1
|
Alberge F, Lakey BD, Schaub RE, Dohnalkova AC, Lemmer KC, Dillard JP, Noguera DR, Donohue TJ. A previously uncharacterized divisome-associated lipoprotein, DalA, is needed for normal cell division in Rhodobacterales. mBio 2023; 14:e0120323. [PMID: 37389444 PMCID: PMC10470522 DOI: 10.1128/mbio.01203-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
The bacterial cell envelope is a key subcellular compartment with important roles in antibiotic resistance, nutrient acquisition, and cell morphology. We seek to gain a better understanding of proteins that contribute to the function of the cell envelope in Alphaproteobacteria. Using Rhodobacter sphaeroides, we show that a previously uncharacterized protein, RSP_1200, is an outer membrane (OM) lipoprotein that non-covalently binds peptidoglycan (PG). Using a fluorescently tagged version of this protein, we find that RSP_1200 undergoes a dynamic repositioning during the cell cycle and is enriched at the septum during cell division. We show that the position of RSP_1200 mirrors the location of FtsZ rings, leading us to propose that RSP_1200 is a newly identified component of the R. sphaeroides' divisome. Additional support for this hypothesis includes the co-precipitation of RSP_1200 with FtsZ, the Pal protein, and several predicted PG L,D-transpeptidases. We also find that a ∆RSP_1200 mutation leads to defects in cell division, sensitivity to PG-active antibiotics, and results in the formation of OM protrusions at the septum during cell division. Based on these results, we propose to name RSP_1200 DalA (for division-associated lipoprotein A) and postulate that DalA serves as a scaffold to position or modulate the activity of PG transpeptidases that are needed to form envelope invaginations during cell division. We find that DalA homologs are present in members of the Rhodobacterales order within Alphaproteobacteria. Therefore, we propose that further analysis of this and related proteins will increase our understanding of the macromolecular machinery and proteins that participate in cell division in Gram-negative bacteria. IMPORTANCE Multi-protein complexes of the bacterial cell envelope orchestrate key processes like growth, division, biofilm formation, antimicrobial resistance, and production of valuable compounds. The subunits of these protein complexes are well studied in some bacteria, and differences in their composition and function are linked to variations in cell envelope composition, shape, and proliferation. However, some envelope protein complex subunits have no known homologs across the bacterial phylogeny. We find that Rhodobacter sphaeroides RSP_1200 is a newly identified lipoprotein (DalA) and that loss of this protein causes defects in cell division and changes the sensitivity to compounds, affecting cell envelope synthesis and function. We find that DalA forms a complex with proteins needed for cell division, binds the cell envelope polymer peptidoglycan, and colocalizes with enzymes involved in the assembly of this macromolecule. The analysis of DalA provides new information on the cell division machinery in this and possibly other Alphaproteobacteria.
Collapse
Affiliation(s)
- François Alberge
- />Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bryan D. Lakey
- />Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alice C. Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- />Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- />Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Genetic Screens Identify Additional Genes Implicated in Envelope Remodeling during the Engulfment Stage of Bacillus subtilis Sporulation. mBio 2022; 13:e0173222. [PMID: 36066101 PMCID: PMC9600426 DOI: 10.1128/mbio.01732-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During bacterial endospore formation, the developing spore is internalized into the mother cell through a phagocytic-like process called engulfment, which involves synthesis and hydrolysis of peptidoglycan. Engulfment peptidoglycan hydrolysis requires the widely conserved and well-characterized DMP complex, composed of SpoIID, SpoIIM, and SpoIIP. In contrast, although peptidoglycan synthesis has been implicated in engulfment, the protein players involved are less well defined. The widely conserved SpoIIIAH-SpoIIQ interaction is also required for engulfment efficiency, functioning like a ratchet to promote membrane migration around the forespore. Here, we screened for additional factors required for engulfment using transposon sequencing in Bacillus subtilis mutants with mild engulfment defects. We discovered that YrvJ, a peptidoglycan hydrolase, and the MurA paralog MurAB, involved in peptidoglycan precursor synthesis, are required for efficient engulfment. Cytological analyses suggest that both factors are important for engulfment when the DMP complex is compromised and that MurAB is additionally required when the SpoIIIAH-SpoIIQ ratchet is abolished. Interestingly, despite the importance of MurAB for sporulation in B. subtilis, phylogenetic analyses of MurA paralogs indicate that there is no correlation between sporulation and the number of MurA paralogs and further reveal the existence of a third MurA paralog, MurAC, within the Firmicutes. Collectively, our studies identify two new factors that are required for efficient envelop remodeling during sporulation and highlight the importance of peptidoglycan precursor synthesis for efficient engulfment in B. subtilis and likely other endospore-forming bacteria.
Collapse
|
3
|
Martínez-Absalón S, Guadarrama C, Dávalos A, Romero D. RdsA Is a Global Regulator That Controls Cell Shape and Division in Rhizobium etli. Front Microbiol 2022; 13:858440. [PMID: 35464952 PMCID: PMC9022086 DOI: 10.3389/fmicb.2022.858440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike other bacteria, cell growth in rhizobiales is unipolar and asymmetric. The regulation of cell division, and its coordination with metabolic processes is an active field of research. In Rhizobium etli, gene RHE_PE00024, located in a secondary chromosome, is essential for growth. This gene encodes a predicted hybrid histidine kinase sensor protein, participating in a, as yet undescribed, two-component signaling system. In this work, we show that a conditional knockdown mutant (cKD24) in RHE_PE00024 (hereby referred as rdsA, after rhizobium division and shape) generates a striking phenotype, where nearly 64% of the cells present a round shape, with stochastic and uncoordinated cell division. For rod-shaped cells, a large fraction (12 to 29%, depending on their origin) present growth from the old pole, a sector that is normally inactive for growth in a wild-type cell. A fraction of the cells (1 to 3%) showed also multiple ectopic polar growths. Homodimerization of RdsA appears to be required for normal function. RNAseq analysis of mutant cKD24 reveals global changes, with downregulated genes in at least five biological processes: cell division, wall biogenesis, respiration, translation, and motility. These modifications may affect proper structuring of the divisome, as well as peptidoglycan synthesis. Together, these results indicate that the hybrid histidine kinase RdsA is an essential global regulator influencing cell division and cell shape in R. etli.
Collapse
Affiliation(s)
- Sofía Martínez-Absalón
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Carmen Guadarrama
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Araceli Dávalos
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
4
|
Peptidoglycan editing in non-proliferating intracellular Salmonella as source of interference with immune signaling. PLoS Pathog 2022; 18:e1010241. [PMID: 35077524 PMCID: PMC8815878 DOI: 10.1371/journal.ppat.1010241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 01/01/2022] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica causes intracellular infections that can be limited to the intestine or spread to deeper tissues. In most cases, intracellular bacteria show moderate growth. How these bacteria face host defenses that recognize peptidoglycan, is poorly understood. Here, we report a high-resolution structural analysis of the minute amounts of peptidoglycan purified from S. enterica serovar Typhimurium (S. Typhimurium) infecting fibroblasts, a cell type in which this pathogen undergoes moderate growth and persists for days intracellularly. The peptidoglycan of these non-proliferating bacteria contains atypical crosslinked muropeptides with stem peptides trimmed at the L-alanine-D-glutamic acid-(γ) or D-glutamic acid-(γ)-meso-diaminopimelic acid motifs, both sensed by intracellular immune receptors. This peptidoglycan has a reduced glycan chain average length and ~30% increase in the L,D-crosslink, a type of bridge shared by all the atypical crosslinked muropeptides identified. The L,D-transpeptidases LdtD (YcbB) and LdtE (YnhG) are responsible for the formation of these L,D-bridges in the peptidoglycan of intracellular bacteria. We also identified in a fraction of muropeptides an unprecedented modification in the peptidoglycan of intracellular S. Typhimurium consisting of the amino alcohol alaninol replacing the terminal (fourth) D-alanine. Alaninol was still detectable in the peptidoglycan of a double mutant lacking LdtD and LdtE, thereby ruling out the contribution of these enzymes to this chemical modification. Remarkably, all multiple mutants tested lacking candidate enzymes that either trim stem peptides or form the L,D-bridges retain the capacity to modify the terminal D-alanine to alaninol and all attenuate NF-κB nuclear translocation. These data inferred a potential role of alaninol-containing muropeptides in attenuating pro-inflammatory signaling, which was confirmed with a synthetic tetrapeptide bearing such amino alcohol. We suggest that the modification of D-alanine to alaninol in the peptidoglycan of non-proliferating intracellular S. Typhimurium is an editing process exploited by this pathogen to evade immune recognition inside host cells. The peptidoglycan, built as a giant polymer of glycan chains crosslinked with short peptides, is essential for cell shape and survival in most bacteria. Its unique chemistry is recognized by innate immune receptors, thereby enabling neutralization of invading microbes. A striking feature of the peptidoglycan is its constant remodeling by a plethora of endogenous enzymes. In addition, some bacterial pathogens introduce structural modifications that interfere with immune recognition. These modifications have been characterized in pathogens mostly in laboratory nutrient media. Whether facultative intracellular pathogens modify peptidoglycan structure inside host cells, was unknown. The work presented here shows that non-proliferating Salmonella enterica serovar Typhimurium remodels the peptidoglycan structure in response to intracellular cues and that some of these modifications involve unprecedented changes as the presence of an amino alcohol that hampers activation of the master immune regulator NF-κB. Peptidoglycan editing might therefore empower persistence of bacterial pathogens in the intracellular niche.
Collapse
|
5
|
Tank RG, Lund VA, Kumar S, Turner RD, Lafage L, Pasquina Lemonche L, Bullough PA, Cadby A, Foster SJ, Hobbs JK. Correlative Super-Resolution Optical and Atomic Force Microscopy Reveals Relationships Between Bacterial Cell Wall Architecture and Synthesis in Bacillus subtilis. ACS NANO 2021; 15:16011-16018. [PMID: 34533301 PMCID: PMC8552488 DOI: 10.1021/acsnano.1c04375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Understanding how bacteria grow and divide requires insight into both the molecular-level dynamics of ultrastructure and the chemistry of the constituent components. Atomic force microscopy (AFM) can provide near molecular resolution images of biological systems but typically provides limited chemical information. Conversely, while super-resolution optical microscopy allows localization of particular molecules and chemistries, information on the molecular context is difficult to obtain. Here, we combine these approaches into STORMForce (stochastic optical reconstruction with atomic force microscopy) and the complementary SIMForce (structured illumination with atomic force microscopy), to map the synthesis of the bacterial cell wall structural macromolecule, peptidoglycan, during growth and division in the rod-shaped bacterium Bacillus subtilis. Using "clickable" d-amino acid incorporation, we fluorescently label and spatially localize a short and controlled period of peptidoglycan synthesis and correlate this information with high-resolution AFM of the resulting architecture. During division, septal synthesis occurs across its developing surface, suggesting a two-stage process with incorporation at the leading edge and with considerable in-filling behind. During growth, the elongation of the rod occurs through bands of synthesis, spaced by ∼300 nm, and corresponds to denser regions of the internal cell wall as revealed by AFM. Combining super-resolution optics and AFM can provide insights into the synthesis processes that produce the complex architectures of bacterial structural biopolymers.
Collapse
Affiliation(s)
- Raveen
K. G. Tank
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
| | - Victoria A. Lund
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Sandip Kumar
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Robert D. Turner
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department
of Computer Science, University of Sheffield, Sheffield, S1 4DP, United Kingdom
| | - Lucia Lafage
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Laia Pasquina Lemonche
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Per A. Bullough
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Ashley Cadby
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
| | - Simon J. Foster
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jamie K. Hobbs
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
6
|
Figueroa-Cuilan WM, Randich AM, Dunn CM, Santiago-Collazo G, Yowell A, Brown PJB. Diversification of LytM Protein Functions in Polar Elongation and Cell Division of Agrobacterium tumefaciens. Front Microbiol 2021; 12:729307. [PMID: 34489918 PMCID: PMC8416486 DOI: 10.3389/fmicb.2021.729307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 12/05/2022] Open
Abstract
LytM-domain containing proteins are LAS peptidases (lysostaphin-type enzymes, D-Ala-D-Ala metallopeptidases, and sonic hedgehog) and are known to play diverse roles throughout the bacterial cell cycle through direct or indirect hydrolysis of the bacterial cell wall. A subset of the LytM factors are catalytically inactive but regulate the activity of other cell wall hydrolases and are classically described as cell separation factors NlpD and EnvC. Here, we explore the function of four LytM factors in the alphaproteobacterial plant pathogen Agrobacterium tumefaciens. An LmdC ortholog (Atu1832) and a MepM ortholog (Atu4178) are predicted to be catalytically active. While Atu1832 does not have an obvious function in cell growth or division, Atu4178 is essential for polar growth and likely functions as a space-making endopeptidase that cleaves amide bonds in the peptidoglycan cell wall during elongation. The remaining LytM factors are degenerate EnvC and NlpD orthologs. Absence of these proteins results in striking phenotypes indicative of misregulation of cell division and growth pole establishment. The deletion of an amidase, AmiC, closely phenocopies the deletion of envC suggesting that EnvC might regulate AmiC activity. The NlpD ortholog DipM is unprecedently essential for viability and depletion results in the misregulation of early stages of cell division, contrasting with the canonical view of DipM as a cell separation factor. Finally, we make the surprising observation that absence of AmiC relieves the toxicity induced by dipM overexpression. Together, these results suggest EnvC and DipM may function as regulatory hubs with multiple partners to promote proper cell division and establishment of polarity.
Collapse
Affiliation(s)
| | - Amelia M. Randich
- Department of Biology, University of Scranton, Scranton, PA, United States
| | - Caroline M. Dunn
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Gustavo Santiago-Collazo
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Molecular Pathogenesis and Therapeutics Graduate Program, University of Missouri, Columbia, MO, United States
| | - Andrew Yowell
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
7
|
Chen R, Song J, Lin L, Liu J, Yang C, Wang W. Visualizing the Growth and Division of Rat Gut Bacteria by D-Amino Acid-Based in vivo Labeling and FISH Staining. Front Mol Biosci 2021; 8:681938. [PMID: 34124162 PMCID: PMC8193097 DOI: 10.3389/fmolb.2021.681938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
Rat is a widely used mammalian model for gut microbiota research. However, due to the difficulties of individual in vitro culture of many of the gut bacteria, much information about the microbial behaviors in the rat gut remains largely unknown. Here, to characterize the in situ growth and division of rat gut bacteria, we apply a chemical strategy that integrates the use of sequential tagging with D-amino acid-based metabolic probes (STAMP) with fluorescence in situ hybridization (FISH) to rat gut microbiota. Following sequential gavages of two different fluorescent D-amino acid probes to rats, the resulting dually labeled gut bacteria provides chronological information of their in situ cell wall synthesis. After taxonomical labeling with FISH probes, most of which are newly designed in this study, we successfully identify the growth patterns of 15 bacterial species, including two that have not been cultured separately in the laboratory. Furthermore, using our labeling protocol, we record Butyrivibrio fibrisolvens cells growing at different growth stages of a complete cell division cycle, which offers a new scope for understanding basic microbial activities in the gut of mammalian hosts.
Collapse
Affiliation(s)
- Ru Chen
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyuan Lin
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Springstein BL, Weissenbach J, Koch R, Stücker F, Stucken K. The role of the cytoskeletal proteins MreB and FtsZ in multicellular cyanobacteria. FEBS Open Bio 2020; 10:2510-2531. [PMID: 33112491 PMCID: PMC7714070 DOI: 10.1002/2211-5463.13016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023] Open
Abstract
Multiseriate and true‐branching cyanobacteria are at the peak of prokaryotic morphological complexity. However, little is known about the mechanisms governing multiplanar cell division and morphogenesis. Here, we study the function of the prokaryotic cytoskeletal proteins, MreB and FtsZ in Fischerella muscicola PCC 7414 and Chlorogloeopsis fritschii PCC 6912. Vancomycin and HADA labeling revealed a mixed apical, septal, and lateral trichome growth mode in F. muscicola, whereas C. fritschii exhibits septal growth. In all morphotypes from both species, MreB forms either linear filaments or filamentous strings and can interact with FtsZ. Furthermore, multiplanar cell division in F. muscicola likely depends on FtsZ dosage. Our results lay the groundwork for future studies on cytoskeletal proteins in morphologically complex cyanobacteria.
Collapse
Affiliation(s)
| | - Julia Weissenbach
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| | - Robin Koch
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| | - Fenna Stücker
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| | - Karina Stucken
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| |
Collapse
|
9
|
The Inorganic Nutrient Regime and the mre Genes Regulate Cell and Filament Size and Morphology in the Phototrophic Multicellular Bacterium Anabaena. mSphere 2020; 5:5/5/e00747-20. [PMID: 33115834 PMCID: PMC7593598 DOI: 10.1128/msphere.00747-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Most studies on the determination of bacterial cell morphology have been conducted in heterotrophic organisms. Here, we present a study of how the availability of inorganic nitrogen and carbon sources influence cell size and morphology in the context of a phototrophic metabolism, as found in the multicellular cyanobacterium Anabaena. In Anabaena, the expression of the MreB, MreC, and MreD proteins, which influence cell size and length, are regulated by NtcA, a transcription factor that globally coordinates cellular responses to the C-to-N balance of the cells. Moreover, MreB, MreC, and MreD also influence septal peptidoglycan construction, thus affecting filament length and, possibly, intercellular molecular exchange that is required for diazotrophic growth. Thus, here we identified new roles for Mre proteins in relation to the phototrophic and multicellular character of a cyanobacterium, Anabaena. The model cyanobacterium Anabaena sp. PCC 7120 exhibits a phototrophic metabolism relying on oxygenic photosynthesis and a complex morphology. The organismic unit is a filament of communicated cells that may include cells specialized in different nutritional tasks, thus representing a paradigm of multicellular bacteria. In Anabaena, the inorganic carbon and nitrogen regime influenced not only growth, but also cell size, cell shape, and filament length, which also varied through the growth cycle. When using combined nitrogen, especially with abundant carbon, cells enlarged and elongated during active growth. When fixing N2, which imposed lower growth rates, shorter and smaller cells were maintained. In Anabaena, gene homologs to mreB, mreC, and mreD form an operon that was expressed at higher levels during the phase of fastest growth. In an ntcA mutant, mre transcript levels were higher than in the wild type and, consistently, cells were longer. Negative regulation by NtcA can explain that Anabaena cells were longer in the presence of combined nitrogen than in diazotrophic cultures, in which the levels of NtcA are higher. mreB, mreC, and mreD mutants could grow with combined nitrogen, but only the latter mutant could grow diazotrophically. Cells were always larger and shorter than wild-type cells, and their orientation in the filament was inverted. Consistent with increased peptidoglycan width and incorporation in the intercellular septa, filaments were longer in the mutants, suggesting a role for MreB, MreC, and MreD in the construction of septal peptidoglycan that could affect intercellular communication required for diazotrophic growth. IMPORTANCE Most studies on the determination of bacterial cell morphology have been conducted in heterotrophic organisms. Here, we present a study of how the availability of inorganic nitrogen and carbon sources influence cell size and morphology in the context of a phototrophic metabolism, as found in the multicellular cyanobacterium Anabaena. In Anabaena, the expression of the MreB, MreC, and MreD proteins, which influence cell size and length, are regulated by NtcA, a transcription factor that globally coordinates cellular responses to the C-to-N balance of the cells. Moreover, MreB, MreC, and MreD also influence septal peptidoglycan construction, thus affecting filament length and, possibly, intercellular molecular exchange that is required for diazotrophic growth. Thus, here we identified new roles for Mre proteins in relation to the phototrophic and multicellular character of a cyanobacterium, Anabaena.
Collapse
|
10
|
Gomand F, Mitchell WH, Burgain J, Petit J, Borges F, Spagnolie SE, Gaiani C. Shaving and breaking bacterial chains with a viscous flow. SOFT MATTER 2020; 16:9273-9291. [PMID: 32930313 DOI: 10.1039/d0sm00292e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Some food and ferment manufacturing steps such as spray-drying result in the application of viscous stresses to bacteria. This study explores how a viscous flow impacts both bacterial adhesion functionality and bacterial cell organization using a combined experimental and modeling approach. As a model organism we study Lactobacillus rhamnosus GG (LGG) "wild type" (WT), known to feature strong adhesive affinities towards beta-lactoglobulin thanks to pili produced by the bacteria on cell surfaces, along with three cell-surface mutant strains. Applying repeated flows with high shear-rates reduces bacterial adhesive abilities up to 20% for LGG WT. Bacterial chains are also broken by this process, into 2-cell chains at low industrial shear rates, and into single cells at very high shear rates. To rationalize the experimental observations we study numerically and analytically the Stokes equations describing viscous fluid flow around a chain of elastically connected spheroidal cell bodies. In this model setting we examine qualitatively the relationship between surface traction (force per unit area), a proxy for pili removal rate, and bacterial chain length (number of cells). Longer chains result in higher maximal surface tractions, particularly at the chain extremities, while inner cells enjoy a small protection from surface tractions due to hydrodynamic interactions with their neighbors. Chain rupture therefore may act as a mechanism to preserve surface adhesive functionality in bacteria.
Collapse
Affiliation(s)
- Faustine Gomand
- LIBio - Université de Lorraine, 2 avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France. and Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706, USA.
| | - William H Mitchell
- Department of Mathematics, Statistics, and Computer Science, Macalester College, 1600 Grand Ave, St. Paul, MN 55105, USA.
| | - Jennifer Burgain
- LIBio - Université de Lorraine, 2 avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France.
| | - Jérémy Petit
- LIBio - Université de Lorraine, 2 avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France.
| | - Frédéric Borges
- LIBio - Université de Lorraine, 2 avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France.
| | - Saverio E Spagnolie
- Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706, USA.
| | - Claire Gaiani
- LIBio - Université de Lorraine, 2 avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
11
|
The evolution of spherical cell shape; progress and perspective. Biochem Soc Trans 2020; 47:1621-1634. [PMID: 31829405 PMCID: PMC6925525 DOI: 10.1042/bst20180634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/29/2023]
Abstract
Bacterial cell shape is a key trait governing the extracellular and intracellular factors of bacterial life. Rod-like cell shape appears to be original which implies that the cell wall, division, and rod-like shape came together in ancient bacteria and that the myriad of shapes observed in extant bacteria have evolved from this ancestral shape. In order to understand its evolution, we must first understand how this trait is actively maintained through the construction and maintenance of the peptidoglycan cell wall. The proteins that are primarily responsible for cell shape are therefore the elements of the bacterial cytoskeleton, principally FtsZ, MreB, and the penicillin-binding proteins. MreB is particularly relevant in the transition between rod-like and spherical cell shape as it is often (but not always) lost early in the process. Here we will highlight what is known of this particular transition in cell shape and how it affects fitness before giving a brief perspective on what will be required in order to progress the field of cell shape evolution from a purely mechanistic discipline to one that has the perspective to both propose and to test reasonable hypotheses regarding the ecological drivers of cell shape change.
Collapse
|
12
|
Fröjd MJ, Flärdh K. Apical assemblies of intermediate filament-like protein FilP are highly dynamic and affect polar growth determinant DivIVA in Streptomyces venezuelae. Mol Microbiol 2019; 112:47-61. [PMID: 30929261 DOI: 10.1111/mmi.14253] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 01/10/2023]
Abstract
Streptomyces spp. grow as branching hyphae, building the cell wall in restricted zones at hyphal tips. The organization of this mode of polar growth involves three coiled-coil proteins: DivIVA and Scy, which form apical protein complexes referred to as polarisomes; and the intermediate filament-like protein FilP, which influences cell shape and interacts with both Scy and DivIVA. Here, we use live cell imaging of Streptomyces venezuelae to clarify the subcellular localization and dynamics of FilP and its effect on hyphal morphology. By monitoring a FilP-mCherry fusion protein, we show that FilP accumulates in gradient-like zones behind the hyphal tips. The apical gradient pattern of FilP localization is dependent on hyphal tip extension and immediately dissipates upon growth arrest. Fluorescence recovery after photobleaching experiments show that FilP gradients are dynamic and subject to subunit exchange during vegetative growth. Further, the localization of FilP at hyphal tips is not directly dependent on scy, even though the strongly perturbed morphology of most scy mutant hyphae is associated with mislocalization of FilP. Finally, we find that filP has an effect on the size and position of the foci of key polar growth determinant DivIVA. This effect likely contributes to the phenotype of filP mutants.
Collapse
Affiliation(s)
- Markus J Fröjd
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| | - Klas Flärdh
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| |
Collapse
|
13
|
Rabillé H, Billoud B, Tesson B, Le Panse S, Rolland É, Charrier B. The brown algal mode of tip growth: Keeping stress under control. PLoS Biol 2019; 17:e2005258. [PMID: 30640903 PMCID: PMC6347293 DOI: 10.1371/journal.pbio.2005258] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/25/2019] [Accepted: 12/20/2018] [Indexed: 01/09/2023] Open
Abstract
Tip growth has been studied in pollen tubes, root hairs, and fungal and oomycete hyphae and is the most widely distributed unidirectional growth process on the planet. It ensures spatial colonization, nutrient predation, fertilization, and symbiosis with growth speeds of up to 800 μm h-1. Although turgor-driven growth is intuitively conceivable, a closer examination of the physical processes at work in tip growth raises a paradox: growth occurs where biophysical forces are low, because of the increase in curvature in the tip. All tip-growing cells studied so far rely on the modulation of cell wall extensibility via the polarized excretion of cell wall-loosening compounds at the tip. Here, we used a series of quantitative measurements at the cellular level and a biophysical simulation approach to show that the brown alga Ectocarpus has an original tip-growth mechanism. In this alga, the establishment of a steep gradient in cell wall thickness can compensate for the variation in tip curvature, thereby modulating wall stress within the tip cell. Bootstrap analyses support the robustness of the process, and experiments with fluorescence recovery after photobleaching (FRAP) confirmed the active vesicle trafficking in the shanks of the apical cell, as inferred from the model. In response to auxin, biophysical measurements change in agreement with the model. Although we cannot strictly exclude the involvement of a gradient in mechanical properties in Ectocarpus morphogenesis, the viscoplastic model of cell wall mechanics strongly suggests that brown algae have evolved an alternative strategy of tip growth. This strategy is largely based on the control of cell wall thickness rather than fluctuations in cell wall mechanical properties.
Collapse
Affiliation(s)
- Hervé Rabillé
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| | - Bernard Billoud
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| | - Benoit Tesson
- SCRIPPS Institution of Oceanography, University of California, San Diego, San Diego, California, United States of America
| | - Sophie Le Panse
- MerImage platform, FR2424, CNRS, Sorbonne Université, Station Biologique, Roscoff, France
| | - Élodie Rolland
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| | - Bénédicte Charrier
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| |
Collapse
|
14
|
Julien JD, Boudaoud A. Elongation and shape changes in organisms with cell walls: A dialogue between experiments and models. ACTA ACUST UNITED AC 2018; 1:34-42. [PMID: 32743126 PMCID: PMC7388974 DOI: 10.1016/j.tcsw.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 11/28/2022]
Abstract
The generation of anisotropic shapes occurs during morphogenesis of almost all organisms. With the recent renewal of the interest in mechanical aspects of morphogenesis, it has become clear that mechanics contributes to anisotropic forms in a subtle interaction with various molecular actors. Here, we consider plants, fungi, oomycetes, and bacteria, and we review the mechanisms by which elongated shapes are generated and maintained. We focus on theoretical models of the interplay between growth and mechanics, in relation with experimental data, and discuss how models may help us improve our understanding of the underlying biological mechanisms.
Collapse
Affiliation(s)
- Jean-Daniel Julien
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 46 allée d'Italie, 69364 Lyon Cedex 07, France.,Laboratoire de Physique, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
15
|
Park G, Chakkarapani SK, Ju S, Ahn S, Kang SH. Super-resolution morphological dissemination of intercalating dye in single DNA molecules via binding activated localization microscopy. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Figueroa-Cuilan WM, Brown PJB. Cell Wall Biogenesis During Elongation and Division in the Plant Pathogen Agrobacterium tumefaciens. Curr Top Microbiol Immunol 2018; 418:87-110. [PMID: 29808336 DOI: 10.1007/82_2018_92] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A great diversity of bacterial cell shapes can be found in nature, suggesting that cell wall biogenesis is regulated both spatially and temporally. Although Agrobacterium tumefaciens has a rod-shaped morphology, the mechanisms underlying cell growth are strikingly different than other well-studied rod-shaped bacteria including Escherichia coli. Technological advances, such as the ability to deplete essential genes and the development of fluorescent D-amino acids, have enabled recent advances in our understanding of cell wall biogenesis during cell elongation and division of A. tumefaciens. In this review, we address how the field has evolved over the years by providing a historical overview of cell elongation and division in rod-shaped bacteria. Next, we summarize the current understanding of cell growth and cell division processes in A. tumefaciens. Finally, we highlight the need for further research to answer key questions related to the regulation of cell wall biogenesis in A. tumefaciens.
Collapse
Affiliation(s)
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
17
|
Caccamo PD, Brun YV. The Molecular Basis of Noncanonical Bacterial Morphology. Trends Microbiol 2017; 26:191-208. [PMID: 29056293 DOI: 10.1016/j.tim.2017.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/08/2017] [Accepted: 09/28/2017] [Indexed: 01/04/2023]
Abstract
Bacteria come in a wide variety of shapes and sizes. The true picture of bacterial morphological diversity is likely skewed due to an experimental focus on pathogens and industrially relevant organisms. Indeed, most of the work elucidating the genes and molecular processes involved in maintaining bacterial morphology has been limited to rod- or coccal-shaped model systems. The mechanisms of shape evolution, the molecular processes underlying diverse shapes and growth modes, and how individual cells can dynamically modulate their shape are just beginning to be revealed. Here we discuss recent work aimed at advancing our knowledge of shape diversity and uncovering the molecular basis for shape generation in noncanonical and morphologically complex bacteria.
Collapse
Affiliation(s)
- Paul D Caccamo
- Department of Biology, Indiana University, 1001 E. 3rd St, Bloomington, IN 47405, USA
| | - Yves V Brun
- Department of Biology, Indiana University, 1001 E. 3rd St, Bloomington, IN 47405, USA.
| |
Collapse
|
18
|
Distinct Spatiotemporal Dynamics of Peptidoglycan Synthesis between Mycobacterium smegmatis and Mycobacterium tuberculosis. mBio 2017; 8:mBio.01183-17. [PMID: 28900018 PMCID: PMC5596344 DOI: 10.1128/mbio.01183-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycan (PG), a polymer cross-linked by d-amino acid-containing peptides, is an essential component of the bacterial cell wall. We found that a fluorescent d-alanine analog (FDAA) incorporates chiefly at one of the two poles in Mycobacterium smegmatis but that polar dominance varies as a function of the cell cycle in Mycobacterium tuberculosis: immediately after cytokinesis, FDAAs are incorporated chiefly at one of the two poles, but just before cytokinesis, FDAAs are incorporated comparably at both. These observations suggest that mycobacterial PG-synthesizing enzymes are localized in functional compartments at the poles and septum and that the capacity for PG synthesis matures at the new pole in M. tuberculosis Deeper knowledge of the biology of mycobacterial PG synthesis may help in discovering drugs that disable previously unappreciated steps in the process.IMPORTANCE People are dying all over the world because of the rise of antimicrobial resistance to medicines that could previously treat bacterial infections, including tuberculosis. Here, we used fluorescent d-alanine analogs (FDAAs) that incorporate into peptidoglycan (PG)-the synthesis of which is an attractive drug target-combined with high- and super-resolution microscopy to investigate the spatiotemporal dynamics of PG synthesis in M. smegmatis and M. tuberculosis FDAA incorporation predominates at one of the two poles in M. smegmatis In contrast, while FDAA incorporation into M. tuberculosis is also polar, there are striking variations in polar dominance as a function of the cell cycle. This suggests that enzymes involved in PG synthesis are localized in functional compartments in mycobacteria and that M. tuberculosis possesses a mechanism for maturation of the capacity for PG synthesis at the new pole. This may help in discovering drugs that cripple previously unappreciated steps in the process.
Collapse
|
19
|
Xu F, Cheng G, Hao H, Wang Y, Wang X, Chen D, Peng D, Liu Z, Yuan Z, Dai M. Mechanisms of Antibacterial Action of Quinoxaline 1,4-di- N-oxides against Clostridium perfringens and Brachyspira hyodysenteriae. Front Microbiol 2016; 7:1948. [PMID: 28018297 PMCID: PMC5147047 DOI: 10.3389/fmicb.2016.01948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022] Open
Abstract
Quinoxaline 1,4-di-N-oxides (QdNOs) are a class of bioreductive compounds, however, their antibacterial mechanisms are still unclarified. The aim of this study was to assess the ability of two representative QdNO drugs, cyadox (CYA) and olaquindox (OLA), to produce reactive oxide species (ROS) in Gram-positive anaerobe Clostridium perfringens CVCC1125 and Gram-negative anaerobe Brachyspira hyodysenteriae B204. In addition, the effects of QdNOs on the integrity of bacterial cell walls and membranes as well as the morphological alterations and DNA oxidative damage in C. perfringens and B. hyodysenteriae were analyzed. It was demonstrated that under anaerobic conditions, QdNOs were metabolized into the reduced products which did not show any antibacterial activity. A significant dose-related increase of intracellular ROS level and intracellular hydroxyl radicals were evident in bacteria exposed to QdNOs. The result of biochemical assay showed that the cell walls and membranes of the bacteria treated with QdNOs were damaged. After exposure to 1/2MIC to 4MIC of CYA and OLA, C. perfringens and B. hyodysenteriae became elongated and filamentous. Morphological observation with scanning and transmission electron microscopes revealed rupture, loss of cytoplasmic material and cell lysis in QdNO-treated bacteria, indicating serious damage of cells. There was an increase of 8-OHdG in the two strains treated by QdNOs, but it was lower in C. perfringens CVCC1125 than in B. hyodysenteriae B204. Agarose gel electrophoresis showed the degradation of chromosomal DNA in both of the two anaerobes treated by QdNOs. The results suggest that QdNOs may kill C. perfringens and B. hyodysenteriae via the generation of ROS and hydroxyl radicals from the bacterial metabolism of QdNOs, which cause oxidative damage in bacteria under anaerobic conditions.
Collapse
Affiliation(s)
- Fanfan Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University Wuhan, China
| | - Guyue Cheng
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Haihong Hao
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Xu Wang
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Menghong Dai
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
20
|
Molecular Mechanisms Contributing to the Growth and Physiology of an Extremophile Cultured with Dielectric Heating. Appl Environ Microbiol 2016; 82:6233-6246. [PMID: 27520819 DOI: 10.1128/aem.02020-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/08/2016] [Indexed: 11/20/2022] Open
Abstract
The effect of microwave frequency electromagnetic fields on living microorganisms is an active and highly contested area of research. One of the major drawbacks to using mesophilic organisms to study microwave radiation effects is the unavoidable heating of the organism, which has limited the scale (<5 ml) and duration (<1 h) of experiments. However, the negative effects of heating a mesophile can be mitigated by employing thermophiles (organisms able to grow at temperatures of >60°C). This study identified changes in global gene expression profiles during the growth of Thermus scotoductus SA-01 at 65°C using dielectric (2.45 GHz, i.e., microwave) heating. RNA sequencing was performed on cultures at 8, 14, and 24 h after inoculation to determine the molecular mechanisms contributing to long-term cellular growth and survival under microwave heating conditions. Over the course of growth, genes associated with amino acid metabolism, carbohydrate metabolism, and defense mechanisms were upregulated; the number of repressed genes with unknown function increased; and at all time points, transposases were upregulated. Genes involved in cell wall biogenesis and elongation were also upregulated, consistent with the distinct elongated cell morphology observed after 24 h using microwave heating. Analysis of the global differential gene expression data enabled the identification of molecular processes specific to the response of T. scotoductus SA-01 to dielectric heating during growth. IMPORTANCE The residual heating of living organisms in the microwave region of the electromagnetic spectrum has complicated the identification of radiation-only effects using microorganisms for 50 years. A majority of the previous experiments used either mature cells or short exposure times with low-energy high-frequency radiation. Using global differential gene expression data, we identified molecular processes unique to dielectric heating using Thermus scotoductus SA-01 cultured over 30 h in a commercial microwave digestor. Genes associated with amino acid metabolism, carbohydrate metabolism, and defense mechanisms were upregulated; the number of repressed genes with unknown function increased; and at all time points, transposases were upregulated. These findings serve as a platform for future studies with mesophiles in order to better understand the response of microorganisms to microwave radiation.
Collapse
|
21
|
Abstract
A mechanistic understanding of the determination and maintenance of the simplest bacterial cell shape, a sphere, remains elusive compared with that of more complex shapes. Cocci seem to lack a dedicated elongation machinery, and a spherical shape has been considered an evolutionary dead-end morphology, as a transition from a spherical to a rod-like shape has never been observed in bacteria. Here we show that a Staphylococcus aureus mutant (M5) expressing the ftsZG193D allele exhibits elongated cells. Molecular dynamics simulations and in vitro studies indicate that FtsZG193D filaments are more twisted and shorter than wild-type filaments. In vivo, M5 cell wall deposition is initiated asymmetrically, only on one side of the cell, and progresses into a helical pattern rather than into a constricting ring as in wild-type cells. This helical pattern of wall insertion leads to elongation, as in rod-shaped cells. Thus, structural flexibility of FtsZ filaments can result in an FtsZ-dependent mechanism for generating elongated cells from cocci. The mechanisms by which bacteria generate and maintain even the simplest cell shape remain an elusive but fundamental question in microbiology. In the absence of examples of coccus-to-rod transitions, the spherical shape has been suggested to be an evolutionary dead end in morphogenesis. We describe the first observation of the generation of elongated cells from truly spherical cocci, occurring in a Staphylococcus aureus mutant containing a single point mutation in its genome, in the gene encoding the bacterial tubulin homologue FtsZ. We demonstrate that FtsZ-dependent cell elongation is possible, even in the absence of dedicated elongation machinery.
Collapse
|
22
|
Howell M, Brown PJ. Building the bacterial cell wall at the pole. Curr Opin Microbiol 2016; 34:53-59. [PMID: 27504539 DOI: 10.1016/j.mib.2016.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 01/06/2023]
Abstract
Polar growth is the predominant mode of cell wall extension in the Actinobacteria and the alphaproteobacterial clade Rhizobiales. The observation of polar elongation in taxonomically diverse bacteria suggests that polar growth may have evolved independently. Indeed, the regulatory mechanisms governing the assembly of cell wall biosynthesis machinery at the pole are distinct in the Actinobacteria and Rhizobiales. Here we highlight recent advances in our understanding of polar growth mechanisms in bacteria, with an emphasis on Streptomyces and Agrobacterium. This review illustrates that common themes are emerging in the regulation of polar growth in diverse bacteria. Emerging themes include the use of landmark proteins to direct growth to the pole and coordination of polar growth with cell-cycle progression.
Collapse
Affiliation(s)
- Matthew Howell
- Division of Biological Sciences, 423 Tucker Hall, 612 Hitt St., University of Missouri, Columbia, MO 65211, USA
| | - Pamela Jb Brown
- Division of Biological Sciences, 423 Tucker Hall, 612 Hitt St., University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
23
|
Rico-Pérez G, Pezza A, Pucciarelli MG, de Pedro MA, Soncini FC, García-del Portillo F. A novel peptidoglycan D,L-endopeptidase induced by Salmonella inside eukaryotic cells contributes to virulence. Mol Microbiol 2015; 99:546-56. [PMID: 26462856 DOI: 10.1111/mmi.13248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 12/25/2022]
Abstract
Bacteria remodel peptidoglycan structure in response to environmental changes. Many enzymes are involved in peptidoglycan metabolism; however, little is known about their responsiveness in a defined environment or the modes they assist bacteria to adapt to new niches. Here, we focused in peptidoglycan enzymes that intracellular bacterial pathogens use inside eukaryotic cells. We identified a peptidoglycan enzyme induced by Salmonella enterica serovar Typhimurium in fibroblasts and epithelial cells. This enzyme, which shows γ-D-glutamyl-meso-diaminopimelic acid D,L-endopeptidase activity, is also produced by the pathogen in media with limited nutrients and in resting conditions. The enzyme, termed EcgA for endopeptidase responding to cessation of growth', is encoded in a S. Typhimurium genomic island absent in Escherichia coli. EcgA production is strictly dependent on the virulence regulator PhoP in extra- and intracellular environments. Consistent to this regulation, a mutant lacking EcgA is attenuated in the mouse typhoid model. These findings suggest that specialised peptidoglycan enzymes, such as EcgA, might facilitate Salmonella adaptation to the intracellular lifestyle. Moreover, they indicate that readjustment of peptidoglycan metabolism inside the eukaryotic cell is essential for host colonisation.
Collapse
Affiliation(s)
- Gadea Rico-Pérez
- Laboratory of Intracellular Bacterial Pathogens, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Alejandro Pezza
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - M Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.,Centro de Biología Molecular 'Severo Ochoa' (CBMSO-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A de Pedro
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando C Soncini
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Francisco García-del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
24
|
Chakkarapani SK, Lee S, Lee G, Kang SH. Real-Time Intracellular Mg 2+Signaling and Wave Propagation by Subdiffraction-Limit Super-Resolution Microscopy. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences; Kyung Hee University; Yongin-si 446-701 Republic of Korea
| | - Gwang Lee
- Department of Physiology and Department of Biomedical Sciences; Ajou University School of Medicine; Suwon 443-749 Republic of Korea
| | - Seong Ho Kang
- Department of Chemistry, Graduate School; Kyung Hee University; Yongin-si 446-701 Republic of Korea
- Department of Applied Chemistry and Institute of Natural Sciences; Kyung Hee University; Yongin-si 446-701 Republic of Korea
| |
Collapse
|
25
|
Egan AJF, Biboy J, van't Veer I, Breukink E, Vollmer W. Activities and regulation of peptidoglycan synthases. Philos Trans R Soc Lond B Biol Sci 2015; 370:20150031. [PMID: 26370943 PMCID: PMC4632607 DOI: 10.1098/rstb.2015.0031] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2015] [Indexed: 12/22/2022] Open
Abstract
Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have been studied for 70 years, useful in vitro assays for measuring their activities were established only recently, and these provided the first insights into the regulation of these enzymes. Here, we review the current knowledge on the glycosyltransferase and transpeptidase activities of PG synthases. We provide new data showing that the bifunctional PBP1A and PBP1B from Escherichia coli are active upon reconstitution into the membrane environment of proteoliposomes, and that these enzymes also exhibit DD-carboxypeptidase activity in certain conditions. Both novel features are relevant for their functioning within the cell. We also review recent data on the impact of protein-protein interactions and other factors on the activities of PBPs. As an example, we demonstrate a synergistic effect of multiple protein-protein interactions on the glycosyltransferase activity of PBP1B, by its cognate lipoprotein activator LpoB and the essential cell division protein FtsN.
Collapse
Affiliation(s)
- Alexander J F Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Inge van't Veer
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Padualaan 8, 3584 Utrecht, The Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Padualaan 8, 3584 Utrecht, The Netherlands
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
26
|
An Essential Poison: Synthesis and Degradation of Cyclic Di-AMP in Bacillus subtilis. J Bacteriol 2015; 197:3265-74. [PMID: 26240071 DOI: 10.1128/jb.00564-15] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Gram-positive bacteria synthesize the second messenger cyclic di-AMP (c-di-AMP) to control cell wall and potassium homeostasis and to secure the integrity of their DNA. In the firmicutes, c-di-AMP is essential for growth. The model organism Bacillus subtilis encodes three diadenylate cyclases and two potential phosphodiesterases to produce and degrade c-di-AMP, respectively. Among the three cyclases, CdaA is conserved in nearly all firmicutes, and this enzyme seems to be responsible for the c-di-AMP that is required for cell wall homeostasis. Here, we demonstrate that CdaA localizes to the membrane and forms a complex with the regulatory protein CdaR and the glucosamine-6-phosphate mutase GlmM. Interestingly, cdaA, cdaR, and glmM form a gene cluster that is conserved throughout the firmicutes. This conserved arrangement and the observed interaction between the three proteins suggest a functional relationship. Our data suggest that GlmM and GlmS are involved in the control of c-di-AMP synthesis. These enzymes convert glutamine and fructose-6-phosphate to glutamate and glucosamine-1-phosphate. c-di-AMP synthesis is enhanced if the cells are grown in the presence of glutamate compared to that in glutamine-grown cells. Thus, the quality of the nitrogen source is an important signal for c-di-AMP production. In the analysis of c-di-AMP-degrading phosphodiesterases, we observed that both phosphodiesterases, GdpP and PgpH (previously known as YqfF), contribute to the degradation of the second messenger. Accumulation of c-di-AMP in a gdpP pgpH double mutant is toxic for the cells, and the cells respond to this accumulation by inactivation of the diadenylate cyclase CdaA. IMPORTANCE Bacteria use second messengers for signal transduction. Cyclic di-AMP (c-di-AMP) is the only second messenger known so far that is essential for a large group of bacteria. We have studied the regulation of c-di-AMP synthesis and the role of the phosphodiesterases that degrade this second messenger. c-di-AMP synthesis strongly depends on the nitrogen source: glutamate-grown cells produce more c-di-AMP than glutamine-grown cells. The accumulation of c-di-AMP in a strain lacking both phosphodiesterases is toxic and results in inactivation of the diadenylate cyclase CdaA. Our results suggest that CdaA is the critical diadenylate cyclase that produces the c-di-AMP that is both essential and toxic upon accumulation.
Collapse
|
27
|
Abstract
UNLABELLED Although Escherichia coli is a very small (1- to 2-μm) rod-shaped cell, here we describe an E. coli mutant that forms enormously long cells in rich media such as Luria broth, as long indeed as 750 μm. These extremely elongated (eel) cells are as long as the longest bacteria known and have no internal subdivisions. They are metabolically competent, elongate rapidly, synthesize DNA, and distribute cell contents along this length. They lack only the ability to divide. The concentration of the essential cell division protein FtsZ is reduced in these eel cells, and increasing this concentration restores division. IMPORTANCE Escherichia coli is usually a very small bacterium, 1 to 2 μm long. We have isolated a mutant that forms enormously long cells, 700 times longer than the usual E. coli cell. E. coli filaments that form under other conditions usually die within a few hours, whereas our mutant is fully viable even when it reaches such lengths. This mutant provides a useful tool for the study of aspects of E. coli physiology that are difficult to investigate with small cells.
Collapse
|
28
|
The essential features and modes of bacterial polar growth. Trends Microbiol 2015; 23:347-53. [PMID: 25662291 DOI: 10.1016/j.tim.2015.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/19/2014] [Accepted: 01/07/2015] [Indexed: 01/25/2023]
Abstract
Polar growth represents a surprising departure from the canonical dispersed cell growth model. However, we know relatively little of the underlying mechanisms governing polar growth or the requisite suite of factors that direct polar growth. Underscoring how classic doctrine can be turned on its head, the peptidoglycan layer of polar-growing bacteria features unusual crosslinks and in some species the quintessential cell division proteins FtsA and FtsZ are recruited to the growing poles. Remarkably, numerous medically important pathogens utilize polar growth, accentuating the need for intensive research in this area. Here we review models of polar growth in bacteria based on recent research in the Actinomycetales and Rhizobiales, with emphasis on Mycobacterium and Agrobacterium species.
Collapse
|
29
|
Siegrist MS, Swarts BM, Fox DM, Lim SA, Bertozzi CR. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiol Rev 2015; 39:184-202. [PMID: 25725012 DOI: 10.1093/femsre/fuu012] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology.
Collapse
Affiliation(s)
- M Sloan Siegrist
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Benjamin M Swarts
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Douglas M Fox
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Shion An Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, CA 94720, USA Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
30
|
Kuru E, Tekkam S, Hall E, Brun YV, VanNieuwenhze MS. Synthesis of fluorescent D-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ. Nat Protoc 2015; 10:33-52. [PMID: 25474031 PMCID: PMC4300143 DOI: 10.1038/nprot.2014.197] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluorescent D-amino acids (FDAAs) are efficiently incorporated into the peptidoglycans (PGs) of diverse bacterial species at the sites of PG biosynthesis, allowing specific and covalent probing of bacterial growth with minimal perturbation. Here we provide a protocol for the synthesis of four FDAAs emitting light in blue (HCC-amino-D-alanine, HADA), green (NBD-amino-D-alanine, NADA, and fluorescein-D-lysine, FDL) or red (TAMRA-D-lysine, TDL) and for their use in PG labeling of live bacteria. Our modular synthesis protocol gives easy access to a library of different FDAAs made with commercially available fluorophores and diamino acid starting materials. Molecules can be synthesized in a typical chemistry laboratory in 2-3 d using standard chemical transformations. The simple labeling procedure involves the addition of the FDAAs to a bacterial sample for the desired labeling duration and stopping further label incorporation by fixing the cells with cold 70% (vol/vol) ethanol or by washing away excess dye. We discuss several scenarios for the use of these labels in fluorescence microscopy applications, including short or long labeling durations, and the combination of different labels in pure culture (e.g., for 'virtual time-lapse' microscopy) or in situ labeling of complex environmental samples. Depending on the experiment, FDAA labeling can take as little as 30 s for a rapidly growing species such as Escherichia coli.
Collapse
Affiliation(s)
- Erkin Kuru
- Indiana University, Bloomington, IN 47405
| | | | | | | | | |
Collapse
|
31
|
Lee MK, Rai P, Williams J, Twieg RJ, Moerner WE. Small-molecule labeling of live cell surfaces for three-dimensional super-resolution microscopy. J Am Chem Soc 2014; 136:14003-6. [PMID: 25222297 PMCID: PMC4195381 DOI: 10.1021/ja508028h] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Precise
imaging of the cell surface of fluorescently labeled bacteria
requires super-resolution methods because the size-scale of these
cells is on the order of the diffraction limit. In this work, we present
a photocontrollable small-molecule rhodamine spirolactam
emitter suitable for non-toxic and specific labeling of the outer
surface of cells for three-dimensional (3D) super-resolution (SR)
imaging. Conventional rhodamine spirolactams photoswitch
to the emitting form with UV light; however, these wavelengths can
damage cells. We extended photoswitching to visible wavelengths
>400 nm by iterative synthesis and spectroscopic characterization
to optimize the substitution on the spirolactam. Further, an N-hydroxysuccinimide-functionalized derivative enabled
covalent labeling of amines on the surface of live Caulobacter
crescentus cells. Resulting 3D SR reconstructions of the
labeled cell surface reveal uniform and specific sampling with thousands
of localizations per cell and excellent localization precision in x, y, and z. The distribution
of cell stalk lengths (a sub-diffraction-sized cellular structure)
was quantified for a mixed population of cells. Pulse-chase experiments
identified sites of cell surface growth. Covalent labeling with the
optimized rhodamine spirolactam label provides a general
strategy to study the surfaces of living cells with high specificity
and resolution down to 10–20 nm.
Collapse
Affiliation(s)
- Marissa K Lee
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | | | | | | |
Collapse
|
32
|
Lupoli TJ, Lebar MD, Markovski M, Bernhardt T, Kahne D, Walker S. Lipoprotein activators stimulate Escherichia coli penicillin-binding proteins by different mechanisms. J Am Chem Soc 2013; 136:52-5. [PMID: 24341982 DOI: 10.1021/ja410813j] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In Escherichia coli , the bifunctional penicillin-binding proteins (PBPs), PBP1A and PBP1B, play critical roles in the final stage of peptidoglycan (PG) biosynthesis. These synthetic enzymes each possess a PG glycosyltransferase (PGT) domain and a transpeptidase (TP) domain. Recent genetic experiments have shown that PBP1A and PBP1B each require an outer membrane lipoprotein, LpoA and LpoB, respectively, to function properly in vivo. Here, we use complementary assays to show that LpoA and LpoB each increase the PGT and TP activities of their cognate PBPs, albeit by different mechanisms. LpoA directly increases the rate of the PBP1A TP reaction, which also results in enhanced PGT activity; in contrast, LpoB directly affects PGT domain activity, resulting in enhanced TP activity. These studies demonstrate bidirectional coupling of PGT and TP domain function. Additionally, the transpeptidation assay described here can be applied to study other activators or inhibitors of the TP domain of PBPs, which are validated drug targets.
Collapse
Affiliation(s)
- Tania J Lupoli
- Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | | | | | | | | |
Collapse
|