1
|
Beenken KE, Smeltzer MS. Staphylococcus aureus Biofilm-Associated Infections: Have We Found a Clinically Relevant Target? Microorganisms 2025; 13:852. [PMID: 40284688 PMCID: PMC12029350 DOI: 10.3390/microorganisms13040852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Staphylococcus aureus is one of the most diverse bacterial pathogens. This is reflected in its ability to cause a wide array of infections and in genotypic and phenotypic differences between clinical isolates that extend beyond their antibiotic resistance status. Many S. aureus infections, including those involving indwelling medical devices, are therapeutically defined by the formation of a biofilm. This is reflected in the number of reports focusing on S. aureus biofilm formation and biofilm-associated infections. These infections are characterized by a level of intrinsic resistance that compromises conventional antibiotic therapy irrespective of acquired resistance, suggesting that an inhibitor of biofilm formation would have tremendous clinical value. Many reports have described large-scale screens aimed at identifying compounds that limit S. aureus biofilm formation, but relatively few examined whether the limitation was sufficient to overcome this intrinsic resistance. Similarly, while many of these reports examined the impact of putative inhibitors on S. aureus phenotypes, very few took a focused approach to identify and optimize an effective inhibitor of specific biofilm-associated targets. Such approaches are dependent on validating a target, hopefully one that is not restricted by the diversity of S. aureus as a bacterial pathogen. Rigorous biological validation of such a target would allow investigators to virtually screen vast chemical libraries to identify potential inhibitors that warrant further investigation based on their predicted function. Here, we summarize reports describing S. aureus regulatory loci implicated in biofilm formation to assess whether they are viable targets for the development of an anti-biofilm therapeutic strategy with an emphasis on whether sarA has been sufficiently validated to warrant consideration in this important clinical context.
Collapse
Affiliation(s)
- Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
2
|
Ripandelli RA, van Oijen AM, Robinson A. Single-Cell Microfluidics: A Primer for Microbiologists. J Phys Chem B 2024; 128:10311-10328. [PMID: 39400277 PMCID: PMC11514030 DOI: 10.1021/acs.jpcb.4c02746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 10/15/2024]
Abstract
Recent advances in microfluidic technology have made it possible to image live bacterial cells with a high degree of precision and control. In particular, single-cell microfluidic designs have created new opportunities to study phenotypic variation in bacterial populations. However, the development and use of microfluidic devices require specialized resources, and these can be practical barriers to entry for microbiologists. With this review, our intentions are to help demystify the design, construction, and application of microfluidics. Our approach is to present design elements as building blocks from which a multitude of microfluidics applications can be imagined by the microbiologist.
Collapse
|
3
|
Peng LT, Tian SQ, Guo WX, Chen XW, Wu JH, Liu YL, Peng B. α-Ketoglutarate downregulates thiosulphate metabolism to enhance antibiotic killing. Int J Antimicrob Agents 2024; 64:107214. [PMID: 38795933 DOI: 10.1016/j.ijantimicag.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Potentiation of the effects of currently available antibiotics is urgently required to tackle the rising antibiotics resistance. The pyruvate (P) cycle has been shown to play a critical role in mediating aminoglycoside antibiotic killing, but the mechanism remains unexplored. In this study, we investigated the effects of intermediate metabolites of the P cycle regarding the potentiation of gentamicin. We found that α-ketoglutarate (α-KG) has the best synergy with gentamicin compared to the other metabolites. This synergistic killing effect was more effective with aminoglycosides than other types of antibiotics, and it was effective against various types of bacterial pathogens. Using fish and mouse infection models, we confirmed that the synergistic killing effect occurred in vivo. Furthermore, functional proteomics showed that α-KG downregulated thiosulphate metabolism. Upregulation of thiosulphate metabolism by exogenous thiosulphate counteracted the killing effect of gentamicin. The role of thiosulphate metabolism in antibiotic resistance was further confirmed using thiosulphate reductase knockout mutants. These mutants were more sensitive to gentamicin killing, and less tolerant to antibiotics compared to their parental strain. Thus, our study highlights a strategy for potentiating antibiotic killing by using a metabolite that reduces antibiotic resistance.
Collapse
Affiliation(s)
- Liao-Tian Peng
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Si-Qi Tian
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Wei-Xu Guo
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan-Wei Chen
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Jia-Han Wu
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ying-Li Liu
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Bo Peng
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
4
|
Niu H, Gu J, Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther 2024; 9:174. [PMID: 39013893 PMCID: PMC11252167 DOI: 10.1038/s41392-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiaying Gu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250022, Shandong, China.
| |
Collapse
|
5
|
Puri D, Allison KR. Escherichia coli self-organizes developmental rosettes. Proc Natl Acad Sci U S A 2024; 121:e2315850121. [PMID: 38814871 PMCID: PMC11161754 DOI: 10.1073/pnas.2315850121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Rosettes are self-organizing, circular multicellular communities that initiate developmental processes, like organogenesis and embryogenesis, in complex organisms. Their formation results from the active repositioning of adhered sister cells and is thought to distinguish multicellular organisms from unicellular ones. Though common in eukaryotes, this multicellular behavior has not been reported in bacteria. In this study, we found that Escherichia coli forms rosettes by active sister-cell repositioning. After division, sister cells "fold" to actively align at the 2- and 4-cell stages of clonal division, thereby producing rosettes with characteristic quatrefoil configuration. Analysis revealed that folding follows an angular random walk, composed of ~1 µm strokes and directional randomization. We further showed that this motion was produced by the flagellum, the extracellular tail whose rotation generates swimming motility. Rosette formation was found to require de novo flagella synthesis suggesting it must balance the opposing forces of Ag43 adhesion and flagellar propulsion. We went on to show that proper rosette formation was required for subsequent morphogenesis of multicellular chains, rpoS gene expression, and formation of hydrostatic clonal-chain biofilms. Moreover, we found self-folding rosette-like communities in the standard motility assay, indicating that this behavior may be a general response to hydrostatic environments in E. coli. These findings establish self-organization of clonal rosettes by a prokaryote and have implications for evolutionary biology, synthetic biology, and medical microbiology.
Collapse
Affiliation(s)
- Devina Puri
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA30322
| | - Kyle R. Allison
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA30322
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA30322
| |
Collapse
|
6
|
Chen XW, Wu JH, Liu YL, Munang’andu HM, Peng B. Fructose promotes ampicillin killing of antibiotic-resistant Streptococcus agalactiae. Virulence 2023; 14:2180938. [PMID: 36803528 PMCID: PMC9980678 DOI: 10.1080/21505594.2023.2180938] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Streptococcus agalactiae (GBS) is an important pathogenic bacteria that infected both aquatic animals and human beings, causing huge economic loss. The increasing cases of antibiotic-resistant GBS impose challenges to treat such infection by antibiotics. Thus, it is highly demanded for the approach to tackle antibiotic resistance in GBS. In this study, we adopt a metabolomic approach to identify the metabolic signature of ampicillin-resistant GBS (AR-GBS) that ampicillin is the routine choice to treat infection by GBS. We find glycolysis is significantly repressed in AR-GBS, and fructose is the crucial biomarker. Exogenous fructose not only reverses ampicillin resistance in AR-GBS but also in clinic isolates including methicillin-resistant Staphylococcus aureus (MRSA) and NDM-1 expressing Escherichia coli. The synergistic effect is confirmed in a zebrafish infection model. Furthermore, we demonstrate that the potentiation by fructose is dependent on glycolysis that enhances ampicillin uptake and the expression of penicillin-binding proteins, the ampicillin target. Our study demonstrates a novel approach to combat antibiotic resistance in GBS.
Collapse
Affiliation(s)
- Xuan-Wei Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jia-Han Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
| | - Ying-Li Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
| | | | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,CONTACT Bo Peng
| |
Collapse
|
7
|
Thompson NT, Kitzenberg DA, Kao DJ. Persister-mediated emergence of antimicrobial resistance in agriculture due to antibiotic growth promoters. AIMS Microbiol 2023; 9:738-756. [PMID: 38173975 PMCID: PMC10758577 DOI: 10.3934/microbiol.2023038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024] Open
Abstract
The creation and continued development of antibiotics have revolutionized human health and disease for the past century. The emergence of antimicrobial resistance represents a major threat to human health, and practices that contribute to the development of this threat need to be addressed. Since the 1950s, antibiotics have been used in low doses to increase growth and decrease the feed requirement of animal-derived food sources. A consequence of this practice is the accelerated emergence of antimicrobial resistance that can influence human health through its distribution via animal food products. In the laboratory setting, sublethal doses of antibiotics promote the expansion of bacterial persister populations, a low energy, low metabolism phenotype characterized broadly by antibiotic tolerance. Furthermore, the induction of persister bacteria has been positively correlated with an increased emergence of antibiotic-resistant strains. This body of evidence suggests that the use of antibiotics in agriculture at subtherapeutic levels is actively catalyzing the emergence of antimicrobial-resistant bacteria through the expansion of bacterial persister populations, which is potentially leading to increased infections in humans and decreased antibiotic potency. There is an urgent need to address this debilitating effect on antibiotics and its influence on human health. In this review, we summarize the recent literature on the topic of emerging antimicrobial resistance and its association with bacterial persister populations.
Collapse
Affiliation(s)
- Noah T Thompson
- Department of Medicine and Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A Kitzenberg
- Department of Medicine and Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel J Kao
- Department of Medicine and Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
8
|
Hastings CJ, Keledjian MV, Musselman LP, Marques CNH. Delayed host mortality and immune response upon infection with P. aeruginosa persister cells. Infect Immun 2023; 91:e0024623. [PMID: 37732789 PMCID: PMC10580972 DOI: 10.1128/iai.00246-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
Chronic infections are a heavy burden on healthcare systems worldwide. Persister cells are thought to be largely responsible for chronic infection due to their tolerance to antimicrobials and recalcitrance to innate immunity factors. Pseudomonas aeruginosa is a common and clinically relevant pathogen that contains stereotypical persister cells. Despite their importance in chronic infection, there have been limited efforts to study persister cell infections in vivo. Drosophila melanogaster has a well-described innate immune response similar to that of vertebrates and is a good candidate for the development of an in vivo model of infection for persister cells. Similar to what is observed in other bacterial strains, in this work we found that infection with P. aeruginosa persister cells resulted in a delayed mortality phenotype in Caenorhabditis elegans, Arabidopsis thaliana, and D. melanogaster compared to infection with regular cells. An in-depth characterization of infected D. melanogaster found that bacterial loads differed between persister and regular cells' infections during the early stages. Furthermore, hemocyte activation and antimicrobial peptide expression were delayed/reduced in persister infections over the same time course, indicating an initial suppression of, or inability to elicit, the fly immune response. Overall, our findings support the use of D. melanogaster as a model in which to study persister cells in vivo, where this bacterial subpopulation exhibits delayed virulence and an attenuated immune response.
Collapse
Affiliation(s)
- Cody J. Hastings
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Maya V. Keledjian
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | | | - Cláudia N. H. Marques
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
9
|
Sau S, Roy A, Agnivesh PK, Kumar S, Guru SK, Sharma S, Kalia NP. Unravelling the flexibility of Mycobacterium tuberculosis: an escape way for the bacilli. J Med Microbiol 2023; 72. [PMID: 37261969 DOI: 10.1099/jmm.0.001695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The persistence of Mycobacterium tuberculosis makes it difficult to eradicate the associated infection from the host. The flexible nature of mycobacteria and their ability to adapt to adverse host conditions give rise to different drug-tolerant phenotypes. Granuloma formation restricts nutrient supply, limits oxygen availability and exposes bacteria to a low pH environment, resulting in non-replicating bacteria. These non-replicating mycobacteria, which need high doses and long exposure to anti-tubercular drugs, are the root cause of lengthy chemotherapy. Novel strategies, which are effective against non-replicating mycobacteria, need to be adopted to shorten tuberculosis treatment. This not only will reduce the treatment time but also will help prevent the emergence of multi-drug-resistant strains of mycobacteria.
Collapse
Affiliation(s)
- Shashikanta Sau
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Arnab Roy
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Puja Kumari Agnivesh
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sunil Kumar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Santosh Kumar Guru
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab -144411, India
| | - Nitin Pal Kalia
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
10
|
Guedes GMDM, Melgarejo CMA, Freitas AS, Amando BR, Costa CL, Ocadaque CJ, Gomes FIF, Bandeira SP, de Aguiar Cordeiro R, Gadelha Rocha MF, Sidrim JJC, Castelo-Branco DDSCM. Effect of promethazine on biofilms of gram-positive cocci associated with infectious endocarditis. BIOFOULING 2023; 39:189-203. [PMID: 37144566 DOI: 10.1080/08927014.2023.2202313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This study evaluated the antimicrobial activity of promethazine against Staphylococcus aureus, Staphylococcus epidermidis and Streptococcus mutans and its effect on the antimicrobial susceptibility of biofilms grown in vitro and ex vivo on porcine heart valves. Promethazine was evaluated alone and in combination with vancomycin and oxacillin against Staphylococcus spp. and vancomycin and ceftriaxone against S. mutans in planktonic form and biofilms grown in vitro and ex vivo. Promethazine minimum inhibitory concentration range was 24.4-95.31 μg/mL and minimum biofilm eradication concentration range was 781.25-3.125 μg/mL. Promethazine interacted synergistically with vancomycin, oxacillin and ceftriaxone against biofilms in vitro. Promethazine alone reduced (p < 0.05) the CFU-counts of biofilms grown on heart valves for Staphylococcus spp., but not for S. mutans, and increased (p < 0.05) the activity of vancomycin, oxacillin and ceftriaxone against biofilms of Gram-positive cocci grown ex vivo. These findings bring perspectives for repurposing promethazine as adjuvant in the treatment of infective endocarditis.
Collapse
Affiliation(s)
- Gláucia Morgana de Melo Guedes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Carliane Melo Alves Melgarejo
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Alyne Soares Freitas
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Bruno Rocha Amando
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cecília Leite Costa
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Crister José Ocadaque
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Francisco Ivanilsom Firmiano Gomes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Silviane Praciano Bandeira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, Brazil
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
11
|
Ma X, Hu K, Xiong Y, Li H, Li J, Tang Y, Liu Z. Local Regulator AcrR Regulates Persister Formation by Repression of AcrAB Efflux Pump during Exponential Growth in Aeromonas veronii. Antimicrob Agents Chemother 2023; 67:e0096922. [PMID: 36853030 PMCID: PMC10019292 DOI: 10.1128/aac.00969-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/26/2023] [Indexed: 03/01/2023] Open
Abstract
Bacterial persisters refer to a small fraction of dormant variants that survive treatment with high concentrations of antibiotics. Increasing research indicates that multidrug efflux pumps play a major role in persister formation in many Gram-negative organisms. In the present study, the roles of the repressor of the AcrAB efflux pump, AcrR, in the regulation of the activity and function of the efflux, as well as in the production of persisters, were investigated in the pathogen Aeromonas veronii, which causes huge economic losses in the aquatic industry and threatens human health. We observed that exclusively in exponential-phase cells, not in stationary-phase cells, the deletion of the acrR gene significantly (P < 0.05) promoted the expression of the acrA and acrB genes and reduced the intracellular accumulation of the efflux substrate Hoechst 33342. Moreover, overexpression of acrR triggered decreased transcription of the promoter of the acrAB operon. The persister assay indicated that the loss of the AcrAB pump decreased the formation of persisters under challenge with all tested antibiotic types of chloramphenicol, fluoroquinolone, tetracycline, and β-lactam, while deletion of acrR caused an exponential-phase-specific increase in persister formation against chloramphenicol, tetracycline, and β-lactam. Our results provide molecular insights into the mechanism of bacterial persistence by demonstrating for the first time that the local regulator AcrR is involved in the modulation of persister formation in A. veronii through its repressive activity on the function of the AcrAB efflux pump during the exponential growth period.
Collapse
Affiliation(s)
- Xiang Ma
- School of Life Sciences, Hainan University, Haikou, China
| | - Kang Hu
- School of Life Sciences, Hainan University, Haikou, China
| | - Yuesheng Xiong
- School of Life Sciences, Hainan University, Haikou, China
| | - Hong Li
- School of Life Sciences, Hainan University, Haikou, China
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou, China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou, China
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
12
|
Fang X, Allison KR. Resuscitation dynamics reveal persister partitioning after antibiotic treatment. Mol Syst Biol 2023; 19:e11320. [PMID: 36866643 PMCID: PMC10090945 DOI: 10.15252/msb.202211320] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Bacteria can survive antibiotics by forming dormant, drug-tolerant persisters. Persisters can resuscitate from dormancy after treatment and prolong infections. Resuscitation is thought to occur stochastically, but its transient, single-cell nature makes it difficult to investigate. We tracked the resuscitation of individual persisters by microscopy after ampicillin treatment and, by characterizing their dynamics, discovered that Escherichia coli and Salmonella enterica persisters resuscitate exponentially rather than stochastically. We demonstrated that the key parameters controlling resuscitation map to the ampicillin concentration during treatment and efflux during resuscitation. Consistently, we observed many persister progeny have structural defects and transcriptional responses indicative of cellular damage, for both β-lactam and quinolone antibiotics. During resuscitation, damaged persisters partition unevenly, generating both healthy daughter cells and defective ones. This persister partitioning phenomenon was observed in S. enterica, Klebsiella pneumoniae, Pseudomonas aeruginosa, and an E. coli urinary tract infection (UTI) isolate. It was also observed in the standard persister assay and after in situ treatment of a clinical UTI sample. This study reveals novel properties of resuscitation and indicates that persister partitioning may be a survival strategy in bacteria that lack genetic resistance.
Collapse
Affiliation(s)
- Xin Fang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.,Department of Medicine/Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Kyle R Allison
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.,Department of Medicine/Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
13
|
Tang J, Brynildsen MP. Genome-wide mapping of fluoroquinolone-stabilized DNA gyrase cleavage sites displays drug specific effects that correlate with bacterial persistence. Nucleic Acids Res 2023; 51:1208-1228. [PMID: 36631985 PMCID: PMC9943676 DOI: 10.1093/nar/gkac1223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Bacterial persisters are rare phenotypic variants that are suspected to be culprits of recurrent infections. Fluoroquinolones (FQs) are a class of antibiotics that facilitate bacterial killing by stabilizing bacterial type II topoisomerases when they are in a complex with cleaved DNA. In Escherichia coli, DNA gyrase is the primary FQ target, and previous work has demonstrated that persisters are not spared from FQ-induced DNA damage. Since DNA gyrase cleavage sites (GCSs) largely govern the sites of DNA damage from FQ treatment, we hypothesized that GCS characteristics (e.g. number, strength, location) may influence persistence. To test this hypothesis, we measured genome-wide GCS distributions after treatment with a panel of FQs in stationary-phase cultures. We found drug-specific effects on the GCS distribution and discovered a strong negative correlation between the genomic cleavage strength and FQ persister levels. Further experiments and analyses suggested that persistence was unlikely to be governed by cleavage to individual sites, but rather survival was a function of the genomic GCS distribution. Together, these findings demonstrate FQ-specific differences in GCS distribution that correlate with persister levels and suggest that FQs that better stabilize DNA gyrase in cleaved complexes with DNA will lead to lower levels of persistence.
Collapse
Affiliation(s)
- Juechun Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
14
|
Webster CM, Shepherd M. A mini-review: environmental and metabolic factors affecting aminoglycoside efficacy. World J Microbiol Biotechnol 2023; 39:7. [PMID: 36350431 PMCID: PMC9646598 DOI: 10.1007/s11274-022-03445-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Following the discovery of streptomycin from Streptomyces griseus in the 1940s by Selman Waksman and colleagues, aminoglycosides were first used to treat tuberculosis and then numerous derivatives have since been used to combat a wide variety of bacterial infections. These bactericidal antibiotics were used as first-line treatments for several decades but were largely replaced by ß-lactams and fluoroquinolones in the 1980s, although widespread emergence of antibiotic-resistance has led to renewed interest in aminoglycosides. The primary site of action for aminoglycosides is the 30 S ribosomal subunit where they disrupt protein translation, which contributes to widespread cellular damage through a number of secondary effects including rapid uptake of aminoglycosides via elevated proton-motive force (PMF), membrane damage and breakdown, oxidative stress, and hyperpolarisation of the membrane. Several factors associated with aminoglycoside entry have been shown to impact upon bacterial killing, and more recent work has revealed a complex relationship between metabolic states and the efficacy of different aminoglycosides. Hence, it is imperative to consider the environmental conditions and bacterial physiology and how this can impact upon aminoglycoside entry and potency. This mini-review seeks to discuss recent advances in this area and how this might affect the future use of aminoglycosides.
Collapse
Affiliation(s)
- Calum M Webster
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Mark Shepherd
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
15
|
Witzany C, Regoes RR, Igler C. Assessing the relative importance of bacterial resistance, persistence and hyper-mutation for antibiotic treatment failure. Proc Biol Sci 2022; 289:20221300. [PMID: 36350213 PMCID: PMC9653239 DOI: 10.1098/rspb.2022.1300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/18/2022] [Indexed: 08/01/2023] Open
Abstract
To curb the rising threat of antimicrobial resistance, we need to understand the routes to antimicrobial treatment failure. Bacteria can survive treatment by using both genetic and phenotypic mechanisms to diminish the effect of antimicrobials. We assemble empirical data showing that, for example, Pseudomonas aeruginosa infections frequently contain persisters, transiently non-growing cells unaffected by antibiotics (AB) and hyper-mutators, mutants with elevated mutation rates, and thus higher probability of genetic resistance emergence. Resistance, persistence and hyper-mutation dynamics are difficult to disentangle experimentally. Hence, we use stochastic population modelling and deterministic fitness calculations to investigate the relative importance of genetic and phenotypic mechanisms for immediate treatment failure and establishment of prolonged, chronic infections. We find that persistence causes 'hidden' treatment failure with very low cell numbers if antimicrobial concentrations prevent growth of genetically resistant cells. Persister cells can regrow after treatment is discontinued and allow for resistance evolution in the absence of AB. This leads to different mutational routes during treatment and relapse of an infection. By contrast, hyper-mutation facilitates resistance evolution during treatment, but rarely contributes to treatment failure. Our findings highlight the time and concentration dependence of different bacterial mechanisms to escape AB killing, which should be considered when designing 'failure-proof' treatments.
Collapse
Affiliation(s)
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Claudia Igler
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
de Carvalho CCCR. Adaptation of Bacteria to Antineoplastic Agents Involves Persister Cells and Increases Resistance to Antibiotics. Bioengineering (Basel) 2022; 9:bioengineering9080355. [PMID: 36004880 PMCID: PMC9404991 DOI: 10.3390/bioengineering9080355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing number of life-threatening infections observed in cancer patients has been ascribed to chemotherapy-induced neutropenia and to invasive medical procedures such as surgery and the application of catheters. In this study, it was questioned if the infections could also be favored by an increased resistance of bacteria due to the adaptation to antineoplastic agents used in chemotherapy. After exposure to several antineoplastic agents, it was observed that cells of Staphylococcus aureus, Mycobacterium vaccae, Pseudomonas aeruginosa, and Escherichia coli changed the fatty acid profile of their cellular membranes, produced exopolymeric substances, and formed aggregates that adhered to surfaces. Additionally, when exposed to high concentrations of these compounds, a persister sub-population could be identified. After adaptation to antineoplastic agents, the minimum inhibitory concentration (MIC) of several antibiotics increased considerably in the tested strains.
Collapse
Affiliation(s)
- Carla C. C. R. de Carvalho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; ; Tel.: +351-21-841-9594
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
17
|
Liu X, Tang R, Li H, Wang L, Wan C. The physiological and ecological properties of bacterial persisters discovered from municipal sewage sludge and the potential risk. ENVIRONMENTAL RESEARCH 2022; 205:112481. [PMID: 34871595 DOI: 10.1016/j.envres.2021.112481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Bacterial persisters are a special microbial population and are considered to be the bacterial reservoir of antibiotic-resistant bacteria. They can survive antibiotic treatment even in high concentrations of antibiotics and revive in the appropriate conditions. However, the characteristics of bacterial persisters in the municipal sewage sludge and their potential environmental risks have not yet been paid much attention to. In this study, bacterial persisters were discovered from the sludge of wastewater treatment plants in four different regions (Jilin, Lhasa, Shenzhen, and Yili), and the metagenomic analysis confirmed that bacterial persisters were ubiquitous in all four municipal sewage sludge and positively related to the protobacterium populations. At the taxonomic genus level, a total of 57 genera of bacterial persisters were shared by the four sewage sludge, and the genera with abundance exceeding 2% were Acinetobacter, Lysinibacillus, Aeromonas, Brevundimonas, Pseudomonas, and Alcaligenes, among which Acinetobacter accounted for 57.24%. Genus Lysinibacillus and Aeromonas were significant in Jilin and Lhasa, respectively. The persistence mechanism of bacterial persisters derived from sludge was also clarified, among which, Aeromonas, Brevundimonas, and Alcaligenes rely on the hipBA toxin-antitoxin system, while Acinetobacter enters the persistence state mainly through the stringent response system based on (p)ppGpp. Moreover, it was found that a typical bacterial persister originated from Acinetobacter, named T9-9, could tolerate a variety of antibiotics, such as 1000 μg/mL of kanamycin, 160 μg/mL of tetracycline, and 30 μg/mL of ciprofloxacin. Even if the ultraviolet intensity was 6-36 times the usual dosage of ultraviolet disinfection in wastewater treatment plants, it could not completely kill T9-9, but the killing efficiency by chlorine disinfection technology could reach 100%. This study pointed out an environmental risk of bacterial persisters that existed in sewage sludge that had been neglected and strongly recommended to improve the disinfection process in the wastewater treatment plant.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| | - Rui Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Huiqi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Li Wang
- Center of Analysis and Measurement, Fudan University, Shanghai, 200438, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
18
|
Khabibullina NF, Kutuzova DM, Burmistrova IA, Lyadova IV. The Biological and Clinical Aspects of a Latent Tuberculosis Infection. Trop Med Infect Dis 2022; 7:tropicalmed7030048. [PMID: 35324595 PMCID: PMC8955876 DOI: 10.3390/tropicalmed7030048] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/22/2023] Open
Abstract
Tuberculosis (TB), caused by bacilli from the Mycobacterium tuberculosis complex, remains a serious global public health problem, representing one of the main causes of death from infectious diseases. About one quarter of the world’s population is infected with Mtb and has a latent TB infection (LTBI). According to the World Health Organization (WHO), an LTBI is characterized by a lasting immune response to Mtb antigens without any TB symptoms. Current LTBI diagnoses and treatments are based on this simplified definition, although an LTBI involves a broad range of conditions, including when Mtb remains in the body in a persistent form and the immune response cannot be detected. The study of LTBIs has progressed in recent years; however, many biological and medical aspects of an LTBI are still under discussion. This review focuses on an LTBI as a broad spectrum of states, both of the human body, and of Mtb cells. The problems of phenotypic insusceptibility, diagnoses, chemoprophylaxis, and the necessity of treatment are discussed. We emphasize the complexity of an LTBI diagnosis and its treatment due to its ambiguous nature. We consider alternative ways of differentiating an LTBI from active TB, as well as predicting TB reactivation based on using mycobacterial “latency antigens” for interferon gamma release assay (IGRA) tests and the transcriptomic analysis of human blood cells.
Collapse
|
19
|
Managing gene expression in Pseudomonas simiae EGD-AQ6 for chloroaromatic compound degradation. Arch Microbiol 2022; 204:132. [PMID: 34999969 DOI: 10.1007/s00203-021-02737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
Abstract
Pseudomonas simiae EGD-AQ6 is capable of utilizing chloroaromatic compound i.e., 2-4-D efficiently in its biofilm phenotype. The differential accumulation of intermediate 4-chlorocatechol rates were significant in planktonic and biofilm phenotypes, as well as in the increased biofilm adapted cell numbers. Interestingly, response surface analysis demonstrated the combined positive effects of 2-4-D degradation and 4-CCA accumulation rates and the gene expression profiles, with significant up-regulation of degradative and biofilm genes, and greater participation of pellicle genes in the biofilm phenotypes than their planktonic counterparts, thereby revealing a phenotype variation. It positively validated the physiological data. Furthermore, the sequence similarity of the 2-4-D catabolic and biofilm-forming proteins (pel ABCDEFG and pga ABCD), which are responsible for building carbohydrate rich extracellular matrix, were significant with the respective organisms. This is the first study, which endorses this strain to be unique in efficient chloro-aromatic degradation through phenotype variation, thereby proving a potential candidate in the improvement of bioremediation technologies.
Collapse
|
20
|
Mohiuddin SG, Ghosh S, Ngo HG, Sensenbach S, Karki P, Dewangan NK, Angardi V, Orman MA. Cellular Self-Digestion and Persistence in Bacteria. Microorganisms 2021; 9:2269. [PMID: 34835393 PMCID: PMC8626048 DOI: 10.3390/microorganisms9112269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Cellular self-digestion is an evolutionarily conserved process occurring in prokaryotic cells that enables survival under stressful conditions by recycling essential energy molecules. Self-digestion, which is triggered by extracellular stress conditions, such as nutrient depletion and overpopulation, induces degradation of intracellular components. This self-inflicted damage renders the bacterium less fit to produce building blocks and resume growth upon exposure to fresh nutrients. However, self-digestion may also provide temporary protection from antibiotics until the self-digestion-mediated damage is repaired. In fact, many persistence mechanisms identified to date may be directly or indirectly related to self-digestion, as these processes are also mediated by many degradative enzymes, including proteases and ribonucleases (RNases). In this review article, we will discuss the potential roles of self-digestion in bacterial persistence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mehmet A. Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA; (S.G.M.); (S.G.); (H.G.N.); (S.S.); (P.K.); (N.K.D.); (V.A.)
| |
Collapse
|
21
|
Lemma AS, Brynildsen MP. Toxin Induction or Inhibition of Transcription or Translation Posttreatment Increases Persistence to Fluoroquinolones. mBio 2021; 12:e0198321. [PMID: 34399616 PMCID: PMC8406316 DOI: 10.1128/mbio.01983-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023] Open
Abstract
Toxin-antitoxin modules are widespread in prokaryotes, and the capacity of toxin accumulation to increase the tolerances of bacteria to antibiotics has been well documented. The conventional model for this functionality implies that an overabundance of toxin arrests bacterial growth, which inhibits processes targeted by antibiotics and thereby limits their corruption and the lethal damage that would ensue. Implicit in this model is that toxins exert their influence on antibiotic lethality before and/or during treatment, even though they are also present and functional after treatment concludes. Given recent evidence establishing that the period following antibiotic treatment (recovery) is important for the survival of nongrowing bacterial populations treated with fluoroquinolones (FQs), we assayed to what extent toxins influence bacterial survival during the recovery period. With both LdrD and MazF, toxins of type I and II systems, respectively, controlling accumulation to occur only after FQ treatment of nongrowing cultures resulted in significant increases in persisters. Further genetic investigation revealed important roles for homologous recombination and nucleotide excision repair machinery. Focusing on the wild type, we did not observe any SOS-induced toxin functioning in this manner; however, an analogous phenomenon was observed for wild-type Escherichia coli as well as uropathogenic E. coli (UPEC) when transcription or translation was inhibited during the post-FQ recovery period. Collectively, these data reveal the capacity of toxins to thwart FQ killing even after the treatment has concluded and show that FQ treatment of nongrowing bacteria can be rendered largely ineffective if bacteria cannot readily resume translation and growth at the conclusion of treatment. IMPORTANCE Overabundances of toxins have been shown to increase the antibiotic tolerances of bacteria. Largely, these effects have been attributed to the abilities of toxins to inhibit bacterial growth before and during antibiotic exposure. In this study, we assessed to what extent toxins can influence bacterial survival following antibiotic treatment, rather than before or during. Using two mechanistically distinct toxins, we show that their accumulations after antibiotic exposure have the capacity to increase the abundances of fluoroquinolone persisters from nongrowing populations. Further, we show with wild-type and uropathogenic E. coli that chemical inhibition of growth, not just that induced by toxins, produces analogous results. These observations reveal another dimension of how toxins influence antibiotic tolerance and highlight the importance of postantibiotic physiology on bacterial survival.
Collapse
Affiliation(s)
- Annabel S. Lemma
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Mark P. Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
22
|
Schrank CL, Wilt IK, Monteagudo Ortiz C, Haney BA, Wuest WM. Using membrane perturbing small molecules to target chronic persistent infections. RSC Med Chem 2021; 12:1312-1324. [PMID: 34458737 PMCID: PMC8372208 DOI: 10.1039/d1md00151e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
After antibiotic treatment, a subpopulation of bacteria often remains and can lead to recalcitrant infections. This subpopulation, referred to as persisters, evades antibiotic treatment through numerous mechanisms such as decreased uptake of small molecules and slowed growth. Membrane perturbing small molecules have been shown to eradicate persisters as well as render these populations susceptible to antibiotic treatment. Chemotype similarities have emerged suggesting amphiphilic heteroaromatic compounds possess ideal properties to increase membrane fluidity and such molecules warrant further investigation as effective agents or potentiators against persister cells.
Collapse
Affiliation(s)
| | - Ingrid K Wilt
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | | | | | - William M Wuest
- Department of Chemistry Emory University Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine Atlanta GA 30322 USA
| |
Collapse
|
23
|
Byrd BA, Zenick B, Rocha-Granados MC, Englander HE, Hare PJ, LaGree TJ, DeMarco AM, Mok WWK. The AcrAB-TolC Efflux Pump Impacts Persistence and Resistance Development in Stationary-Phase Escherichia coli following Delafloxacin Treatment. Antimicrob Agents Chemother 2021; 65:e0028121. [PMID: 34097492 PMCID: PMC8284433 DOI: 10.1128/aac.00281-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
Bacteria have a repertoire of strategies to overcome antibiotics in clinical use, complicating our ability to treat and cure infectious diseases. In addition to evolving resistance, bacteria within genetically clonal cultures can undergo transient phenotypic changes and tolerate high doses of antibiotics. These cells, termed persisters, exhibit heterogeneous phenotypes; the strategies that a bacterial population deploys to overcome one class of antibiotics can be distinct from those needed to survive treatment with drugs with another mode of action. It was previously reported that fluoroquinolones, which target DNA topoisomerases, retain the capacity to kill nongrowing bacteria that tolerate other classes of antibiotics. Here, we show that in Escherichia coli stationary-phase cultures and colony biofilms, persisters that survive treatment with the anionic fluoroquinolone delafloxacin depend on the AcrAB-TolC efflux pump. In contrast, we did not detect this dependence on AcrAB-TolC in E. coli persisters that survive treatment with three other fluoroquinolone compounds. We found that the loss of AcrAB-TolC activity via genetic mutations or chemical inhibition not only reduces delafloxacin persistence in nongrowing E. coli MG1655 or EDL933 (an E. coli O157:H7 strain), but it limits resistance development in progenies derived from delafloxacin persisters that were given the opportunity to recover in nutritive medium following antibiotic treatment. Our findings highlight the heterogeneity in defense mechanisms that persisters use to overcome different compounds within the same class of antibiotics. They further indicate that efflux pump inhibitors can potentiate the activity of delafloxacin against stationary-phase E. coli and block resistance development in delafloxacin persister progenies.
Collapse
Affiliation(s)
- Brandon A. Byrd
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, Connecticut, USA
- School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Blesing Zenick
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, Connecticut, USA
| | | | - Hanna E. Englander
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Patricia J. Hare
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, Connecticut, USA
- School of Dental Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Travis J. LaGree
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, Connecticut, USA
| | - Angela M. DeMarco
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, Connecticut, USA
| | - Wendy W. K. Mok
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, Connecticut, USA
| |
Collapse
|
24
|
Markwitz P, Olszak T, Gula G, Kowalska M, Arabski M, Drulis-Kawa Z. Emerging Phage Resistance in Pseudomonas aeruginosa PAO1 Is Accompanied by an Enhanced Heterogeneity and Reduced Virulence. Viruses 2021; 13:1332. [PMID: 34372538 PMCID: PMC8310095 DOI: 10.3390/v13071332] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial surface structures of a proteinic nature and glycoconjugates contribute to biofilm formation and provide shields to host defense mechanisms (e.g., the complement system and phagocytosis). A loss or alteration of these molecules, leading to phage resistance, could result in fewer virulent bacteria. In this study, we evaluate the biology and phenotype changes in Pseudomonas aeruginosa PAO1 phage-resistant clones, which emerge in phage-treated biofilms. We characterize these clones for phage-typing patterns, antibiotic resistance, biofilm formation, pathogenicity, and interactions with the innate immune system. Another important question that we address is whether phage-resistant mutants are also generated incidentally, despite the phage treatment-selective pressure, as the natural adaptation of the living biofilm population. It is found that the application of different phages targeting a particular receptor selects similar phage resistance patterns. Nevertheless, this results in a dramatic increase in the population heterogeneity, giving over a dozen phage-typing patterns, compared to one of the untreated PAO1 sessile forms. We also confirm the hypothesis that "phage-resistant bacteria are more susceptible to antibiotics and host-clearance mechanisms by the immune system". These findings support phage application in therapy, although the overall statement that phage treatment selects the less virulent bacterial population should be further verified using a bigger collection of clinical strains.
Collapse
Affiliation(s)
- Pawel Markwitz
- Department of Pathogen Biology and Immunology, University of Wroclaw, 51-148 Wroclaw, Poland; (P.M.); (T.O.); (G.G.)
| | - Tomasz Olszak
- Department of Pathogen Biology and Immunology, University of Wroclaw, 51-148 Wroclaw, Poland; (P.M.); (T.O.); (G.G.)
| | - Grzegorz Gula
- Department of Pathogen Biology and Immunology, University of Wroclaw, 51-148 Wroclaw, Poland; (P.M.); (T.O.); (G.G.)
| | - Magdalena Kowalska
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland; (M.K.); (M.A.)
| | - Michal Arabski
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland; (M.K.); (M.A.)
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, 51-148 Wroclaw, Poland; (P.M.); (T.O.); (G.G.)
| |
Collapse
|
25
|
Revealing Antibiotic Tolerance of the Mycobacterium smegmatis Xanthine/Uracil Permease Mutant Using Microfluidics and Single-Cell Analysis. Antibiotics (Basel) 2021; 10:antibiotics10070794. [PMID: 34209966 PMCID: PMC8300736 DOI: 10.3390/antibiotics10070794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022] Open
Abstract
To reveal rare phenotypes in bacterial populations, conventional microbiology tools should be advanced to generate rapid, quantitative, accurate, and high-throughput data. The main drawbacks of widely used traditional methods for antibiotic studies include low sampling rate and averaging data for population measurements. To overcome these limitations, microfluidic-microscopy systems have great promise to produce quantitative single-cell data with high sampling rates. Using Mycobacterium smegmatis cells, we applied both conventional assays and a microfluidic-microscopy method to reveal the antibiotic tolerance mechanisms of wild-type and msm2570::Tn mutant cells. Our results revealed that the enhanced antibiotic tolerance mechanism of the msm2570::Tn mutant was due to the low number of lysed cells during the antibiotic exposure compared to wild-type cells. This is the first study to characterize the antibiotic tolerance phenotype of the msm2570::Tn mutant, which has a transposon insertion in the msm2570 gene—encoding a putative xanthine/uracil permease, which functions in the uptake of nitrogen compounds during nitrogen limitation. The experimental results indicate that the msm2570::Tn mutant can be further interrogated to reveal antibiotic killing mechanisms, in particular, antibiotics that target cell wall integrity.
Collapse
|
26
|
Chebotar' IV, Emelyanova MA, Bocharova JA, Mayansky NA, Kopantseva EE, Mikhailovich VM. The classification of bacterial survival strategies in the presence of antimicrobials. Microb Pathog 2021; 155:104901. [PMID: 33930413 DOI: 10.1016/j.micpath.2021.104901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023]
Abstract
The survival of bacteria under antibiotic therapy varies in nature and is based on the bacterial ability to employ a wide range of fundamentally different resistance mechanisms. This great diversity requires a disambiguation of the term 'resistance' and the development of a more precise classification of bacterial survival strategies during contact with antibiotics. The absence of a unified definition for the terms 'resistance', 'tolerance' and 'persistence' further aggravates the imperfections of the current classification system. This review suggests a number of original classification criteria that will take into account (1) the bacterial ability to replicate in the presence of antimicrobial agents, (2) existing evolutionary stability of a trait within a species, and (3) the presence or absence of specialized genes that determine the ability of a microorganism to decrease its own metabolism or switch it completely off. This review describes potential advantages of the suggested classification system, which include a better understanding of the relationship between bacterial survival in the presence of antibiotics and molecular mechanisms of cellular metabolism suppression, the opportunity to pinpoint targets to identify a true bacterial resistance profile. The true resistance profile in turn, could be used to develop effective diagnostic and antimicrobial therapy methods, while taking into consideration specific bacterial survival mechanisms.
Collapse
Affiliation(s)
- Igor V Chebotar'
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation; Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russian Federation
| | - Marina A Emelyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation
| | - Julia A Bocharova
- Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russian Federation
| | - Nikolay A Mayansky
- Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russian Federation
| | - Elena E Kopantseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation
| | - Vladimir M Mikhailovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation.
| |
Collapse
|
27
|
Ziegler M, Zieringer J, Takors R. Transcriptional profiling of the stringent response mutant strain E. coli SR reveals enhanced robustness to large-scale conditions. Microb Biotechnol 2021; 14:993-1010. [PMID: 33369128 PMCID: PMC8085953 DOI: 10.1111/1751-7915.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/05/2022] Open
Abstract
In large-scale fed-batch production processes, microbes are exposed to heterogeneous substrate availability caused by long mixing times. Escherichia coli, the most common industrial host for recombinant protein production, reacts by recurring accumulation of the alarmone ppGpp and energetically wasteful transcriptional strategies. Here, we compare the regulatory responses of the stringent response mutant strain E. coli SR and its parent strain E. coli MG1655 to repeated nutrient starvation in a two-compartment scale-down reactor. Our data show that E. coli SR can withstand these stress conditions without a ppGpp-mediated stress response maintaining fully functional ammonium uptake and biomass formation. Furthermore, E. coli SR exhibited a substantially reduced short-term transcriptional response compared to E. coli MG1655 (less than half as many differentially expressed genes). E. coli SR proceeded adaptation via more general SOS response pathways by initiating negative regulation of transcription, translation and cell division. Our results show that locally induced stress responses propagating through the bioreactor do not result in cyclical induction and repression of genes in E. coli SR, but in a reduced and coordinated response, which makes it potentially suitable for large-scale production processes.
Collapse
Affiliation(s)
- Martin Ziegler
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Julia Zieringer
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| |
Collapse
|
28
|
Edelmann D, Leinberger FH, Schmid NE, Oberpaul M, Schäberle TF, Berghoff BA. Elevated Expression of Toxin TisB Protects Persister Cells against Ciprofloxacin but Enhances Susceptibility to Mitomycin C. Microorganisms 2021; 9:943. [PMID: 33925723 PMCID: PMC8145889 DOI: 10.3390/microorganisms9050943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
Bacterial chromosomes harbor toxin-antitoxin (TA) systems, some of which are implicated in the formation of multidrug-tolerant persister cells. In Escherichia coli, toxin TisB from the tisB/istR-1 TA system depolarizes the inner membrane and causes ATP depletion, which presumably favors persister formation. Transcription of tisB is induced upon DNA damage due to activation of the SOS response by LexA degradation. Transcriptional activation of tisB is counteracted on the post-transcriptional level by structural features of tisB mRNA and RNA antitoxin IstR-1. Deletion of the regulatory RNA elements (mutant Δ1-41 ΔistR) uncouples TisB expression from LexA-dependent SOS induction and causes a 'high persistence' (hip) phenotype upon treatment with different antibiotics. Here, we demonstrate by the use of fluorescent reporters that TisB overexpression in mutant Δ1-41 ΔistR inhibits cellular processes, including the expression of SOS genes. The failure in SOS gene expression does not affect the hip phenotype upon treatment with the fluoroquinolone ciprofloxacin, likely because ATP depletion avoids strong DNA damage. By contrast, Δ1-41 ΔistR cells are highly susceptible to the DNA cross-linker mitomycin C, likely because the expression of SOS-dependent repair systems is impeded. Hence, the hip phenotype of the mutant is conditional and strongly depends on the DNA-damaging agent.
Collapse
Affiliation(s)
- Daniel Edelmann
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| | - Florian H. Leinberger
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| | - Nicole E. Schmid
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| | - Markus Oberpaul
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany; (M.O.); (T.F.S.)
| | - Till F. Schäberle
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany; (M.O.); (T.F.S.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, 35392 Giessen, Germany
- Partner Site Giessen-Marburg-Langen, German Center for Infection Research (DZIF), 35392 Giessen, Germany
| | - Bork A. Berghoff
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| |
Collapse
|
29
|
Drug screening to identify compounds to act as co-therapies for the treatment of Burkholderia species. PLoS One 2021; 16:e0248119. [PMID: 33764972 PMCID: PMC7993816 DOI: 10.1371/journal.pone.0248119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/21/2021] [Indexed: 11/22/2022] Open
Abstract
Burkholderia pseudomallei is a soil-dwelling organism present throughout the tropics. It is the causative agent of melioidosis, a disease that is believed to kill 89,000 people per year. It is naturally resistant to many antibiotics, requiring at least two weeks of intravenous treatment with ceftazidime, imipenem or meropenem followed by 6 months of orally delivered co-trimoxazole. This places a large treatment burden on the predominantly middle-income nations where the majority of disease occurs. We have established a high-throughput assay for compounds that could be used as a co-therapy to potentiate the effect of ceftazidime, using the related non-pathogenic bacterium Burkholderia thailandensis as a surrogate. Optimization of the assay gave a Z’ factor of 0.68. We screened a library of 61,250 compounds and identified 29 compounds with a pIC50 (-log10(IC50)) greater than five. Detailed investigation allowed us to down select to six “best in class” compounds, which included the licensed drug chloroxine. Co-treatment of B. thailandensis with ceftazidime and chloroxine reduced culturable cell numbers by two orders of magnitude over 48 hours, compared to treatment with ceftazidime alone. Hit expansion around chloroxine was performed using commercially available compounds. Minor modifications to the structure abolished activity, suggesting that chloroxine likely acts against a specific target. Finally, an initial study demonstrates the utility of chloroxine to act as a co-therapy to potentiate the effect of ceftazidime against B. pseudomallei. This approach successfully identified potential co-therapies for a recalcitrant Gram-negative bacterial species. Our assay could be used more widely to aid in chemotherapy to treat infections caused by these bacteria.
Collapse
|
30
|
Lopes SP, Jorge P, Sousa AM, Pereira MO. Discerning the role of polymicrobial biofilms in the ascent, prevalence, and extent of heteroresistance in clinical practice. Crit Rev Microbiol 2021; 47:162-191. [PMID: 33527850 DOI: 10.1080/1040841x.2020.1863329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antimicrobial therapy is facing a worrisome and underappreciated challenge, the phenomenon of heteroresistance (HR). HR has been gradually documented in clinically relevant pathogens (e.g. Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia spp., Acinetobacter baumannii, Klebsiella pneumoniae, Candida spp.) towards several drugs and is believed to complicate the clinical picture of chronic infections. This type of infections are typically mediated by polymicrobial biofilms, wherein microorganisms inherently display a wide range of physiological states, distinct metabolic pathways, diverging refractory levels of stress responses, and a complex network of chemical signals exchange. This review aims to provide an overview on the relevance, prevalence, and implications of HR in clinical settings. Firstly, related terminologies (e.g. resistance, tolerance, persistence), sometimes misunderstood and overlapped, were clarified. Factors generating misleading HR definitions were also uncovered. Secondly, the recent HR incidences reported in clinically relevant pathogens towards different antimicrobials were annotated. The potential mechanisms underlying such occurrences were further elucidated. Finally, the link between HR and biofilms was discussed. The focus was to recognize the presence of heterogeneous levels of resistance within most biofilms, as well as the relevance of polymicrobial biofilms in chronic infectious diseases and their role in resistance spreading. These topics were subject of a critical appraisal, gaining insights into the ascending clinical implications of HR in antimicrobial resistance spreading, which could ultimately help designing effective therapeutic options.
Collapse
Affiliation(s)
- Susana Patrícia Lopes
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Paula Jorge
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Ana Margarida Sousa
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
31
|
Nirmala MJ, Durai L, Gopakumar V, Nagarajan R. Preparation of Celery Essential Oil-Based Nanoemulsion by Ultrasonication and Evaluation of Its Potential Anticancer and Antibacterial Activity. Int J Nanomedicine 2020; 15:7651-7666. [PMID: 33116493 PMCID: PMC7553139 DOI: 10.2147/ijn.s252640] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022] Open
Abstract
Introduction Plants have always been a significant source of natural active components with biological properties. Celery seed oil (extracted from Apium graveolens) has several potential applications, but its therapeutic uses in the form of nanoemulsion formulation need to be investigated further in order to meet the demand in cancer treatment, and to alleviate the prevailing crisis arising from increased antimicrobial resistance. Methods The therapeutic potential of celery seed oil was investigated through the formulation and testing of a nanoemulsion developed with Tween 80 (a non-ionic surfactant) and the utilization of an ultrasonication technique. Anticancer and apoptotic properties of the formulation were evaluated through MTT and Annexin V-FITC assays. The clonogenic assay aided in the identification of the antiproliferative properties of the formulation on oral squamous cell carcinoma. The antimicrobial study was supported by agar well diffusion assay, membrane integrity test and scanning electron microscopy. Results Experiments identified relevant parameters, including optimal surfactant concentration and emulsification time. GC-MS analysis identified various components in the celery oil, but not their biological activities. A sonication time of 20 min resulted in a droplet diameter of 23.4 ± 1.80 nm. The IC50 concentration of the optimal nanoemulsion formulation against SAS cells was 1.4 µL/mL. At this concentration, cell proliferation was significantly reduced through inhibition of the anchorage-independent cell growth by disrupting colony formation and inducing cell death (apoptosis) of cancer cells. The nanoemulsion was also treated with a microbial suspension of S. aureus, and displayed antibacterial properties through lipid membrane fusion, causing cytoplasmic leakage as verified through agar well diffusion and membrane permeability assays. Scanning electron microscopy revealed complete distortion of the bacterial pathogen. Conclusion The results in this study present celery as a possible constituent for cancer therapeutics and as a candidate for aggressive, yet safe cancer treatment. The celery-based nanoemulsion has the potential to act as a key alternative to standard antibiotic therapy.
Collapse
Affiliation(s)
- M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Latha Durai
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vineet Gopakumar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Ramamurthy Nagarajan
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
32
|
Dezanet C, Kempf J, Mingeot-Leclercq MP, Décout JL. Amphiphilic Aminoglycosides as Medicinal Agents. Int J Mol Sci 2020; 21:E7411. [PMID: 33049963 PMCID: PMC7583001 DOI: 10.3390/ijms21197411] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022] Open
Abstract
The conjugation of hydrophobic group(s) to the polycationic hydrophilic core of the antibiotic drugs aminoglycosides (AGs), targeting ribosomal RNA, has led to the development of amphiphilic aminoglycosides (AAGs). These drugs exhibit numerous biological effects, including good antibacterial effects against susceptible and multidrug-resistant bacteria due to the targeting of bacterial membranes. In the first part of this review, we summarize our work in identifying and developing broad-spectrum antibacterial AAGs that constitute a new class of antibiotic agents acting on bacterial membranes. The target-shift strongly improves antibiotic activity against bacterial strains that are resistant to the parent AG drugs and to antibiotic drugs of other classes, and renders the emergence of resistant Pseudomonas aeruginosa strains highly difficult. Structure-activity and structure-eukaryotic cytotoxicity relationships, specificity and barriers that need to be crossed in their development as antibacterial agents are delineated, with a focus on their targets in membranes, lipopolysaccharides (LPS) and cardiolipin (CL), and the corresponding mode of action against Gram-negative bacteria. At the end of the first part, we summarize the other recent advances in the field of antibacterial AAGs, mainly published since 2016, with an emphasis on the emerging AAGs which are made of an AG core conjugated to an adjuvant or an antibiotic drug of another class (antibiotic hybrids). In the second part, we briefly illustrate other biological and biochemical effects of AAGs, i.e., their antifungal activity, their use as delivery vehicles of nucleic acids, of short peptide (polyamide) nucleic acids (PNAs) and of drugs, as well as their ability to cleave DNA at abasic sites and to inhibit the functioning of connexin hemichannels. Finally, we discuss some aspects of structure-activity relationships in order to explain and improve the target selectivity of AAGs.
Collapse
Affiliation(s)
- Clément Dezanet
- Molecular Pharmacochemistry Department, University Grenoble Alpes, CNRS, 470 Rue de la Chimie, F-38000 Grenoble, France; (C.D.); (J.K.)
| | - Julie Kempf
- Molecular Pharmacochemistry Department, University Grenoble Alpes, CNRS, 470 Rue de la Chimie, F-38000 Grenoble, France; (C.D.); (J.K.)
| | - Marie-Paule Mingeot-Leclercq
- Cellular and Molecular Pharmacology Unit, Louvain Drug Research Institute, Catholic University of Louvain, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium
| | - Jean-Luc Décout
- Molecular Pharmacochemistry Department, University Grenoble Alpes, CNRS, 470 Rue de la Chimie, F-38000 Grenoble, France; (C.D.); (J.K.)
| |
Collapse
|
33
|
Castelo-Branco DDSCM, Amando BR, Ocadaque CJ, Aguiar LD, Paiva DDDQ, Diógenes EM, Guedes GMDM, Costa CL, Santos-Filho ASP, Andrade ARCD, Cordeiro RDA, Rocha MFG, Sidrim JJC. Mini-review: from in vitro to ex vivo studies: an overview of alternative methods for the study of medical biofilms. BIOFOULING 2020; 36:1129-1148. [PMID: 33349038 DOI: 10.1080/08927014.2020.1859499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Microbial biofilms are a natural adaptation of microorganisms, typically composed of multiple microbial species, exhibiting complex community organization and cooperation. Biofilm dynamics and their complex architecture are challenging for basic analyses, including the number of viable cells, biomass accumulation, biofilm morphology, among others. The methods used to study biofilms range from in vitro techniques to complex in vivo models. However, animal welfare has become a major concern, not only in society, but also in the academic and scientific field. Thus, the pursuit for alternatives to in vivo biofilm analyses presenting characteristics that mimic in vivo conditions has become essential. In this context, the present review proposes to provide an overview of strategies to study biofilms of medical interest, with emphasis on alternatives that approximate experimental conditions to host-associated environments, such as the use of medical devices as substrata for biofilm formation, microcosm and ex vivo models.
Collapse
Affiliation(s)
- Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
| | - Bruno Rocha Amando
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Crister José Ocadaque
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Lara de Aguiar
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Brazil
| | - Débora Damásio de Queiroz Paiva
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Expedito Maia Diógenes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Glaucia Morgana de Melo Guedes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
| | - Cecília Leite Costa
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Anísio Silvestre Pinheiro Santos-Filho
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Raquel Colares de Andrade
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
34
|
Rosenberg CR, Fang X, Allison KR. Potentiating aminoglycoside antibiotics to reduce their toxic side effects. PLoS One 2020; 15:e0237948. [PMID: 32877437 PMCID: PMC7467299 DOI: 10.1371/journal.pone.0237948] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022] Open
Abstract
The lack of new antibiotics necessitates the improvement of existing ones, many of which are limited by toxic side effects. Aminoglycosides, antibiotics with excellent activity and low bacterial resistance, are hampered by dose-dependent toxic effects in patients (nephrotoxicity, ototoxicity). High antibiotic concentrations are often required to treat dormant, non-dividing bacteria, though previous studies show that aminoglycosides can be activated against such bacteria by specific metabolites. Here, we employed this mechanism to greatly boost the activity of low concentrations of aminoglycosides against prevalent Gram-negative pathogens (Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae), suggesting that less toxic drug concentrations might be used effectively in patients. We go on to show that this effect improved treatment of biofilms, did not increase aminoglycoside resistance, and was due to the generation of proton-motive force (PMF). By single-cell microscopy, we demonstrate that stationary-phase cells, while non-dividing, actively maintain a growth-arrested state that is not reversed by metabolite addition. Surprisingly, within starved populations, we observed rare cells (3%) that divided without added nutrients. Additionally, we discovered that mannitol could directly protect human kidney cells from aminoglycoside cytotoxicity, independent of the metabolite's effect on bacteria. This work forwards a mechanism-based strategy to improve existing antibiotics by mitigating their toxic side effects.
Collapse
Affiliation(s)
- Christopher R. Rosenberg
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Xin Fang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, United States of America
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Kyle R. Allison
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, United States of America
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
- Emory Antibiotic Resistance Center, Atlanta, GA, United States of America
| |
Collapse
|
35
|
Soares A, Alexandre K, Etienne M. Tolerance and Persistence of Pseudomonas aeruginosa in Biofilms Exposed to Antibiotics: Molecular Mechanisms, Antibiotic Strategies and Therapeutic Perspectives. Front Microbiol 2020; 11:2057. [PMID: 32973737 PMCID: PMC7481396 DOI: 10.3389/fmicb.2020.02057] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/05/2020] [Indexed: 01/19/2023] Open
Abstract
Pseudomonas aeruginosa biofilm-related infections are difficult to treat with antibiotics. Along the different layers of the biofilm, the P. aeruginosa population is heterogeneous, exhibiting an extreme ability to adapt his metabolic activity to the local microenvironment. At the deepest layers of the biofilm is a subset of dormant cells, called persister cells. Though antimicrobial failure might be multifactorial, it is now demonstrated that these persister cells, genetically identical to a fully susceptible strain, but phenotypically divergent, are highly tolerant to antibiotics, and contribute to antimicrobial failure. By eradicating susceptible, metabolically active cells, antibiotics bring out pre-existing persister cells. The biofilm mode of growth creates microenvironment conditions that activate stringent response mechanisms, SOS response and toxin-antitoxin systems that render the bacterial population highly tolerant to antibiotics. Using diverse, not standardized, models of biofilm infection, a large panel of antibiotic regimen has been evaluated. They demonstrated that biofilm growth had an unequal impact of antibiotic activity, colistin and meropenem being the less impacted antibiotics. Different combination and sequential antimicrobial therapies were also evaluated, and could be partially efficient, but none succeeded in eradicating persister cells, so that non-antibiotic alternative strategies are currently under development. This article reviews the molecular mechanisms involved in antibiotic tolerance and persistence in P. aeruginosa biofilm infections. A review of the antimicrobial regimen evaluated for the treatment of P. aeruginosa biofilm infection is also presented. While tremendous progress has been made in the understanding of biofilm-related infections, alternative non-antibiotic strategies are now urgently needed.
Collapse
Affiliation(s)
- Anaïs Soares
- GRAM 2.0, EA 2656, Normandie University, UNIROUEN, Rouen, France
| | - Kévin Alexandre
- GRAM 2.0, EA 2656, Normandie University, UNIROUEN, Rouen, France.,Infectious Diseases Department, Rouen University Hospital, Rouen, France
| | - Manuel Etienne
- GRAM 2.0, EA 2656, Normandie University, UNIROUEN, Rouen, France.,Infectious Diseases Department, Rouen University Hospital, Rouen, France
| |
Collapse
|
36
|
Rocha-Granados MC, Zenick B, Englander HE, Mok WWK. The social network: Impact of host and microbial interactions on bacterial antibiotic tolerance and persistence. Cell Signal 2020; 75:109750. [PMID: 32846197 DOI: 10.1016/j.cellsig.2020.109750] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Antibiotics have vastly improved our quality of life since their discovery and introduction into modern medicine. Yet, widespread use and misuse have compromised the efficacy of these compounds and put our ability to cure infectious diseases in jeopardy. To defend themselves against antibiotics, bacteria have evolved an arsenal of survival strategies. In addition to acquiring mutations and genetic determinants that confer antibiotic resistance, bacteria can respond to environmental cues and adopt reversible phenotypic changes that transiently enhance their ability to survive adverse conditions, including those brought on by antibiotics. These antibiotic tolerant and persistent bacteria, which are prevalent in biofilms and can survive antimicrobial therapy without inheriting resistance, are thought to underlie treatment failure and infection relapse. At infection sites, bacteria encounter a range of signals originating from host immunity and the local microbiota that can induce transcriptomic and metabolic reprogramming. In this review, we will focus on the impact of host factors and microbial interactions on antibiotic tolerance and persistence. We will also outline current efforts in leveraging the knowledge of host-microbe and microbe-microbe interactions in designing therapies that potentiate antibiotic activity and reduce the burden caused by recurrent infections.
Collapse
Affiliation(s)
| | - Blesing Zenick
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA
| | - Hanna E Englander
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA; Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269-3156, United States of America
| | - Wendy W K Mok
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA.
| |
Collapse
|
37
|
Chebotar IV, Bocharova YA, Gur'ev AS, Mayansky NA. [Bacteria survival strategies in contact with antibiotics.]. Klin Lab Diagn 2020; 65:116-121. [PMID: 32159310 DOI: 10.18821/0869-2084-2020-65-2-116-121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 01/12/2023]
Abstract
Bacteria survival in the conditions of antimicrobial therapy is the global problem of health care. This review highlights the complexity and diversity of mechanisms used by bacteria to neutralize antibiotics. To analyze the problem, the search was made using PubMed database, Russian scientific electronic library eLIBRARY, search system of World Health Organization and European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Based on the analysis of survival strategies in the conditions of antibiotics action we propose new classification of resistant bacteria. Classification criteria include the ability to divide under antibiotics action, the survival strategies application as a species trait, the presence of specialized genes determining the transition to the state with reduced/stopped metabolism. Two main groups are resistant bacteria and bacteria with reduced/stopped metabolism, which survive but do not divide in the presence of antibiotic. The first group includes two subgroups: bacteria with intrinsic and adaptive resistance. The second group includes (1) bacteria with specialized genes responsible for cell transformation to the state with reduced/stopped metabolism, (2) bacteria transforming to the state with reduced/stopped metabolism without involvement of special genes, and (3) cell forms with special morphology - spores, cysts and cyst-like cells. We described the usefulness of proposed classification including improved understanding of the correlation between bacteria survival in the presence of antibiotics and molecular mechanism of cell metabolism inhibition, presence or absence of targets for using molecular-genetic methods of bacteria resistant variant determination, the possibility for development of rational antimicrobial therapy methods.
Collapse
Affiliation(s)
- I V Chebotar
- Pirogov Russian National Research Medical University, 119571, Moscow
| | - Y A Bocharova
- National Medical Research Center for Children's Health, 119296, Moscow
| | - A S Gur'ev
- M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI), 129110, Moscow.,Medtechnopark Ltd., 117292, Moscow, Russia
| | - N A Mayansky
- Pirogov Russian National Research Medical University, 119571, Moscow
| |
Collapse
|
38
|
Abokhalil RN, Elkhatib WF, Aboulwafa MM, Hassouna NA. Persisters of Klebsiella pneumoniae and Proteus mirabilis: A Common Phenomenon and Different Behavior Profiles. Curr Microbiol 2020; 77:1233-1244. [PMID: 32123985 DOI: 10.1007/s00284-020-01926-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Persisters of infectious agents are capable of surviving antibiotic treatment so the emergence of these subpopulations need to be overcome. In this study, we aimed to isolate, characterize and inhibit persister subpopulation in two clinical isolates Klebsiella pneumoniae and Proteus mirabilis. Different behavior profiles between the two isolates could be observed. The results of dose-dependent killing curve revealed that 2.3% (Klebsiella pneumoniae) versus 1.3% (Proteus mirabilis) persister cells could be recovered using 500 and 30 ug/ml ciprofloxacin, respectively. Upon resuscitation, persister cells exhibited only 65% versus 30% percentage growth and 5 versus 7 times cell elongation relative to Klebsiella pneumoniae and Proteus mirabilis, respectively. The levels of persister cells to ciprofloxacin of Klebsiella pneumoniae were dramatically decreased by about 79, 92, 97 and 83% in average by pre-exposure to hyperosmotic stress, temperature, different pHs, and hydrogen peroxide, respectively, while those of Proteus mirabilis were minimally decreased with corresponding reduction percentages of about 12%, 24 & 25%, and 0%. Regarding combating persisters, Klebsiella pneumoniae showed different response as compared to Proteus mirabilis. Among the tested sugars, the highest reduction of Klebsiella pneumoniae persister cells was obtained with pre-priming with sucrose while for Proteus mirabilis persister cells, the highest reduction was obtained with pre-priming with glucose. Using sodium salicylate with ciprofloxacin could eradicate persisters of Klebsiella pneumoniae at any tested concentration while for Proteus mirabilis it caused some reduction in persister cells at certain concentrations. Complete eradication of persisters was obtained by combining silver nitrate with ciprofloxacin for each test isolate.
Collapse
Affiliation(s)
- Rana N Abokhalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, POB: 11566, Cairo, Egypt
| | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, POB: 11566, Cairo, Egypt
- Department of Microbiology and Immunology, School of Pharmacy & Pharmaceutical Industries, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, Egypt
| | - Mohammad M Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, POB: 11566, Cairo, Egypt.
| | - Nadia A Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, POB: 11566, Cairo, Egypt
| |
Collapse
|
39
|
Enzyme-based strategy to eradicate monospecies Macrococcus caseolyticus biofilm contamination in dairy industries. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2019.104560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Coenye T, Kjellerup B, Stoodley P, Bjarnsholt T. The future of biofilm research - Report on the '2019 Biofilm Bash'. Biofilm 2019; 2:100012. [PMID: 33447799 PMCID: PMC7798458 DOI: 10.1016/j.bioflm.2019.100012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
In May 2019, 29 scientists with expertise in various subdisciplines of biofilm research got together in Leavenworth (WA, USA) at an event designated as the ‘2019 Biofilm Bash’. The goal of this informal two-day meeting was first to identify gaps in our knowledge, and then to come up with ways how the biofilm community can fill these gaps. The meeting was organized around six questions that covered the most important items brought forward by the organizers and participants. The outcome of these discussions is summarized in the present paper. We are aware that these views represent a small subset of our field, and that inevitably we will have inadvertently overlooked important developing research areas and ideas. We are nevertheless hopeful that this report will stimulate discussions and help create new ways of how we can advance our field.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.,ESCMID Study Group on Biofilms, Basel, Switzerland
| | - Birthe Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.,Department of Orthopaedics, The Ohio State University, Columbus, OH, USA.,National Biofilms Innovation Centre (NBIC), UK.,National Centre for Advanced Tribology at Southampton, University of Southampton, Southampton, UK
| | - Thomas Bjarnsholt
- ESCMID Study Group on Biofilms, Basel, Switzerland.,Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | | |
Collapse
|
41
|
Tracking of quiescence in Leishmania by quantifying the expression of GFP in the ribosomal DNA locus. Sci Rep 2019; 9:18951. [PMID: 31831818 PMCID: PMC6908629 DOI: 10.1038/s41598-019-55486-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/27/2019] [Indexed: 01/22/2023] Open
Abstract
Under stressful conditions some microorganisms adopt a quiescent stage characterized by a reversible non or slow proliferative condition that allows their survival. This adaptation was only recently discovered in Leishmania. We developed an in vitro model and a biosensor to track quiescence at population and single cell levels. The biosensor is a GFP reporter gene integrated within the 18S rDNA locus, which allows monitoring the expression of 18S rRNA (rGFP expression). We showed that rGFP expression decreased significantly and rapidly during the transition from extracellular promastigotes to intracellular amastigotes and that it was coupled in vitro with a decrease in replication as measured by BrdU incorporation. rGFP expression was useful to track the reversibility of quiescence in live cells and showed for the first time the heterogeneity of physiological stages among the population of amastigotes in which shallow and deep quiescent stages may coexist. We also validated the use of rGFP expression as a biosensor in animal models of latent infection. Our models and biosensor should allow further characterization of quiescence at metabolic and molecular level.
Collapse
|
42
|
Behera S, Pattnaik S. Persister cell development among Enterobacteriaceae, Pseudomonadaceae, Mycobacteriaceae and Staphylococcaceae biotypes: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Power-law tail in lag time distribution underlies bacterial persistence. Proc Natl Acad Sci U S A 2019; 116:17635-17640. [PMID: 31427535 DOI: 10.1073/pnas.1903836116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Genetically identical microbial cells respond to stress heterogeneously, and this phenotypic heterogeneity contributes to population survival. Quantitative analysis of phenotypic heterogeneity can reveal dynamic features of stochastic mechanisms that generate heterogeneity. Additionally, it can enable a priori prediction of population dynamics, elucidating microbial survival strategies. Here, we quantitatively analyzed the persistence of an Escherichia coli population. When a population is confronted with antibiotics, a majority of cells is killed but a subpopulation called persisters survives the treatment. Previous studies have found that persisters survive antibiotic treatment by maintaining a long period of lag phase. When we quantified the lag time distribution of E. coli cells in a large dynamic range, we found that normal cells rejuvenated with a lag time distribution that is well captured by an exponential decay [exp(-kt)], agreeing with previous studies. This exponential decay indicates that their rejuvenation is governed by a single rate constant kinetics (i.e., k is constant). Interestingly, the lag time distribution of persisters exhibited a long tail captured by a power-law decay. Using a simple quantitative argument, we demonstrated that this power-law decay can be explained by a wide variation of the rate constant k Additionally, by developing a mathematical model based on this biphasic lag time distribution, we quantitatively explained the complex population dynamics of persistence without any ad hoc parameters. The quantitative features of persistence demonstrated in our work shed insights into molecular mechanisms of persistence and advance our knowledge of how a microbial population evades antibiotic treatment.
Collapse
|
44
|
Abstract
Ongoing advances in chemical proteomic methods have facilitated detection and quantification of enzymatic activity, a highly informative parameter that is not captured in protein abundance measurements. However, some biological questions remain unanswered, since current gel- or LC-MS/MS-based detection methods suffer from limitations stemming from sample homogenization, signal-averaging, and an inherent bias toward abundant proteins. To address these shortcomings, we recently developed an activity-based proximity ligation (ADPL) platform to capture and quantify enzyme activity on the level of single cells, with high intra- and intercellular spatial resolution. In this chapter, we briefly discuss the rationale behind the ADPL platform, the design transition from the initial "sandwich-complex" workflow to the optimized, "direct conjugate" ADPL method, and conclude with detailed protocols for each. We also describe our novel use of the homo-bifunctional linker, disuccinimidyl suberate (DSS), to conjugate proteins and oligonucleotides, thus generating the necessary antibody-oligonucleotide recognition reagents for ADPL. Finally, we demonstrate the utility of ADPL to characterize enzyme activity from cytosol to nucleus, and specifically detect enzyme activity using "direct conjugate" ADPL.
Collapse
|
45
|
Stratford JP, Edwards CLA, Ghanshyam MJ, Malyshev D, Delise MA, Hayashi Y, Asally M. Electrically induced bacterial membrane-potential dynamics correspond to cellular proliferation capacity. Proc Natl Acad Sci U S A 2019; 116:9552-9557. [PMID: 31000597 PMCID: PMC6511025 DOI: 10.1073/pnas.1901788116] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Membrane-potential dynamics mediate bacterial electrical signaling at both intra- and intercellular levels. Membrane potential is also central to cellular proliferation. It is unclear whether the cellular response to external electrical stimuli is influenced by the cellular proliferative capacity. A new strategy enabling electrical stimulation of bacteria with simultaneous monitoring of single-cell membrane-potential dynamics would allow bridging this knowledge gap and further extend electrophysiological studies into the field of microbiology. Here we report that an identical electrical stimulus can cause opposite polarization dynamics depending on cellular proliferation capacity. This was demonstrated using two model organisms, namely Bacillus subtilis and Escherichia coli, and by developing an apparatus enabling exogenous electrical stimulation and single-cell time-lapse microscopy. Using this bespoke apparatus, we show that a 2.5-second electrical stimulation causes hyperpolarization in unperturbed cells. Measurements of intracellular K+ and the deletion of the K+ channel suggested that the hyperpolarization response is caused by the K+ efflux through the channel. When cells are preexposed to 400 ± 8 nm wavelength light, the same electrical stimulation depolarizes cells instead of causing hyperpolarization. A mathematical model extended from the FitzHugh-Nagumo neuron model suggested that the opposite response dynamics are due to the shift in resting membrane potential. As predicted by the model, electrical stimulation only induced depolarization when cells are treated with antibiotics, protonophore, or alcohol. Therefore, electrically induced membrane-potential dynamics offer a reliable approach for rapid detection of proliferative bacteria and determination of their sensitivity to antimicrobial agents at the single-cell level.
Collapse
Affiliation(s)
- James P Stratford
- School of Life Sciences, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, West Midlands, CV4 7AL,United Kingdom
| | - Conor L A Edwards
- School of Life Sciences, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom
| | - Manjari J Ghanshyam
- School of Life Sciences, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom
| | - Dmitry Malyshev
- School of Life Sciences, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom
| | - Marco A Delise
- School of Life Sciences, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom
| | - Yoshikatsu Hayashi
- Department of Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, Berkshire, RG6 6AH, United Kingdom
| | - Munehiro Asally
- School of Life Sciences, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom;
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, West Midlands, CV4 7AL,United Kingdom
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom
| |
Collapse
|
46
|
Keasey SL, Suh MJ, Das S, Blancett CD, Zeng X, Andresson T, Sun MG, Ulrich RG. Decreased Antibiotic Susceptibility Driven by Global Remodeling of the Klebsiella pneumoniae Proteome. Mol Cell Proteomics 2019; 18:657-668. [PMID: 30617156 PMCID: PMC6442359 DOI: 10.1074/mcp.ra118.000739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 01/04/2019] [Indexed: 12/04/2022] Open
Abstract
Bacteria can circumvent the effect of antibiotics by transitioning to a poorly understood physiological state that does not involve conventional genetic elements of resistance. Here we examine antibiotic susceptibility with a Class A β-lactamase+ invasive strain of Klebsiella pneumoniae that was isolated from a lethal outbreak within laboratory colonies of Chlorocebus aethiops sabaeus monkeys. Bacterial responses to the ribosomal synthesis inhibitors streptomycin and doxycycline resulted in distinct proteomic adjustments that facilitated decreased susceptibility to each antibiotic. Drug-specific changes to proteomes included proteins for receptor-mediated membrane transport and sugar utilization, central metabolism, and capsule production, whereas mechanisms common to both antibiotics included elevated scavenging of reactive oxygen species and turnover of misfolded proteins. Resistance to combined antibiotics presented integrated adjustments to protein levels as well as unique drug-specific proteomic features. Our results demonstrate that dampening of Klebsiella pneumoniae susceptibility involves global remodeling of the bacterial proteome to counter the effects of antibiotics and stabilize growth.
Collapse
Affiliation(s)
- Sarah L Keasey
- From the ‡Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland;; Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Moo-Jin Suh
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Sudipto Das
- Laboratory of Proteomics and Analytical Technologies, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, NCI-Frederick, Frederick, Maryland
| | - Candace D Blancett
- Pathology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Xiankun Zeng
- Pathology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Thorkell Andresson
- Laboratory of Proteomics and Analytical Technologies, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, NCI-Frederick, Frederick, Maryland
| | - Mei G Sun
- Pathology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Robert G Ulrich
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland;.
| |
Collapse
|
47
|
Barrett TC, Mok WWK, Murawski AM, Brynildsen MP. Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nat Commun 2019; 10:1177. [PMID: 30862812 PMCID: PMC6414640 DOI: 10.1038/s41467-019-09058-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Bacterial persisters are able to tolerate high levels of antibiotics and give rise to new populations. Persister tolerance is generally attributed to minimally active cellular processes that prevent antibiotic-induced damage, which has led to the supposition that persister offspring give rise to antibiotic-resistant mutants at comparable rates to normal cells. Using time-lapse microscopy to monitor Escherichia coli populations following ofloxacin treatment, we find that persisters filament extensively and induce impressive SOS responses before returning to a normal appearance. Further, populations derived from fluoroquinolone persisters contain significantly greater quantities of antibiotic-resistant mutants than those from untreated controls. We confirm that resistance is heritable and that the enhancement requires RecA, SOS induction, an opportunity to recover from treatment, and the involvement of error-prone DNA polymerase V (UmuDC). These findings show that fluoroquinolones damage DNA in persisters and that the ensuing SOS response accelerates the development of antibiotic resistance from these survivors. Fluoroquinolone (FQ)-induced DNA damage in persisters could promote antibiotic resistance. Here, using time-lapse microscopy and genetic analyses, the authors show that after a single round of FQ treatment, SOS response in persisters accelerates the development of resistance to unrelated antibiotics.
Collapse
Affiliation(s)
- Theresa C Barrett
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.,Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Wendy W K Mok
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.,Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, 06032-3305, USA
| | - Allison M Murawski
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.,Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Mark P Brynildsen
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA. .,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
48
|
Mandal S, Njikan S, Kumar A, Early JV, Parish T. The relevance of persisters in tuberculosis drug discovery. MICROBIOLOGY-SGM 2019; 165:492-499. [PMID: 30775961 DOI: 10.1099/mic.0.000760] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bacterial persisters are a subpopulation of cells that exhibit phenotypic resistance during exposure to a lethal dose of antibiotics. They are difficult to target and thought to contribute to the long treatment duration required for tuberculosis. Understanding the molecular and cellular biology of persisters is critical to finding new tuberculosis drugs that shorten treatment. This review focuses on mycobacterial persisters and describes the challenges they pose in tuberculosis therapy, their characteristics and formation, how persistence leads to resistance, and the current approaches being used to target persisters within mycobacterial drug discovery.
Collapse
Affiliation(s)
- Soma Mandal
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Ave. E, Suite 400, Seattle, WA 98102, USA
| | - Samuel Njikan
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Ave. E, Suite 400, Seattle, WA 98102, USA
| | - Anuradha Kumar
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Ave. E, Suite 400, Seattle, WA 98102, USA
| | - Julie V Early
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Ave. E, Suite 400, Seattle, WA 98102, USA
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Ave. E, Suite 400, Seattle, WA 98102, USA
| |
Collapse
|
49
|
Regrowth-delay body as a bacterial subcellular structure marking multidrug-tolerant persisters. Cell Discov 2019; 5:8. [PMID: 30675381 PMCID: PMC6341109 DOI: 10.1038/s41421-019-0080-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 02/08/2023] Open
Abstract
Bacteria have long been recognized to be capable of entering a phenotypically non-growing persister state, in which the cells exhibit an extended regrowth lag and a multidrug tolerance, thus posing a great challenge in treating infectious diseases. Owing to their non-inheritability, low abundance of existence, lack of metabolic activities, and high heterogeneity, properties of persisters remain poorly understood. Here, we report our accidental discovery of a subcellular structure that we term the regrowth-delay body, which is formed only in non-growing bacterial cells and sequesters multiple key proteins. This structure, that dissolves when the cell resumes growth, is able to be viewed as a marker of persisters. Our studies also indicate that persisters exhibit different depth of persistence, as determined by the status of their regrowth-delay bodies. Our findings imply that suppressing the formation and/or promoting the dissolution of regrowth-delay bodies could be viable strategies for eradicating persisters.
Collapse
|
50
|
Rohani A, Moore JH, Su YH, Stagnaro V, Warren C, Swami NS. Single-cell electro-phenotyping for rapid assessment of Clostridium difficile heterogeneity under vancomycin treatment at sub-MIC (minimum inhibitory concentration) levels. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 276:472-480. [PMID: 30369719 PMCID: PMC6201234 DOI: 10.1016/j.snb.2018.08.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Current methods for measurement of antibiotic susceptibility of pathogenic bacteria are highly reliant on microbial culture, which is time consuming (requires > 16 hours), especially at near minimum inhibitory concentration (MIC) levels of the antibiotic. We present the use of single-cell electrophysiology-based microbiological analysis for rapid phenotypic identification of antibiotic susceptibility at near-MIC levels, without the need for microbial culture. Clostridium difficile (C. difficile) is the single most common cause of antibiotic-induced enteric infection and disease recurrence is common after antibiotic treatments to suppress the pathogen. Herein, we show that de-activation of C. difficile after MIC-level vancomycin treatment, as validated by microbiological growth assays, can be ascertained rapidly by measuring alterations to the microbial cytoplasmic conductivity that is gauged by the level of positive dielectrophoresis (pDEP) and the frequency spectra for co-field electro-rotation (ROT). Furthermore, this single-cell electrophysiology technique can rapidly identify and quantify the live C. difficile subpopulation after vancomycin treatment at sub-MIC levels, whereas methods based on measurement of the secreted metabolite toxin or the microbiological growth rate can identify this persistent C. difficile subpopulation only after 24 hours of microbial culture, without any ability to quantify the subpopulation. The application of multiplexed versions of this technique is envisioned for antibiotic susceptibility screening.
Collapse
Affiliation(s)
- Ali Rohani
- Electrical & Computer Engineering, University of Virginia
| | - John H. Moore
- Electrical & Computer Engineering, University of Virginia
| | - Yi-Hsuan Su
- Electrical & Computer Engineering, University of Virginia
| | | | - Cirle Warren
- Infectious Diseases, School of Medicine, University of Virginia
| | - Nathan S. Swami
- Electrical & Computer Engineering, University of Virginia
- Corresponding author: 351 McCormick Road, Charlottesville, VA 22904-1000;
| |
Collapse
|