1
|
Ohtsuka H, Kawai S, Otsubo Y, Shimasaki T, Yamashita A, Aiba H. Metarhizium robertsii COH1 functionally complements Schizosaccharomyces pombe Ecl family proteins. J GEN APPL MICROBIOL 2024; 69:335-338. [PMID: 37813640 DOI: 10.2323/jgam.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The fission yeast Schizosaccharomyces pombe ecl family genes respond to various starvation signals and induce appropriate intracellular responses, including the extension of chronological lifespan and induction of sexual differentiation. Herein, we propose that the colonization of hemocoel 1 (COH1) protein of Metarhizium robertsii, an insect-pathogenic fungus, is a functional homolog of S. pombe Ecl1 family proteins.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Sawa Kawai
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| |
Collapse
|
2
|
Zhou S, Lin Y, Cai Y, Li L, Yao X, Sun K, Song Q, Zhang Q. The response of rhubarb to smut infection is revealed through a comparative transcriptome and metabolome study. PLANTA 2023; 259:27. [PMID: 38112830 DOI: 10.1007/s00425-023-04306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
MAIN CONCLUSION Integrated transcriptome and metabolome analysis have unveiled the physiological and molecular responses of rhubarb to infection by smut fungi. Rhubarb is an important medicinal plant that is easily infected by smut fungi during its growth. Thus far, no research on the influence of smut fungi on the growth of rhubarb and its secondary metabolism has been conducted. In this study, petioles of Chinese rhubarb (Rheum officinale) [healthy or infected with smut fungus (Thecaphora schwarzmaniana)] were characterized. Microscopic structure, global gene expression profiling, global metabolic profiling, and key enzyme activity and metabolite levels in infected plants were analyzed. Infection by smut fungi resulted in numerous holes inside the petiole tissue and led to visible tumors on the external surface of the petiole. Through metabolic changes, T. schwarzmaniana induced the production of specific sugars, lipids, and amino acids, and inhibited the metabolism of phenolics and flavonoids in R. officinale. The concentrations of key medicinal compounds (anthraquinones) were decreased because of smut fungus infection. In terms of gene expression, the presence of T. schwarzmaniana led to upregulation of the genes associated with nutrient (sugar, amino acid, etc.) transport and metabolism. The gene expression profiling showed a stimulated cell division activity (the basis of tumor formation). Although plant antioxidative response was enhanced, the plant defense response against pathogen was suppressed by T. schwarzmaniana, as indicated by the expression profiling of genes involved in biotic and abiotic stress-related hormone signaling and the synthesis of plant disease resistance proteins. This study demonstrated physiological and molecular changes in R. officinale under T. schwarzmaniana infection, reflecting the survival tactics employed by smut fungus for parasitizing rhubarb.
Collapse
Affiliation(s)
- Shuangshuang Zhou
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Nanchuan Institute of Traditional Chinese Medicinal Plants, Chongqing, 408407, China
| | - Ya Lin
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Nanchuan Institute of Traditional Chinese Medicinal Plants, Chongqing, 408407, China
| | - Yu Cai
- Chongqing Nanchuan Institute of Traditional Chinese Medicinal Plants, Chongqing, 408407, China
| | - Linfang Li
- Teaching and research group of biology, Kunming No.8 High School, Kunming, China
| | - Xiaohui Yao
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Teaching and research group of biology, Hohhot 35th Middle School, Hohhot, China
| | - Kuan Sun
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qin Song
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qingwei Zhang
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China.
- Chongqing Nanchuan Institute of Traditional Chinese Medicinal Plants, Chongqing, 408407, China.
| |
Collapse
|
3
|
Holden S, Bakkeren G, Hubensky J, Bamrah R, Abbasi M, Qutob D, de Graaf ML, Kim SH, Kutcher HR, McCallum BD, Randhawa HS, Iqbal M, Uloth K, Burlakoti RR, Brar GS. Uncovering the history of recombination and population structure in western Canadian stripe rust populations through mating type alleles. BMC Biol 2023; 21:233. [PMID: 37880702 PMCID: PMC10601111 DOI: 10.1186/s12915-023-01717-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The population structure of crop pathogens such as Puccinia striiformis f. sp. tritici (Pst), the cause of wheat stripe rust, is of interest to researchers looking to understand these pathogens on a molecular level as well as those with an applied focus such as disease epidemiology. Cereal rusts can reproduce sexually or asexually, and the emergence of novel lineages has the potential to cause serious epidemics such as the one caused by the 'Warrior' lineage in Europe. In a global context, Pst lineages in Canada were not well-characterized and the origin of foreign incursions was not known. Additionally, while some Pst mating type genes have been identified in published genomes, there has been no rigorous assessment of mating type diversity and distribution across the species. RESULTS We used a whole-genome/transcriptome sequencing approach for the Canadian Pst population to identify lineages in their global context and evidence tracing foreign incursions. More importantly: for the first time ever, we identified nine alleles of the homeodomain mating type locus in the worldwide Pst population and show that previously identified lineages exhibit a single pair of these alleles. Consistently with the literature, we find only two pheromone receptor mating type alleles. We show that the recent population shift from the 'PstS1' lineage to the 'PstS1-related' lineage is also associated with the introduction of a novel mating type allele (Pst-b3-HD) to the Canadian population. We also show evidence for high levels of mating type diversity in samples associated with the Himalayan center of diversity for Pst, including a single Canadian race previously identified as 'PstPr' (probable recombinant) which we identify as a foreign incursion, most closely related to isolates sampled from China circa 2015. CONCLUSIONS These data describe a recent shift in the population of Canadian Pst field isolates and characterize homeodomain-locus mating type alleles in the global Pst population which can now be utilized in testing several research questions and hypotheses around sexuality and hybridization in rust fungi.
Collapse
Affiliation(s)
- Samuel Holden
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, BC, Canada.
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada (AAFC), Summerland Research and Development Center, Summerland, BC, Canada
| | - John Hubensky
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, BC, Canada
| | - Ramandeep Bamrah
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, BC, Canada
| | - Mehrdad Abbasi
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, BC, Canada
| | - Dinah Qutob
- Kent State University, Stark Campus, North Canton, OH, USA
| | - Mei-Lan de Graaf
- Agriculture and Agri-Food Canada (AAFC), Summerland Research and Development Center, Summerland, BC, Canada
| | - Sang Hu Kim
- Agriculture and Agri-Food Canada (AAFC), Summerland Research and Development Center, Summerland, BC, Canada
| | - Hadley R Kutcher
- Department of Plant Science/Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brent D McCallum
- Agriculture and Agri-Food Canada (AAFC), Brandon Research and Development Center, Brandon, MB, Canada
| | - Harpinder S Randhawa
- Agriculture and Agri-Food Canada (AAFC), Lethbridge Research and Development Center, Lethbridge, AB, Canada
| | - Muhammad Iqbal
- Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Keith Uloth
- British Columbia Pest Monitoring Network, Dawson Creek, BC, Canada
| | - Rishi R Burlakoti
- Agriculture and Agri-Food Canada (AAFC), Agassiz Research and Development Center, Agassiz, BC, Canada
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, BC, Canada.
| |
Collapse
|
4
|
Li S, Yang M, Yao T, Xia W, Ye Z, Zhang S, Li Y, Zhang Z, Song R. Diploid mycelia of Ustilago esculenta fails to maintain sustainable proliferation in host plant. Front Microbiol 2023; 14:1199907. [PMID: 37555064 PMCID: PMC10405623 DOI: 10.3389/fmicb.2023.1199907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Smut fungi display a uniform life cycle including two phases: a saprophytic phase in vitro and a parasitic phase in host plants. Several apathogenic smut fungi are found, lacking suitable hosts in their habitat. Interestingly, MT-type Ustilago esculenta was found to maintain a parasitic life, lacking the saprophytic phase. Its long period of asexual proliferation in plant tissue results in severe defects in certain functions. In this study, the growth dynamics of U. esculenta in plant tissues were carefully observed. The mycelia of T- and MT-type U. esculenta exhibit rapid growth after karyogamy and aggregate between cells. While T-type U. esculenta successfully forms teliospores after aggregation, the aggregated mycelia of MT-type U. esculenta gradually disappeared after a short period of massive proliferation. It may be resulted by the lack of nutrition such as glucose and sucrose. After overwintering, infected Zizania latifolia plants no longer contained diploid mycelia resulting from karyogamy. This indicated that diploid mycelia failed to survive in plant tissues. It seems that diploid mycelium only serves to generate teliospores. Notably, MT-type U. esculenta keeps the normal function of karyogamy, though it is not necessary for its asexual life in plant tissue. Further investigations are required to uncover the underlying mechanism, which would improve our understanding of the life cycle of smut fungi and help the breeding of Z. latifolia.
Collapse
Affiliation(s)
- Shiyu Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Mengfei Yang
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Tongfu Yao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Shangfa Zhang
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Yipeng Li
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Zhongjin Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Ruiqi Song
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| |
Collapse
|
5
|
Pérez Rodríguez F, Valdés-Santiago L, Noé García-Chávez J, Luis Castro-Guillén J, Ruiz-Herrera J. Analysis of gene expression related to polyamine concentration and dimorphism induced in ornithine decarboxylase (odc) and spermidine synthase (spd) Ustilago maydis mutants. Fungal Genet Biol 2023; 166:103792. [PMID: 36996931 DOI: 10.1016/j.fgb.2023.103792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Polyamines are ubiquitous small organic cations, and their roles as regulators of several cellular processes are widely recognized. They are implicated in the key stages of the fungal life cycle. Ustilago maydis is a phytopathogenic fungus, the causal agent of common smut of maize and a model system to understand dimorphism and virulence. U. maydis grows in yeast form at pH 7 and it can develop its mycelial form in vitro at pH 3. Δodc mutants that are unable to synthesize polyamines, grew as yeast at pH 3 with a low putrescine concentration, and to complete its dimorphic transition high putrescine concentration was required. Δspd mutants required spermidine to grow and cannot form mycelium at pH 3. In this work, the increased expression of the mating genes, mfa1 and mfa2, on Δodc mutants, was related to high putrescine concentration. Global gene expression analysis comparisons of Δodc and Δspd U. maydis mutants indicated that 2,959 genes were differentially expressed in the presence of exogenous putrescine at pH 7 and 475 genes at pH 3. While, in Δspd mutant, the expression of 1,426 genes was affected by exogenous spermine concentration at pH 7 and 11 genes at pH 3. Additionally, we identified 28 transcriptional modules with correlated expression during seven tested conditions: mutant genotype, morphology (yeast, and mycelium), pH, and putrescine or spermidine concentration. Furthermore, significant differences in transcript levels were noted for genes in modules relating to pH and genotype genes involved in ribosome biogenesis, mitochondrial oxidative phosphorylation, N-glycan synthesis, and Glycosylphosphatidylinositol (GPI)-anchor. In summary, our results offer a valuable tool for the identification of potential factors involved in phenomena related to polyamines and dimorphism.
Collapse
|
6
|
Agisha VN, Nalayeni K, Ashwin NMR, Vinodhini RT, Jeyalekshmi K, Suraj Kumar M, Ramesh Sundar A, Malathi P, Viswanathan R. Molecular Discrimination of Opposite Mating Type Haploids of Sporisorium scitamineum and Establishing Their Dimorphic Transitions During Interaction with Sugarcane. SUGAR TECH 2022; 24:1430-1440. [DOI: 10.1007/s12355-021-01085-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023]
|
7
|
Agisha VN, Nalayeni K, Ashwin NMR, Vinodhini RT, Jeyalekshmi K, Suraj Kumar M, Ramesh Sundar A, Malathi P, Viswanathan R. Molecular Discrimination of Opposite Mating Type Haploids of Sporisorium scitamineum and Establishing Their Dimorphic Transitions During Interaction with Sugarcane. SUGAR TECH 2022; 24:1430-1440. [DOI: https:/doi.org/10.1007/s12355-021-01085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/15/2021] [Indexed: 03/09/2023]
|
8
|
The Fungal Protein Mes1 Is Required for Morphogenesis and Virulence in the Dimorphic Phytopathogen Ustilago maydis. J Fungi (Basel) 2022; 8:jof8080759. [PMID: 35893127 PMCID: PMC9331856 DOI: 10.3390/jof8080759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Polarized growth is a defining property of filamentous fungi, which plays an important role in different aspects of their biology, including virulence. However, little information is available about the determinants of cell surface organization and their role in polarized growth. The fungal protein MesA was identified in a genetic screen in Aspergillus nidulans and is involved in the stabilization of the polarity axes, but it has no evident role in budding yeast. In this work, I present evidence that in the dimorphic fungal phytopathogen Ustilago maydis MesA/Mes1 is involved in cell wall stability and polarized growth. mes1 mutants were more sensitive to drugs provoking cell wall stress, and they displayed a temperature-sensitive phenotype. Actin cytoskeleton was disorganized in a mes1 mutant, suggesting that there is a connection between Mes1, the actin cytoskeleton and polarized morphogenesis. The septin ring was also absent from the bud tip, but not the bud neck. Deletion of mes1 provoked defects in endocytosis and vacuolar organization in the cells. Mes1 was essential for strong polarized growth in the hyphal form, but it was dispensable during low or moderate polarized growth in the yeast form in U. maydis at a permissive temperature. Consistently, mes1 mutants showed delayed mating and they were avirulent.
Collapse
|
9
|
Regulator of G Protein Signaling Contributes to the Development and Aflatoxin Biosynthesis in Aspergillus flavus through the Regulation of Gα Activity. Appl Environ Microbiol 2022; 88:e0024422. [PMID: 35638847 PMCID: PMC9238415 DOI: 10.1128/aem.00244-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterotrimeric G-proteins play crucial roles in growth, asexual development, and pathogenicity of fungi. The regulator of G-protein signaling (RGS) proteins function as negative regulators of the G proteins to control the activities of GTPase in Gα subunits. In this study, we functionally characterized the six RGS proteins (i.e., RgsA, RgsB, RgsC, RgsD, RgsE, and FlbA) in the pathogenic fungus Aspergillus flavus. All the aforementioned RGS proteins were also found to be functionally different in conidiation, aflatoxin (AF) biosynthesis, and pathogenicity in A. flavus. Apart from FlbA, all other RGS proteins play a negative role in regulating both the synthesis of cyclic AMP (cAMP) and the activation of protein kinase A (PKA). Additionally, we also found that although RgsA and RgsE play a negative role in regulating the FadA-cAMP/PKA pathway, they function distinctly in aflatoxin biosynthesis. Similarly, RgsC is important for aflatoxin biosynthesis by negatively regulating the GanA-cAMP/PKA pathway. PkaA, which is the cAMP-dependent protein kinase catalytic subunit, also showed crucial influences on A. flavus phenotypes. Overall, our results demonstrated that RGS proteins play multiple roles in the development, pathogenicity, and AF biosynthesis in A. flavus through the regulation of Gα subunits and cAMP-PKA signals. IMPORTANCE RGS proteins, as crucial regulators of the G protein signaling pathway, are widely distributed in fungi, while little is known about their roles in Aspergillus flavus development and aflatoxin. In this study, we identified six RGS proteins in A. flavus and revealed that these proteins have important functions in the regulation of conidia, sclerotia, and aflatoxin formation. Our findings provide evidence that the RGS proteins function upstream of cAMP-PKA signaling by interacting with the Gα subunits (GanA and FadA). This study provides valuable information for controlling the contamination of A. flavus and mycotoxins produced by this fungus in pre- and postharvest of agricultural crops.
Collapse
|
10
|
Ustilago maydis Secreted Endo-Xylanases Are Involved in Fungal Filamentation and Proliferation on and Inside Plants. J Fungi (Basel) 2021; 7:jof7121081. [PMID: 34947062 PMCID: PMC8706147 DOI: 10.3390/jof7121081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/06/2023] Open
Abstract
Plant pathogenic fungi must be able to degrade host cell walls in order to penetrate and invade plant tissues. Among the plant cell wall degrading enzymes (PCWDEs) produced, xylanases are of special interest since its degradation target, xylan, is one of the main structural polysaccharides in plant cell walls. In the biotrophic fungus Ustilago maydis, attempts to characterize PCWDEs required for virulence have been unsuccessful, most likely due to functional redundancy. In previous high-throughput screening, we found one xylanase to be important for U. maydis infection. Here, we characterize the entire U. maydis endo-xylanase family, comprising two enzymes from the glycoside hydrolase (GH) 10 family, Xyn1 and Xyn2, one from GH11, Xyn11A, and one from GH43, Xyn3. We show that all endo-xylanases except Xyn3 are secreted and involved in infection in a non-redundant manner, suggesting different roles for each xylanase in this process. Taking a closer look inside the plant during the pathogenic process, we observed that all secreted xylanases were necessary for fungal proliferation. Finally, we found that at least Xyn11A accumulated in the apoplast of the infected plant after three days, highlighting the role of these enzymes as important secreted proteins during fungal proliferation inside plant tissues.
Collapse
|
11
|
Brych A, Haas FB, Parzefall K, Panzer S, Schermuly J, Altmüller J, Engelsdorf T, Terpitz U, Rensing SA, Kiontke S, Batschauer A. Coregulation of gene expression by White collar 1 and phytochrome in Ustilago maydis. Fungal Genet Biol 2021; 152:103570. [PMID: 34004340 DOI: 10.1016/j.fgb.2021.103570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Ustilago maydis encodes ten predicted light-sensing proteins. The biological functions of only a few of them are elucidated. Among the characterized ones are two DNA-photolyases and two rhodopsins that act as DNA-repair enzymes or green light-driven proton pumps, respectively. Here we report on the role of two other photoreceptors in U. maydis, namely White collar 1 (Wco1) and Phytochrome 1 (Phy1). We show that they bind flavins or biliverdin as chromophores, respectively. Both photoreceptors undergo a photocycle in vitro. Wco1 is the dominant blue light receptor in the saprophytic phase, controlling all of the 324 differentially expressed genes in blue light. U. maydis also responds to red and far-red light. However, the number of red or far-red light-controlled genes is less compared to blue light-regulated ones. Moreover, most of the red and far-red light-controlled genes not only depend on Phy1 but also on Wco1, indicating partial coregulation of gene expression by both photoreceptors. GFP-fused Wco1 is preferentially located in the nucleus, Phy1 in the cytosol, thus providing no hint that these photoreceptors directly interact or operate within the same complex. This is the first report on a functional characterization and coaction of White collar 1 and phytochrome orthologs in basidiomycetes.
Collapse
Affiliation(s)
- Annika Brych
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Fabian B Haas
- University of Marburg, Department of Biology, Plant Cell Biology, Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Germany
| | - Katharina Parzefall
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Sabine Panzer
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Jeanette Schermuly
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Timo Engelsdorf
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Ulrich Terpitz
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Stefan A Rensing
- University of Marburg, Department of Biology, Plant Cell Biology, Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Germany
| | - Stephan Kiontke
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Alfred Batschauer
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany.
| |
Collapse
|
12
|
Hartmann FE, Duhamel M, Carpentier F, Hood ME, Foulongne‐Oriol M, Silar P, Malagnac F, Grognet P, Giraud T. Recombination suppression and evolutionary strata around mating-type loci in fungi: documenting patterns and understanding evolutionary and mechanistic causes. THE NEW PHYTOLOGIST 2021; 229:2470-2491. [PMID: 33113229 PMCID: PMC7898863 DOI: 10.1111/nph.17039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/03/2020] [Indexed: 05/08/2023]
Abstract
Genomic regions determining sexual compatibility often display recombination suppression, as occurs in sex chromosomes, plant self-incompatibility loci and fungal mating-type loci. Regions lacking recombination can extend beyond the genes determining sexes or mating types, by several successive steps of recombination suppression. Here we review the evidence for recombination suppression around mating-type loci in fungi, sometimes encompassing vast regions of the mating-type chromosomes. The suppression of recombination at mating-type loci in fungi has long been recognized and maintains the multiallelic combinations required for correct compatibility determination. We review more recent evidence for expansions of recombination suppression beyond mating-type genes in fungi ('evolutionary strata'), which have been little studied and may be more pervasive than commonly thought. We discuss testable hypotheses for the ultimate (evolutionary) and proximate (mechanistic) causes for such expansions of recombination suppression, including (1) antagonistic selection, (2) association of additional functions to mating-type, such as uniparental mitochondria inheritance, (3) accumulation in the margin of nonrecombining regions of various factors, including deleterious mutations or transposable elements resulting from relaxed selection, or neutral rearrangements resulting from genetic drift. The study of recombination suppression in fungi could thus contribute to our understanding of recombination suppression expansion across a broader range of organisms.
Collapse
Affiliation(s)
- Fanny E. Hartmann
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Marine Duhamel
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
- Ruhr‐Universität Bochum, Evolution of Plants and Fungi ‐ Gebäude ND 03/174Universitätsstraße150, 44801 BochumGermany
| | - Fantin Carpentier
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Michael E. Hood
- Biology Department, Science CentreAmherst CollegeAmherstMA01002USA
| | | | - Philippe Silar
- Lab Interdisciplinaire Energies DemainUniv Paris DiderotSorbonne Paris CiteParis 13F‐75205France
| | - Fabienne Malagnac
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Pierre Grognet
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Tatiana Giraud
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| |
Collapse
|
13
|
Updates in Paracoccidioides Biology and Genetic Advances in Fungus Manipulation. J Fungi (Basel) 2021; 7:jof7020116. [PMID: 33557381 PMCID: PMC7915485 DOI: 10.3390/jof7020116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
The dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM). This disease is endemic in Latin America and primarily affects workers in rural areas. PCM is considered a neglected disease, despite being a disabling disease that has a notable impact on the public health system. Paracoccidioides spp. are thermally dimorphic fungi that present infective mycelia at 25 °C and differentiate into pathogenic yeast forms at 37 °C. This transition involves a series of morphological, structural, and metabolic changes which are essential for their survival inside hosts. As a pathogen, the fungus is subjected to several varieties of stress conditions, including the host immune response, which involves the production of reactive nitrogen and oxygen species, thermal stress due to temperature changes during the transition, pH alterations within phagolysosomes, and hypoxia inside granulomas. Over the years, studies focusing on understanding the establishment and development of PCM have been conducted with several limitations due to the low effectiveness of strategies for the genetic manipulation of Paracoccidioides spp. This review describes the most relevant biological features of Paracoccidioides spp., including aspects of the phylogeny, ecology, stress response, infection, and evasion mechanisms of the fungus. We also discuss the genetic aspects and difficulties of fungal manipulation, and, finally, describe the advances in molecular biology that may be employed in molecular research on this fungus in the future.
Collapse
|
14
|
van der Linde K, Göhre V. How Do Smut Fungi Use Plant Signals to Spatiotemporally Orientate on and In Planta? J Fungi (Basel) 2021; 7:107. [PMID: 33540708 PMCID: PMC7913117 DOI: 10.3390/jof7020107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022] Open
Abstract
Smut fungi represent a large group of biotrophic plant pathogens that cause extensive yield loss and are also model organisms for studying plant-pathogen interactions. In recent years, they have become biotechnological tools. After initial penetration of the plant epidermis, smut fungi grow intra-and intercellularly without disrupting the plant-plasma membrane. Following the colonialization step, teliospores are formed and later released. While some smuts only invade the tissues around the initial penetration site, others colonize in multiple plant organs resulting in spore formation distal from the original infection site. The intimate contact zone between fungal hyphae and the host is termed the biotrophic interaction zone and enables exchange of signals and nutrient uptake. Obviously, all steps of on and in planta growth require fine sensing of host conditions as well as reprogramming of the host by the smut fungus. In this review, we highlight selected examples of smut fungal colonization styles, directional growth in planta, induction of spore formation, and the signals required, pointing to excellent reviews for details, to draw attention to some of the open questions in this important research field.
Collapse
Affiliation(s)
- Karina van der Linde
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Vera Göhre
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Plücker L, Bösch K, Geißl L, Hoffmann P, Göhre V. Genetic Manipulation of the Brassicaceae Smut Fungus Thecaphora thlaspeos. J Fungi (Basel) 2021; 7:jof7010038. [PMID: 33435409 PMCID: PMC7826943 DOI: 10.3390/jof7010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Abstract
Investigation of plant–microbe interactions greatly benefit from genetically tractable partners to address, molecularly, the virulence and defense mechanisms. The smut fungus Ustilago maydis is a model pathogen in that sense: efficient homologous recombination and a small genome allow targeted modification. On the host side, maize is limiting with regard to rapid genetic alterations. By contrast, the model plant Arabidopsis thaliana is an excellent model with a vast amount of information and techniques as well as genetic resources. Here, we present a transformation protocol for the Brassicaceae smut fungus Thecaphora thlaspeos. Using the well-established methodology of protoplast transformation, we generated the first reporter strains expressing fluorescent proteins to follow mating. As a proof-of-principle for homologous recombination, we deleted the pheromone receptor pra1. As expected, this mutant cannot mate. Further analysis will contribute to our understanding of the role of mating for infection biology in this novel model fungus. From now on, the genetic manipulation of T. thlaspeos, which is able to colonize the model plant A. thaliana, provides us with a pathosystem in which both partners are genetically amenable to study smut infection biology.
Collapse
Affiliation(s)
| | | | | | | | - Vera Göhre
- Correspondence: ; Tel.: +49-211-811-1529
| |
Collapse
|
16
|
de la Torre A, Castanheira S, Pérez-Martín J. Incompatibility between proliferation and plant invasion is mediated by a regulator of appressorium formation in the corn smut fungus Ustilago maydis. Proc Natl Acad Sci U S A 2020; 117:30599-30609. [PMID: 33199618 PMCID: PMC7720189 DOI: 10.1073/pnas.2006909117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant pathogenic fungi often developed specialized infection structures to breach the outer surface of a host plant. These structures, called appressoria, lead the invasion of the plant by the fungal hyphae. Studies in different phytopathogenic fungi showed that appressorium formation seems to be subordinated to the cell cycle. This subordination ensures the loading in the invading hypha of the correct genetic information to proceed with plant infection. However, how the cell cycle transmits its condition to the genetic program controlling appressorium formation and promoting the plant's invasion is unknown. Our results have uncovered how this process occurs for the appressorium of Ustilago maydis, the agent responsible for corn smut disease. Here, we described that the complex Clb2-cyclin-dependent kinase (Cdk)1, one of the master regulators of G2/M cell cycle progression in U. maydis, interacts and controls the subcellular localization of Biz1, a transcriptional factor required for the activation of the appressorium formation. Besides, Biz1 can arrest the cell cycle by down-regulation of the gene encoding a second b-cyclin Clb1 also required for the G2/M transition. These results revealed a negative feedback loop between appressorium formation and cell cycle progression in U. maydis, which serves as a "toggle switch" to control the fungal decision between infecting the plant or proliferating out of the plant.
Collapse
Affiliation(s)
| | - Sónia Castanheira
- Instituto de Biología Funcional y Genómica (CSIC), 37007 Salamanca, Spain
| | - José Pérez-Martín
- Instituto de Biología Funcional y Genómica (CSIC), 37007 Salamanca, Spain
| |
Collapse
|
17
|
Schmitz L, Kronstad JW, Heimel K. Conditional gene expression reveals stage-specific functions of the unfolded protein response in the Ustilago maydis-maize pathosystem. MOLECULAR PLANT PATHOLOGY 2020; 21:258-271. [PMID: 31802604 PMCID: PMC6988420 DOI: 10.1111/mpp.12893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ustilago maydis is a model organism for the study of biotrophic plant-pathogen interactions. The sexual and pathogenic development of the fungus are tightly connected since fusion of compatible haploid sporidia is prerequisite for infection of the host plant, maize (Zea mays). After plant penetration, the unfolded protein response (UPR) is activated and required for biotrophic growth. The UPR is continuously active throughout all stages of pathogenic development in planta. However, since development of UPR deletion mutants stops directly after plant penetration, the role of an active UPR at later stages of development remained to be determined. Here, we established a gene expression system for U. maydis that uses endogenous, conditionally active promoters to either induce or repress expression of a gene of interest during different stages of plant infection. Integration of the expression constructs into the native genomic locus and removal of resistance cassettes were required to obtain a wild-type-like expression pattern. This indicates that genomic localization and chromatin structure are important for correct promoter activity and gene expression. By conditional expression of the central UPR regulator, Cib1, in U. maydis, we show that a functional UPR is required for continuous plant defence suppression after host infection and that U. maydis relies on a robust control system to prevent deleterious UPR hyperactivation.
Collapse
Affiliation(s)
- Lara Schmitz
- Institute for Microbiology and GeneticsDepartment of Molecular Microbiology and GeneticsGöttingen Center for Molecular Biosciences (GZMB)University of GöttingenGrisebachstr. 8D‐37077GöttingenGermany
- International Research Training Group 2172 PRoTECTGöttingen, VancouverGermany
| | - James W. Kronstad
- International Research Training Group 2172 PRoTECTGöttingen, VancouverGermany
- Michael Smith LaboratoriesDepartment of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Kai Heimel
- Institute for Microbiology and GeneticsDepartment of Molecular Microbiology and GeneticsGöttingen Center for Molecular Biosciences (GZMB)University of GöttingenGrisebachstr. 8D‐37077GöttingenGermany
- International Research Training Group 2172 PRoTECTGöttingen, VancouverGermany
| |
Collapse
|
18
|
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors in fungi. These receptors have an important role in the transduction of extracellular signals into intracellular sites in response to diverse stimuli. They enable fungi to coordinate cell function and metabolism, thereby promoting their survival and propagation, and sense certain fundamentally conserved elements, such as nutrients, pheromones, and stress, for adaptation to their niches, environmental stresses, and host environment, causing disease and pathogen virulence. This chapter highlights the role of GPCRs in fungi in coordinating cell function and metabolism. Fungal cells sense the molecular interactions between extracellular signals. Their respective sensory systems are described here in detail.
Collapse
Affiliation(s)
- Abd El-Latif Hesham
- Department of Genetics Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | | | | | - Vijai Kumar Gupta
- AgroBioSciences and Chemical & Biochemical Sciences Department, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
19
|
Choi YH, Lee MW, Igbalajobi OA, Yu JH, Shin KS. Transcriptomic and Functional Studies of the RGS Protein Rax1 in Aspergillus fumigatus. Pathogens 2019; 9:pathogens9010036. [PMID: 31906167 PMCID: PMC7168642 DOI: 10.3390/pathogens9010036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022] Open
Abstract
In the comparative transcriptomic studies of wild type (WT) and rax1 null mutant strains, we obtained an average of 22,222,727 reads of 101 bp per sample and found that 183 genes showed greater than 2.0-fold differential expression, where 92 and 91 genes were up-and down-regulated in Δrax1 compared to WT, respectively. In accordance with the significantly reduced levels of gliM and casB transcripts in the absence of rax1, the Δrax1 mutant exhibited increased sensitivity to exogenous gliotoxin (GT) without affecting levels of GT production. Moreover, Δrax1 resulted in significantly restricted colony growth and reduced viability under endoplasmic reticulum stress condition. In summary, Rax1 positively affects expression of gliM and metacaspase genes.
Collapse
Affiliation(s)
- Yong-Ho Choi
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Korea;
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Chungcheongnam-do 31151, Korea;
| | - Olumuyiwa Ayokunle Igbalajobi
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber Weg 4, D-76131 Karlsruhe, Germany;
| | - Jae-Hyuk Yu
- Departments of Bacteriology and Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: (J.-H.Y.); (K.-S.S.)
| | - Kwang-Soo Shin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Korea;
- Correspondence: (J.-H.Y.); (K.-S.S.)
| |
Collapse
|
20
|
Zhang Y, Wu M, Ge Q, Yang M, Xia W, Cui H, Yu X, Zhang S, Ye Z. Cloning and disruption of the UeArginase in Ustilago esculenta: evidence for a role of arginine in its dimorphic transition. BMC Microbiol 2019; 19:208. [PMID: 31488050 PMCID: PMC6727352 DOI: 10.1186/s12866-019-1588-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 08/29/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Ustilago esculenta, a typical dimorphic fungus could infect Zizania latifolia and induce host stem swollen to form an edible vegetable called Jiaobai in China. The strains differentiation especially in the mating ability and pathogenicity is closely related to different phenotypes of Jiaobai formed in the fields. Dimorphic switching, a tightly regulated processes, is essential for the pathogenetic development of dimorphic fungi. In responses to environment cues, dimorphic switching can be activated through two conserved cell signaling pathways-PKA and MAPK pathways. Previous study indicated that exogenous arginine could induce hyphal formation in several dimorphic fungi through hydrolysis by arginase, but inhibit the dimorphic transition of U. esculenta. We conducted this study to reveal the function of arginine on dimorphic transition of U. esculenta. RESULTS In this study, we found that arginine, but not its anabolites, could slow down the dimorphic transition of U. esculenta proportionally to the concentration of arginine. Besides, UeArginase, predicated coding arginase in U. esculenta was cloned and characterized. UeArginase mutants could actually increase the content of endogenous arginine, and slow down the dimorphic transition on either nutritious rich or poor medium. Either adding exogenous arginine or UeArginase deletion lead to down regulated expressions of UePkaC, UePrf1, mfa1.2, mfa2.1, pra1 and pra2, along with an increased content of arginine during mating process. CONCLUSION Results of this study indicated a direct role of arginine itself on the inhibition of dimorphic transition of U. esculenta, independent of its hydrolysis by UeArginase.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Min Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Qianwen Ge
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Mengfei Yang
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Shangfa Zhang
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
21
|
Courville KJ, Frantzeskakis L, Gul S, Haeger N, Kellner R, Heßler N, Day B, Usadel B, Gupta YK, van Esse HP, Brachmann A, Kemen E, Feldbrügge M, Göhre V. Smut infection of perennial hosts: the genome and the transcriptome of the Brassicaceae smut fungus Thecaphora thlaspeos reveal functionally conserved and novel effectors. THE NEW PHYTOLOGIST 2019; 222:1474-1492. [PMID: 30663769 DOI: 10.1111/nph.15692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 05/25/2023]
Abstract
Biotrophic fungal plant pathogens can balance their virulence and form intricate relationships with their hosts. Sometimes, this leads to systemic host colonization over long time scales without macroscopic symptoms. However, how plant-pathogenic endophytes manage to establish their sustained systemic infection remains largely unknown. Here, we present a genomic and transcriptomic analysis of Thecaphora thlaspeos. This relative of the well studied grass smut Ustilago maydis is the only smut fungus adapted to Brassicaceae hosts. Its ability to overwinter with perennial hosts and its systemic plant infection including roots are unique characteristics among smut fungi. The T. thlaspeos genome was assembled to the chromosome level. It is a typical smut genome in terms of size and genome characteristics. In silico prediction of candidate effector genes revealed common smut effector proteins and unique members. For three candidates, we have functionally demonstrated effector activity. One of these, TtTue1, suggests a potential link to cold acclimation. On the plant side, we found evidence for a typical immune response as it is present in other infection systems, despite the absence of any macroscopic symptoms during infection. Our findings suggest that T. thlaspeos distinctly balances its virulence during biotrophic growth ultimately allowing for long-lived infection of its perennial hosts.
Collapse
Affiliation(s)
- Kaitlyn J Courville
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - Lamprinos Frantzeskakis
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - Summia Gul
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - Natalie Haeger
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - Ronny Kellner
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Natascha Heßler
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - Brad Day
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824-6254, USA
| | - Björn Usadel
- Unit of Botany and Molecular Genetics, Institute for Biology I, BioSC, RWTH Aachen University, 52074, Aachen, Germany
| | | | | | - Andreas Brachmann
- Faculty of Biology, Genetics, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Eric Kemen
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - Vera Göhre
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
| |
Collapse
|
22
|
RgsD negatively controls development, toxigenesis, stress response, and virulence in Aspergillus fumigatus. Sci Rep 2019; 9:811. [PMID: 30692551 PMCID: PMC6349852 DOI: 10.1038/s41598-018-37124-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/28/2018] [Indexed: 12/19/2022] Open
Abstract
The regulator of G protein signaling (RGS) domain proteins generally attenuate heterotrimeric G protein signaling, thereby fine-tune the duration and strength of signal transduction. In this study, we characterize the functions of RgsD, one of the six RGS domain proteins present in the human pathogenic fungus Aspergillus fumigatus. The deletion (Δ) of rgsD results in enhanced asexual sporulation coupled with increased mRNA levels of key developmental activators. Moreover, ΔrgsD leads to increased spore tolerance to UV and oxidative stress, which might be associated with the enhanced expression of melanin biosynthetic genes and increased amount of melanin. Yeast two-hybrid assays reveal that RgsD can interact with the three Gα proteins GpaB, GanA, and GpaA, showing the highest interaction potential with GpaB. Importantly, the ΔrgsD mutant shows elevated expression of genes in the cAMP-dependent protein kinase A (PKA) pathway and PKA catalytic activity. The ΔrgsD mutant also display increased gliotoxin production and elevated virulence toward Galleria mellonella wax moth larvae. Transcriptomic analyses using RNA-seq reveal the expression changes associated with the diverse phenotypic outcomes caused by ΔrgsD. Collectively, we conclude that RgsD attenuates cAMP-PKA signaling pathway and negatively regulates asexual development, toxigenesis, melanin production, and virulence in A. fumigatus.
Collapse
|
23
|
Terfrüchte M, Wewetzer S, Sarkari P, Stollewerk D, Franz-Wachtel M, Macek B, Schlepütz T, Feldbrügge M, Büchs J, Schipper K. Tackling destructive proteolysis of unconventionally secreted heterologous proteins in Ustilago maydis. J Biotechnol 2018; 284:37-51. [DOI: 10.1016/j.jbiotec.2018.07.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/10/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
|
24
|
Ye Z, Pan Y, Zhang Y, Cui H, Jin G, McHardy AC, Fan L, Yu X. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome. DNA Res 2018; 24:635-648. [PMID: 28992048 PMCID: PMC5726479 DOI: 10.1093/dnares/dsx031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Abstract
Ustilago esculenta, infects Zizania latifolia, and induced host stem swollen to be a popular vegetable called Jiaobai in China. It is the long-standing artificial selection that maximizes the occurrence of favourable Jiaobai, and thus maintaining the plant-fungi interaction and modulating the fungus evolving from plant pathogen to entophyte. In this study, whole genome of U. esculenta was sequenced and transcriptomes of the fungi and its host were analysed. The 20.2 Mb U. esculenta draft genome of 6,654 predicted genes including mating, primary metabolism, secreted proteins, shared a high similarity to related Smut fungi. But U. esculenta prefers RNA silencing not repeat-induced point in defence and has more introns per gene, indicating relatively slow evolution rate. The fungus also lacks some genes in amino acid biosynthesis pathway which were filled by up-regulated host genes and developed distinct amino acid response mechanism to balance the infection-resistance interaction. Besides, U. esculenta lost some surface sensors, important virulence factors and host range-related effectors to maintain the economic endophytic life. The elucidation of the U. esculenta genomic information as well as expression profiles can not only contribute to more comprehensive insights into the molecular mechanism underlying artificial selection but also into smut fungi-host interactions.
Collapse
Affiliation(s)
- Zihong Ye
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Yao Pan
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Yafen Zhang
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Haifeng Cui
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Gulei Jin
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, China
| | - Alice C McHardy
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Longjiang Fan
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, China
| | - Xiaoping Yu
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| |
Collapse
|
25
|
Kretschmer M, Lambie S, Croll D, Kronstad JW. Acetate provokes mitochondrial stress and cell death in Ustilago maydis. Mol Microbiol 2018; 107:488-507. [PMID: 29235175 DOI: 10.1111/mmi.13894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022]
Abstract
The fungal pathogen Ustilago maydis causes disease on maize by mating to establish an infectious filamentous cell type that invades the host and induces tumours. We previously found that β-oxidation mutants were defective in virulence and did not grow on acetate. Here, we demonstrate that acetate inhibits filamentation during mating and in response to oleic acid. We therefore examined the influence of different carbon sources by comparing the transcriptomes of cells grown on acetate, oleic acid or glucose, with expression changes for the fungus during tumour formation in planta. Guided by the transcriptional profiling, we found that acetate negatively influenced resistance to stress, promoted the formation of reactive oxygen species, triggered cell death in stationary phase and impaired virulence on maize. We also found that acetate induced mitochondrial stress by interfering with mitochondrial functions. Notably, the disruption of oxygen perception or inhibition of the electron transport chain also influenced filamentation and mating. Finally, we made use of the connections between acetate and β-oxidation to test metabolic inhibitors for an influence on growth and virulence. These experiments identified diclofenac as a potential inhibitor of virulence. Overall, these findings support the possibility of targeting mitochondrial metabolic functions to control fungal pathogens.
Collapse
Affiliation(s)
- Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Scott Lambie
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Croll
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
26
|
Zhang Y, Cao Q, Hu P, Cui H, Yu X, Ye Z. Investigation on the differentiation of two Ustilago esculenta strains - implications of a relationship with the host phenotypes appearing in the fields. BMC Microbiol 2017; 17:228. [PMID: 29212471 PMCID: PMC5719756 DOI: 10.1186/s12866-017-1138-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ustilago esculenta, a pathogenic basidiomycete fungus, infects Zizania latifolia to form edible galls named Jiaobai in China. The distinct growth conditions of U. esculenta induced Z. latifolia to form three different phenotypes, named male Jiaobai, grey Jiaobai and white Jiaobai. The aim of this study is to characterize the genetic and morphological differences that distinguish the two U. esculenta strains. RESULTS In this study, sexually compatible haploid sporidia UeT14/UeT55 from grey Jiaobai (T strains) and UeMT10/UeMT46 from white Jiaobai (MT strains) were isolated. Meanwhile, we successfully established mating and inoculation assays. Great differences were observed between the T and MT strains. First, the MT strains had a defect in development, including lower teliospore formation frequency and germination rate, a slower growth rate and a lower growth mass. Second, they differed in the assimilation of nitrogen sources in that the T strains preferred urea and the MT strains preferred arginine. In addition, the MT strains were more sensitive to external signals, including pH and oxidative stress. Third, the MT strains showed an infection defect, resulting in an endophytic life in the host. This was in accordance with multiple mutated pathogenic genes discovered in the MT strains by the non-synonymous mutation analysis of the genome re-sequencing data between the MT and T strains (GenBank accession numbers of the genome re-sequencing data: JTLW00000000 for MT strains and SRR5889164 for T strains). CONCLUSION The MT strains appeared to have defects in growth and infection and were more sensitive to external signals compared to the T strains. They displayed an absolutely stable endophytic life in the host without an infection cycle. Accordingly, they had multiple gene mutations occurring, especially in pathogenicity. In contrast, the T strains, as phytopathogens, had a complete survival life cycle, in which the formation of teliospores is important for adaption and infection, leading to the appearance of the grey phenotype. Further studies elucidating the molecular differences between the U. esculenta strains causing differential host phenotypes will help to improve the production and formation of edible white galls.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Qianchao Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Peng Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
27
|
Möller M, Stukenbrock EH. Evolution and genome architecture in fungal plant pathogens. Nat Rev Microbiol 2017; 15:756-771. [DOI: 10.1038/nrmicro.2017.76] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Coelho MA, Bakkeren G, Sun S, Hood ME, Giraud T. Fungal Sex: The Basidiomycota. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0046-2016. [PMID: 28597825 PMCID: PMC5467461 DOI: 10.1128/microbiolspec.funk-0046-2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Indexed: 12/29/2022] Open
Abstract
Fungi of the Basidiomycota, representing major pathogen lineages and mushroom-forming species, exhibit diverse means to achieve sexual reproduction, with particularly varied mechanisms to determine compatibilities of haploid mating partners. For species that require mating between distinct genotypes, discrimination is usually based on both the reciprocal exchange of diffusible mating pheromones, rather than sexes, and the interactions of homeodomain protein signals after cell fusion. Both compatibility factors must be heterozygous in the product of mating, and genetic linkage relationships of the mating pheromone/receptor and homeodomain genes largely determine the complex patterns of mating-type variation. Independent segregation of the two compatibility factors can create four haploid mating genotypes from meiosis, referred to as tetrapolarity. This condition is thought to be ancestral to the basidiomycetes. Alternatively, cosegregation by linkage of the two mating factors, or in some cases the absence of the pheromone-based discrimination, yields only two mating types from meiosis, referred to as bipolarity. Several species are now known to have large and highly rearranged chromosomal regions linked to mating-type genes. At the population level, polymorphism of the mating-type genes is an exceptional aspect of some basidiomycete fungi, where selection under outcrossing for rare, intercompatible allelic variants is thought to be responsible for numbers of mating types that may reach several thousand. Advances in genome sequencing and assembly are yielding new insights by comparative approaches among and within basidiomycete species, with the promise to resolve the evolutionary origins and dynamics of mating compatibility genetics in this major eukaryotic lineage.
Collapse
Affiliation(s)
- Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, V0H 1Z0, Canada
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, MA 01002
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
29
|
Frantzeskakis L, Courville KJ, Plücker L, Kellner R, Kruse J, Brachmann A, Feldbrügge M, Göhre V. The Plant-Dependent Life Cycle of Thecaphora thlaspeos: A Smut Fungus Adapted to Brassicaceae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:271-282. [PMID: 28421861 DOI: 10.1094/mpmi-08-16-0164-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Smut fungi are globally distributed plant pathogens that infect agriculturally important crop plants such as maize or potato. To date, molecular studies on plant responses to smut fungi are challenging due to the genetic complexity of their host plants. Therefore, we set out to investigate the known smut fungus of Brassicaceae hosts, Thecaphora thlaspeos. T. thlaspeos infects different Brassicaceae plant species throughout Europe, including the perennial model plant Arabis alpina. In contrast to characterized smut fungi, mature and dry T. thlaspeos teliospores germinated only in the presence of a plant signal. An infectious filament emerges from the teliospore, which can proliferate as haploid filamentous cultures. Haploid filaments from opposite mating types mate, similar to sporidia of the model smut fungus Ustilago maydis. Consistently, the a and b mating locus genes are conserved. Infectious filaments can penetrate roots and aerial tissues of host plants, causing systemic colonization along the vasculature. Notably, we could show that T. thlaspeos also infects Arabidopsis thaliana. Exploiting the genetic resources of A. thaliana and Arabis alpina will allow us to characterize plant responses to smut infection in a comparative manner and, thereby, characterize factors for endophytic growth as well as smut fungi virulence in dicot plants.
Collapse
Affiliation(s)
- Lamprinos Frantzeskakis
- 1 Institute for Microbiology, Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr.1, 40205 Düsseldorf, Germany
| | - Kaitlyn J Courville
- 1 Institute for Microbiology, Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr.1, 40205 Düsseldorf, Germany
| | - Lesley Plücker
- 1 Institute for Microbiology, Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr.1, 40205 Düsseldorf, Germany
| | - Ronny Kellner
- 2 Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Julia Kruse
- 3 Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; and
| | - Andreas Brachmann
- 4 Ludwig-Maximilians-Universität München, Faculty of Biology, Genetics, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | - Michael Feldbrügge
- 1 Institute for Microbiology, Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr.1, 40205 Düsseldorf, Germany
| | - Vera Göhre
- 1 Institute for Microbiology, Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr.1, 40205 Düsseldorf, Germany
| |
Collapse
|
30
|
Cárdenas-Monroy CA, Pohlmann T, Piñón-Zárate G, Matus-Ortega G, Guerra G, Feldbrügge M, Pardo JP. The mitochondrial alternative oxidase Aox1 is needed to cope with respiratory stress but dispensable for pathogenic development in Ustilago maydis. PLoS One 2017; 12:e0173389. [PMID: 28273139 PMCID: PMC5342259 DOI: 10.1371/journal.pone.0173389] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/20/2017] [Indexed: 12/22/2022] Open
Abstract
The mitochondrial alternative oxidase is an important enzyme that allows respiratory activity and the functioning of the Krebs cycle upon disturbance of the respiration chain. It works as a security valve in transferring excessive electrons to oxygen, thereby preventing potential damage by the generation of harmful radicals. A clear biological function, besides the stress response, has so far convincingly only been shown for plants that use the alternative oxidase to generate heat to distribute volatiles. In fungi it was described that the alternative oxidase is needed for pathogenicity. Here, we investigate expression and function of the alternative oxidase at different stages of the life cycle of the corn pathogen Ustilago maydis (Aox1). Interestingly, expression of Aox1 is specifically induced during the stationary phase suggesting a role at high cell density when nutrients become limiting. Studying deletion strains as well as overexpressing strains revealed that Aox1 is dispensable for normal growth, for cell morphology, for response to temperature stress as well as for filamentous growth and plant pathogenicity. However, during conditions eliciting respiratory stress yeast-like growth as well as hyphal growth is strongly affected. We conclude that Aox1 is dispensable for the normal biology of the fungus but specifically needed to cope with respiratory stress.
Collapse
Affiliation(s)
| | - Thomas Pohlmann
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Department of Biology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gabriela Piñón-Zárate
- Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM. Ciudad de México, México
| | - Genaro Matus-Ortega
- Departamento de Bioquímica, Facultad de Medicina, UNAM. Ciudad de México, México
| | - Guadalupe Guerra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, México
| | - Michael Feldbrügge
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Department of Biology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, UNAM. Ciudad de México, México
| |
Collapse
|
31
|
Chew E, Aweiss Y, Lu CY, Banuett F. Fuz1, a MYND domain protein, is required for cell morphogenesis inUstilago maydis. Mycologia 2017. [DOI: 10.1080/15572536.2008.11832497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Emily Chew
- Department of Chemistry and Biochemistry, California State University, 1250 Bellflower Boulevard, Long Beach, California 90840
| | | | | | - Flora Banuett
- Department of Biological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, California 90840 In memoriam Ira Herskowitz
| |
Collapse
|
32
|
Toh SS, Chen Z, Schultz DJ, Cuomo CA, Perlin MH. Transcriptional analysis of mating and pre-infection stages of the anther smut, Microbotryum lychnidis-dioicae. MICROBIOLOGY-SGM 2017; 163:410-420. [PMID: 28100297 DOI: 10.1099/mic.0.000421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbotryum lychnidis-dioicae is an obligate biotrophic parasite of the wildflower species Silene latifolia. This dikaryotic fungus, commonly known as an anther smut, requires that haploid, yeast-like sporidia of opposite mating types fuse and differentiate into dikaryotic hyphae that penetrate host tissue as part of the fungal life cycle. Mating occurs under conditions of cool temperatures and limited nutrients. Further development requires host cues or chemical mimics, including a variety of lipids, e.g. phytols. To identify global changes in transcription associated with developmental shifts, RNA-Seq was conducted at several in vitro stages of fungal propagation, i.e. haploid cells grown independently on rich and nutrient-limited media, mated cells on nutrient-limited media as well as a time course of such mated cells exposed to phytol. Comparison of haploid cells grown under rich and nutrient-limited conditions identified classes of genes probably associated with general nutrient availability, including components of the RNAi machinery. Some gene enrichment patterns comparing the nutrient-limited and mated transcriptomes suggested gene expression changes associated with the mating programme (e.g. homeodomain binding proteins, secreted proteins, proteins unique to M. lychnidis-dioicae¸ multicopper oxidases and RhoGEFs). Analysis for phytol treatment compared with mated cells alone allowed identification of genes likely to be involved in the dikaryotic switch (e.g. oligopeptide transporters). Gene categories of particular note in all three conditions included those in the major facilitator superfamily, proteins containing PFAM domains of the secretory lipase family as well as proteins predicted to be secreted, many of which have the hallmarks of fungal effectors with potential roles in pathogenicity.
Collapse
Affiliation(s)
- Su San Toh
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA.,Present address: DSO National Laboratories, Defence Medical and Environmental Research Institute, Singapore
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Present address: WuXi NextCODE, Cambridge, MA, USA
| | - David J Schultz
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA
| | | | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
33
|
Bartnicki-Garcia S. The evolution of fungal morphogenesis, a personal account. Mycologia 2017; 108:475-84. [DOI: 10.3852/15-272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/28/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Salomon Bartnicki-Garcia
- Departamento de Microbiología, Centro de Investigación Científica y Educación Superior de Ensenada, CICESE, Ensenada B.C. 22860 Mexico
| |
Collapse
|
34
|
Matei A, Doehlemann G. Cell biology of corn smut disease —Ustilago maydis as a model for biotrophic interactions. Curr Opin Microbiol 2016; 34:60-66. [DOI: 10.1016/j.mib.2016.07.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
|
35
|
Schultzhaus Z, Johnson TB, Shaw BD. Clathrin localization and dynamics in Aspergillus nidulans. Mol Microbiol 2016; 103:299-318. [PMID: 27741567 DOI: 10.1111/mmi.13557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
Cell growth necessitates extensive membrane remodeling events including vesicle fusion or fission, processes that are regulated by coat proteins. The hyphal cells of filamentous fungi concentrate both exocytosis and endocytosis at the apex. This investigation focuses on clathrin in Aspergillus nidulans, with the aim of understanding its role in membrane remodeling in growing hyphae. We examined clathrin heavy chain (ClaH-GFP) which localized to three distinct subcellular structures: late Golgi (trans-Golgi equivalents of filamentous fungi), which are concentrated just behind the hyphal tip but are intermittently present throughout all hyphal cells; the region of concentrated endocytosis just behind the hyphal apex (the "endocytic collar"); and small, rapidly moving puncta that were seen trafficking long distances in nearly all hyphal compartments. ClaH localized to distinct domains on late Golgi, and these clathrin "hubs" dispersed in synchrony after the late Golgi marker PHOSBP . Although clathrin was essential for growth, ClaH did not colocalize well with the endocytic patch marker fimbrin. Tests of FM4-64 internalization and repression of ClaH corroborated the observation that clathrin does not play an important role in endocytosis in A. nidulans. A minor portion of ClaH puncta exhibited bidirectional movement, likely along microtubules, but were generally distinct from early endosomes.
Collapse
Affiliation(s)
- Z Schultzhaus
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - T B Johnson
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - B D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| |
Collapse
|
36
|
Bösch K, Frantzeskakis L, Vraneš M, Kämper J, Schipper K, Göhre V. Genetic Manipulation of the Plant Pathogen Ustilago maydis to Study Fungal Biology and Plant Microbe Interactions. J Vis Exp 2016. [PMID: 27768088 DOI: 10.3791/54522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene deletion plays an important role in the analysis of gene function. One of the most efficient methods to disrupt genes in a targeted manner is the replacement of the entire gene with a selectable marker via homologous recombination. During homologous recombination, exchange of DNA takes place between sequences with high similarity. Therefore, linear genomic sequences flanking a target gene can be used to specifically direct a selectable marker to the desired integration site. Blunt ends of the deletion construct activate the cell's DNA repair systems and thereby promote integration of the construct either via homologous recombination or by non-homologous-end-joining. In organisms with efficient homologous recombination, the rate of successful gene deletion can reach more than 50% making this strategy a valuable gene disruption system. The smut fungus Ustilago maydis is a eukaryotic model microorganism showing such efficient homologous recombination. Out of its about 6,900 genes, many have been functionally characterized with the help of deletion mutants, and repeated failure of gene replacement attempts points at essential function of the gene. Subsequent characterization of the gene function by tagging with fluorescent markers or mutations of predicted domains also relies on DNA exchange via homologous recombination. Here, we present the U. maydis strain generation strategy in detail using the simplest example, the gene deletion.
Collapse
Affiliation(s)
- Kristin Bösch
- Institute for Microbiology, Heinrich-Heine University Düsseldorf; Bioeconomy Science Center (BioSC)
| | | | - Miroslav Vraneš
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology
| | - Jörg Kämper
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich-Heine University Düsseldorf; Bioeconomy Science Center (BioSC)
| | - Vera Göhre
- Institute for Microbiology, Heinrich-Heine University Düsseldorf; Bioeconomy Science Center (BioSC); Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich-Heine University Düsseldorf;
| |
Collapse
|
37
|
Characterization of gprK Encoding a Putative Hybrid G-Protein-Coupled Receptor in Aspergillus fumigatus. PLoS One 2016; 11:e0161312. [PMID: 27584150 PMCID: PMC5008803 DOI: 10.1371/journal.pone.0161312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
The G-protein-coupled receptor (GPCR) family represents the largest and most varied collection of membrane embedded proteins that are sensitized by ligand binding and interact with heterotrimeric G proteins. Despite their presumed critical roles in fungal biology, the functions of the GPCR family members in the opportunistic human pathogen Aspergillus fumigatus are largely unknown, as only two (GprC and GprD) of the 15 predicted GPCRs have been studied. Here, we characterize the gprK gene, which is predicted to encode a hybrid GPCR with both 7-transmembrane and regulator of G-protein signaling (RGS) domains. The deletion of gprK causes severely impaired asexual development coupled with reduced expression of key developmental activators. Moreover, ΔgprK results in hyper-activation of germination even in the absence of carbon source, and elevated expression and activity of the protein kinase A PkaC1. Furthermore, proliferation of the ΔgprK mutant is restricted on the medium when pentose is the sole carbon source, suggesting that GprK may function in external carbon source sensing. Notably, the absence of gprK results in reduced tolerance to oxidative stress and significantly lowered mRNA levels of the stress-response associated genes sakA and atfA. Activities of catalases and SODs are severely decreased in the ΔgprK mutant, indicating that GprK may function in proper activation of general stress response. The ΔgprK mutant is also defective in gliotoxin (GT) production and slightly less virulent toward the greater wax moth, Galleria mellonella. Transcriptomic studies reveal that a majority of transporters are down-regulated by ΔgprK. In summary, GprK is necessary for proper development, GT production, and oxidative stress response, and functions in down-regulating the PKA-germination pathway.
Collapse
|
38
|
Yan M, Dai W, Cai E, Deng YZ, Chang C, Jiang Z, Zhang LH. Transcriptome analysis of Sporisorium scitamineum reveals critical environmental signals for fungal sexual mating and filamentous growth. BMC Genomics 2016; 17:354. [PMID: 27185248 PMCID: PMC4867532 DOI: 10.1186/s12864-016-2691-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Sporisorium scitamineum causes the sugarcane smut disease, one of the most serious constraints to global sugarcane production. S. scitamineum possesses a sexual mating system composed of two mating-type loci, a and b locus. We previously identified and deleted the b locus in S. scitamineum, and found that the resultant SsΔMAT-1b mutant was defective in mating and pathogenicity. Results To further understand the function of b-mating locus, we carried out transcriptome analysis by comparing the transcripts of the mutant strain SsΔMAT-1b, from which the SsbE1 and SsbW1 homeodomain transcription factors have previously been deleted, with those from the wild-type MAT-1 strain. Also the transcripts from SsΔMAT-1b X MAT-2 were compared with those from wild-type MAT-1 X MAT-2 mating. A total of 209 genes were up-regulated (p < 0.05) in the SsΔMAT-1b mutant, compared to the wild-type MAT-1 strain, while 148 genes down-regulated (p < 0.05). In the mixture, 120 genes were up-regulated (p < 0.05) in SsΔMAT-1b X MAT-2, which failed to mate, compared to the wild-type MAT-1 X MAT-2 mating, and 271 genes down-regulated (p < 0.05). By comparing the up- and down-regulated genes in these two sets, it was found that 15 up-regulated and 37 down-regulated genes were common in non-mating haploid and mating mixture, which indeed could be genes regulated by b-locus. Furthermore, GO and KEGG enrichment analysis suggested that carbon metabolism pathway and stress response mediated by Hog1 MAPK signaling pathway were altered in the non-mating sets. Conclusions Experimental validation results indicate that the bE/bW heterodimeric transcriptional factor, encoded by the b-locus, could regulate S. scitamineum sexual mating and/or filamentous growth via modulating glucose metabolism and Hog1-mediating oxidative response. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2691-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meixin Yan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Peoples' Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Weijun Dai
- Guangdong Innovative and Entepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, South China Agricultural University, Guangzhou, Peoples' Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Enping Cai
- Guangdong Innovative and Entepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, South China Agricultural University, Guangzhou, Peoples' Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Yi Zhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Peoples' Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Changqing Chang
- Guangdong Innovative and Entepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, South China Agricultural University, Guangzhou, Peoples' Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Peoples' Republic of China.
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Peoples' Republic of China. .,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China.
| |
Collapse
|
39
|
Yan M, Zhu G, Lin S, Xian X, Chang C, Xi P, Shen W, Huang W, Cai E, Jiang Z, Deng YZ, Zhang LH. The mating-type locus b of the sugarcane smut Sporisorium scitamineum is essential for mating, filamentous growth and pathogenicity. Fungal Genet Biol 2016; 86:1-8. [DOI: 10.1016/j.fgb.2015.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/07/2015] [Accepted: 11/07/2015] [Indexed: 11/29/2022]
|
40
|
Idnurm A, Hood ME, Johannesson H, Giraud T. Contrasted patterns in mating-type chromosomes in fungi: hotspots versus coldspots of recombination. FUNGAL BIOL REV 2015; 29:220-229. [PMID: 26688691 PMCID: PMC4680991 DOI: 10.1016/j.fbr.2015.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is striking that, while central to sexual reproduction, the genomic regions determining sex or mating-types are often characterized by suppressed recombination that leads to a decrease in the efficiency of selection, shelters genetic load, and inevitably contributes to their genic degeneration. Research on model and lesser-explored fungi has revealed similarities in recombination suppression of the genomic regions involved in mating compatibility across eukaryotes, but fungi also provide opposite examples of enhanced recombination in the genomic regions that determine their mating types. These contrasted patterns of genetic recombination (sensu lato, including gene conversion and ectopic recombination) in regions of the genome involved in mating compatibility point to important yet complex processes occurring in their evolution. A number of pieces in this puzzle remain to be solved, in particular on the unclear selective forces that may cause the patterns of recombination, prompting theoretical developments and experimental studies. This review thus points to fungi as a fascinating group for studying the various evolutionary forces at play in the genomic regions involved in mating compatibility.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, VIC 3010, Australia
| | - Michael E. Hood
- Department of Biology, Amherst College, Amherst, Massachusetts 01002 USA
| | - Hanna Johannesson
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Tatiana Giraud
- Laboratoire Ecologie, Systématique et Evolution, UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360, Université Paris-Sud, 91405 Orsay cedex, France
| |
Collapse
|
41
|
Langner T, Göhre V. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr Genet 2015; 62:243-54. [PMID: 26527115 DOI: 10.1007/s00294-015-0530-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022]
Abstract
In the past decades our knowledge about fungal cell wall architecture increased tremendously and led to the identification of many enzymes involved in polysaccharide synthesis and remodeling, which are also of biotechnological interest. Fungal cell walls play an important role in conferring mechanic stability during cell division and polar growth. Additionally, in phytopathogenic fungi the cell wall is the first structure that gets into intimate contact with the host plant. A major constituent of fungal cell walls is chitin, a homopolymer of N-acetylglucosamine units. To ensure plasticity, polymeric chitin needs continuous remodeling which is maintained by chitinolytic enzymes, including lytic polysaccharide monooxygenases N-acetylglucosaminidases, and chitinases. Depending on the species and lifestyle of fungi, there is great variation in the number of encoded chitinases and their function. Chitinases can have housekeeping function in plasticizing the cell wall or can act more specifically during cell separation, nutritional chitin acquisition, or competitive interaction with other fungi. Although chitinase research made huge progress in the last decades, our knowledge about their role in phytopathogenic fungi is still scarce. Recent findings in the dimorphic basidiomycete Ustilago maydis show that chitinases play different physiological functions throughout the life cycle and raise questions about their role during plant-fungus interactions. In this work we summarize these functions, mechanisms of chitinase regulation and their putative role during pathogen/host interactions.
Collapse
Affiliation(s)
- Thorsten Langner
- Institute for Microbiology, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Vera Göhre
- Institute for Microbiology, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
42
|
Tenorio-Gómez M, de Sena-Tomás C, Pérez-Martín J. MRN- and 9-1-1-Independent Activation of the ATR-Chk1 Pathway during the Induction of the Virulence Program in the Phytopathogen Ustilago maydis. PLoS One 2015; 10:e0137192. [PMID: 26367864 PMCID: PMC4573213 DOI: 10.1371/journal.pone.0137192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/24/2015] [Indexed: 11/18/2022] Open
Abstract
DNA damage response (DDR) leads to DNA repair, and depending on the extent of the
damage, to further events, including cell death. Evidence suggests that cell
differentiation may also be a consequence of the DDR. During the formation of
the infective hypha in the phytopathogenic fungus Ustilago
maydis, two DDR kinases, Atr1 and Chk1, are required to induce a G2
cell cycle arrest, which in turn is essential to display the virulence program.
However, the triggering factor of DDR in this process has remained elusive. In
this report we provide data suggesting that no DNA damage is associated with the
activation of the DDR during the formation of the infective filament in
U. maydis. We have analyzed bulk DNA
replication during the formation of the infective filament, and we found no
signs of impaired DNA replication. Furthermore, using RPA-GFP fusion as a
surrogate marker of the presence of DNA damage, we were unable to detect any
sign of DNA damage at the cellular level. In addition, neither MRN nor 9-1-1
complexes, both instrumental to transmit the DNA damage signal, are required for
the induction of the above mentioned cell cycle arrest, as well as for
virulence. In contrast, we have found that the claspin-like protein Mrc1, which
in other systems serves as scaffold for Atr1 and Chk1, was required for both
processes. We discuss possible alternative ways to trigger the DDR, independent
of DNA damage, in U. maydis during virulence
program activation.
Collapse
Affiliation(s)
| | | | - Jose Pérez-Martín
- Instituto de Biología Funcional y Genómica
(CSIC), Salamanca, Spain
- * E-mail:
| |
Collapse
|
43
|
Chitinases Are Essential for Cell Separation in Ustilago maydis. EUKARYOTIC CELL 2015; 14:846-57. [PMID: 25934689 DOI: 10.1128/ec.00022-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/24/2015] [Indexed: 02/07/2023]
Abstract
Chitin is an essential component of the fungal cell wall, providing rigidity and stability. Its degradation is mediated by chitinases and supposedly ensures the dynamic plasticity of the cell wall during growth and morphogenesis. Hence, chitinases should be particularly important for fungi with dramatic morphological changes, such as Ustilago maydis. This smut fungus switches from yeast to filamentous growth for plant infection, proliferates as a mycelium in planta, and forms teliospores for spreading. Here, we investigate the contribution of its four chitinolytic enzymes to the different morphological changes during the complete life cycle in a comprehensive study of deletion strains combined with biochemical and cell biological approaches. Interestingly, two chitinases act redundantly in cell separation during yeast growth. They mediate the degradation of remnant chitin in the fragmentation zone between mother and daughter cell. In contrast, even the complete lack of chitinolytic activity does not affect formation of the infectious filament, infection, biotrophic growth, or teliospore germination. Thus, unexpectedly we can exclude a major role for chitinolytic enzymes in morphogenesis or pathogenicity of U. maydis. Nevertheless, redundant activity of even two chitinases is essential for cell separation during saprophytic growth, possibly to improve nutrient access or spreading of yeast cells by wind or rain.
Collapse
|
44
|
Fontanillas E, Hood ME, Badouin H, Petit E, Barbe V, Gouzy J, de Vienne DM, Aguileta G, Poulain J, Wincker P, Chen Z, Toh SS, Cuomo CA, Perlin MH, Gladieux P, Giraud T. Degeneration of the nonrecombining regions in the mating-type chromosomes of the anther-smut fungi. Mol Biol Evol 2015; 32:928-43. [PMID: 25534033 PMCID: PMC4379399 DOI: 10.1093/molbev/msu396] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dimorphic mating-type chromosomes in fungi are excellent models for understanding the genomic consequences of recombination suppression. Their suppressed recombination and reduced effective population size are expected to limit the efficacy of natural selection, leading to genomic degeneration. Our aim was to identify the sequences of the mating-type chromosomes (a1 and a2) of the anther-smut fungi and to investigate degeneration in their nonrecombining regions. We used the haploid a1 Microbotryum lychnidis-dioicae reference genome sequence. The a1 and a2 mating-type chromosomes were both isolated electrophoretically and sequenced. Integration with restriction-digest optical maps identified regions of recombination and nonrecombination in the mating-type chromosomes. Genome sequence data were also obtained for 12 other Microbotryum species. We found strong evidence of degeneration across the genus in the nonrecombining regions of the mating-type chromosomes, with significantly higher rates of nonsynonymous substitution (dN/dS) than in nonmating-type chromosomes or in recombining regions of the mating-type chromosomes. The nonrecombining regions of the mating-type chromosomes also showed high transposable element content, weak gene expression, and gene losses. The levels of degeneration did not differ between the a1 and a2 mating-type chromosomes, consistent with the lack of homogametic/heterogametic asymmetry between them, and contrasting with X/Y or Z/W sex chromosomes.
Collapse
Affiliation(s)
- Eric Fontanillas
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| | | | - Hélène Badouin
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| | - Elsa Petit
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France Department of Biology, Amherst College
| | - Valérie Barbe
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Jérôme Gouzy
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Damien M de Vienne
- Laboratoire de Biométrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5558, Université Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gabriela Aguileta
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France CNRS UMR 8030, Evry, France
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Su San Toh
- Department of Biology, Program on Disease Evolution, University of Louisville
| | | | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville
| | - Pierre Gladieux
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| |
Collapse
|
45
|
Redkar A, Villajuana- Bonequi M, Doehlemann G. Conservation of the Ustilago maydis effector See1 in related smuts. PLANT SIGNALING & BEHAVIOR 2015; 10:e1086855. [PMID: 26357869 PMCID: PMC4854346 DOI: 10.1080/15592324.2015.1086855] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 05/19/2023]
Abstract
Ustilago maydis is a biotrophic fungus that induces formation of tumors in maize (Zea mays L). In a recent study we identified See1 (Seedling efficient effector 1) as an U. maydis organ-specific effector required for tumor formation in leaves. See1 is required for U. maydis induced reactivation of plant DNA synthesis during leaf tumor progression. The protein is secreted from biotrophic hyphae and localizes to the cytoplasm and nucleus of plant cell. See1 interacts with maize SGT1, a cell cycle and immune regulator, interfering with its MAPK-triggered phosphorylation. Here, we present new data on the conservation of See1 in other closely related smuts and experimental data on the functionality of See1 ortholog in Ustilago hordei, the causal agent of barley covered smut disease.
Collapse
Affiliation(s)
- Amey Redkar
- Max Planck Institute for Terrestrial Microbiology; Department of Organismic Interactions; Marburg, Germany
| | - Mitzi Villajuana- Bonequi
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS); University of Cologne; BioCenter; Cologne, Germany
| | - Gunther Doehlemann
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS); University of Cologne; BioCenter; Cologne, Germany
- Correspondence to: Gunther Doehlemann;
| |
Collapse
|
46
|
Castanheira S, Mielnichuk N, Pérez-Martín J. Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis. Development 2014; 141:4817-26. [PMID: 25411209 DOI: 10.1242/dev.113415] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ustilago maydis is a plant pathogen that requires a specific structure called infective filament to penetrate the plant tissue. Although able to grow, this filament is cell cycle arrested on the plant surface. This cell cycle arrest is released once the filament penetrates the plant tissue. The reasons and mechanisms for this cell cycle arrest are unknown. Here, we have tried to address these questions. We reached three conclusions from our studies. First, the observed cell cycle arrest is the result of the cooperation of at least two distinct mechanisms: one involving the activation of the DNA damage response (DDR) cascade; and the other relying on the transcriptional downregulation of Hsl1, a kinase that modulates the G2/M transition. Second, a sustained cell cycle arrest during the infective filament step is necessary for the virulence in U. maydis, as a strain unable to arrest the cell cycle was severely impaired in its ability to infect corn plants. Third, production of the appressorium, a structure required for plant penetration, is incompatible with an active cell cycle. The inability to infect plants by strains defective in cell cycle arrest seems to be caused by their failure to induce the appressorium formation process. In summary, our findings uncover genetic circuits to arrest the cell cycle during the growth of this fungus on the plant surface, thus allowing the penetration into plant tissue.
Collapse
Affiliation(s)
- Sónia Castanheira
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Zacarías González 2, Salamanca 37007, Spain
| | - Natalia Mielnichuk
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Zacarías González 2, Salamanca 37007, Spain
| | - José Pérez-Martín
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Zacarías González 2, Salamanca 37007, Spain
| |
Collapse
|
47
|
Perez-Nadales E, Nogueira MFA, Baldin C, Castanheira S, El Ghalid M, Grund E, Lengeler K, Marchegiani E, Mehrotra PV, Moretti M, Naik V, Oses-Ruiz M, Oskarsson T, Schäfer K, Wasserstrom L, Brakhage AA, Gow NAR, Kahmann R, Lebrun MH, Perez-Martin J, Di Pietro A, Talbot NJ, Toquin V, Walther A, Wendland J. Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol 2014; 70:42-67. [PMID: 25011008 PMCID: PMC4161391 DOI: 10.1016/j.fgb.2014.06.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 12/05/2022]
Abstract
Fungi have the capacity to cause devastating diseases of both plants and animals, causing significant harvest losses that threaten food security and human mycoses with high mortality rates. As a consequence, there is a critical need to promote development of new antifungal drugs, which requires a comprehensive molecular knowledge of fungal pathogenesis. In this review, we critically evaluate current knowledge of seven fungal organisms used as major research models for fungal pathogenesis. These include pathogens of both animals and plants; Ashbya gossypii, Aspergillus fumigatus, Candida albicans, Fusarium oxysporum, Magnaporthe oryzae, Ustilago maydis and Zymoseptoria tritici. We present key insights into the virulence mechanisms deployed by each species and a comparative overview of key insights obtained from genomic analysis. We then consider current trends and future challenges associated with the study of fungal pathogenicity.
Collapse
Affiliation(s)
- Elena Perez-Nadales
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain.
| | | | - Clara Baldin
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutembergstr. 11a, 07745 Jena, Germany; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Sónia Castanheira
- Instituto de Biología Funcional y GenómicaCSIC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Mennat El Ghalid
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain
| | - Elisabeth Grund
- Functional Genomics of Plant Pathogenic Fungi, UMR 5240 CNRS-UCB-INSA-Bayer SAS, Bayer CropScience, 69263 Lyon, France
| | - Klaus Lengeler
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Elisabetta Marchegiani
- Evolution and Genomics of Plant Pathogen Interactions, UR 1290 INRA, BIOGER-CPP, Campus AgroParisTech, 78850 Thiverval-Grignon, France
| | - Pankaj Vinod Mehrotra
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Marino Moretti
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Vikram Naik
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Miriam Oses-Ruiz
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Therese Oskarsson
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Katja Schäfer
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain
| | - Lisa Wasserstrom
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutembergstr. 11a, 07745 Jena, Germany; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Neil A R Gow
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Regine Kahmann
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Marc-Henri Lebrun
- Evolution and Genomics of Plant Pathogen Interactions, UR 1290 INRA, BIOGER-CPP, Campus AgroParisTech, 78850 Thiverval-Grignon, France
| | - José Perez-Martin
- Instituto de Biología Funcional y GenómicaCSIC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Antonio Di Pietro
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain
| | - Nicholas J Talbot
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Valerie Toquin
- Biochemistry Department, Bayer SAS, Bayer CropScience, CRLD, 69263 Lyon, France
| | - Andrea Walther
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Jürgen Wendland
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| |
Collapse
|
48
|
Wollenberg T, Schirawski J. Comparative genomics of plant fungal pathogens: the Ustilago-Sporisorium paradigm. PLoS Pathog 2014; 10:e1004218. [PMID: 24992444 PMCID: PMC4081819 DOI: 10.1371/journal.ppat.1004218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Theresa Wollenberg
- RWTH Aachen University, Microbial Genetics, Institute of Applied Microbiology, Aachen Biology and Biotechnology, Aachen, Germany
| | - Jan Schirawski
- RWTH Aachen University, Microbial Genetics, Institute of Applied Microbiology, Aachen Biology and Biotechnology, Aachen, Germany
- * E-mail:
| |
Collapse
|
49
|
Evolution of uni- and bifactorial sexual compatibility systems in fungi. Heredity (Edinb) 2013; 111:445-55. [PMID: 23838688 DOI: 10.1038/hdy.2013.67] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 12/29/2022] Open
Abstract
Mating systems, that is, whether organisms give rise to progeny by selfing, inbreeding or outcrossing, strongly affect important ecological and evolutionary processes. Large variations in mating systems exist in fungi, allowing the study of their origin and consequences. In fungi, sexual incompatibility is determined by molecular recognition mechanisms, controlled by a single mating-type locus in most unifactorial fungi. In Basidiomycete fungi, however, which include rusts, smuts and mushrooms, a system has evolved in which incompatibility is controlled by two unlinked loci. This bifactorial system probably evolved from a unifactorial system. Multiple independent transitions back to a unifactorial system occurred. It is still unclear what force drove evolution and maintenance of these contrasting inheritance patterns that determine mating compatibility. Here, we give an overview of the evolutionary factors that might have driven the evolution of bifactoriality from a unifactorial system and the transitions back to unifactoriality. Bifactoriality most likely evolved for selfing avoidance. Subsequently, multiallelism at mating-type loci evolved through negative frequency-dependent selection by increasing the chance to find a compatible mate. Unifactoriality then evolved back in some species, possibly because either selfing was favoured or for increasing the chance to find a compatible mate in species with few alleles. Owing to the existence of closely related unifactorial and bifactorial species and the increasing knowledge of the genetic systems of the different mechanisms, Basidiomycetes provide an excellent model for studying the different forces that shape breeding systems.
Collapse
|
50
|
Abstract
UNLABELLED Malassezia commensal yeasts are associated with a number of skin disorders, such as atopic eczema/dermatitis and dandruff, and they also can cause systemic infections. Here we describe the 7.67-Mbp genome of Malassezia sympodialis, a species associated with atopic eczema, and contrast its genome repertoire with that of Malassezia globosa, associated with dandruff, as well as those of other closely related fungi. Ninety percent of the predicted M. sympodialis protein coding genes were experimentally verified by mass spectrometry at the protein level. We identified a relatively limited number of genes related to lipid biosynthesis, and both species lack the fatty acid synthase gene, in line with the known requirement of these yeasts to assimilate lipids from the host. Malassezia species do not appear to have many cell wall-localized glycosylphosphatidylinositol (GPI) proteins and lack other cell wall proteins previously identified in other fungi. This is surprising given that in other fungi these proteins have been shown to mediate interactions (e.g., adhesion and biofilm formation) with the host. The genome revealed a complex evolutionary history for an allergen of unknown function, Mala s 7, shown to be encoded by a member of an amplified gene family of secreted proteins. Based on genetic and biochemical studies with the basidiomycete human fungal pathogen Cryptococcus neoformans, we characterized the allergen Mala s 6 as the cytoplasmic cyclophilin A. We further present evidence that M. sympodialis may have the capacity to undergo sexual reproduction and present a model for a pseudobipolar mating system that allows limited recombination between two linked MAT loci. IMPORTANCE Malassezia commensal yeasts are associated with a number of skin disorders. The previously published genome of M. globosa provided some of the first insights into Malassezia biology and its involvement in dandruff. Here, we present the genome of M. sympodialis, frequently isolated from patients with atopic eczema and healthy individuals. We combined comparative genomics with sequencing and functional characterization of specific genes in a population of clinical isolates and in closely related model systems. Our analyses provide insights into the evolution of allergens related to atopic eczema and the evolutionary trajectory of the machinery for sexual reproduction and meiosis. We hypothesize that M. sympodialis may undergo sexual reproduction, which has important implications for the understanding of the life cycle and virulence potential of this medically important yeast. Our findings provide a foundation for the development of genetic and genomic tools to elucidate host-microbe interactions that occur on the skin and to identify potential therapeutic targets.
Collapse
|