1
|
Tao L, Tan T, Sun X, Hu S, Chen L, Li Y, Xie J, Zhang R, Shen Q, Xu Z. The effect of combination of root exudates substances on stimulation of Bacillus spores' germination. Microbiol Res 2025; 296:128148. [PMID: 40147422 DOI: 10.1016/j.micres.2025.128148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Root exudates play a crucial role in the rhizosphere by influencing the growth and activity of plant growth-promoting rhizobacteria (PGPR), such as Bacillus velezensis. Previous studies have shown that most Bacillus spores can germinate in the rhizosphere while remain dormant in the soil. Understanding the relationship between specific components of root exudates and spore germination could provide valuable insights into how plants alter the ratio of spores in the rhizosphere through root exudates. In this study, we observed that Bacillus spore germination was induced by root exudates from maize (Fengtian) and two cucumber varieties (9930 and Jinchun 4). Maize root exudates induced spore germination at a significantly higher rate compared to cucumber exudates. We identified L-valine, β-alanine, xylose, glucose, and asparagine as key germination-inducing compounds in the exudates. Notably, when these compounds were combined, spore germination rates increased to over 80 %. We found that the maize-specific root exudate asparagine significantly enhanced the spore germination inducing ability of other germinants even at low concentrations. Furthermore, our results indicate that the GerA receptor specifically recognizes amino acids, while GerB and GerK work cooperatively to sense sugars and amides. These findings provide new insights into plant-microbe interactions and could inform the development of more effective Bacillus-based biofertilizers, improving their application in sustainable agriculture.
Collapse
Affiliation(s)
- Lili Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Taimeng Tan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xinli Sun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shunjuan Hu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lihao Chen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yun Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jiyu Xie
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
2
|
Chen T, Uzunovic H, Brul S, Hugenholtz J. Developing Bacillus subtilis as cell factory for the production of the natural biocontrol compound pulcherrimin. BIORESOURCE TECHNOLOGY 2025; 427:132433. [PMID: 40122349 DOI: 10.1016/j.biortech.2025.132433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Pulcherrimin, a natural metabolite produced by Bacillus subtilis, demonstrates a range of biological activities, including its potential use as a natural antimicrobial, antioxidant, or coloring agent. PS832 was selected as the host cell from four B. subtilis strains. Transcriptome data revealed that the leucine pathway has minimal impact on pulcherrimin titer, whereas the enzymes encoded by the yvmC-cypX operon are essential for achieving high pulcherrimin production. Alleviating transcriptional repression of the yvmC-cypX operon led to an increase in pulcherrimin titer representing a 9.5-fold enhancement to 487 mg/l. The mutant BSP17 showed 65 % inhibition rate on a phytopathogen, revealing its potential as a biocontrol agent. Furthermore, optimizing iron concentration in the medium resulted in pulcherrimin titers of 610 mg/l in shake flasks and 811 mg/l in a 1.5-l bioreactor. It is the highest reported titer and sets the stage for further metabolic engineering to achieve industrial-scale production of pulcherrimin.
Collapse
Affiliation(s)
- Taichi Chen
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Haris Uzunovic
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Jeroen Hugenholtz
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; NoPalm Ingredients BV, Nieuwe Kanaal 7a, 6709 PA Wageningen, the Netherlands.
| |
Collapse
|
3
|
Li J, Wang J, Wu J, Wang X. Bacillus subtilisbiofilm expansion mediated by the interaction between matrix-producing cells formed "Van Gogh bundles" and other phenotypic cells. Colloids Surf B Biointerfaces 2025; 251:114611. [PMID: 40081257 DOI: 10.1016/j.colsurfb.2025.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/25/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
During the expansion of Bacillus subtilis biofilm on a solid MSgg substrate, cells within the biofilm form highly organized structures through interactions, growth and differentiation. This organized structure evolves from an initial single chain to bundles known as "Van Gogh bundles," which guild the biofilm' expansion. In this paper, we present a model for biofilm growth based on cell interaction forces. In this model, cell interactions within Van Gogh bundles are represented by spring connections, and the interactions between Van Gogh bundles and other phenotypic cells are confined to a specific region (repulsive inside the region, attractive outside it). In a single-biofilm system, as nutrients are depleted, increasing numbers of motile cells transform into matrix-producing cells, forming Van Gogh bundles that guide the biofilm expansion towards areas with higher nutrient concentrations, thereby enhancing its expansion ability. In a muti-biofilm system, extreme nutrient depletion leads to the transformation of matrix-producing cells into spores, which affects the number and folding characteristics of Van Gogh bundles, thereby influencing the biofilm expansion. Our study illustrates how the simple organization of cells within a community can provide a significant ecological advantage.
Collapse
Affiliation(s)
- Jin Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jiankun Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jin Wu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
4
|
Duré LMM, Mascarin GM, Bettiol W. Optimization of endospore production by solid and liquid fermentation for the development of effective formulations of Bacillus velezensis-based products. Braz J Microbiol 2025; 56:1253-1261. [PMID: 39961998 PMCID: PMC12095093 DOI: 10.1007/s42770-025-01626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/22/2025] [Indexed: 05/22/2025] Open
Abstract
The objective of this study was to optimize the culture medium for enhanced production of Bacillus velezensis AP-3 endospores using both liquid and solid-state fermentation techniques. Additionally, the study aimed to assess the stability of endospores in powder formulations containing talc and potato starch, and to evaluate the growth-promoting effects of these formulations on bean plants. Further, we evaluated the inhibition of mycelial growth of Sclerotinia sclerotiorum and Fusarium oxysporum f. sp. lycopercisi by metabolites produced by this bacterial strain. The plant growth promotion assay evaluated these formulations across various application methods: seed treatment, sowing furrow application, and a combination of both. Adjustments to culture medium significantly influenced the endospore yield of B. velezensis. Solid-state fermentation in rice flour and potato starch yielded up to 2.06 × 108 and 1.82 × 108 CFU g- 1 after 7 days in a 60% moisture medium, respectively. Conversely, submerged fermentation in molasses + cottonseed flour medium produced 1.7 × 109 CFU mL- 1 (viable endospores) in 3 days. The powder formulations showed high stability, maintaining viability for up to 226 days at room temperature. This bacterial strain effectively inhibited the mycelial growth of target fungal pathogens and promoted bean plant growth, particularly by enhancing root development. These findings highlight the versatility of B. velezensis AP-3 in producing endospores through two fermentation methods, its extended shelf-life as a wettable powder formulation, and its efficacy both as biocontrol agent and plant growth promoter, contributing to a sustainable agriculture.
Collapse
Affiliation(s)
- Laís Mayara Melo Duré
- Departamento de Proteção de Plantas, Faculdade de Ciências Agronômicas, UNESP, Botucatu, SP, CEP 18610-034, Brazil
| | - Gabriel Moura Mascarin
- Laboratório de Microbiologia Ambiental "Raquel Ghini", Embrapa Meio Ambiente, Rodovia SP-340, Km 127, Jaguariúna, SP, CEP 13918-110, Brazil
| | - Wagner Bettiol
- Departamento de Proteção de Plantas, Faculdade de Ciências Agronômicas, UNESP, Botucatu, SP, CEP 18610-034, Brazil.
- Laboratório de Microbiologia Ambiental "Raquel Ghini", Embrapa Meio Ambiente, Rodovia SP-340, Km 127, Jaguariúna, SP, CEP 13918-110, Brazil.
| |
Collapse
|
5
|
Sedivy EL, Smith JL, Grossman AD. An antisense RNA regulates production of DnaA and affects sporulation in Bacillus subtilis. PLoS Genet 2025; 21:e1011625. [PMID: 40367294 PMCID: PMC12112137 DOI: 10.1371/journal.pgen.1011625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/27/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
DnaA is the replication initiator and a transcription factor in virtually all bacteria. Although the synthesis and activity of DnaA are highly regulated, the mechanisms of regulation vary between organisms. We found that production of DnaA in Bacillus subtilis is regulated by an antisense RNA that overlaps with the 5' untranslated region upstream of the dnaA open reading frame. We initially observed this RNA in in vitro transcription experiments and found that its production was inhibited by DnaA. This RNA, now called ArrA for antisense RNA repressor of dnaA, is made in vivo. We identified the arrA promoter and made a mutation that greatly reduced (or eliminated) production of ArrA RNA in vitro and in vivo. In vivo, this arrA promoter mutation caused an increase in the amount of mRNA and protein from dnaA and dnaN, indicating that arrA expression normally inhibits expression of the dnaA-dnaN operon. The arrA mutation also caused a delay in sporulation that was alleviated by loss of sda, a sporulation-inhibitory gene that is directly activated by DnaA. arrA appears to be conserved in some members of the Bacillus genus, indicating that arrA has evolved in at least some endospore-forming bacteria to modulate production of DnaA and enable timely and robust sporulation.
Collapse
Affiliation(s)
- Emma L. Sedivy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Janet L. Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
6
|
Wen ZT, Ellepola K, Wu H. MecA: A Multifunctional ClpP-Dependent and Independent Regulator in Gram-Positive Bacteria. Mol Microbiol 2025; 123:433-438. [PMID: 40070161 PMCID: PMC12121503 DOI: 10.1111/mmi.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
MecA is a broadly conserved adaptor protein in Gram-positive bacteria, mediating the recognition and degradation of specific target proteins by ClpCP protease complexes. MecA binds target proteins, often through recognition of degradation tags or motifs, and delivers them to the ClpC ATPase, which unfolds and translocates the substrates into the ClpP protease barrel for degradation. MecA activity is tightly regulated through interactions with ClpC ATPase and other factors, ensuring precise control over protein degradation and cellular homeostasis. Beyond proteolysis, emerging evidence highlights a ClpP-independent role of MecA in modulating the function of its targets, including key enzymes and transcriptional factors involved in biosynthetic and metabolic pathways. However, the full scope and mechanisms of ClpP-independent MecA regulation remain unclear, warranting further investigation.
Collapse
Affiliation(s)
- Zezhang T. Wen
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Kassapa Ellepola
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Hui Wu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Rangel-Mendoza A, Valenzuela-García LI, Robleto EA, Pedraza-Reyes M. Germination and Outgrowth of Bacillus subtilis Spores Deficient in BER and DisA Unveil Alternative Genetic Checkpoints. Microorganisms 2025; 13:939. [PMID: 40284773 PMCID: PMC12029834 DOI: 10.3390/microorganisms13040939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
During Bacillus subtilis spore germination/outgrowth, the rehydration of the spore core and activation of aerobic metabolism can generate reactive oxygen species (ROS)-promoted DNA lesions that are repaired via the base excision repair pathway (BER). Accordingly, spores deficient in the AP-endonucleases (APEs) Nfo and ExoA exhibit a delayed outgrowth that is suppressed following disruption of the checkpoint protein DisA. Here, we report that DisA-independent DNA damage checkpoints operate during B. subtilis spore outgrowth. Consistent with this notion, spores lacking Nfo, ExoA, and Nth, which functions as an APE, did not suppress delayed outgrowth following disA disruption. Furthermore, in reference to the ∆nfo ∆exoA ∆nth spores, spores deficient for these APEs and DisA displayed a significantly higher number of oxidative genetic lesions and failed to properly segregate its chromosome during the first round of replication in the outgrowth stage. Finally, we found that DisA promotes low-fidelity repair and replication events, as revealed by DNA-alkaline gel electrophoresis (AGE) as well as spontaneous and H2O2-promoted RifR mutagenesis. Overall, our results unveil the existence of DisA-independent DNA damage checkpoint(s) that are activated by genomic lesions of an oxidative nature during spore germination and outgrowth, ensuring a proper transition to vegetative growth.
Collapse
Affiliation(s)
| | - Luz I. Valenzuela-García
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Subsede-Durango, Durango 34147, Durango, Mexico;
| | - Eduardo A. Robleto
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA;
| | - Mario Pedraza-Reyes
- Department of Biology, University of Guanajuato, Guanajuato 36050, Guanajuato, Mexico;
| |
Collapse
|
8
|
Cai X, Cho JY, Chen L, Liu Y, Ji F, Salgado K, Ge S, Yang D, Yu H, Shao J, Futreal PA, Sepesi B, Gibbons D, Chen Y, Wang G, Cheng C, Wu M, Zhang J, Hsiao A, Xia T. Enriched pathways in gut microbiome predict response to immune checkpoint inhibitor treatment across demographic regions and various cancer types. iScience 2025; 28:112162. [PMID: 40151642 PMCID: PMC11937697 DOI: 10.1016/j.isci.2025.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/16/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Understanding the effect of gut microbiota function on immune checkpoint inhibitor (ICI) responses is urgently needed. Here, we integrated 821 fecal metagenomes from 12 datasets to identify differentially abundant genes and construct random forest models to predict ICI response. Gene markers demonstrated excellent predictive performance, with an average area under the curve (AUC) of 0.810. Pathway analyses revealed that quorum sensing (QS), ABC transporters, flagellar assembly, and amino acid biosynthesis pathways were enriched between responders (R) and non-responders (NRs) across 12 datasets. Furthermore, luxS, manA, fliC, and trpB exhibited consistent changes between R and NR across 12 datasets. Follow-up microbiota transplant experiments showed that inter-species signaling by different QS autoinducer-2 (AI-2) molecules (synthesized by luxS) can act on overall community function to promote the colonization of Akkermansia muciniphila, which is associated with superior ICI responses. Together, our data highlight the role of gut microbiota function in modulating the microbiome and antitumor immunity.
Collapse
Affiliation(s)
- Xunhui Cai
- Institute of Pathology, Tongji Hospital, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jennifer Y. Cho
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Lijun Chen
- Institute of Pathology, Tongji Hospital, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Liu
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Fenghu Ji
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Katia Salgado
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Siyi Ge
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hui Yu
- Clinical Laboratory, Wuhan Children’s Hospital, Wuhan, China
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Shao
- Clinical Laboratory, Wuhan Children’s Hospital, Wuhan, China
| | - P. Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don Gibbons
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yaobing Chen
- Institute of Pathology, Tongji Hospital, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoping Wang
- Institute of Pathology, Tongji Hospital, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Meng Wu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Jianjun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Tian Xia
- Institute of Pathology, Tongji Hospital, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Zarazúa-Osorio B, Srivastava P, Marathe A, Zahid SH, Fujita M. Autoregulation of the Master Regulator Spo0A Controls Cell-Fate Decisions in Bacillus subtilis. Mol Microbiol 2025; 123:305-329. [PMID: 39812382 DOI: 10.1111/mmi.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Spo0A in Bacillus subtilis is activated by phosphorylation (Spo0A~P) upon starvation and differentially controls a set of genes involved in biofilm formation and sporulation. The spo0A gene is transcribed by two distinct promoters, a σA-recognized upstream promoter Pv during growth, and a σH-recognized downstream promoter Ps during starvation, and appears to be autoregulated by four Spo0A~P binding sites (0A1-4 boxes) localized between two promoters. However, the autoregulatory mechanisms and their impact on differentiation remain elusive. Here, we determined the relative affinity of Spo0A~P for each 0A box and dissected each promoter in combination with the systematic 0A box mutations. The data revealed that (1) the Pv and Ps promoters are on and off, respectively, under nutrient-rich conditions without Spo0A~P, (2) the Ps promoter is activated by first 0A3 and then 0A1 during early starvation with low Spo0A~P, (3) during later starvation with high Spo0A~P, the Pv promoter is repressed by first 0A1 and then 0A2 and 0A4, and (4) during prolonged starvation, both promoters are silenced by all 0A boxes with very high Spo0A~P. Our results indicate that the autoregulation of spo0A is one of the key determinants to achieve a developmental increase in Spo0A~P, leading to a temporal window for entry into biofilm formation or sporulation.
Collapse
Affiliation(s)
| | - Priyanka Srivastava
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Anuradha Marathe
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Syeda Hira Zahid
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
10
|
Zhang T, Gong Z, Zhou B, Rao L, Liao X. Recent progress in proteins regulating the germination of Bacillus subtilis spores. J Bacteriol 2025; 207:e0028524. [PMID: 39772627 PMCID: PMC11841064 DOI: 10.1128/jb.00285-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Bacterial spores can remain dormant for years, but they maintain the ability to recommence life through a process termed germination. Although spore germination has been reviewed many times, recent work has provided novel conceptual and molecular understandings of this important process. By using Bacillus subtilis as a model organism, here we thoroughly describe the signal transduction pathway and events that lead to spore germination, incorporating the latest findings on transcription and translation that are likely detected during germination. Then, we comprehensively review the proteins associated with germination and their respective functions. Notably, the typical germinant receptor GerA and the SpoVAF/FigP complex have been newly established as channels for ions release at early stage of germination. Moreover, given that germination is also affected by spore quality, such as molecular cargo, we collect the data about the proteins regulating sporulation to affect spore quality. Specifically, RocG-mediated glutamate catabolism during sporulation to ensure spore quality; GerE-regulated coat protein expression, and CotH-modified coat protein by phosphorylation to ensure normal coat assembly; and RNase Y-degraded RNA in newly released spores to promote dormancy. The latest progress in our understanding of these germination proteins provides valuable insights into the mechanism underlying germination.
Collapse
Affiliation(s)
- Tianyu Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Ziqi Gong
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Bing Zhou
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Hasan MK, Alaribe O, Govind R. Regulatory networks: Linking toxin production and sporulation in Clostridioides difficile. Anaerobe 2025; 91:102920. [PMID: 39521117 PMCID: PMC11811957 DOI: 10.1016/j.anaerobe.2024.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Clostridioides difficile has been recognized as an important nosocomial pathogen that causes diarrheal disease as a consequence of antibiotic exposure and costs the healthcare system billions of dollars every year. C. difficile enters the host gut as dormant spores, germinates into vegetative cells, colonizes the gut, and produces toxins TcdA and/or TcdB, leading to diarrhea and inflammation. Spores are the primary transmission vehicle, while the toxins A and B directly contribute to the disease. Thus, toxin production and sporulation are the key traits that determine the success of C. difficile as a pathogen. Both toxins and spores are produced during the late stationary phase in response to various stimuli. This review provides a comprehensive analysis of the current knowledge on the molecular mechanisms, highlighting the regulatory pathways that interconnect toxin gene expression and sporulation in C. difficile. The roles of carbohydrates, amino acids and other nutrients and signals, in modulating these virulence traits through global regulatory networks are discussed. Understanding the links within the gene regulatory network is crucial for developing effective therapeutic strategies against C. difficile infections, potentially leading to targeted interventions that disrupt the co-regulation of toxin production and sporulation.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Oluchi Alaribe
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
12
|
Iwańska O, Latoch P, Kovalenko M, Lichocka M, Hołówka J, Serwa R, Grzybowska A, Zakrzewska-Czerwińska J, Starosta AL. Ribosomes translocation into the spore of Bacillus subtilis is highly organised and requires peptidoglycan rearrangements. Nat Commun 2025; 16:354. [PMID: 39753535 PMCID: PMC11698733 DOI: 10.1038/s41467-024-55196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
In the spore-forming bacterium Bacillus subtilis transcription and translation are uncoupled and the translational machinery is located at the cell poles. During sporulation, the cell undergoes morphological changes including asymmetric division and chromosome translocation into the forespore. However, the fate of translational machinery during sporulation has not been described. Here, using microscopy and mass spectrometry, we show the localisation of ribosomes during sporulation in wild type and mutant Bacillus subtilis. We demonstrate that ribosomes are associated with the asymmetric septum, a functionally important organelle in the cell's developmental control, and that SpoIIDMP-driven peptidoglycan rearrangement is crucial for ribosomes packing into the forespore. We also show that the SpoIIIA-SpoIIQ 'feeding-tube' channel is not required for ribosome translocation. Our results demonstrate that translation and translational machinery are temporally and spatially organised in B. subtilis during sporulation and that the forespore 'inherits' ribosomes from the mother cell. We propose that the movement of ribosomes in the cell may be mediated by the bacterial homologs of cytoskeletal proteins and that the cues for asymmetric division localisation may be translation-dependent. We anticipate our findings to elicit more sophisticated structural and mechanistic studies of ribosome organisation during bacterial cell development.
Collapse
Affiliation(s)
- Olga Iwańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Przemysław Latoch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mariia Kovalenko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Hołówka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Remigiusz Serwa
- International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Grzybowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Agata L Starosta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
13
|
Tibocha-Bonilla JD, Lyda J, Riley E, Pogliano K, Zengler K. Deciphering metabolic differentiation during Bacillus subtilis sporulation. Nat Commun 2025; 16:129. [PMID: 39747067 PMCID: PMC11695771 DOI: 10.1038/s41467-024-55586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
The bacterium Bacillus subtilis undergoes asymmetric cell division during sporulation, producing a mother cell and a smaller forespore connected by the SpoIIQ-SpoIIIA (or Q-A) channel. The two cells differentiate metabolically, and the forespore becomes dependent on the mother cell for essential building blocks. Here, we investigate the metabolic interactions between mother cell and forespore using genome-scale metabolic and expression models as well as experiments. Our results indicate that nucleotides are synthesized in the mother cell and transported in the form of nucleoside di- or tri-phosphates to the forespore via the Q-A channel. However, if the Q-A channel is inactivated later in sporulation, then glycolytic enzymes can form an ATP and NADH shuttle, providing the forespore with energy and reducing power. Our integrated in silico and in vivo approach sheds light into the intricate metabolic interactions underlying cell differentiation in B. subtilis, and provides a foundation for future studies of metabolic differentiation.
Collapse
Affiliation(s)
- Juan D Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Jelani Lyda
- School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Eammon Riley
- School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Ginkgo Bioworks, Inc., Boston, MA, USA
| | - Kit Pogliano
- School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
- Shu Chien - Gene Lay Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
- Program in Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|
14
|
Podnar E, Dendinovic K, Danevčič T, Lories B, Kovačec E, Steenackers H, Mandic-Mulec I. Bacillus subtilis ensures high spore quality in competition with Salmonella Typhimurium via the SigB-dependent pathway. THE ISME JOURNAL 2025; 19:wraf052. [PMID: 40098255 PMCID: PMC11994997 DOI: 10.1093/ismejo/wraf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/11/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
The interactions between beneficial bacteria and pathogens are understudied. Here we investigate the interactions between the probiotic strain Bacillus subtilis PS-216 and the pathogen Salmonella Typhimurium SL1344. We show here that the sporulation of B. subtilis is impaired when it competes with S. Typhimurium in a nutrient-depleted medium. The sporulation impairment in B. subtilis is mediated by the sigma factor B (SigB)-dependent general stress response, as the ΔsigB mutant remains blind to manipulative cues from S. Typhimurium. Furthermore, we show that decreased sporulation frequency in B. subtilis depends on cell-cell contact between the two species involving the S. Typhimurium Type VI Secretion System, whereas B. subtilis uses the SigB-dependent response to trade spore quantity for higher spore quality.
Collapse
Affiliation(s)
- Eli Podnar
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Kristina Dendinovic
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Tjaša Danevčič
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Bram Lories
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| | - Eva Kovačec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
- Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Hans Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| | - Ines Mandic-Mulec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
15
|
Li Y, Cheng L, Yang B, Zhao Y, Ding Y, Zhou C, Wu Y, Dong R, Liu Y, Xu A. Remediation of Cd-As-Ni co-contaminated soil by extracellular polymeric substances from Bacillus subtilis: Dynamic improvements of soil properties and ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177009. [PMID: 39423897 DOI: 10.1016/j.scitotenv.2024.177009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
As the primary reservoir of heavy metals in nature, soil is highly susceptible to significant co-contamination with Cd-As-Ni. In current study, extracellular polymeric substances (EPS) from Bacillus subtilis were utilized as a novel improver to simultaneously enhance soil property and restrain ecotoxicity in Cd-As-Ni co-contaminated soil. Our findings revealed that EPS effectively bound and immobilized free Cd, As, and Ni in soil and decreased 49.73 % of soil available Cd, 79.16 % of As and 77.87 % of Ni contents by increasing soil pH, soil organic matter and cation exchange capacity. The EPS was also found to inhibit the Cd-As-Ni induced ecotoxicity in Caenorhabditis elegans by increasing the activities of antioxidant enzymes including superoxide dismutase, glutathione, and catalase. The remediation of EPS showed progressive improvement over time, and maintained a lasting effect after achieving peak efficiency. Our results might provide a new perspective on the potential of EPS in remediation of soil heavy metal pollution and the development and utilization of microbial biomass resources in a wider range.
Collapse
Affiliation(s)
- Yang Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yanan Zhao
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yuting Ding
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Chenxi Zhou
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yuanyuan Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Ruoyun Dong
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China.
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China.
| |
Collapse
|
16
|
Zhu M, Wang Y, Mu H, Han F, Wang Q, Pei Y, Wang X, Dai X. Plasmid-encoded phosphatase RapP enhances cell growth in non-domesticated Bacillus subtilis strains. Nat Commun 2024; 15:9567. [PMID: 39500898 PMCID: PMC11538241 DOI: 10.1038/s41467-024-53992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The trade-off between rapid growth and other important physiological traits (e.g., survival and adaptability) poses a fundamental challenge for microbes to achieve fitness maximization. Studies on Bacillus subtilis biology often use strains derived after a process of lab 'domestication' from an ancestral strain known as Marburg strain. The domestication process led to loss of a large plasmid (pBS32) encoding a phosphatase (RapP) that dephosphorylates the Spo0F protein and thus regulates biofilm formation and sporulation. Here, we show that plasmid pBS32, and more specifically rapP, enhance growth rates by preventing premature expression of the Spo0F-Spo0A-mediated adaptive response during exponential phase. This results in reallocation of proteome resources towards biosynthetic, growth-promoting pathways without compromising long-term fitness during stationary phase. Thus, RapP helps B. subtilis to constrain physiological trade-offs and economize cellular resources for fitness improvement.
Collapse
Affiliation(s)
- Manlu Zhu
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Yiheng Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Haoyan Mu
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Fei Han
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Qian Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Yongfu Pei
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xin Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xiongfeng Dai
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China.
| |
Collapse
|
17
|
Machado DT, Dias BDC, Cayô R, Gales AC, Marques de Carvalho F, Vasconcelos ATR. Uncovering new Firmicutes species in vertebrate hosts through metagenome-assembled genomes with potential for sporulation. Microbiol Spectr 2024; 12:e0211324. [PMID: 39283121 PMCID: PMC11536998 DOI: 10.1128/spectrum.02113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 11/07/2024] Open
Abstract
Metagenome-assembled genomes (MAGs) have contributed to identifying non-culturable microorganisms and understanding their ecological functions. MAGs offer an advantage in investigating sporulation-associated genes, especially given the difficulty of isolating many species residing in the gut microbiota of multiple hosts. Bacterial sporulation is a key survival mechanism with implications for pathogenicity and biotechnology. Here, we investigate MAGs from vertebrate hosts, emphasizing taxonomic identification and identifying sporulation-associated genes in potential novel species within the Firmicutes phylum. We identified potential new species in the classes Clostridia (Borkfalkiaceae, Lachnospiraceae, Monoglobaceae, and Oscillospiraceae families) and Bacilli (Bacillaceae and Erysipelotrichaceae families) through phylogenetic and functional pathway analyses, highlighting their sporulation potential. Our study covers 146 MAGs, 124 of them without refined taxonomic assignments at the family level. We found that Clostridia and Bacilli have unique sporulation gene profiles in the refined family MAGs for cattle, swine, poultry, and human hosts. The presence of genes related to Spo0A regulon, engulfment, and spore cortex in MAGs underscores fundamental mechanisms in sporulation processes in currently uncharacterized species with sporulation potential from metagenomic dark matter. Furthermore, genomic analyses predict sporulation potential based on gene presence, genome size, and metabolic pathways involved in spore formation. We emphasize MAGs covering families not yet characterized through the phylogenetic analysis, and with extensive potential for spore-forming bacteria within Clostridia, Bacilli, UBA4882, and UBA994 classes. These findings contribute to exploring spore-forming bacteria, which provides evidence for novel species diversity in multiple hosts, their adaptive strategies, and potential applications in biotechnology and host health.IMPORTANCESpores are essential for bacterial survival in harsh environments, facilitating their persistence and adaptation. Exploring sporulation-associated genes in metagenome-assembled genomes (MAGs) from different hosts contributes to clinical and biotechnological domains. Our study investigated the extent of genes associated with bacterial sporulation in MAGs from poultry, swine, cattle, and humans, revealing these genes in uncultivated bacteria. We identified potential novel Firmicutes species with sporulation capabilities through phylogenetic and functional analyses. Notably, MAGs belonging to Clostridia, Bacilli, and unknown classes, namely UBA4882 and UBA994, remained uncharacterized at the family level, which raises the hypothesis that sporulation would also be present in these genomes. These findings contribute to our understanding of microbial adaptation and have implications for microbial ecology, underlining the importance of sporulation in Firmicutes across different hosts. Further studies into novel species and their sporulation capability can contribute to bacterial maintenance mechanisms in various organisms and their applications in biotechnology studies.
Collapse
Affiliation(s)
- Douglas Terra Machado
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| | - Beatriz do Carmo Dias
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| | - Rodrigo Cayô
- Laboratory of Environmental Antimicrobial Resistance (LEARN), Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Unidade José Alencar, Centro, Diadema, São Paulo, Brazil
| | - Ana Cristina Gales
- Laboratório ALERTA, Division of Infectious Diseases, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Bidnenko V, Chastanet A, Péchoux C, Redko-Hamel Y, Pellegrini O, Durand S, Condon C, Boudvillain M, Jules M, Bidnenko E. Complex sporulation-specific expression of transcription termination factor Rho highlights its involvement in Bacillus subtilis cell differentiation. J Biol Chem 2024; 300:107905. [PMID: 39427753 PMCID: PMC11599450 DOI: 10.1016/j.jbc.2024.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Termination factor Rho, responsible for the main factor-dependent pathway of transcription termination and the major inhibitor of antisense transcription, is an emerging regulator of various physiological processes in microorganisms. In Gram-positive bacterium Bacillus subtilis, Rho is involved in the control of cell adaptation to starvation and, in particular, in the control of sporulation, a complex differentiation program leading to the formation of a highly resistant dormant spore. While the initiation of sporulation requires a decrease in Rho protein levels during the transition to stationary phase, the mechanisms regulating the expression of rho gene throughout the cell cycle remain largely unknown. Here we show that a drop in the activity of the vegetative SigA-dependent rho promoter causes the inhibition of rho expression in stationary phase. However, after the initiation of sporulation, rho gene is specifically reactivated in two compartments of the sporulating cell using distinct mechanisms. In the mother cell, rho expression occurs by read-through transcription initiated at the SigH-dependent promoter of the distal spo0F gene. In the forespore, rho gene is transcribed from the intrinsic promoter recognized by the alternative sigma factor SigF. These regulatory elements ensure the activity of Rho during sporulation, which appears important for the proper formation of spores. We provide experimental evidence that disruption of the spatiotemporal expression of rho during sporulation affects the resistance properties of spores, their morphology, and the ability to return to vegetative growth under favorable growth conditions.
Collapse
Affiliation(s)
- Vladimir Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Arnaud Chastanet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France; MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, Jouy-en-Josas, France
| | - Yulia Redko-Hamel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Olivier Pellegrini
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Sylvain Durand
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Ciarán Condon
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Marc Boudvillain
- Centre de Biophysique moléculaire, CNRS UPR4301, Orléans, France; Affiliated with Université d'Orléans, Orléans, France
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elena Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
19
|
Mondal A, Teimouri H, Kolomeisky AB. Molecular mechanisms of precise timing in cell lysis. Biophys J 2024; 123:3090-3099. [PMID: 38971973 PMCID: PMC11427807 DOI: 10.1016/j.bpj.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Many biological systems exhibit precise timing of events, and one of the most known examples is cell lysis, which is a process of breaking bacterial host cells in the virus infection cycle. However, the underlying microscopic picture of precise timing remains not well understood. We present a novel theoretical approach to explain the molecular mechanisms of effectively deterministic dynamics in biological systems. Our hypothesis is based on the idea of stochastic coupling between relevant underlying biophysical and biochemical processes that lead to noise cancellation. To test this hypothesis, we introduced a minimal discrete-state stochastic model to investigate how holin proteins produced by bacteriophages break the inner membranes of gram-negative bacteria. By explicitly solving this model, the dynamic properties of cell lysis are fully evaluated, and theoretical predictions quantitatively agree with available experimental data for both wild-type and holin mutants. It is found that the observed threshold-like behavior is a result of the balance between holin proteins entering the membrane and leaving the membrane during the lysis. Theoretical analysis suggests that the cell lysis achieves precise timing for wild-type species by maximizing the number of holins in the membrane and narrowing their spatial distribution. In contrast, for mutated species, these conditions are not satisfied. Our theoretical approach presents a possible molecular picture of precise dynamic regulation in intrinsically random biological processes.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas
| | - Hamid Teimouri
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas.
| |
Collapse
|
20
|
Abraha HB, Ramesha RM, Ferdiansyah MK, Son H, Kim G, Park B, Jeong DY, Kim KP. Genome Analysis of a Newly Sequenced B. subtilis SRCM117797 and Multiple Public B. subtilis Genomes Unveils Insights into Strain Diversification and Biased Core Gene Distribution. Curr Microbiol 2024; 81:305. [PMID: 39133322 DOI: 10.1007/s00284-024-03819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
The bacterium Bacillus subtilis is a widely used study model and industrial workhorse organism that belongs to the group of gram-positive bacteria. In this study, we report the analysis of a newly sequenced complete genome of B. subtilis strain SRCM117797 along with a comparative genomics of a large collection of B. subtilis strain genomes. B. subtilis strain SRCM117797 has 4,255,638 bp long chromosome with 43.4% GC content and high coding sequence association with macromolecules, metabolism, and phage genes. Genomic diversity analysis of 232 B. subtilis strains resulted in the identification of eight clusters and three singletons. Of 147 B. subtilis strains included, 89.12% had strain-specific genes, of which 6.75% encoded strain-specific insertion sequence family transposases. Our analysis showed a potential role of strain-specific insertion sequence family transposases in intra-cellular accumulation of strain-specific genes. Furthermore, the chromosomal layout of the core genes was biased: overrepresented on the upper half (closer to the origin of replication) of the chromosome, which may explain the fast-growing characteristics of B. subtilis. Overall, the study provides a complete genome sequence of B. subtilis strain SRCM117797, show an extensive genomic diversity of B. subtilis strains and insights into strain diversification mechanism and non-random chromosomal layout of core genes.
Collapse
Affiliation(s)
- Haftom Baraki Abraha
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | | | | | - Hyeonro Son
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Gayeong Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Beomseok Park
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang, 56048, South Korea
| | - Kwang-Pyo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea.
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
21
|
Dehghani B, Rodrigues CDA. SpoIIQ-dependent localization of SpoIIE contributes to septal stability and compartmentalization during the engulfment stage of Bacillus subtilis sporulation. J Bacteriol 2024; 206:e0022024. [PMID: 38904397 PMCID: PMC11270862 DOI: 10.1128/jb.00220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024] Open
Abstract
During spore development in bacteria, a polar septum separates two transcriptionally distinct cellular compartments, the mother cell and the forespore. The conserved serine phosphatase SpoIIE is known for its critical role in the formation of this septum and activation of compartment-specific transcription in the forespore. Signaling between the mother cell and forespore then leads to activation of mother cell transcription and a phagocytic-like process called engulfment, which involves dramatic remodeling of the septum and requires a balance between peptidoglycan synthesis and hydrolysis to ensure septal stability and compartmentalization. Using Bacillus subtilis, we identify an additional role for SpoIIE in maintaining septal stability and compartmentalization at the onset of engulfment. This role for SpoIIE is mediated by SpoIIQ, which anchors SpoIIE in the engulfing membrane. A SpoIIQ mutant (SpoIIQ Y28A) that fails to anchor SpoIIE, results in septal instability and miscompartmentalization during septal peptidoglycan hydrolysis, when other septal stabilization factors are absent. Our data support a model whereby SpoIIE and its interactions with the peptidoglycan synthetic machinery contribute to the stabilization of the asymmetric septum early in engulfment, thereby ensuring compartmentalization during spore development.IMPORTANCEBacterial sporulation is a complex process involving a vast array of proteins. Some of these proteins are absolutely critical and regulate key points in the developmental process. Once such protein is SpoIIE, known for its role in the formation of the polar septum, a hallmark of the early stages of sporulation, and activation of the first sporulation-specific sigma factor, σF, in the developing spore. Interestingly, SpoIIE has been shown to interact with SpoIIQ, an important σF-regulated protein that functions during the engulfment stage. However, the significance of this interaction has remained unclear. Here, we unveil the importance of the SpoIIQ-SpoIIE interaction and identify a role for SpoIIE in the stabilization of the polar septum and maintenance of compartmentalization at the onset of engulfment. In this way, we demonstrate that key sporulation proteins, like SpoIIQ and SpoIIE, function in multiple processes during spore development.
Collapse
Affiliation(s)
- Behzad Dehghani
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
22
|
Pedraza-Reyes M, Abundiz-Yañez K, Rangel-Mendoza A, Martínez LE, Barajas-Ornelas RC, Cuéllar-Cruz M, Leyva-Sánchez HC, Ayala-García VM, Valenzuela-García LI, Robleto EA. Bacillus subtilis stress-associated mutagenesis and developmental DNA repair. Microbiol Mol Biol Rev 2024; 88:e0015823. [PMID: 38551349 PMCID: PMC11332352 DOI: 10.1128/mmbr.00158-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
SUMMARYThe metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10-9) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.
Collapse
Affiliation(s)
- Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Karen Abundiz-Yañez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Alejandra Rangel-Mendoza
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Lissett E. Martínez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Rocío C. Barajas-Ornelas
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Luz I. Valenzuela-García
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Arroyo Seco, Durango, Mexico
| | | |
Collapse
|
23
|
Vauclare P, Wulffelé J, Lacroix F, Servant P, Confalonieri F, Kleman JP, Bourgeois D, Timmins J. Stress-induced nucleoid remodeling in Deinococcus radiodurans is associated with major changes in Heat Unstable (HU) protein dynamics. Nucleic Acids Res 2024; 52:6406-6423. [PMID: 38742631 PMCID: PMC11194088 DOI: 10.1093/nar/gkae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D. radiodurans as a model, and advanced fluorescence microscopy, we examined the changes in nucleoid morphology and volume induced by either entry into stationary phase or exposure to UV-C light, and characterized the associated changes in mobility of the major NAP in D. radiodurans, the heat-unstable (HU) protein. While both types of stress induced nucleoid compaction, HU diffusion was reduced in stationary phase cells, but was instead increased following exposure to UV-C, suggesting distinct underlying mechanisms. Furthermore, we show that UV-C-induced nucleoid remodeling involves a rapid nucleoid condensation step associated with increased HU diffusion, followed by a slower decompaction phase to restore normal nucleoid morphology and HU dynamics, before cell division can resume. These findings shed light on the diversity of nucleoid remodeling processes in bacteria and underline the key role of HU in regulating this process through changes in its mode of assembly on DNA.
Collapse
Affiliation(s)
- Pierre Vauclare
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Jip Wulffelé
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
24
|
Jaiaue P, Srimongkol P, Thitiprasert S, Piluk J, Thammaket J, Assabumrungrat S, Cheirsilp B, Tanasupawat S, Thongchul N. Inactivation of guanylate kinase in Bacillus sp. TL7-3 cultivated under an optimized ratio of carbon and nitrogen sources influenced GTP regeneration capability and sporulation. Heliyon 2024; 10:e31956. [PMID: 38841476 PMCID: PMC11152743 DOI: 10.1016/j.heliyon.2024.e31956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Bacillus sp. TL7-3 has potential as a dietary supplement to promote human and animal health. It produces spores that can survive in harsh environments. Thus, when supplemented with nutrients, these spores can withstand the acidic pH of the stomach and resume vegetative development in the gut when exposed to growth-promoting conditions. Spores are formed as a cellular defense mechanism when a culture experiences stress and process optimization to achieve high spore production in a typical batch process remains challenging. Existing literature on the manipulation of gene expression and enzyme activity during batch cultivation is limited. Studies on the growth patterns, morphological changes, and relevant gene expression have aided in enhancing spore production. The present study used the response surface methodology for medium optimization. The model suggested that yeast extract and NH4Cl were significant factors controlling spore production. A comparison between the high weight ratio of carbon and nitrogen (C:N) substrates (8.57:1) in the optimized and basal media (0.52:1) showed an 8.76-fold increase in the final spore concentration. The expression of major genes, including codY, spo0A, kinA, and spo0F, involved in the sporulation was compared when cultivating Bacillus sp. TL7-3 in media with varying C:N ratios. At high C:N ratios, spo0A, kinA, and spo0F were upregulated, whereas codY was downregulated. This led to decreased guanylate kinase activity, resulting in a low guanosine triphosphate concentration and inactivation of CodY, thereby reducing the repression of spo0A and CodY-repressed genes and stimulating sporulation.
Collapse
Affiliation(s)
- Phetcharat Jaiaue
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Sitanan Thitiprasert
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Jirabhorn Piluk
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Jesnipit Thammaket
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Suttichai Assabumrungrat
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Benjamas Cheirsilp
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkla, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nuttha Thongchul
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
25
|
Chong TN, Shapiro L. Bacterial cell differentiation enables population level survival strategies. mBio 2024; 15:e0075824. [PMID: 38771034 PMCID: PMC11237816 DOI: 10.1128/mbio.00758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Clonal reproduction of unicellular organisms ensures the stable inheritance of genetic information. However, this means of reproduction lacks an intrinsic basis for genetic variation, other than spontaneous mutation and horizontal gene transfer. To make up for this lack of genetic variation, many unicellular organisms undergo the process of cell differentiation to achieve phenotypic heterogeneity within isogenic populations. Cell differentiation is either an inducible or obligate program. Induced cell differentiation can occur as a response to a stimulus, such as starvation or host cell invasion, or it can be a stochastic process. In contrast, obligate cell differentiation is hardwired into the organism's life cycle. Whether induced or obligate, bacterial cell differentiation requires the activation of a signal transduction pathway that initiates a global change in gene expression and ultimately results in a morphological change. While cell differentiation is considered a hallmark in the development of multicellular organisms, many unicellular bacteria utilize this process to implement survival strategies. In this review, we describe well-characterized cell differentiation programs to highlight three main survival strategies used by bacteria capable of differentiation: (i) environmental adaptation, (ii) division of labor, and (iii) bet-hedging.
Collapse
Affiliation(s)
- Trisha N Chong
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
26
|
Chincha AAIA, Marone MP, Pia AKR, Freire L, Amorim-Neto DP, Carazzolle MF, Sant'Ana AS. Phenotypic, genotypic, and resistome of mesophilic spore-forming bacteria isolated from pasteurized liquid whole egg. Food Res Int 2024; 184:114215. [PMID: 38609213 DOI: 10.1016/j.foodres.2024.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024]
Abstract
The production of whole-liquid eggs is of significant economic and nutritional importance. This study aimed to assess the phenotypic and genotypic diversity of mesophilic aerobic spore-forming bacteria (n = 200) isolated from pasteurized whole liquid egg and liquid egg yolk. The majority of the isolates were identified as belonging to the genera Bacillus (86 %), followed by Brevibacillus (10 %) and Lysinibacillus (4 %). For the phenotypic characterization, isolates were subjected to various heat shocks, with the most significant reductions observed at 80 °C/30 min and 90 °C/10 min for isolates recovered from raw materials. On the other hand, the decrease was similar for isolates recovered from raw material and final product at 100 °C/5 min and 110 °C/5 min. Genotypic genes related to heat resistance (cdnL, spoVAD, dacB, clpC, dnaK, and yitF/Tn1546) were examined for genotypic characterization. The dnaK gene showed a positive correlation with the highest thermal condition tested (110 °C/5 min), while 100 °C/5 min had the highest number of positively correlated genes (clpC, cdnL, yitF/Tn1546, and spoVAD). Whole Genome Sequencing of four strains revealed genes related to sporulation, structure formation, initiation and regulation, stress response, and DNA repair in vegetative cells. The findings of this study indicate that these mesophilic aerobic spore-forming bacteria may adopt several strategies to persist through the process and reach the final product. As the inactivation of these microorganisms during egg processing is challenging, preventing raw materials contamination and their establishment in processing premises must be reinforced.
Collapse
Affiliation(s)
- Alexandra A I A Chincha
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marina P Marone
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP, Brazil
| | - Arthur K R Pia
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Luisa Freire
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Campo Grande, Mato Grosso do Sul, Brazil
| | - Dionisio P Amorim-Neto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marcelo F Carazzolle
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP, Brazil; Center for Computing and Engineering Sciences, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
27
|
Behringer MG, Ho WC, Miller SF, Worthan SB, Cen Z, Stikeleather R, Lynch M. Trade-offs, trade-ups, and high mutational parallelism underlie microbial adaptation during extreme cycles of feast and famine. Curr Biol 2024; 34:1403-1413.e5. [PMID: 38460514 PMCID: PMC11066936 DOI: 10.1016/j.cub.2024.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/12/2023] [Accepted: 02/16/2024] [Indexed: 03/11/2024]
Abstract
Microbes are evolutionarily robust organisms capable of rapid adaptation to complex stress, which enables them to colonize harsh environments. In nature, microbes are regularly challenged by starvation, which is a particularly complex stress because resource limitation often co-occurs with changes in pH, osmolarity, and toxin accumulation created by metabolic waste. Often overlooked are the additional complications introduced by eventual resource replenishment, as successful microbes must withstand rapid environmental shifts before swiftly capitalizing on replenished resources to avoid invasion by competing species. To understand how microbes navigate trade-offs between growth and survival, ultimately adapting to thrive in environments with extreme fluctuations, we experimentally evolved 16 Escherichia coli populations for 900 days in repeated feast/famine conditions with cycles of 100-day starvation before resource replenishment. Using longitudinal population-genomic analysis, we found that evolution in response to extreme feast/famine is characterized by narrow adaptive trajectories with high mutational parallelism and notable mutational order. Genetic reconstructions reveal that early mutations result in trade-offs for biofilm and motility but trade-ups for growth and survival, as these mutations conferred positively correlated advantages during both short-term and long-term culture. Our results demonstrate how microbes can navigate the adaptive landscapes of regularly fluctuating conditions and ultimately follow mutational trajectories that confer benefits across diverse environments.
Collapse
Affiliation(s)
- Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, 21st Avenue S, Nashville, TN 37232, USA; Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 21st Avenue S, Nashville, TN 37232, USA.
| | - Wei-Chin Ho
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA; Department of Biology, University of Texas at Tyler, University Blvd., Tyler, TX 75799, USA.
| | - Samuel F Miller
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA
| | - Sarah B Worthan
- Department of Biological Sciences, Vanderbilt University, 21st Avenue S, Nashville, TN 37232, USA
| | - Zeer Cen
- Department of Biological Sciences, Vanderbilt University, 21st Avenue S, Nashville, TN 37232, USA
| | - Ryan Stikeleather
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA
| |
Collapse
|
28
|
Huang N, Jin X, Wen JT, Zhang YF, Yang X, Wei GY, Wang YK, Qin M. Biocontrol and Growth Promotion Potential of Bacillus subtilis CTXW 7-6-2 against Rhizoctonia solani that Causes Tobacco Target Spot Disease. Pol J Microbiol 2024; 73:29-38. [PMID: 38437465 PMCID: PMC10911660 DOI: 10.33073/pjm-2024-004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/19/2023] [Indexed: 03/06/2024] Open
Abstract
Fungal diseases form perforated disease spots in tobacco plants, resulting in a decline in tobacco yield and quality. The present study investigated the antagonistic effect of Bacillus subtilis CTXW 7-6-2 against Rhizoctonia solani, its ability to promote the growth of tobacco seedlings, and the expression of disease resistance-related genes for efficient and eco-friendly plant disease control. Our results showed that CTXW 7-6-2 had the most vigorous growth after being cultured for 96 h, and its rate of inhibition of R. solani growth in vitro was 94.02%. The volatile compounds produced by CTXW 7-6-2 inhibited the growth of R. solani significantly (by 96.62%). The fungal growthinhibition rate of the B. subtilis CTXW 7-6-2 broth obtained after high-temperature and no-high-temperature sterile fermentation was low, at 50.88% and 54.63%, respectively. The lipopeptides extracted from the B. subtilis CTXW 7-6-2 fermentation broth showed a 74.88% fungal growth inhibition rate at a concentration of 100 mg/l. Scanning and transmission electron microscopy showed some organelle structural abnormalities, collapse, shrinkage, blurring, and dissolution in the R. solani mycelia. In addition, CTXW 7-6-2 increased tobacco seedling growth and improved leaf and root weight compared to the control. After CTXW 7-6-2 inoculation, tobacco leaves showed the upregulation of the PDF1.2, PPO, and PAL genes, which are closely related to target spot disease resistance. In conclusion, B. subtilis CTXW 7-6-2 may be an efficient biological control agent in tobacco agriculture and enhance plant growth potential.
Collapse
Affiliation(s)
- Ning Huang
- Guizhou Province Tobacco Company Guiyang City Company, Guiyang, China
| | - Xin Jin
- Guizhou Province Tobacco Company Guiyang City Company, Guiyang, China
| | - Jin-Tao Wen
- Guizhou Province Tobacco Company Guiyang City Company, Guiyang, China
| | - Yi-Fei Zhang
- Guizhou Province Tobacco Company Guiyang City Company, Guiyang, China
| | - Xu Yang
- Guizhou Province Tobacco Company Guiyang City Company, Guiyang, China
| | - Guang-Yu Wei
- Guizhou Province Tobacco Company Guiyang City Company, Guiyang, China
| | - Yi-Kun Wang
- Guizhou Province Tobacco Company Guiyang City Company, Guiyang, China
| | - Min Qin
- Guizhou Province Tobacco Company Guiyang City Company, Guiyang, China
| |
Collapse
|
29
|
Xia M, Munir S, Li Y, Ahmed A, He P, Wu Y, Li X, Tang P, Wang Z, He P, Wang Y, He Y. Bacillus subtilis YZ-1 surfactins are involved in effective toxicity against agricultural pests. PEST MANAGEMENT SCIENCE 2024; 80:333-340. [PMID: 37682584 DOI: 10.1002/ps.7759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Insect pests negatively affect crop quality and yield. The excessive use of chemical pesticides has serious impacts on the environment and food safety. Therefore, development of effective management strategies in the form of bio-agents have important agricultural applications. Tenebrio molitor, a storage pest, causes losses of grains, medicinal materials, and various agricultural and related products in the warehouse. Bacillus subtilis YZ-1 isolated from naturally deceased Pieris rapae has been found to exhibit significant toxicity against T. molitor. RESULTS Treatment with B. subtilis YZ-1 fermentation broth resulted in a 90-95% mortality rate of T. molitor within 36 h post-treatment, indicating some active substances may have insecticidal activity in the bacterial supernatant. A bioactivity-guided fractionation method was used to isolate the insecticidal compounds from YZ-1, which led to the identification of surfactins. Additionally, a surfactin deletion mutant YZ-1△srfAA was constructed and the surfactin production by the mutant YZ-1△srfAA was verified through liquid chromatography-mass spectrometry (LC-MS). Further, YZ-1△srfAA exhibited loss of insecticidal activity against T. molitor, Plutella xylostella and Achelura yunnanensis. The insecticidal activity and surfactins contents of several strains of Bacillus sp. were also tested and correlation was found between varying surfactins yield and insecticidal activity exhibited by different strains. CONCLUSION Conclusively, our results suggest that B. subtilis YZ-1 may provide a novel approach for plant protection against agricultural pests. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengyuan Xia
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yongmei Li
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Ayesha Ahmed
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xingyu Li
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Ping Tang
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Zaiqiang Wang
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yuehu Wang
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yueqiu He
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
30
|
Ye Y, Ghrayeb M, Miercke S, Arif S, Müller S, Mascher T, Chai L, Zaburdaev V. Residual cells and nutrient availability guide wound healing in bacterial biofilms. SOFT MATTER 2024; 20:1047-1060. [PMID: 38205608 DOI: 10.1039/d3sm01032e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biofilms are multicellular heterogeneous bacterial communities characterized by social-like division of labor, and remarkable robustness with respect to external stresses. Increasingly often an analogy between biofilms and arguably more complex eukaryotic tissues is being drawn. One illustrative example of where this analogy can be practically useful is the process of wound healing. While it has been extensively studied in eukaryotic tissues, the mechanism of wound healing in biofilms is virtually unexplored. Combining experiments in Bacillus subtilis bacteria, a model organism for biofilm formation, and a lattice-based theoretical model of biofilm growth, we studied how biofilms recover after macroscopic damage. We suggest that nutrient gradients and the abundance of proliferating cells are key factors augmenting wound closure. Accordingly, in the model, cell quiescence, nutrient fluxes, and biomass represented by cells and self-secreted extracellular matrix are necessary to qualitatively recapitulate the experimental results for damage repair. One of the surprising experimental findings is that residual cells, persisting in a damaged area after removal of a part of the biofilm, prominently affect the healing process. Taken together, our results outline the important roles of nutrient gradients and residual cells on biomass regrowth on macroscopic scales of the whole biofilm. The proposed combined experiment-simulation framework opens the way to further investigate the possible relation between wound healing, cell signaling and cell phenotype alternation in the local microenvironment of the wound.
Collapse
Affiliation(s)
- Yusong Ye
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Mnar Ghrayeb
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Sania Arif
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | | | - Liraz Chai
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| |
Collapse
|
31
|
Rudakova NL, Sabirova AR, Khasanov DI, Danilova IV, Sharipova MR. Regulating Pathways of Bacillus pumilus Adamalysin-like Metalloendopeptidase Expression. Int J Mol Sci 2023; 25:62. [PMID: 38203233 PMCID: PMC10779165 DOI: 10.3390/ijms25010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
The minor secreted proteinase of B. pumilus 3-19 MprBp classified as the unique bacillary adamalysin-like enzyme of the metzincin clan. The functional role of this metalloproteinase in the bacilli cells is not clear. Analysis of the regulatory region of the mprBp gene showed the presence of potential binding sites to the transcription regulatory factors Spo0A (sporulation) and DegU (biodegradation). The study of mprBp activity in mutant strains of B. subtilis defective in regulatory proteins of the Spo- and Deg-systems showed that the mprBp gene is partially controlled by the Deg-system of signal transduction and independent from the Spo-system.
Collapse
Affiliation(s)
| | | | | | | | - Margarita R. Sharipova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (N.L.R.); (D.I.K.); (I.V.D.)
| |
Collapse
|
32
|
Dergham Y, Le Coq D, Bridier A, Sanchez-Vizuete P, Jbara H, Deschamps J, Hamze K, Yoshida KI, Noirot-Gros MF, Briandet R. Bacillus subtilis NDmed, a model strain for biofilm genetic studies. Biofilm 2023; 6:100152. [PMID: 37694162 PMCID: PMC10485040 DOI: 10.1016/j.bioflm.2023.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
The Bacillus subtilis strain NDmed was isolated from an endoscope washer-disinfector in a medical environment. NDmed can form complex macrocolonies with highly wrinkled architectural structures on solid medium. In static liquid culture, it produces thick pellicles at the interface with air as well as remarkable highly protruding ''beanstalk-like'' submerged biofilm structures at the solid surface. Since these mucoid submerged structures are hyper-resistant to biocides, NDmed has the ability to protect pathogens embedded in mixed-species biofilms by sheltering them from the action of these agents. Additionally, this non-domesticated and highly biofilm forming strain has the propensity of being genetically manipulated. Due to all these properties, the NDmed strain becomes a valuable model for the study of B. subtilis biofilms. This review focuses on several studies performed with NDmed that have highlighted the sophisticated genetic dynamics at play during B. subtilis biofilm formation. Further studies in project using modern molecular tools of advanced technologies with this strain, will allow to deepen our knowledge on the emerging properties of multicellular bacterial life.
Collapse
Affiliation(s)
- Yasmine Dergham
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lebanese University, Faculty of Science, 1003 Beirut, Lebanon
| | - Dominique Le Coq
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, Anses, 35300, Fougères, France
| | - Pilar Sanchez-Vizuete
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Hadi Jbara
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Julien Deschamps
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Kassem Hamze
- Lebanese University, Faculty of Science, 1003 Beirut, Lebanon
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
33
|
Ev LD, Poloni JDF, Damé-Teixeira N, Arthur RA, Corralo DJ, Henz SL, Do T, Maltz M, Parolo CCF. Hub genes and pathways related to caries-free dental biofilm: clinical metatranscriptomic study. Clin Oral Investig 2023; 27:7725-7735. [PMID: 37924358 DOI: 10.1007/s00784-023-05363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVE This study aimed to evaluate the microbial functional profile of biofilms related to caries-free (CF, n = 6) and caries-arrested (CI, n = 3) compared to caries-active (CA, n = 5) individuals. MATERIALS AND METHODS A metatranscriptomic was performed in supragingival biofilm from different clinical conditions related to caries or health. Total RNA was extracted and cDNAs were obtained and sequenced (Illumina HiSeq3000). Trimmed data (SortMeRNA) were submitted to the SqueezeMeta pipeline in the co-assembly mode for functional analysis and further differential gene expression analysis (DESeq2) and weighted gene co-expression network analysis (WCGNA) to explore and identify gene modules related to these clinical conditions. RESULTS A total of 5303 genes were found in the metatranscriptomic analysis. A co-expression network identified the most relevant modules strongly related to specific caries status. Correlation coefficients were calculated between the eigengene modules and the clinical conditions (CA, CI, and CF) discriminating multiple modules. CA and CI showed weak correlation coefficient strength across the modules, while the CF condition presented a very strong positive correlation coefficient (r = 0.9, p value = 4 × 10-9). Pearson's test was applied to further analyze the module membership and gene significance in CF conditions, and the most relevant were HSPA1s-K03283, Epr- K13277, and SLC1A-K05613. Gene Ontology (GO) shows important bioprocesses, such as two-component system, fructose and mannose metabolism, pentose and glucuronate interconversions, and flagellar assembly (p-adjust < 0.05). The ability to use different carbohydrates, integrate multiple signals, swarm, and bacteriocin production are significant metabolic advantages in the oral environment related to CF. CONCLUSIONS A distinct functional health profile could be found in CF, where co-occurring genes can act in different pathways at the same time. Genes HSPA1s, Epr, and SLC1A may be appointed as potential biomarkers for caries-free biofilms. CLINICAL RELEVANCE Potential biomarkers for caries-free biofilms could contribute to the knowledge of caries prevention and control.
Collapse
Affiliation(s)
- Laís Daniela Ev
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Joice de Faria Poloni
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, National Institute of Science and Technology - Forensic Science, Porto Alegre, Brazil
| | - Nailê Damé-Teixeira
- Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Rodrigo Alex Arthur
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniela Jorge Corralo
- Department of Dentistry, School of Dentistry, Passo Fundo University, Passo Fundo, RS, Brazil
| | - Sandra Liana Henz
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, Faculty of Medicine & Health, University of Leeds, Leeds, UK
| | - Marisa Maltz
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
34
|
Rawson AM, Dempster AW, Humphreys CM, Minton NP. Pathogenicity and virulence of Clostridium botulinum. Virulence 2023; 14:2205251. [PMID: 37157163 PMCID: PMC10171130 DOI: 10.1080/21505594.2023.2205251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Clostridium botulinum, a polyphyletic Gram-positive taxon of bacteria, is classified purely by their ability to produce botulinum neurotoxin (BoNT). BoNT is the primary virulence factor and the causative agent of botulism. A potentially fatal disease, botulism is classically characterized by a symmetrical descending flaccid paralysis, which is left untreated can lead to respiratory failure and death. Botulism cases are classified into three main forms dependent on the nature of intoxication; foodborne, wound and infant. The BoNT, regarded as the most potent biological substance known, is a zinc metalloprotease that specifically cleaves SNARE proteins at neuromuscular junctions, preventing exocytosis of neurotransmitters, leading to muscle paralysis. The BoNT is now used to treat numerous medical conditions caused by overactive or spastic muscles and is extensively used in the cosmetic industry due to its high specificity and the exceedingly small doses needed to exert long-lasting pharmacological effects. Additionally, the ability to form endospores is critical to the pathogenicity of the bacteria. Disease transmission is often facilitated via the metabolically dormant spores that are highly resistant to environment stresses, allowing persistence in the environment in unfavourable conditions. Infant and wound botulism infections are initiated upon germination of the spores into neurotoxin producing vegetative cells, whereas foodborne botulism is attributed to ingestion of preformed BoNT. C. botulinum is a saprophytic bacterium, thought to have evolved its potent neurotoxin to establish a source of nutrients by killing its host.
Collapse
Affiliation(s)
- Alexander M Rawson
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Andrew W Dempster
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Christopher M Humphreys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | | |
Collapse
|
35
|
Ye Q, Zhong Z, Chao S, Liu L, Chen M, Feng X, Wu H. Antifungal Effect of Bacillus velezensis ZN-S10 against Plant Pathogen Colletotrichum changpingense and Its Inhibition Mechanism. Int J Mol Sci 2023; 24:16694. [PMID: 38069016 PMCID: PMC10705930 DOI: 10.3390/ijms242316694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
In order to optimize crop production and mitigate the adverse impacts associated with the utilization of chemical agents, it is necessary to explore new biocontrol agents. Bacillus velezensis has been widely studied as a biocontrol agent because of its efficient and ecofriendly plant disease control mechanisms. This study shows that the strain ZN-S10 effectively reduces the area of leaf spots caused by the pathogen Colletotrichum changpingense ZAFU0163-1, which affects conidia production and germination, inhibits mycelium growth, and induces mycelium deformation. In antifungal experiments with crude extracts, we observed a delay in the cell cycle of conidia, which may be responsible for the inhibition of conidial germination. Among the bioactive metabolites detected through integrated LC-MS- and GC-MS-based untargeted metabolomics, 7-O-Succinyl macrolactin A, telocinobufagin, and surfactin A may be the main antifungal metabolites of strain ZN-S10. The presence of 7-O-Succinyl macrolactin A could explain the cell damage in germ tubes. This is the first report of telocinobufagin detected in B. velezensis. These results are significant for understanding the inhibitory mechanisms employed by B. velezensis and should serve as a reference in the production of biocontrol agents.
Collapse
Affiliation(s)
- Qingling Ye
- Jixian Honors College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Zhupeiqi Zhong
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.Z.); (S.C.); (L.L.); (M.C.)
| | - Shufeng Chao
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.Z.); (S.C.); (L.L.); (M.C.)
| | - Lu Liu
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.Z.); (S.C.); (L.L.); (M.C.)
| | - Mengli Chen
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.Z.); (S.C.); (L.L.); (M.C.)
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Huiming Wu
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.Z.); (S.C.); (L.L.); (M.C.)
| |
Collapse
|
36
|
Boggon C, Mairpady Shambat S, Zinkernagel AS, Secchi E, Isa L. Single-cell patterning and characterisation of antibiotic persistent bacteria using bio-sCAPA. LAB ON A CHIP 2023; 23:5018-5028. [PMID: 37909096 PMCID: PMC10661667 DOI: 10.1039/d3lc00611e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
In microbiology, accessing single-cell information within large populations is pivotal. Here we introduce bio-sCAPA, a technique for patterning bacterial cells in defined geometric arrangements and monitoring their growth in various nutrient environments. We demonstrate bio-sCAPA with a study of subpopulations of antibiotic-tolerant bacteria, known as persister cells, which can survive exposure to high doses of antibiotics despite lacking any genetic resistance to the drug. Persister cells are associated with chronic and relapsing infections, yet are difficult to study due in part to a lack of scalable, single-cell characterisation methods. As >105 cells can be patterned on each template, and multiple templates can be patterned in parallel, bio-sCAPA allows for very rare population phenotypes to be monitored with single-cell precision across various environmental conditions. Using bio-sCAPA, we analysed the phenotypic characteristics of single Staphylococcus aureus cells tolerant to flucloxacillin and rifampicin killing. We find that antibiotic-tolerant S. aureus cells do not display significant heterogeneity in growth rate and are instead characterised by prolonged lag-time phenotypes alone.
Collapse
Affiliation(s)
- Cameron Boggon
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Switzerland.
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, University of Zurich, Switzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, University of Zurich, Switzerland
| | - Eleonora Secchi
- Institute of Environmental Engineering, Department of Civil, Environmental, and Geomatic Engineering, ETH Zürich, Switzerland.
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Switzerland.
| |
Collapse
|
37
|
Soni A, Brightwell G. Effect of novel and conventional food processing technologies on Bacillus cereus spores. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:265-287. [PMID: 38461001 DOI: 10.1016/bs.afnr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
This chapter provides a summary of the effect of thermal and non-thermal processing technologies on Bacillus cereus spores, a well-known pathogenic bacterium associated with foodborne illnesses. B. cereus has been frequently detected in rice, milk products, infant food, liquid eggs products and meat products all over the world. This Gram positive, rod-shaped, facultative anaerobe can produce endospores that can withstand pasteurization, UV radiation, and chemical reagents commonly used for sanitization. B. cereus spores can germinate into vegetative cells that can produce toxins. The conventional regime for eliminating spores from food is retorting which uses the application of high temperature (121 °C). However, at this temperature, there could be a significant amount of loss in the organoleptic and functional qualities of the food components, especially proteins. This leads to the research on the preventive measures against germination and if possible, to reduce the resistance before using a non-thermal technology (temperatures less than retorting-121 °C) for inactivation. This chapter reviews the development and success of several food processing technologies in their ability to inactivate B. cereus spores in food.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand.
| | - Gale Brightwell
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea), Palmerston North, New Zealand
| |
Collapse
|
38
|
Nam KM, Gunawardena J. The linear framework II: using graph theory to analyse the transient regime of Markov processes. Front Cell Dev Biol 2023; 11:1233808. [PMID: 38020901 PMCID: PMC10656611 DOI: 10.3389/fcell.2023.1233808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
The linear framework uses finite, directed graphs with labelled edges to model biomolecular systems. Graph vertices represent chemical species or molecular states, edges represent reactions or transitions and edge labels represent rates that also describe how the system is interacting with its environment. The present paper is a sequel to a recent review of the framework that focussed on how graph-theoretic methods give insight into steady states as rational algebraic functions of the edge labels. Here, we focus on the transient regime for systems that correspond to continuous-time Markov processes. In this case, the graph specifies the infinitesimal generator of the process. We show how the moments of the first-passage time distribution, and related quantities, such as splitting probabilities and conditional first-passage times, can also be expressed as rational algebraic functions of the labels. This capability is timely, as new experimental methods are finally giving access to the transient dynamic regime and revealing the computations and information processing that occur before a steady state is reached. We illustrate the concepts, methods and formulas through examples and show how the results may be used to illuminate previous findings in the literature.
Collapse
Affiliation(s)
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
39
|
Wang C, Kuzyakov Y. Energy use efficiency of soil microorganisms: Driven by carbon recycling and reduction. GLOBAL CHANGE BIOLOGY 2023; 29:6170-6187. [PMID: 37646316 DOI: 10.1111/gcb.16925] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
Carbon use efficiency (CUE) is being intensively applied to quantify carbon (C) cycling processes from microbial cell to global scales. Energy use efficiency (EUE) is at least as important as the CUE because (i) microorganisms use organic C mainly as an energy source and not as elemental C per se, and (ii) microbial growth and maintenance are limited by energy, but not by C as a structural element. We conceptualize and review the importance of EUE by soil microorganisms and focus on (i) the energy content in organic compounds depending on the nominal oxidation state of carbon (NOSC), (ii) approaches to assess EUE, (iii) similarities and differences between CUE and EUE, and (iv) discuss mechanisms responsible for lower EUE compared to CUE. The energy content per C atom (enthalpy of combustion, the total energy stored in a compound) in organic compounds is very closely (R2 = 0.98) positively related to NOSC and increases by 108 kJ mol-1 C per one NOSC unit. For the first time we assessed the NOSC of microbial biomass in soil (-0.52) and calculated the corresponding energy content of -510 kJ mol-1 C. We linked CUE and EUE considering the NOSC of microbial biomass and element compositions of substrates utilized by microorganisms. The mean microbial EUE (0.32-0.35) is 18% lower than CUE (0.41) using glucose as a substrate. This definitely indicates that microbial growth is limited by energy relative to C. Based on the comparison of a broad range of processes of C and energy utilization for cell growth and maintenance, as well as database of experimental CUE from various compounds, we clearly explained five mechanisms and main factors why EUE is lower than CUE. The two main mechanisms behind lower EUE versus CUE are: (i) microbial recycling: C can be microbially recycled, whereas energy is always utilized only once, and (ii) chemical reduction of organic and inorganic compounds: Energy is used for reduction, which is ongoing without C utilization.
Collapse
Affiliation(s)
- Chaoqun Wang
- Biogeochemistry of Agroecosystems, University of Goettingen, Goettingen, Germany
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Goettingen, Germany
| |
Collapse
|
40
|
Chen E, Chao S, Shi B, Liu L, Chen M, Zheng Y, Feng X, Wu H. Bacillus velezensis ZN-S10 Reforms the Rhizosphere Microbial Community and Enhances Tomato Resistance to TPN. PLANTS (BASEL, SWITZERLAND) 2023; 12:3636. [PMID: 37896099 PMCID: PMC10609795 DOI: 10.3390/plants12203636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Tomato pith necrosis (TPN) is a highly destructive disease caused by species of the Pseudomonas genus and other bacteria, resulting in a significant reduction in tomato yield. Members of the genus Bacillus are beneficial microorganisms extensively studied in the rhizosphere. However, in most cases, the potential of Bacillus members in controlling TPN and their impact on the rhizosphere microbial composition remain rarely studied. In this study, Bacillus velezensis ZN-S10 significantly inhibited the growth of Pseudomonas viridiflava ZJUP0398-2, and ZN-S10 controlled TPN with control efficacies of 60.31%. P. viridiflava ZJUP0398-2 significantly altered the richness and diversity of the tomato rhizobacterial community, but pre-inoculation with ZN-S10 mitigated these changes. The correlation analysis revealed that ZN-S10 maybe inhibits the growth of nitrogen-fixing bacteria and recruits beneficial bacterial communities associated with disease resistance, thereby suppressing the occurrence of diseases. In summary, the comparative analysis of the rhizosphere microbiome was conducted to explore the impact of ZN-S10 on the composition of rhizosphere microorganisms in the presence of pathogenic bacteria, aiming to provide insights for further research and the development of scientific and eco-friendly control strategies for this disease.
Collapse
Affiliation(s)
- Enlei Chen
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 310058, China
| | - Shufen Chao
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 310058, China
| | - Bin Shi
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 310058, China
| | - Lu Liu
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 310058, China
| | - Mengli Chen
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 310058, China
| | - Yongli Zheng
- Zhejiang Agricultural Products Green Development Center, Hangzhou 310003, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Huiming Wu
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 310058, China
| |
Collapse
|
41
|
Jang S, Choi SK, Zhang H, Zhang S, Ryu CM, Kloepper JW. History of a model plant growth-promoting rhizobacterium, Bacillus velezensis GB03: from isolation to commercialization. FRONTIERS IN PLANT SCIENCE 2023; 14:1279896. [PMID: 37885658 PMCID: PMC10598611 DOI: 10.3389/fpls.2023.1279896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Bacillus velezensis strain GB03 is a Gram-positive rhizosphere bacterium known for its ability to promote plant growth and immunity. This review provides a comprehensive overview of the research on GB03 from its initial discovery in Australian wheat fields in 1971 to its current applications. Recognized as a model plant growth-promoting rhizobacterium (PGPR), GB03 has exhibited outstanding performance in enhancing the growth and protection of many crop plants including cucumber, pepper, wheat, barley, soybean, and cotton. Notably, GB03 has been reported to elicit plant immune response, referred to as induced systemic resistance (ISR), against above-ground pathogens and insect pests. Moreover, a pivotal finding in GB03 was the first-ever identification of its bacterial volatile compounds, which are known to boost plant growth and activate ISR. Research conducted over the past five decades has clearly demonstrated the potential of GB03 as an eco-friendly substitute for conventional pesticides and fertilizers. Validating its safety, the U.S. Environmental Protection Agency endorsed GB03 for commercial use as Kodiak® in 1998. Subsequently, other compounds, such as BioYield™, were released as a biological control agent against soil-borne pathogens and as a biofertilizer, utilizing a durable spore formulation. More recently, GB03 has been utilized as a keystone modulator for engineering the rhizosphere microbiome and for eliciting microbe-induced plant volatiles. These extensive studies on GB03 underscore its significant role in sustainable agriculture, positioning it as a safe and environmentally-friendly solution for crop protection.
Collapse
Affiliation(s)
- Seonghan Jang
- Infectious Disease Research Center, Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea
| | - Soo-Keun Choi
- Infectious Disease Research Center, Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shouan Zhang
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida-IFAS, Homestead, FL, United States
| | - Choong-Min Ryu
- Infectious Disease Research Center, Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Joseph W. Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
42
|
Lin R, Wu H, Kong X, Ren H, Lu Z. Ribosomal RNA gene operon copy number, a functional trait indicating the hydrocarbon degradation level of bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132100. [PMID: 37523962 DOI: 10.1016/j.jhazmat.2023.132100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The lack of universal indicators for predicting microbial biodegradation potential and assessing remediation effects limits the generalization of bioremediation. The community-level ribosomal RNA gene operon (rrn) copy number, an important functional trait, has the potential to serve as a key indicator of the bioremediation of organic pollutants. A meta-analysis based on 1275 samples from 26 hydrocarbon-related studies revealed a positive relationship between the microbial hydrocarbon biodegradation level and the community-level rrn copy number in soil, seawater and culture. Subsequently, a microcosm experiment was performed to decipher the community-level rrn copy number response mechanism during total petroleum hydrocarbon (TPH) biodegradation. The treatment combining straw with resuscitation-promoting factor (Rpf) exhibited the highest community-level rrn copy number and the most effective biodegradation compared with other treatments, and the initial TPH content (20,000 mg kg-1) was reduced by 67.67% after 77 days of incubation. TPH biodegradation rate was positively correlated with the average community-level rrn copy number (p = 0.001, R2 = 0.5781). Both meta and community analyses showed that rrn copy number may reflect the potential of hydrocarbon degradation and microbial dormancy. Our findings provide insight into the applicability of the community-level rrn copy number to assess bacterial biodegradation for pollution remediation.
Collapse
Affiliation(s)
- Renzhang Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
43
|
Janiszewska D, Złoch M, Pomastowski P, Szultka-Młyńska M. Implications of Sample Preparation Methods on the MALDI-TOF MS Identification of Spore-Forming Bacillus Species from Food Samples: A Closer Look at Bacillus licheniformis, Peribacillus simplex, Lysinibacillus fusiformis, Bacillus flexus, and Bacillus marisflavi. ACS OMEGA 2023; 8:34982-34994. [PMID: 37779958 PMCID: PMC10536843 DOI: 10.1021/acsomega.3c04354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
This research underscores the criticality of tailored culture conditions and incubation periods for effective and accurate identification of spore-forming bacteria: Bacillus licheniformis, Peribacillus simplex, Lysinibacillus fusiformis, Bacillus flexus, and Bacillus marisflav, isolated from food samples, utilizing the MALDI-TOF MS technique. All isolated strains were confirmed as Gram-positive bacteria from diverse genera through 16S rDNA gene sequencing. To enhance the accuracy of the identification process, the study employed an optimization strategy involving a varied incubation time (ranging from 1 to 48 h) and two distinct sample preparation approaches-direct transfer facilitated by formic acid and protein extraction via ethanol. It was observed that matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) could successfully identify approximately 47% of the samples following a 24 h incubation period. The study emphasizes the critical role of sample preparation methods in enabling precise bacterial identification. Our findings reveal the necessity of tailoring the incubation time for each sample, as the optimum period for accurate identification fluctuated between 1 and 12 h. Further demonstrating the interplay between incubation time and spore quantity, our study used the Schaeffer-Fulton staining method to show that the lowest spore counts were detected between 5 and 8 h of incubation. This provides evidence that spore formation impacts bacterial identification. Our research thus deepens the understanding of spore-forming bacteria identification using MALDI-TOF MS and illuminates the various factors affecting the dependability and accuracy of this technique. Future research may explore additional variables, such as the effect of varying culture media, to further augment identification accuracy and gain a holistic understanding of spore-forming bacterial behavior in food samples. By enhancing our knowledge, these findings can substantially contribute to improving food safety and quality assurance strategies by enabling the more accurate and efficient identification of spore-forming bacteria in the food industry, thereby elevating the standards of food safety.
Collapse
Affiliation(s)
- Daria Janiszewska
- Department
of Environmental Chemistry and Bioanalytics, Gagarina 7, 87-100 Torun, Poland
| | - Michał Złoch
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| | - Paweł Pomastowski
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| | | |
Collapse
|
44
|
Lablaine A, Chamot S, Serrano M, Billaudeau C, Bornard I, Carballido-López R, Carlin F, Henriques AO, Broussolle V. A new fluorescence-based approach for direct visualization of coat formation during sporulation in Bacillus cereus. Sci Rep 2023; 13:15136. [PMID: 37704668 PMCID: PMC10499802 DOI: 10.1038/s41598-023-42143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
The human pathogenic bacteria Bacillus cereus, Bacillus anthracis and the entomopathogenic Bacillus thuringiensis form spores encased in a protein coat surrounded by a balloon-like exosporium. These structures mediate spore interactions with its environment, including the host immune system, control the transit of molecules that trigger germination and thus are essential for the spore life cycle. Formation of the coat and exosporium has been traditionally visualized by transmission electronic microscopy on fixed cells. Recently, we showed that assembly of the exosporium can be directly observed in live B. cereus cells by super resolution-structured illumination microscopy (SR-SIM) using the membrane MitoTrackerGreen (MTG) dye. Here, we demonstrate that the different steps of coat formation can also be visualized by SR-SIM using MTG and SNAP-cell TMR-star dyes during B. cereus sporulation. We used these markers to characterize a subpopulation of engulfment-defective B. cereus cells that develops at a suboptimal sporulation temperature. Importantly, we predicted and confirmed that synthesis and accumulation of coat material, as well as synthesis of the σK-dependent protein BxpB, occur in cells arrested during engulfment. These results suggest that, unlike the well-studied model organism Bacillus subtilis, the activity of σK is not strictly linked to the state of forespore development in B. cereus.
Collapse
Affiliation(s)
- Armand Lablaine
- INRAE, Avignon Université, UMR SQPOV, 84000, Avignon, France
- MICALIS Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Cyrille Billaudeau
- MICALIS Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Rut Carballido-López
- MICALIS Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Frédéric Carlin
- INRAE, Avignon Université, UMR SQPOV, 84000, Avignon, France
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | | |
Collapse
|
45
|
Marathe A, Zarazúa-Osorio B, Srivastava P, Fujita M. The master regulator for entry into sporulation in Bacillus subtilis becomes a mother cell-specific transcription factor for forespore engulfment. Mol Microbiol 2023; 120:439-461. [PMID: 37485800 DOI: 10.1111/mmi.15132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The Spo0A transcription factor is activated by phosphorylation in starving Bacillus subtilis cells. The activated Spo0A (Spo0A~P) regulates genes controlling entry into sporulation and appears to control mother-cell-specific gene expression after asymmetric division, but the latter remains elusive. Here, we found that Spo0A~P directly binds to three conserved DNA sequences (0A1-3) in the promoter region of the mother cell-specific lytic transglycosylase gene spoIID, which is transcribed by σE -RNA polymerase (RNAP) and negatively controlled by the SpoIIID transcription factor and required for forespore engulfment. Systematic mutagenesis of the 0A boxes revealed that the 0A1 and 0A2 boxes located upstream of the promoter positively control the transcription of spoIID. In contrast, the 0A3 box located downstream of the promoter negatively controls the transcription of spoIID. The mutated SpoIIID binding site located between the -35 and -10 promoter elements causes increased expression of spoIID and reduced sporulation. When the mutations of 0A1, 0A2, and IIID sites are combined, sporulation is restored. Collectively, our data suggest that the mother cell-specific spoIID expression is precisely controlled by the coordination of three factors, Spo0A~P, SpoIIID, and σE -RNAP, for proper sporulation. The conservation of this mechanism across spore-forming species was discussed.
Collapse
Affiliation(s)
- Anuradha Marathe
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | - Priyanka Srivastava
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
46
|
Furuya K, Kiyoshi K, Punjuy C, Yoshida N, Maruyama R, Yasuda T, Watanabe K, Kadokura T, Nakayama S. Effect of spo0A, sigE, sigG, and sigK disruption on butanol production and spore formation in Clostridium saccharoperbutylacetonicum strain N1-4 (ATCC13564). J Biosci Bioeng 2023; 136:198-204. [PMID: 37487916 DOI: 10.1016/j.jbiosc.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
Clostridium saccharoperbutylacetonicum strain N1-4 (ATCC13564) is a butanol-producing strain suitable for application to butanol production from cellulosic materials by co-culture with cellulolytic and thermophilic species, such as Hungateiclostridium thermocellum (synonym: Clostridium thermocellum). The optimal temperature for butanol production by strain N1-4 is 30 °C, and the strain is sensitive to a high culture temperature of 37 °C. Given that spore formation is observed at high frequency when strain N1-4 is cultivated at 37 °C, we assumed in a previous study that the initiation of sporulation is related to a decrease in butanol production. Therefore, to investigate the relationship between butanol production and spore formation, we generated strain N1-4 isolates in which genes related to spore formation were disrupted. The sporulation-related gene disruptants of spo0A, sigE, sigG, and sigK lost the ability to produce heat-resistant spores, irrespective of the culture temperature. Among the gene disruptants produced, only the spo0A disruptant lost butanol-producing ability when cultivated at 30 °C. Interestingly, the sigE disruptant maintained butanol productivity similar to that observed at 30 °C, even when cultivated at 37 °C. In addition, the sigE disruptant successfully produced butanol from Avicel cellulose by co-culture with H. thermocellum at a fermentation temperature of 37 °C.
Collapse
Affiliation(s)
- Kazuhiko Furuya
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Keiji Kiyoshi
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Chaophaya Punjuy
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Naoto Yoshida
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Risa Maruyama
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tatsuki Yasuda
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kota Watanabe
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Toshimori Kadokura
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shunichi Nakayama
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
47
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
48
|
Zhang R, Luo Y, Gang L, Xu Y, Zhang X, Peng Q, Slamti L, Lereclus D, Wang G, Song F. Key amino acids residues enhance the ability of CpcR to activate cry gene expression in Bacillus thuringiensis. Res Microbiol 2023; 174:104051. [PMID: 36907231 DOI: 10.1016/j.resmic.2023.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/11/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023]
Abstract
Typical Bacillus thuringiensis (Bt) produces one or more parasporal crystals composed of insecticidal Cry proteins during the sporulation, and the parasporal crystals and spores are produced from the same cell. Strain Bt LM1212 is different from typical Bt strains in that its crystals and spores are produced in different cells. Previous studies have found that the cell differentiation process of Bt LM1212 is related to the transcription factor CpcR which activates the cry-gene promoters. In addition, CpcR could activate the Bt LM1212 cry35-like gene promoter (P35) when introduced in the heterologous HD73- strain. It was shown that P35 was only activated in non-sporulating cells. In this study, the peptidic sequences of CpcR homologous proteins found in other strains of the Bacillus cereus group were used as references to identify two key amino acid sites for CpcR activity. The function of these amino acids was investigated by measuring P35 activation by CpcR in strain HD73-. These results will lay a foundation for the optimization of the insecticidal protein expression system in non-sporulating cells.
Collapse
Affiliation(s)
- Ruibin Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yang Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Lili Gang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yanrong Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Leyla Slamti
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| | - Didier Lereclus
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
49
|
Millgaard M, Bidart GN, Pogrebnyakov I, Nielsen AT, Welner DH. An improved integrative GFP-based vector for genetic engineering of Parageobacillus thermoglucosidasius facilitates the identification of a key sporulation regulator. AMB Express 2023; 13:44. [PMID: 37154828 PMCID: PMC10167077 DOI: 10.1186/s13568-023-01544-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Parageobacillus thermoglucosidasius is a thermophilic Gram-positive bacterium, which is a promising host organism for sustainable bio-based production processes. However, to take full advantage of the potential of P. thermoglucosidasius, more efficient tools for genetic engineering are required. The present study describes an improved shuttle vector, which speeds up recombination-based genomic modification by incorporating a thermostable sfGFP variant into the vector backbone. This additional selection marker allows for easier identification of recombinants, thereby removing the need for several culturing steps. The novel GFP-based shuttle is therefore capable of facilitating faster metabolic engineering of P. thermoglucosidasius through genomic deletion, integration, or exchange. To demonstrate the efficiency of the new system, the GFP-based vector was utilised for deletion of the spo0A gene in P. thermoglucosidasius DSM2542. This gene is known to be a key regulator of sporulation in Bacillus subtilis, and it was therefore hypothesised that the deletion of spo0A in P. thermoglucosiadius would produce an analogous sporulation-inhibited phenotype. Subsequent analyses of cell morphology and culture heat resistance suggests that the P. thermoglucosidasius ∆spo0A strain is sporulation-deficient. This strain may be an excellent starting point for future cell factory engineering of P. thermoglucosidasius, as the formation of endospores is normally not a desired trait in large-scale production.
Collapse
Affiliation(s)
- Marie Millgaard
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Gonzalo Nahuel Bidart
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Ivan Pogrebnyakov
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| | - Ditte Hededam Welner
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
50
|
Pagliarini E, Gaggìa F, Quartieri M, Toselli M, Di Gioia D. Yield and Nutraceutical Value of Lettuce and Basil Improved by a Microbial Inoculum in Greenhouse Experiments. PLANTS (BASEL, SWITZERLAND) 2023; 12:1700. [PMID: 37111923 PMCID: PMC10145599 DOI: 10.3390/plants12081700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 06/19/2023]
Abstract
Members of Bacillus spp. have been widely used to enrich the soil/root interface to provide plant growth promoting activities. A new isolate, namely to Bacillus sp. VWC18, has been tested under greenhouse conditions in lettuce (Lactuca sativa L.) pots at different concentrations (103, 105, 107, and 109 CFU·mL-1) and application time (single inoculum at transplant and multiple inoculum every ten days) to evaluate the best application dose and frequency. Analysis of foliar yield, main nutrients, and minerals evidenced a significant response for all applications. The lowest (103 CFU·mL-1) and the highest doses (109 CFU·mL-1), applied every ten days until harvest, had the greatest efficacy; the nutrient yield (N, K, P, Na, Ca, Fe, Mg, Mn, Cu, and B) increased more than twice. A new randomized block design with three replicates was then performed in lettuce and basil (Ocinum basilicum L.), with the two best performing concentrations applied every ten days. In addition to previous analysis, root weight, chlorophyll, and carotenoids were also examined. Both experiments confirmed the previous results: inoculation of the substrate with Bacillus sp. VWC18 promoted plant growth, chlorophyll, and mineral uptake in both crop species. Root weight duplicated or triplicated compared to control plants, and chlorophyll concentration reached even higher values. Both parameters had a dose-dependent increase.
Collapse
|