TnI concentration were detected by ELISA kit. Our study revealed that necroptosis and inflammation were activated in cardiomyocytes during sepsis and deficiency of Erbin aggravated them. Furthermore, deficiency of Erbin exacerbated systolic dysfunction including the decline of LVEF and LVFS induced by CLP. Overexpression of Erbin alleviated necroptosis and inflammation by activating PKA/CREB pathway. Our research elucidates a noval mechanism whereby Erbin participates in SIC, providing a promising therapeutic target for myocardial dysfunction during sepsis.
Collapse
Affiliation(s)
- Huimin Zhou
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Hailong Gong
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Huifan Liu
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Guoqing Jing
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Yun Xia
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - YuXuan Wang
- Renmin Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Die Wu
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Cheng Yang
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Jing Zuo
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Yanlin Wang
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Xiaojing Wu
- Renmin Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Xuemin Song
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Siquan L, Weilin C, Xiuwen C, Meiyan Z, Weihong G, Xiaoli F. Evaluating the safety and efficiency of nanomaterials: A focus on mitochondrial health. Biomed Pharmacother 2024; 180:117484. [PMID: 39316969 DOI: 10.1016/j.biopha.2024.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Nanomaterials (NMs) have extensive application potential in drug delivery, tissue engineering, and various other domains, attributable to their exceptional physical and chemical properties. Nevertheless, an increasing body of literature underscores the diverse safety risks are associated with NMs upon interaction with the human body, including oxidative stress and programmed cell death. Mitochondria, serving as cellular energy factories, play a pivotal role in energy metabolism and the regulation of cell fate. Organs with substantial energy demands, including the heart and brain, are highly sensitive to mitochondrial integrity, with mitochondrial impairment potentially resulting in significant dysfunction and pathologies such as as heart failure and neurodegenerative disease. This review elucidates the pathways by which NMs translocate into mitochondria, their intracellular dynamics, and their impact on mitochondrial morphology, respiratory chain activity, and metabolic processes. We further investigate associated molecular mechanisms, including mitochondrial dynamic imbalance, calcium overload, and oxidative stress, and elucidate the pivotal roles of mitochondria in different forms of programmed cell death such as apoptosis and autophagy. Finally, we offer recommendations regarding the safety and efficacy of NMs for medical applications. By systematically analyzing the interactions and molecular mechanisms between NMs and mitochondria, this paper aims to enhance the toxicological evaluation framework of NMs and provide a foundational reference and theoretical basis for their clinical utilization.
Collapse
Affiliation(s)
- Liu Siquan
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Cheng Weilin
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Chen Xiuwen
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Zou Meiyan
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Guo Weihong
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Feng Xiaoli
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
18
|
Zhu HW, Wang YP, Zhang QF, Wang KD, Huang Y, Xiang RL. F-actin/DRP1 axis-mediated mitochondrial fission promotes mitophagy in diabetic submandibular glands. Oral Dis 2024; 30:5429-5444. [PMID: 38735833 DOI: 10.1111/odi.14983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Diabetes is accompanied by a high prevalence of hyposalivation, causing severe damage to oral and systemic health. Mitochondrial dynamics play important roles in the pathogenesis of various diabetic complications; however, little is known about their roles in diabetic hyposalivation. MATERIALS AND METHODS A diabetic mouse model and a high glucose (HG)-induced diabetic submandibular gland (SMG) cell model were employed. RESULTS More mitochondria surrounded by autophagosomes and higher expression of mitophagy-related proteins were detected in the SMGs of diabetic mice and HG-treated SMG cells. In diabetic SMGs, dynamin-related protein 1 (DRP1) was upregulated, whereas mitofusin-2 was downregulated both in vivo and in vitro. Shortened mitochondria and impaired mitochondrial functions were observed in the HG group. A DRP1-specific inhibitor, mdivi-1, suppressed mitochondrial fission and mitophagy, as well as restored mitochondrial functions in the HG condition. Moreover, the interaction of F-actin and DRP1 was enhanced in the diabetic group. Inhibiting F-actin with cytochalasin D repaired the injured effects of HG on mitochondrial dynamics and functions. Conversely, the F-actin-polymerization-inducer jasplakinolide aggravated mitochondrial fission and dysfunction. CONCLUSIONS F-actin contributes to HG-evoked mitochondrial fission by interacting with DRP1, which induces mitophagy and impairs mitochondrial function in SMG cells, ultimately damaging the SMG.
Collapse
Affiliation(s)
- Hou-Wei Zhu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, Xiamen, China
| | - Yi-Ping Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, Xiamen, China
| | - Qiu-Fang Zhang
- Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Kai-Di Wang
- Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Yan Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, Xiamen, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Xie Y, Liu X, Xie D, Zhang W, Zhao H, Guan H, Zhou PK. Voltage-dependent anion channel 1 mediates mitochondrial fission and glucose metabolic reprogramming in response to ionizing radiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174246. [PMID: 38955266 DOI: 10.1016/j.scitotenv.2024.174246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The ionizing radiation (IR) represents a formidable challenge as an environmental factor to mitochondria, leading to disrupt cellular energy metabolism and posing health risks. Although the deleterious impacts of IR on mitochondrial function are recognized, the specific molecular targets remain incompletely elucidated. In this study, HeLa cells subjected to γ-rays exhibited concomitant oxidative stress, mitochondrial structural alterations, and diminished ATP production capacity. The γ-rays induced a dose-dependent induction of mitochondrial fission, simultaneously manifested by an elevated S616/S637 phosphorylation ratio of the dynamin-related protein 1 (DRP1) and a reduction in the expression of the mitochondrial fusion protein mitofusin 2 (MFN2). Knockdown of DRP1 effectively mitigated γ-rays-induced mitochondrial network damage, implying that DRP1 phosphorylation may act as an effector of radiation-induced mitochondrial damage. The mitochondrial outer membrane protein voltage-dependent anion channel 1 (VDAC1) was identified as a crucial player in IR-induced mitochondrial damage. The VDAC1 inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), counteracts the excessive mitochondrial fission induced by γ-rays, consequently rebalancing the glycolytic and oxidative phosphorylation equilibrium. This metabolic shift was uncovered to enhance glycolytic capacity, thus fortifying cellular resilience and elevating the radiosensitivity of cancer cells. These findings elucidate the intricate regulatory mechanisms governing mitochondrial morphology under radiation response. It is anticipated that the development of targeted drugs directed against VDAC1 may hold promise in augmenting the sensitivity of tumor cells to radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, PR China
| | - Xiaochang Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Wen Zhang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Hongling Zhao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
20
|
Zhao J, Qiu YK, Xie YX, Li XY, Li YB, Wu B, Wang YW, Tian XY, Lv YL, Zhang LH, Li WL, Yang HF. Imbalance of mitochondrial quality control regulated by STING and PINK1 affects cyfluthrin-induced neuroinflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174313. [PMID: 38964406 DOI: 10.1016/j.scitotenv.2024.174313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Nervous system diseases are a global health problem, and with the increase in the elderly population around the world, their incidence will also increase. Harmful substances in the environment are closely related to the occurrence of nervous system diseases. China is a large agricultural country, and thus the insecticide cyfluthrin has been widely used. Cyfluthrin is neurotoxic, but the mechanism of this injury is not clear. Inflammation is an important mechanism for the occurrence of nervous system diseases. Mitochondria are the main regulators of the inflammatory response, and various cellular responses, including autophagy, directly affect the regulation of inflammatory processes. Mitochondrial damage is related to mitochondrial quality control (MQC) and PTEN-induced kinase 1 (PINK1). As an anti-inflammatory factor, stimulator of interferon genes (STING) participates in the regulation of inflammation. However, the relationship between STING and mitochondria in the process of cyfluthrin-induced nerve injury is unclear. This study established in vivo and in vitro models of cyfluthrin exposure to explore the role of MQC and to clarify the mechanism of action of STING and PINK1. Our results showed that cyfluthrin can increase the reactive oxygen species (ROS) level, resulting in mitochondrial damage and inflammation. In this process, an imbalance in MQC leads to the aggravation of mitochondrial damage, and high STING expression drives the occurrence of inflammation. We established a differential expression model of STING and PINK1 to further determine the underlying mechanism and found that the interaction between STING and PINK1 regulates MQC to affect the levels of mitochondrial damage and inflammation. When STING and PINK1 expression are downregulated, mitochondrial damage and STING-induced inflammation are significantly alleviated. In summary, a synergistic effect between STING and PINK1 on cyfluthrin-induced neuroinflammation may exist, which leads to an imbalance in MQC by inhibiting mitochondrial biogenesis and division/fusion, and PINK1 can reduce STING-driven inflammation.
Collapse
Affiliation(s)
- Ji Zhao
- College of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China; Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yi-Kai Qiu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Eduction, Yinchuan 750004, PR China
| | - Yong-Xing Xie
- College of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Xiao-Yu Li
- College of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Yu-Bin Li
- College of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Bing Wu
- College of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Yu-Wen Wang
- College of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Xue-Yan Tian
- College of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Yan-Ling Lv
- College of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Ling-He Zhang
- College of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Wen-Li Li
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Hui-Fang Yang
- College of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China.
| |
Collapse
|
21
|
Li X, Chen X, Yang FY, Shu T, Jiang L, He B, Tang M, Li X, Fang D, Jose PA, Han Y, Yang Y, Zeng C. Effect of mitochondrial translocator protein TSPO on LPS-induced cardiac dysfunction. J Adv Res 2024:S2090-1232(24)00437-5. [PMID: 39389308 DOI: 10.1016/j.jare.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Sepsis-induced cardiac dysfunction is one of the most serious complications of sepsis. The mitochondrial translocator protein (TSPO), a mitochondrial outer membrane protein, is widely used as a diagnostic marker of inflammation-related diseases and can also lead to the release of inflammatory components. However, whether TSPO has a therapeutic effect on sepsis-induced cardiac dysfunction is unclear. OBJECTIVES The aim of this study is to investigate the involvement of TSPO in the pathogenesis of sepsis-induced cardiac dysfunction and elucidate its underlying mechanism, as well as develop therapeutic strategies targeting TSPO for the prevention and treatment of sepsis-induced cardiac dysfunction. METHODS The sepsis-induced cardiac dysfunction model was established by intraperitoneal injection of lipopolysaccharide (LPS) in C57BL/6 mice (LPS-induced cardiac dysfunction, LICD). TSPO knockout mice were constructed,and the effects of TSPO was detected by survival rate, echocardiography, HE staining, mitochondrial electron microscopy, TUNEL staining. TSPO-binding proteins were identified by co-immunoprecipitation and mass spectrometry. The mechanisms underlying between TSPO and voltage-dependent anion channel (VDAC) was studied through western blot and immunofluorescence. Proteolysis-Targeting Chimeras (PROTAC) technology was used to construct TSPO-PROTAC molecules that can degrade TSPO. RESULTS Our present study found that LPS increased cardiac TSPO expression. Knockout of TSPO in C57BL/6 mice with LICD attenuated the cardiac pathology, mitochondrial dysfunction, and apoptosis of cardiomyocytes and significantly improved cardiac function and survival rate. Co-immunoprecipitation and mass spectrometry identified VDAC as a TSPO binding protein.Down-regulation of TSPO reduced PKA-mediated VDAC phosphorylation and VDAC oligomerization, ameliorated mitochondrial function, and reduced cardiomyocyte apoptosis. The study has clinical translational potential, because administration of TSPO-PROTAC to degrade TSPO improved cardiac function in mice with LICD. CONCLUSION This study elucidated the effect of TSPO in LICD, providing a new therapeutic strategy to down-regulate TSPO by administration of TSPO-PROTAC for the prevention and treatment of LICD.
Collapse
Affiliation(s)
- Xingyue Li
- School of Materials Science and Engineering,SouthwestJiaotong University, Chengdu Sichuan, PR China; Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Xiao Chen
- Department of Geriatrics, General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Feng-Yuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Tingting Shu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Lintao Jiang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Bo He
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Ming Tang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Xingbing Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Dandong Fang
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, PR China
| | - Pedro A Jose
- The George Washington University School of Medicine & Health Sciences
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Yongjian Yang
- School of Materials Science and Engineering,SouthwestJiaotong University, Chengdu Sichuan, PR China; Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University,Chongqing, PR China.
| |
Collapse
|
22
|
Han D, Wang C, Feng X, Hu L, Wang B, Hu X, Wu J. ALCAT1-Mediated Pathological Cardiolipin Remodeling and PLSCR3-Mediated Cardiolipin Transferring Contribute to LPS-Induced Myocardial Injury. Biomedicines 2024; 12:2013. [PMID: 39335527 PMCID: PMC11428616 DOI: 10.3390/biomedicines12092013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiolipin (CL), a critical phospholipid situated within the mitochondrial membrane, plays a significant role in modulating intramitochondrial processes, especially in the context of certain cardiac pathologies; however, the exact effects of alterations in cardiolipin on septic cardiomyopathy (SCM) are still debated and the underlying mechanisms remain incompletely understood. This study highlights a notable increase in the expressions of ALCAT1 and PLSCR3 during the advanced stage of lipopolysaccharide (LPS)-induced SCM. This up-regulation potential contribution to mitochondrial dysfunction and cellular apoptosis-as indicated by the augmented oxidative stress and cytochrome c (Cytc) release-coupled with reduced mitophagy, decreased levels of the antiapoptotic protein B-cell lymphoma-2 (Bcl-2) and lowered cell viability. Additionally, the timing of LPS-induced apoptosis coincides with the decline in both autophagy and mitophagy at the late stages, implying that these processes may serve as protective factors against LPS-induced SCM in HL-1 cells. Together, these findings reveal the mechanism of LPS-induced CL changes in the center of SCM, with a particular emphasis on the importance of pathological remodeling and translocation of CL to mitochondrial function and apoptosis. Additionally, it highlights the protective effect of mitophagy in the early stage of SCM. This study complements previous research on the mechanism of CL changes in mediating SCM. These findings enhance our understanding of the role of CL in cardiac pathology and provide a new direction for future research.
Collapse
Affiliation(s)
- Dong Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Chenyang Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
- Department of Pain Management, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaojing Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Li Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
- Department of Anesthesiology, Wuhan Fourth Hospital & Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Beibei Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Xinyue Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Jing Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| |
Collapse
|
23
|
Pu X, Zhang Q, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R, Chang X. Ginsenoside Rb1 ameliorates heart failure through DUSP-1-TMBIM-6-mediated mitochondrial quality control and gut flora interactions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155880. [PMID: 39053246 DOI: 10.1016/j.phymed.2024.155880] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND There is currently no specific therapeutic drug available for heart failure in clinical practice. Numerous studies have validated the efficacy of Ginsenoside Rb1, an active component found in various herbal remedies used for heart failure treatment, in effectively ameliorating myocardial ischemia. However, the precise mechanism of action and molecular targets of Ginsenoside Rb1 remain unclear. PURPOSE This study aims to explore the molecular mechanisms through which Ginsenoside Rb1 synergistically modulates the gut flora and mitochondrial quality control network in heart failure by targeting the DUSP-1-TMBIM-6-VDAC1 axis. STUDY DESIGN This study utilized DUSP-1/VDAC1 knockout (DUSP-1-/-/VDAC1-/-) and DUSP-1/VDAC1 transgenic (DUSP-1+/+/VDAC1+/+) mouse models of heart failure, established through Transverse Aortic Constriction (TAC) surgery and genetic modification techniques. The mice were subsequently subjected to treatment with Ginsenoside Rb1. METHODS A series of follow-up multi-omics analyses were conducted, including assessments of intestinal flora, gene transcription sequencing, single-cell databases, and molecular biology assays of primary cardiomyocytes, to investigate the mechanism of action of Ginsenoside Rb1. RESULTS Ginsenoside Rb1 was found to have multiple regulatory mechanisms on mitochondria. Notably, DUSP-1 was discovered to be a crucial molecular target of Ginsenoside Rb1, controlling both intestinal flora and mitochondrial function. The regulatory effects of DUSP-1 on inflammation and mitochondrial quality control were mediated by changes in TMBIM-6 and VDAC1. Furthermore, NLRP3-mediated inflammatory responses were found to interact with mitochondrial quality control, exacerbating myocardial injury under stress conditions. Ginsenoside Rb1 modulated the DUSP-1-TMBIM-6-VDAC1 axis, inhibited the release of pro-inflammatory factors, altered the structural composition of the gut flora, and protected impaired heart function. These effects indirectly influenced the crosstalk between inflammation, mitochondria, and gut flora. CONCLUSION The DUSP-1-TMBIM-6-VDAC1 axis, an upstream pathway regulated by Ginsenoside Rb1, is a profound mechanism through which Ginsenoside Rb1 improves cardiac function in heart failure by modulating inflammation, mitochondria, and gut flora.
Collapse
Affiliation(s)
- Xiangyi Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qin Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
24
|
Chang X, Zhou S, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R. Zishenhuoxue decoction-induced myocardial protection against ischemic injury through TMBIM6-VDAC1-mediated regulation of calcium homeostasis and mitochondrial quality surveillance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155331. [PMID: 38870748 DOI: 10.1016/j.phymed.2023.155331] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 06/15/2024]
Abstract
BACKGROUND Zishenhuoxue decoction (ZSHX), a Chinese herbal medicine, exhibits myocardial and vascular endothelial protective properties. The intricate regulatory mechanisms underlying myocardial ischemic injury and its association with dysfunctional mitochondrial quality surveillance (MQS) remain elusive. HYPOTHESIS/PURPOSE To study the protective effect of ZSHX on ischemic myocardial injury in mice using a TMBIM6 gene-modified animal model and mitochondrial quality control-related experiments. STUDY DESIGN Using model animals and myocardial infarction surgery-induced ischemic myocardial injury TMBIM6 gene-modified mouse models, the pharmacological activity of ZSHX in inhibiting ischemic myocardial injury and mitochondrial homeostasis disorder in vivo was tested. METHODS Our focal point entailed scrutinizing the impact of ZSHX on ischemic myocardial impairment through the prism of TMBIM6. This endeavor was undertaken utilizing mice characterized by heart-specific TMBIM6 knockout (TMBIM6CKO) and their counterparts, the TMBIM6 transgenic (TMBIM6TG) and VDAC1 transgenic (VDAC1TG) mice. RESULTS ZSHX demonstrated dose-dependent effectiveness in mitigating ischemic myocardial injury and enhancing mitochondrial integrity. TMBIM6CKO hindered ZSHX's cardio-therapeutic and mitochondrial protective effects, while ZSHX's benefits persisted in TMBIM6TG mice. TMBIM6CKO also blocked ZSHX's regulation of mitochondrial function in HR-treated cardiomyocytes. Hypoxia disrupted the MQS in cardiomyocytes, including calcium overload, excessive fission, mitophagy issues, and disrupted biosynthesis. ZSHX counteracted these effects, thereby normalizing MQS and inhibiting calcium overload and cardiomyocyte necroptosis. Our results also showed that hypoxia-induced TMBIM6 blockade resulted in the over-activation of VDAC1, a major mitochondrial calcium uptake pathway, while ZSHX could increase the expression of TMBIM6 and inhibit VDAC1-mediated calcium overload and MQS abnormalities. CONCLUSIONS Our findings suggest that ZSHX regulates mitochondrial calcium homeostasis and MQS abnormalities through a TMBIM6-VDAC1 interaction mechanism, which helps to treat ischemic myocardial injury and provides myocardial protection. This study also offers insights for the clinical translation and application of mitochondrial-targeted drugs in cardiomyocytess.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Siyuan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China.
| |
Collapse
|
25
|
Pei H, Qu J, Chen J, Zhao G, Lu Z. S100A9 as a Key Myocardial Injury Factor Interacting with ATP5 Exacerbates Mitochondrial Dysfunction and Oxidative Stress in Sepsis-Induced Cardiomyopathy. J Inflamm Res 2024; 17:4483-4503. [PMID: 39006491 PMCID: PMC11246037 DOI: 10.2147/jir.s457340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Sepsis-induced cardiomyopathy (SICM) is a prevalent cardiac dysfunction caused by sepsis. Mitochondrial dysfunction is a crucial pathogenic factor associated with adverse cardiovascular adverse events; however, research on SICM remains insufficient. Methods To investigate the factors contributing to the pathological progression of SICM, we performed a comprehensive analysis of transcriptomic data from the GEO database using bioinformatics and machine learning techniques. CRISPR-Cas9 S100A9 knockout mice and primary cardiomyocytes were exposed to lipopolysaccharide to simulate SICM. Transcriptome analysis and mass spectrometry of primary cardiomyocytes were used to determine the potential pathogenic mechanisms of S100A9. The mitochondrial ultrastructure and mitochondrial membrane potential (MMP) were detected using transmission electron microscopy and flow cytometry, respectively. Pink1/Parkin and Drp1 proteins were detected using Western blotting to evaluate mitochondrial autophagy and division. The mtDNA and mRNA levels of mitochondrial transcription factors and synthases were evaluated using real-time polymerase chain reaction. Results Bioinformatics analysis identified 12 common differentially expressed genes, including SERPINA3N, LCN2, MS4A6D, LRG1, OSMR, SOCS3, FCGR2b, S100A9, S100A8, CASP4, ABCA8A, and NFKBIZ. Significant S100A9 upregulation was closely associated with myocardial injury exacerbation and cardiac function deterioration. GSEA revealed that myocardial contractile function, oxidative stress, and mitochondrial function were significantly affected by S100A9. Knocking out S100A9 alleviates the inflammatory response and mitochondrial dysfunction. The interaction of S100A9 with ATP5 enhanced mitochondrial division and autophagy, inhibited MMP and ATP synthesis, and induced oxidative stress, which are related to the Nlrp3-Nfkb-Caspase1 and Drp1-Pink1-Parkin signaling pathways. The expression of mitochondrial transcription factors (TFAM and TFBM) and ATP synthetases (ATP6 and ATP8, as well as COX1, COX2, and COX3) was further suppressed by S100A9 in SICM. Targeted S100A9 inhibition by paquinimod partially reversed myocardial mitochondrial dysfunction and oxidative stress. Conclusion The interaction of S100A9 with ATP5 exacerbates myocardial damage in sepsis by inducing mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Hui Pei
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jie Qu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jianming Chen
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Guangju Zhao
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - ZhongQiu Lu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, People’s Republic of China
| |
Collapse
|
26
|
Tang W, Guo R, Hu C, Yang Y, Yang D, Chen X, Liu Y. BMAL1 alleviates myocardial damage in sepsis by activating SIRT1 signaling and promoting mitochondrial autophagy. Int Immunopharmacol 2024; 133:112111. [PMID: 38678672 DOI: 10.1016/j.intimp.2024.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Brain and muscle arnt-like protein-1 (BMAL1) deficiency is associated with myocardial dysfunction and suppressed sirtuin 1 (SIRT1). However, whether BMAL1 promotes mitophagy via SIRT1 to alleviate myocardial injury in sepsis remains unknown. METHODS An in vitro myocardial injury model was established using lipopolysaccharide (LPS)-treated H9C2 cells. Knockdown or overexpression of genes was performed using plasmid transfection. Gene and protein expression was assessed by qRT-PCR and Western blot, respectively. Cell proliferation was evaluated using cell counting kit-8, and cellular apoptosis and reactive oxygen species (ROS) levels were analyzed using flow cytometry. An in vivo myocardial injury model of sepsis was established by cecal ligation and puncture in rats. Myocardial function was characterized by analyzing the damage-associated proteins, inflammatory factors, ejection fraction, and fraction shortening. RESULTS sgBMAL1 significantly decreased BMAL1 levels and remarkably increased the sensitivity of H9C2 cells to LPS stimulation, consequently enhancing LPS-induced apoptosis, inflammation, and ROS levels. These effects were further attenuated by BMAL1 overexpression. BMAL1 knockdown inhibited the expression of SIRT1 and mitophagy-associated proteins. SIRT1 overexpression reversed the enhancement of shBMAL1 on cell proliferation and inflammation. In the rat model of sepsis, BMAL1 overexpression decreased the myocardial injury-associated proteins to recover the myocardial function and suppressed inflammatory activities by promoting mitophagy via SIRT1. CONCLUSION BMAL1 enhances mitophagy dependent on SIRT1, thereby alleviating myocardial injury in sepsis.
Collapse
Affiliation(s)
- Wen Tang
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Rennan Guo
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Congyu Hu
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Yang Yang
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Danping Yang
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Xiaxia Chen
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Yan Liu
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region 830001, China.
| |
Collapse
|
27
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
28
|
Chang X, Zhang Q, Huang Y, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R. Quercetin inhibits necroptosis in cardiomyocytes after ischemia-reperfusion via DNA-PKcs-SIRT5-orchestrated mitochondrial quality control. Phytother Res 2024; 38:2496-2517. [PMID: 38447978 DOI: 10.1002/ptr.8177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
We investigated the mechanism by which quercetin preserves mitochondrial quality control (MQC) in cardiomyocytes subjected to ischemia-reperfusion stress. An enzyme-linked immunosorbent assay was employed in the in vivo experiments to assess myocardial injury markers, measure the transcript levels of SIRT5/DNAPK-cs/MLKL during various time intervals of ischemia-reperfusion, and observe structural changes in cardiomyocytes using transmission electron microscopy. In in vitro investigations, adenovirus transfection was employed to establish a gene-modified model of DNA-PKcs, and primary cardiomyocytes were obtained from a mouse model with modified SIRT5 gene. Reverse transcription polymerase chain reaction, laser confocal microscopy, immunofluorescence localization, JC-1 fluorescence assay, Seahorse energy analysis, and various other assays were applied to corroborate the regulatory influence of quercetin on the MQC network in cardiomyocytes after ischemia-reperfusion. In vitro experiments demonstrated that ischemia-reperfusion injury caused changes in the structure of the myocardium. It was seen that quercetin had a beneficial effect on the myocardial tissue, providing protection. As the ischemia-reperfusion process continued, the levels of DNA-PKcs/SIRT5/MLKL transcripts were also found to change. In vitro investigations revealed that quercetin mitigated cardiomyocyte injury caused by mitochondrial oxidative stress through DNA-PKcs, and regulated mitophagy and mitochondrial kinetics to sustain optimal mitochondrial energy metabolism levels. Quercetin, through SIRT5 desuccinylation, modulated the stability of DNA-PKcs, and together they regulated the "mitophagy-unfolded protein response." This preserved the integrity of mitochondrial membrane and genome, mitochondrial dynamics, and mitochondrial energy metabolism. Quercetin may operate synergistically to oversee the regulation of mitophagy and the unfolded protein response through DNA-PKcs-SIRT5 interaction.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qin Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Huang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Wang Y, Gu L, Li J, Wang R, Zhuang Y, Li X, Wang X, Zhang J, Liu Q, Wang J, Song SJ. 13-oxyingenol dodecanoate derivatives induce mitophagy and ferroptosis through targeting TMBIM6 as potential anti-NSCLC agents. Eur J Med Chem 2024; 270:116312. [PMID: 38552425 DOI: 10.1016/j.ejmech.2024.116312] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/21/2024]
Abstract
Ingenol diterpenoids continue to attract the attention for their extensive biological activity and novel structural features. To further explore this type of compound as anti-tumor agent, 13-oxyingenol dodecanoate (13-OD) was prepared by a standard chemical transformation from an Euphorbia kansui extract, and 29 derivatives were synthesized through parent 13-OD. Their inhibition activities against different types of cancer were screened and some derivatives showed superior anti-non-small cell lung cancer (NSCLC) cells cytotoxic potencies than oxaliplatin. In addition, TMBIM6 was identified as a crucial cellular target of 13-OD using ABPP target angling technique, and subsequently was verified by pull down, siRNA interference, BLI and CETSA assays. With modulating the function of TMBIM6 protein by 13-OD and its derivatives, Ca2+ release function was affected, causing mitochondrial Ca2+ overload, depolarisation of membrane potential. Remarkably, 13-OD, B6, A2, and A10-2 induced mitophagy and ferroptosis. In summary, our results reveal that 13-OD, B6, A2, and A10-2 holds great potential in developing anti-tumor agents for targeting TMBIM6.
Collapse
Affiliation(s)
- Yaxu Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Liwei Gu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Jichong Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ruqi Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yuan Zhuang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiangyun Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xinye Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Junzhe Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Jigang Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
30
|
Du Y, Zhu P, Li Y, Yu J, Xia T, Chang X, Zhu H, Li R, He Q. DNA-PKcs Phosphorylates Cofilin2 to Induce Endothelial Dysfunction and Microcirculatory Disorder in Endotoxemic Cardiomyopathy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0331. [PMID: 38550779 PMCID: PMC10976589 DOI: 10.34133/research.0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/09/2024] [Indexed: 11/12/2024]
Abstract
The presence of endotoxemia is strongly linked to the development of endothelial dysfunction and disruption of myocardial microvascular reactivity. These factors play a crucial role in the progression of endotoxemic cardiomyopathy. Sepsis-related multiorgan damage involves the participation of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). However, whether DNA-PKcs contributes to endothelial dysfunction and myocardial microvascular dysfunction during endotoxemia remains unclear. Hence, we conducted experiments in mice subjected to lipopolysaccharide (LPS)-induced endotoxemic cardiomyopathy, as well as assays in primary mouse cardiac microvascular endothelial cells. Results showed that endothelial-cell-specific DNA-PKcs ablation markedly attenuated DNA damage, sustained microvessel perfusion, improved endothelial barrier function, inhibited capillary inflammation, restored endothelium-dependent vasodilation, and improved heart function under endotoxemic conditions. Furthermore, we show that upon LPS stress, DNA-PKcs recognizes a TQ motif in cofilin2 and consequently induces its phosphorylation at Thr25. Phosphorylated cofilin2 shows increased affinity for F-actin and promotes F-actin depolymerization, resulting into disruption of the endothelial barrier integrity, microvascular inflammation, and defective eNOS-dependent vasodilation. Accordingly, cofilin2-knockin mice expressing a phospho-defective (T25A) cofilin2 mutant protein showed improved endothelial integrity and myocardial microvascular function upon induction of endotoxemic cardiomyopathy. These findings highlight a novel mechanism whereby DNA-PKcs mediates cofilin2Thr25 phosphorylation and subsequent F-actin depolymerization to contribute to endotoxemia-related cardiac microvascular dysfunction.
Collapse
Affiliation(s)
- Yingzhen Du
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital,
Medical School of Chinese PLA, Beijing 100853, China
| | - Pingjun Zhu
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital,
Medical School of Chinese PLA, Beijing 100853, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100029, China
| | - Jiachi Yu
- The First Medical Centre,
Medical School of Chinese People’s Liberation Army, Beijing, China
| | - Tian Xia
- The First Medical Centre,
Medical School of Chinese People’s Liberation Army, Beijing, China
| | - Xing Chang
- Guang’anmen Hospital,
China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hang Zhu
- The First Medical Centre,
Medical School of Chinese People’s Liberation Army, Beijing, China
| | - Ruibing Li
- The First Medical Centre,
Medical School of Chinese People’s Liberation Army, Beijing, China
| | - Qingyong He
- Guang’anmen Hospital,
China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
31
|
Li Y, Yu J, Li R, Zhou H, Chang X. New insights into the role of mitochondrial metabolic dysregulation and immune infiltration in septic cardiomyopathy by integrated bioinformatics analysis and experimental validation. Cell Mol Biol Lett 2024; 29:21. [PMID: 38291374 PMCID: PMC10826082 DOI: 10.1186/s11658-024-00536-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Septic cardiomyopathy (SCM), a common cardiovascular comorbidity of sepsis, has emerged among the leading causes of death in patients with sepsis. SCM's pathogenesis is strongly affected by mitochondrial metabolic dysregulation and immune infiltration disorder. However, the specific mechanisms and their intricate interactions in SCM remain unclear. This study employed bioinformatics analysis and drug discovery approaches to identify the regulatory molecules, distinct functions, and underlying interactions of mitochondrial metabolism and immune microenvironment, along with potential interventional strategies in SCM. METHODS GSE79962, GSE171546, and GSE167363 datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and module genes were identified using Limma and Weighted Correlation Network Analysis (WGCNA), followed by functional enrichment analysis. Machine learning algorithms, including support vector machine-recursive feature elimination (SVM-RFE), least absolute shrinkage and selection operator (LASSO) regression, and random forest, were used to screen mitochondria-related hub genes for early diagnosis of SCM. Subsequently, a nomogram was developed based on six hub genes. The immunological landscape was evaluated by single-sample gene set enrichment analysis (ssGSEA). We also explored the expression pattern of hub genes and distribution of mitochondria/inflammation-related pathways in UMAP plots of single-cell dataset. Potential drugs were explored using the Drug Signatures Database (DSigDB). In vivo and in vitro experiments were performed to validate the pathogenetic mechanism of SCM and the therapeutic efficacy of candidate drugs. RESULTS Six hub mitochondria-related DEGs [MitoDEGs; translocase of inner mitochondrial membrane domain-containing 1 (TIMMDC1), mitochondrial ribosomal protein S31 (MRPS31), F-box only protein 7 (FBXO7), phosphatidylglycerophosphate synthase 1 (PGS1), LYR motif containing 7 (LYRM7), and mitochondrial chaperone BCS1 (BCS1L)] were identified. The diagnostic nomogram model based on the six hub genes demonstrated high reliability and validity in both the training and validation sets. The immunological microenvironment differed between SCM and control groups. The Spearman correlation analysis revealed that hub MitoDEGs were significantly associated with the infiltration of immune cells. Upregulated hub genes showed remarkably high expression in the naive/memory B cell, CD14+ monocyte, and plasma cell subgroup, evidenced by the feature plot. The distribution of mitochondria/inflammation-related pathways varied across subgroups among control and SCM individuals. Metformin was predicted to be the most promising drug with the highest combined score. Its efficacy in restoring mitochondrial function and suppressing inflammatory responses has also been validated. CONCLUSIONS This study presents a comprehensive mitochondrial metabolism and immune infiltration landscape in SCM, providing a potential novel direction for the pathogenesis and medical intervention of SCM.
Collapse
Affiliation(s)
- Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Jiachi Yu
- Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Ruibing Li
- Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Hao Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China.
| | - Xing Chang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
32
|
Wang P, Zheng X, Du R, Xu J, Li J, Zhang H, Liang X, Liang H. Astaxanthin Protects against Alcoholic Liver Injury via Regulating Mitochondrial Redox Balance and Calcium Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19531-19550. [PMID: 38038704 DOI: 10.1021/acs.jafc.3c05529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Increasing evidence points to the critical role of calcium overload triggered by mitochondrial dysfunction in the development of alcoholic liver disease (ALD). As an important organelle for aerobic respiration with a double-layered membrane, mitochondria are pivotal targets of alcohol metabolism-mediated lipid peroxidation, wherein mitochondria-specific phospholipid cardiolipin oxidation to 4-hydroxynonenal (4-HNE) ultimately leads to mitochondrial integrity and function impairment. Therefore, it is absolutely essential to identify effective nutritional intervention targeting mitochondrial redox function for an alternative therapy of ALD, in order to compensate for the difficulty in achieving alcohol withdrawal due to addiction. In this study, we confirmed the significant advantages of astaxanthin (AX) against alcohol toxicity among various carotenoids via cell experiments and identified the potential in mitochondrion morphogenesis and calcium signaling pathway by bioinformatics analysis. The ALD model of Sprague-Dawley (SD) rats was also generated to investigate the effectiveness of AX on alcohol-induced liver injury, and the underlying mechanisms were further explored. AX intervention attenuated alcohol-induced oxidative stress and lipid peroxidation as well as mitochondrial dysfunction characterized by degenerative morphology changes and collapsed membrane potential. Also, AX reduced the production of 4-HNE by activating the Nrf2-ARE signaling pathway, which is closely associated with the redox balance of mitochondria. In addition, relieved mitochondrial Ca2+ accumulation caused by AX was observed both in vivo and in vitro. Furthermore, we revealed the structure-activity relationship of AX and mitochondrial membrane channel proteins MCU and VDAC1, implying potential acting targets. Altogether, our data indicated a new mechanism of AX intervention which protects against alcohol-induced liver injury through restoring redox balance and Ca2+ homeostasis in mitochondria, as well as provided novel insights into the development of AX as a therapeutic option for the management of ALD.
Collapse
Affiliation(s)
- Peng Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Xian Zheng
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Ronghuan Du
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Jinghan Xu
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Jing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Xi Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| |
Collapse
|
33
|
Qiao L, Dou X, Song X, Chang J, Yi H, Xu C. Targeting mitochondria with antioxidant nutrients for the prevention and treatment of postweaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:275-287. [PMID: 38033610 PMCID: PMC10685042 DOI: 10.1016/j.aninu.2023.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 12/02/2023]
Abstract
Post-weaning diarrhea (PWD) in piglets poses a significant challenge and presents a grave threat to the global swine industry, resulting in considerable financial losses and compromising the welfare of animals. PWD is commonly associated with gut homeostatic imbalance, including oxidative stress, excessive inflammation, and microbiota dysbiosis. Antibiotic use has historically been a common initiative to combat PWD, but concerns about the development of antibiotic resistance have led to increased interest in alternative strategies. Mitochondria are key players in maintaining cellular homeostasis, and their dysfunction is intricately linked to the onset and progression of PWD. Accumulating evidence suggests that targeting mitochondrial function using antioxidant nutrients, such as vitamins, minerals and polyphenolic compounds, may represent a promising approach for preventing and treating PWD. Moreover, nutrients based on antioxidant strategies have been shown to improve mitochondrial function, restore intestinal redox balance, and reduce oxidative damage, which is a key driver of PWD. The present review begins with an overview of the potential interplay between mitochondria and gut homeostasis in the pathogenesis of PWD in piglets. Subsequently, alternative strategies to prevent and treat PWD using antioxidant nutrients to target mitochondria are described and discussed. Ultimately, we delve into potential limitations and suggest future research directions in this field for further advancement. Overall, targeting mitochondria using antioxidant nutrients may be a promising approach to combat PWD and provides a potential nutrition intervention strategy for regulating gut homeostasis of weaned piglets.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xina Dou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiaofan Song
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jiajing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science of Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
34
|
Tian G, Zhou J, Quan Y, Kong Q, Li J, Xin Y, Wu W, Tang X, Liu X. Voltage-dependent anion channel 1 (VDAC1) overexpression alleviates cardiac fibroblast activation in cardiac fibrosis via regulating fatty acid metabolism. Redox Biol 2023; 67:102907. [PMID: 37797372 PMCID: PMC10622884 DOI: 10.1016/j.redox.2023.102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix in the myocardium with cardiac fibroblast activation, leading to chronic cardiac remodeling and dysfunction. However, little is known about metabolic alterations in fibroblasts during cardiac fibrosis, and there is a lack of pharmaceutical treatments that target metabolic dysregulation. Here, we provided evidence that fatty acid β-oxidation (FAO) dysregulation contributes to fibroblast activation and cardiac fibrosis. With transcriptome, metabolome, and functional assays, we demonstrated that FAO was downregulated during fibroblast activation and cardiac fibrosis, and that perturbation of FAO reversely affected the fibroblast-to-myofibroblast transition. The decrease in FAO may be attributed to reduced long-chain fatty acid (LCFA) uptake. Voltage-dependent anion channel 1 (VDAC1), the main gatekeeper of the outer mitochondrial membrane (OMM), serves as the transporter of LCFA into the mitochondria for further utilization and has been shown to be decreased in myofibroblasts. In vitro, the addition of exogenous VDAC1 was shown to ameliorate cardiac fibroblast activation initiated by transforming growth factor beta 1 (TGF-β1) stimuli, and silencing of VDAC1 displayed the opposite effect. A mechanistic study revealed that VDAC1 exerts a protective effect by regulating LCFA uptake into the mitochondria, which is impaired by an inhibitor of carnitine palmitoyltransferase 1A. In vivo, AAV9-mediated overexpression of VDAC1 in myofibroblasts significantly alleviated transverse aortic constriction (TAC)-induced cardiac fibrosis and rescued cardiac function in mice. Finally, we treated mice with the VDAC1-derived R-Tf-D-LP4 peptide, and the results showed that R-Tf-D-LP4 prevented TAC-induced cardiac fibrosis and dysfunction in mice. In conclusion, this study provides evidence that VDAC1 maintains FAO metabolism in cardiac fibroblasts to repress fibroblast activation and cardiac fibrosis and suggests that the VDAC1 peptide is a promising drug for rescuing fibroblast metabolism and repressing cardiac fibrosis.
Collapse
Affiliation(s)
- Geer Tian
- Department of Cardiology and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Junteng Zhou
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Quan
- Department of Cardiology and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Qihang Kong
- Department of Cardiology and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Junli Li
- Department of Cardiology and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yanguo Xin
- Department of Cardiology and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Wenchao Wu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan, 610041, China; National Health Commission Key Laboratory of Chronobiology, Sichuan University, No.17 People's South Road, Chengdu, Sichuan, 610041, China; Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan, 610041, China.
| | - Xiaojing Liu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
35
|
Gong C, Wu J, Li H, Luo C, Ji G, Guan X, Liu J, Wang M. METTL3 achieves lipopolysaccharide-induced myocardial injury via m 6A-dependent stabilization of Myh3 mRNA. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119503. [PMID: 37245538 DOI: 10.1016/j.bbamcr.2023.119503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
Septic cardiomyopathy (SCM) was an important pathological component of severe sepsis and septic shock. N6-methyladenosine (m6A) modification was a common RNA modification in both mRNA and non-coding RNAs and was proved to be involved in sepsis and immune disorders. Therefore, the purpose of this study was to investigate the role and mechanism of METTL3 in lipopolysaccharide-induced myocardial injury. We firstly analyzed the expression changes of various m6A-related regulators in human samples in the GSE79962 data and the Receiver Operating Characteristic curve of significantly changed m6A enzymes, showing that METTL3 had a high diagnostic ability in patients with SCM. Western blotting confirmed the high expression of METTL3 in LPS-treated H9C2 cells, which was consistent with the above results in human samples. In vitro and in vivo, the deficiency of METTL3 could improve the cardiac function, cardiac tissue damage, myocardial cell apoptosis and reactive oxygen species levels in LPS-treated H9C2 cells and LPS-induced sepsis rats, respectively. In addition, we obtained 213 differential genes through transcriptome RNA-seq analysis, and conducted GO enrichment analysis and KEGG pathway analysis through DAVID. We also found that the half-life of Myh3 mRNA was significantly reduced after METTL3 deletion and that Myh3 carried several potential m6A modification sites. In conclusion, we found that downregulation of METTL3 reversed LPS-induced myocardial cell and tissue damage and reduced cardiac function, mainly by increasing Myh3 stability. Our study revealed a key role of METTL3-mediated m6A methylation in septic cardiomyopathy, which may offer a potential mechanism for the therapy of septic cardiomyopathy.
Collapse
Affiliation(s)
- Chengwu Gong
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jinlong Wu
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Hao Li
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Congcong Luo
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Xin Guan
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Jichun Liu
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
36
|
Yin L, Yuan L, Tang Y, Luo Z, Lin X, Wang S, Liang P, Jiang B. NUCLEOLIN PROMOTES AUTOPHAGY THROUGH PGC-1Α IN LPS-INDUCED MYOCARDIAL INJURY. Shock 2023; 60:227-237. [PMID: 37249064 DOI: 10.1097/shk.0000000000002152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
ABSTRACT As a multifunctional protein, nucleolin can participate in a variety of cellular processes. Nucleolin also has multiple protective effects on heart disease. Previous studies have shown that nucleolin could not only resist oxidative stress damage and inflammatory damage, but also regulate autophagy to play a protective role in cardiac ischemia. However, the specific mechanism has not been fully elucidated in LPS-induced myocardial injury. Therefore, the aim of this study is to explore the underlying mechanism by which nucleolin regulates autophagy to protect against LPS-induced myocardial injury in vivo and in vitro . In our study, we found that nucleolin could bind to PGC-1α, and we predicted that this interaction could promote autophagy and played a role in inhibiting cardiomyocyte apoptosis. Downregulation of nucleolin in H9C2 cells resulted in decreased autophagy and increased cell apoptosis during LPS-induced myocardial injury, while upregulation of PGC-1α had the opposite protective effect. Upregulation of nucleolin expression in cardiomyocytes could increase the level of autophagy during LPS-induced myocardial injury. In contrast, interference with PGC-1α expression resulted in a decrease in the protective effect of nucleolin, leading to reduced autophagy and thus increasing apoptosis. By using tandem fluorescent-tagged LC3 autophagic flux detection system, we observed autophagic flux and determined that PGC-1α interference could block autophagic lysosomal progression. We further tested our hypothesis in the nucleolin cardiac-specific knockout mice. Finally, we also found that inhibition of autophagy can reduce mitochondrial biogenesis as well as increase apoptosis, which demonstrated the importance of autophagy. Therefore, we can speculate that nucleolin can protect LPS-induced myocardial injury by regulating autophagy, and this protective effect may be mediated by the interaction with PGC-1α, which can positively regulate the ULK1, an autophagy-related protein. Our study provides a new clue for the cardioprotective effect of nucleolin, and may provide new evidence for the treatment of LPS-induced myocardial injury through the regulation of autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | |
Collapse
|
37
|
Hao S, Huang M, Xu X, Wang X, Song Y, Jiang W, Huo L, Gu J. Identification and validation of a novel mitochondrion-related gene signature for diagnosis and immune infiltration in sepsis. Front Immunol 2023; 14:1196306. [PMID: 37398680 PMCID: PMC10310918 DOI: 10.3389/fimmu.2023.1196306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background Owing to the complex pathophysiological features and heterogeneity of sepsis, current diagnostic methods are not sufficiently precise or timely, causing a delay in treatment. It has been suggested that mitochondrial dysfunction plays a critical role in sepsis. However, the role and mechanism of mitochondria-related genes in the diagnostic and immune microenvironment of sepsis have not been sufficiently investigated. Methods Mitochondria-related differentially expressed genes (DEGs) were identified between human sepsis and normal samples from GSE65682 dataset. Least absolute shrinkage and selection operator (LASSO) regression and the Support Vector Machine (SVM) analyses were carried out to locate potential diagnostic biomarkers. Gene ontology and gene set enrichment analyses were conducted to identify the key signaling pathways associated with these biomarker genes. Furthermore, correlation of these genes with the proportion of infiltrating immune cells was estimated using CIBERSORT. The expression and diagnostic value of the diagnostic genes were evaluated using GSE9960 and GSE134347 datasets and septic patients. Furthermore, we established an in vitro sepsis model using lipopolysaccharide (1 µg/mL)-stimulated CP-M191 cells. Mitochondrial morphology and function were evaluated in PBMCs from septic patients and CP-M191 cells, respectively. Results In this study, 647 mitochondrion-related DEGs were obtained. Machine learning confirmed six critical mitochondrion-related DEGs, including PID1, CS, CYP1B1, FLVCR1, IFIT2, and MAPK14. We then developed a diagnostic model using the six genes, and receiver operating characteristic (ROC) curves indicated that the novel diagnostic model based on the above six critical genes screened sepsis samples from normal samples with area under the curve (AUC) = 1.000, which was further demonstrated in the GSE9960 and GSE134347 datasets and our cohort. Importantly, we also found that the expression of these genes was associated with different kinds of immune cells. In addition, mitochondrial dysfunction was mainly manifested by the promotion of mitochondrial fragmentation (p<0.05), impaired mitochondrial respiration (p<0.05), decreased mitochondrial membrane potential (p<0.05), and increased reactive oxygen species (ROS) generation (p<0.05) in human sepsis and LPS-simulated in vitro sepsis models. Conclusion We constructed a novel diagnostic model containing six MRGs, which has the potential to be an innovative tool for the early diagnosis of sepsis.
Collapse
Affiliation(s)
- Shuai Hao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Miao Huang
- Nursing School, Chongqing Medical University, Chongqing, China
| | - Xiaofan Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xulin Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuqing Song
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wendi Jiang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liqun Huo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
38
|
Fu T, Ma Y, Li Y, Wang Y, Wang Q, Tong Y. Mitophagy as a mitochondrial quality control mechanism in myocardial ischemic stress: from bench to bedside. Cell Stress Chaperones 2023; 28:239-251. [PMID: 37093549 PMCID: PMC10167083 DOI: 10.1007/s12192-023-01346-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
Myocardial ischemia reduces the supply of oxygen and nutrients to cardiomyocytes, leading to an energetic crisis or cell death. Mitochondrial dysfunction is a decisive contributor to the reception, transmission, and modification of cardiac ischemic signals. Cells with damaged mitochondria exhibit impaired mitochondrial metabolism and increased vulnerability to death stimuli due to disrupted mitochondrial respiration, reactive oxygen species overproduction, mitochondrial calcium overload, and mitochondrial genomic damage. Various intracellular and extracellular stress signaling pathways converge on mitochondria, so dysfunctional mitochondria tend to convert from energetic hubs to apoptotic centers. To interrupt the stress signal transduction resulting from lethal mitochondrial damage, cells can activate mitophagy (mitochondria-specific autophagy), which selectively eliminates dysfunctional mitochondria to preserve mitochondrial quality control. Different pharmacological and non-pharmacological strategies have been designed to augment the protective properties of mitophagy and have been validated in basic animal experiments and pre-clinical human trials. In this review, we describe the process of mitophagy in cardiomyocytes under ischemic stress, along with its regulatory mechanisms and downstream effects. Then, we discuss promising therapeutic approaches to preserve mitochondrial homeostasis and protect the myocardium against ischemic damage by inducing mitophagy.
Collapse
Affiliation(s)
- Tong Fu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- Brandeis University, Waltham, MA, 02453, USA
| | - Yanchun Ma
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yan Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yingwei Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Qi Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|