1
|
Tasam G, Muqaddas S, Ali A, Kaleem M, Kanwal F, Iqbal M, Alwadai N, Nazir A. Structurally modified carbon nanotubes as twisted fibers towards electrochemical detection of environmentally hazardous cartap. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2550-2558. [PMID: 40059747 DOI: 10.1039/d5ay00087d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Pesticides such as cartap play a crucial role in agriculture, as they are extensively used in controlling pests in crops like sugarcane, rice and vegetables. However, their excessive usage poses major threats to human health, causing neurotoxicity and respiratory disorders. In addition, they harm aquatic ecosystems by disrupting biodiversity. Consequently, effective detection and remediation are essential to minimize their adverse effects on human health and the ecosystem. For this purpose, an electrochemical method was used for the simultaneous detection and degradation of the under-reported insecticide cartap. In this work, vertically aligned carbon nanotube arrays were grown and converted into fibers via simple mechanical spinning and used as a flexible electrode material for cartap electro-oxidation. The fabricated electrode exhibited excellent performance towards sensing and remediation without any surface modification. The fiber-based electrode showed a wide linear range, a low detection limit (LOD) of 0.575 mM, high sensitivity (7.98 μA cm-2 mM-1), reproducibility, and excellent electrocatalytic activity. The multi-functionality of this electrode was attributed to its unique properties like flexibility, compatibility with various media (aqueous and organic), cost-effectiveness, and seamless integration with membranes, making these fibers promising candidates for on-site facile detection and long-term degradation of cartap.
Collapse
Affiliation(s)
- Gul Tasam
- Department of Chemistry, The University of Lahore, 1-Km Defence Road, Lahore, Pakistan.
| | - Sheza Muqaddas
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Abid Ali
- Department of Chemistry, The University of Lahore, 1-Km Defence Road, Lahore, Pakistan.
| | - Maryam Kaleem
- Department of Chemistry, The University of Lahore, 1-Km Defence Road, Lahore, Pakistan.
| | - Farah Kanwal
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Munawar Iqbal
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Norah Alwadai
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, 1-Km Defence Road, Lahore, Pakistan.
| |
Collapse
|
2
|
Almenhali AZ, Eissa S. Aptamer-based biosensors for the detection of neonicotinoid insecticides in environmental samples: A systematic review. Talanta 2024; 275:126190. [PMID: 38703483 DOI: 10.1016/j.talanta.2024.126190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Neonicotinoids, sometimes abbreviated as neonics, represent a class of neuro-active insecticides with chemical similarities to nicotine. Neonicotinoids are the most widely adopted group of insecticides globally since their discovery in the late 1980s. Their physiochemical properties surpass those of previously established insecticides, contributing to their popularity in various sectors such as agriculture and wood treatment. The environmental impact of neonicotinoids, often overlooked, underscores the urgency to develop tools for their detection and understanding of their behavior. Conventional methods for pesticide detection have limitations. Chromatographic techniques are sensitive but expensive, generate waste, and require complex sample preparation. Bioassays lack specificity and accuracy, making them suitable as preliminary tests in conjunction with instrumental methods. Aptamer-based biosensor is recognized as an advantageous tool for neonicotinoids detection due to its rapid response, user-friendly nature, cost-effectiveness, and suitability for on-site detection. This comprehensive review represents the inaugural in-depth analysis of advancements in aptamer-based biosensors targeting neonicotinoids such as imidacloprid, thiamethoxam, clothianidin, acetamiprid, thiacloprid, nitenpyram, and dinotefuran. Additionally, the review offers valuable insights into the critical challenges requiring prompt attention for the successful transition from research to practical field applications.
Collapse
Affiliation(s)
- Asma Zaid Almenhali
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
3
|
Parihar A, Sharma P, Choudhary NK, Khan R, Mostafavi E. Internet-of-things-integrated molecularly imprinted polymer-based electrochemical nano-sensors for pesticide detection in the environment and food products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124029. [PMID: 38663510 DOI: 10.1016/j.envpol.2024.124029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/28/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
To ensure environmental and health safety, relevant pollutants such as pesticides must be screened thoroughly to set their permissible limit. Various approaches have been used to identify pesticides such as capillary electrophoresis, gas and liquid-liquid chromatography, high-performance liquid chromatography, and enzyme-linked immune-absorbent tests. However, these techniques have some drawbacks, including time-consuming difficult steps, expensive bulky equipment, expert personnel, and a lack of selectivity. Recent advances in the field of biosensing have introduced biosensors for the onsite detection of pesticides which offer several advantages including rapid, simple, selective, sensitive, low-cost operation, and on-site detection. With the advent of molecularly imprinted polymer which substituted the traditional biorecognition elements (BREs) such as enzymes and antibodies, biosensors' sensitivity, selectivity, and reproducibility enhanced many folds. Molecularly imprinted polymers (MIP) are artificial polymer molecules that resemble natural BREs. They are synthesized when functional monomers are polymerized in the presence of a target analyte. Owing to the advantages of MIP, in this paper, the development of MIP-based electrochemical biosensors for pesticide detection is reviewed critically. A brief introduction to pesticides and the use of MIPs-based electrochemical sensors for pesticide detection is presented along with pros and cons. Further, Internet of Things (IoT) integrated MIP-based nanosensors for pesticide detection and information distribution have been discussed. In the end, future perspectives and challenges while implementing MIP-based nanosensors for onsite pesticide recognition have eventually been highlighted.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India.
| | - Palak Sharma
- NIMS Institute of Allied Medical Science and Technology, NIMS University, Jaipur, 303121, Rajasthan, India
| | - Nishant Kumar Choudhary
- NIMS Institute of Allied Medical Science and Technology, NIMS University, Jaipur, 303121, Rajasthan, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Lv G, Shan D, Ma Y, Zhang W, Ciren D, Jiang S, Dang B, Zhang J, Sun W, Mao H. In-situ quantitative prediction of pesticide residues on plant surface by ATR-FTIR technique coupled with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123432. [PMID: 37837928 DOI: 10.1016/j.saa.2023.123432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
Pesticide residues on plant surfaces pose a severe threat to food security, yet most research has focused on monitoring the liquid matrix, with few reports conducting in-situ analysis of the residues. This study was the first to attempt to utilize portable attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) for in-situ characterization of broad-spectrum fungicide boscalid residues on plant surfaces. ATR-FTIR scanning of tomato fruits with pre-determined concentrations of boscalid residues was conducted without any pre-treatment, and the obtained spectra were then processed using chemometrics methods. The results demonstrated a negative correlation between the residual concentrations and their corresponding absorption intensities of several well-resolved peaks from the spectra, resulting in a high accuracy of 93.33% for the classification model created by probabilistic neural network (PNN) coupled with principal component analysis (PCA). By employing correlation analysis and the interval partial least squares method (iPLS), quantitative analysis was conducted on the wavenumber ranges of 1000-1800 cm-1 and 2700-2900 cm-1 from the spectra. The regression model, established through partial least squares regression (PLSR), demonstrated exceptional performance with an R2 value of 0.80, RMSE of 1.02 μg/cm2, RPD of 2.0, and RPIQ of 2.1 for validation. Meanwhile, the detection limit (LOD) of the model was calculated as 3.06 μg/cm2. This report highlights the potential of using portable ATR-FTIR for conducting qualitative and quantitative monitoring of pesticide residues both in-situ and on-site. It also provides references for other measuring techniques.
Collapse
Affiliation(s)
- Gaoqiang Lv
- Department of Facility Agricultural Science and Engineering, College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Didi Shan
- Nanjing Institute of Environmental Science, Ministry of Ecological Environment, Nanjing 210042, China
| | - Yongge Ma
- Department of Facility Agricultural Science and Engineering, College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenya Zhang
- Department of Facility Agricultural Science and Engineering, College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Duobujie Ciren
- Department of Facility Agricultural Science and Engineering, College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shuo Jiang
- Department of Facility Agricultural Science and Engineering, College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bojun Dang
- Department of Facility Agricultural Science and Engineering, College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiashun Zhang
- Department of Facility Agricultural Science and Engineering, College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weihong Sun
- Department of Facility Agricultural Science and Engineering, College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hanping Mao
- Department of Facility Agricultural Science and Engineering, College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Singh A, Sohal SK, Singh N, Arora S, Fnu S. Cosmopolitan honey bee, Apis mellifera, as quick and efficient marker of pesticide pollution in environment through RP-HPLC. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83452-83462. [PMID: 37344714 DOI: 10.1007/s11356-023-28051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Pesticides are extremely hazardous to human health as well as various kinds of non-target organisms. The honey bee (Apis mellifera) is not only a dominant pollinator, but also a good indicator of pesticide residue and pollutants in the environment. At the time of sample collection in each village, the surrounding flora was Triticum aestivum and Brassica species. The area chosen for this study covered only 15% of the land in the state of Punjab, but pesticide consumption was approximately 75% of the state consumption. Pesticides in the collected samples (from six districts) were analyzed using RP-HPLC chromatography. The chemical methoxychlor (MC) was not found in any of the six villages' honey samples; however, spiromesifen (n = 5) and aldicarb (n = 5) were the most prevalent chemicals and were found in every honey sample. The pesticides carbendazim (n = 1) and parathion methyl (n = 1) were found only in Behman (longitude 29.9224° N and latitude 75.1137° E), and Malumazra (longitude 30.2468° N and latitude 75.8500° E). The carbofuran (n = 3) was discovered in Talwandi Sabo (longitude 29.984° N and latitude 75.8500° E), Himmatpura (longitude 30.5289° N and latitude 75.3616° E), and Malumazra, while atrazine (n = 4) was discovered in all except Malumazra. Three identical pesticides were observed in Chukrian (longitude 29.9759° N and latitude 75.4476° E) and Singo (longitude 29.9092° N and latitude 75.1589° E) indicating the same pesticides used in these villages. The given study gives a summary model to use A. mellifera as a quick monitoring bioindicator of the environment. This model helps to maintain a pesticide or pollutant database of selected areas for regular monitoring of the surrounding environment.
Collapse
Affiliation(s)
- Amandeep Singh
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India.
| | | | | | - Saroj Arora
- Department of Botany, Guru Nanak Dev University, Amritsar, India
| | - Samiksha Fnu
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
6
|
Mishra S, Mishra S, Patel SS, Singh SP, Kumar P, Khan MA, Awasthi H, Singh S. Carbon nanomaterials for the detection of pesticide residues in food: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119804. [PMID: 35926736 DOI: 10.1016/j.envpol.2022.119804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In agricultural fields, pesticides are widely used, but their residual presence in the environment poses a threat to humans, animals, insects, and ecosystems. The overuse of pesticides for pest control, enhancement of crop yield, etc. leaves behind a significant residual amount in the environment. Various robust, reliable, and reusable methods using a wide class of composites have been developed for the monitoring and controlling of pesticides. Researchers have discovered that carbon nanomaterials have a wide range of characteristics such as high porosity, conductivity and easy electron transfer that can be successfully used to detect pesticide residues from food. This review emphasizes the role of carbon nanomaterials in the field of pesticide residue analysis in different food matrices. The carbon nanomaterials including carbon nanotubes, carbon dots, carbon nanofibers, graphene/graphene oxides, and activated carbon fibres are discussed in the review. In addition, the review examines future prospects in this research area to help improve detection techniques for pesticides analysis.
Collapse
Affiliation(s)
- Smriti Mishra
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India
| | - Shivangi Mishra
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Shiv Singh Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Water Resources Management and Rural Technology, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh- 462026, India
| | - Sheelendra Pratap Singh
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Analytical Chemistry Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Pradip Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Green Engineered Materials and Additive Manufacturing, Council of Scientific and Industrial Research- Advanced Materials and Processes Research Institute, Bhopal - 462026, India
| | - Mohd Akram Khan
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himani Awasthi
- Hygia Institute of Pharmaceutical Education and Research, Lucknow-226020, India
| | - Shiv Singh
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Saleh SS, Monir HH, El-Naem OA. Appraisal for Edible Use of Vegetable Crops Cultivated in Egypt after Treatment with Selected Insecticides and Fungicides: Insights of Dissipation Rates and Pre-harvest Intervals. ANAL SCI 2021; 37:1775-1781. [PMID: 34275969 DOI: 10.2116/analsci.21p176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An analytical investigation was carried out to study the dissipation rate of two commonly used pesticides, thiamethoxam (neonicotinoid insecticide) and propamocarb hydrochloride (carbamate fungicide), applied to four vegetable crops: cucumber, zucchini, lettuce and pepper, after open-field application. Samples were harvested according to a scheduled plan followed by QuEChERS extraction, then thiamethoxam residues were analyzed using a GC-ECD method, while propamocarb HCl residues were analyzed using an HPLC-UV method. Validation parameters were attained for both methods and the kinetic profile was studied, which fitted the first-order kinetics where k, t1/2 and t90 were calculated. The proper pre-harvest interval (PHI) was studied for each crop to ensure that the residues levels declined to reach below the maximum residue limit (MRL) where the crop is suitable for consumption. These values were found to be different from labelled values, which proves that the PHIs are greatly affected by changing weather conditions.
Collapse
Affiliation(s)
- Sarah S Saleh
- Analytical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA)
| | - Hany H Monir
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University
| | - Omnia A El-Naem
- Analytical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA)
| |
Collapse
|
8
|
Alam S, Srivastava N, Iqbal N, Saini MK, Kumar J. Magnetic Solid-Phase Extraction (MSPE) Using Magnetite-Based Core-Shell Nanoparticles with Silica Network (SiO2) Coupled with GC-MS/MS Analysis for Determination of Multiclass Pesticides in Water. J AOAC Int 2021; 104:633-644. [PMID: 33201225 DOI: 10.1093/jaoacint/qsaa156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND For the analysis of pesticide residues in water samples, various extraction techniques are available. However, liquid-liquid extraction (LLE) and solid-phase extraction (SPE) are most commonly used. LLE and SPE extraction techniques each have their own disadvantages. OBJECTIVE The aim of the study was to develop an environment-friendly multi-residue method for determination of multiclass pesticides in environmental water samples (ground water, agricultural field/irrigation run-off water, etc.). METHODS The magnetic solid-phase extraction (MSPE) technique using surface-fabricated magnetic nano-particles was used for extraction of water samples, followed by quantification by gas chromatography tandem mass spectrometry. The developed multi-residue method was validated in terms of linearity, LOD, LOQ, recovery, and repeatability. RESULTS Recovery data were obtained at the spiking concentration level of 1, 5, and 10 µg/L, yielding recoveries in the range of 70-120%. Overall, non-polar pesticides from all the groups, i.e., synthetic pyrethroid, organophosphorus, organochlorine, herbicides, and fungicides, show acceptable recovery percentages. Good linearity (r2 value ≥ 0.99) was observed at the concentration range of 0.5-100 µg/L. RSD values were found ≤ 18.8. CONCLUSIONS The study shows that the method is specific, rapid, and low cost, as well as having a good linearity and recovery; thus, this method is applied in routine purposes for the analysis of pesticide residue in real water samples. HIGHLIGHTS Due to better adsorption ability, permeability, and magnetic separability, the functionalized nano-particles were found effective in the enrichment of 22 multiclass pesticides including organo-phosphorus, organo-chlorine, synthetic pyrethroid, herbicides, and fungicides.
Collapse
Affiliation(s)
- Samsul Alam
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurgaon, Haryana, India
| | - Neha Srivastava
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurgaon, Haryana, India
| | - Nusrat Iqbal
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurgaon, Haryana, India
| | - Mahesh Kumar Saini
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurgaon, Haryana, India
| | - Jitendra Kumar
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurgaon, Haryana, India
| |
Collapse
|
9
|
Han T, Wang S, Sheng F, Wang S, Dai T, Zhang X, Wang G. Target triggered ultrasensitive electrochemical polychlorinated biphenyl aptasensor based on DNA microcapsules and nonlinear hybridization chain reaction. Analyst 2021; 145:3598-3604. [PMID: 32334417 DOI: 10.1039/d0an00065e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we demonstrated an ultrasensitive detection platform for polychlorinated biphenyls (PCBs) based on DNA microcapsules and a nonlinear hybridization chain reaction (NHCR). In the process, first, electrochemical signal molecules (Methylene Blue, MB) were sealed in the prepared DNA microcapsules. In the presence of PCB-72, DNA microcapsules could be dissociated with the conjugation of the aptamer and target, and meanwhile, the released DNA strand could initiate the NHCR and trigger the chain branching growth of DNA dendrimers. Because the released MBs were intercalated into the DNA dendrimer, enhanced electrochemical responses could be detected. This method exhibited ultrahigh sensitivity to PCB-72 with a detection limit of 0.001 ng mL-1. Furthermore, the present aptasensor was also capable of discriminating different PCB congeners. Therefore, the devised label-free and enzyme-free amplification electrochemical aptasensor strategy has great potential for the detection of PCB-72 in real samples, and this strategy may also become an attractive alternative for sensitive and selective small molecule, protein, nucleic acid and nuclease activity detection.
Collapse
Affiliation(s)
- Ting Han
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China.
| | - Shaozhen Wang
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China.
| | - Feifan Sheng
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China.
| | - Sicheng Wang
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China.
| | - Tianyue Dai
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China.
| | - Xiaojun Zhang
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China.
| | - Guangfeng Wang
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
10
|
Rai B, Mercurio SD. Environmentally relevant exposures of male mice to carbendazim and thiram cause persistent genotoxicity in male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10629-10641. [PMID: 31940143 DOI: 10.1007/s11356-019-07088-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Carbendazim and thiram are fungicides used in combination to prevent mold destruction of crops. Studies have demonstrated genotoxicity by these agents, but have not used concentrations below their water solubility limits in drinking water to test for persistence of genotoxicity due to chronic exposure. Ten 8-week old male Swiss-Webster mice were exposed to tap water, or nominal concentrations of 20 μM carbendazim, 20 μM thiram or 20 μM of both fungicides for 90 days (total of 40 mice). Five mice from tap water controls, carbendazim, thiram and combination-treated groups (20 mice total) had genotoxicity detected by comet assay of lymphocytes at the termination of the exposure period. The other 20 mice (4 treatment groups) were all switched to tap water and allowed a 45-day recovery period to check for persistence of DNA damage. The damage was compared with commercial control cells exposed to increasingly harsh treatment by etopside. Comet assay (mean % tail DNA + SE) of control mice (9.8 + 0.9) was similar to commercial control (CC0) cells (8.5 + 0.9). Carbendazim, thiram or the combination treatment caused similar mean % tail DNA with 33.0 + 2.9, 30.1 + 3.3 and 29.1 + 1.8, respectively, comparable with commercial cells slightly damaged by etopside (CC1 with 31.4 + 2.9) with no statistical change in water or food intake, body weight or liver or kidney weights. The key result was that a 45-day recovery period had no observable difference in the DNA damage as assessed by DNA % in comet tail with tap water controls and CCO control cells at 7.0 + 0.7 and 9.7 + 1.2 versus 27.5 + 1.9, 29.3 + 2.2 and 32.0 + 1.8, respectively, for carbendazim, thiram and combination treatments. It is of concern that the use of these agents in developing countries with little training or regulation results in water pollution that may cause significant persistent DNA damage in animal or human populations that may not be subject to repair.
Collapse
Affiliation(s)
- Bina Rai
- Department of Biological Sciences, Minnesota State University, Mankato, MN, USA
| | - Steven Don Mercurio
- Department of Biological Sciences, Minnesota State University, Mankato, MN, USA.
| |
Collapse
|
11
|
Borahan T, Unutkan T, Bakırdere S. Simple, Accurate and Precise Determination of the Fungicide Zoxamide in Wine and the Characterization of its Stability in Gastric Conditions by Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC). ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1695260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Tülay Borahan
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
| | - Tuğçe Unutkan
- Department of Chemical Engineering, Yıldız Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
| |
Collapse
|