1
|
Gangwar A, Saini S, Sharma R. Galectins as Drivers of Host-Pathogen Dynamics in Mycobacterium tuberculosis Infection. ACS Infect Dis 2025. [PMID: 40340374 DOI: 10.1021/acsinfecdis.4c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Galectins form a protein family with a conserved carbohydrate-binding domain that specifically interacts with β-galactoside-containing glycoconjugates, which are found abundantly on mammalian cell surfaces. These proteins play crucial roles in various physiological and pathological processes including immune responses, cell adhesion, inflammation, and apoptosis. During tuberculosis infection, galectins exert diverse impacts on pathogenesis. The interaction between host and pathogen during TB involves intricate mechanisms influencing disease outcomes, where the pathogen exploits host glycosylation patterns to evade immune detection, underscoring the significant role of galectins in regulating these crucial host-pathogen interactions. Galectins facilitate pathogen recognition, enhance the phagocytosis of mycobacteria, support the formation of granuloma, and carefully balance the protective immunity against potential tissue damage. Additionally, galectins have an impact on the cytokine milieu by regulating the levels of pro-inflammatory cytokines and chemokines, essential for orchestrating granuloma formation and maintaining tuberculosis-associated homeostasis. This review delves into the intricate connection between galectins and tuberculosis; uncovering essential molecular mechanisms that deepen our understanding of how these proteins contribute to combating this pervasive infectious disease. Here we discuss the multifaceted roles that galectins play to uniquely and critically influence the core dynamics of host-pathogen interactions in tuberculosis.
Collapse
Affiliation(s)
- Anjali Gangwar
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sapna Saini
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Malik AA, Shariq M, Sheikh JA, Zarin S, Ahuja Y, Fayaz H, Alam A, Ehtesham NZ, Hasnain SE. Activation of the lysosomal damage response and selective autophagy: the coordinated actions of galectins, TRIM proteins, and CGAS-STING1 in providing immunity against Mycobacterium tuberculosis. Crit Rev Microbiol 2025; 51:108-127. [PMID: 38470107 DOI: 10.1080/1040841x.2024.2321494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/16/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Autophagy is a crucial immune defense mechanism that controls the survival and pathogenesis of M. tb by maintaining cell physiology during stress and pathogen attack. The E3-Ub ligases (PRKN, SMURF1, and NEDD4) and autophagy receptors (SQSTM1, TAX1BP1, CALCOCO2, OPTN, and NBR1) play key roles in this process. Galectins (LGALSs), which bind to sugars and are involved in identifying damaged cell membranes caused by intracellular pathogens such as M. tb, are essential. These include LGALS3, LGALS8, and LGALS9, which respond to endomembrane damage and regulate endomembrane damage caused by toxic chemicals, protein aggregates, and intracellular pathogens, including M. tb. They also activate selective autophagy and de novo endolysosome biogenesis. LGALS3, LGALS9, and LGALS8 interact with various components to activate autophagy and repair damage, while CGAS-STING1 plays a critical role in providing immunity against M. tb by activating selective autophagy and producing type I IFNs with antimycobacterial functions. STING1 activates cGAMP-dependent autophagy which provides immunity against various pathogens. Additionally, cytoplasmic surveillance pathways activated by ds-DNA, such as inflammasomes mediated by NLRP3 and AIM2 complexes, control M. tb. Modulation of E3-Ub ligases with small regulatory molecules of LGALSs and TRIM proteins could be a novel host-based therapeutic approach for controlling TB.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, New Delhi, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Sheeba Zarin
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, New Delhi, India
| | - Yashika Ahuja
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anwar Alam
- Department of Biotechnology, School of Science and Engineering Technology, Sharda University, Greater Noida, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
3
|
Kravets E, Poschmann G, Hänsch S, Raba V, Weidtkamp-Peters S, Degrandi D, Stühler K, Pfeffer K. mGBP2 engages Galectin-9 for immunity against Toxoplasma gondii. PLoS One 2025; 20:e0316209. [PMID: 39854420 PMCID: PMC11761162 DOI: 10.1371/journal.pone.0316209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/06/2024] [Indexed: 01/26/2025] Open
Abstract
Guanylate binding proteins (GBPs) are large interferon-inducible GTPases, executing essential host defense activities against Toxoplasma gondii, an invasive intracellular apicomplexan protozoan parasite of global importance. T. gondii establishes a parasitophorous vacuole (PV) which shields the parasite from the host's intracellular defense mechanisms. Murine GBPs (mGBPs) recognize T. gondii PVs and assemble into supramolecular mGBP homo- and heterocomplexes that are required for the disruption of the membrane of PVs eventually resulting in the cell-autonomous immune control of vacuole-resident pathogens. We have previously shown that mGBP2 plays an important role in T. gondii immune control. Here, to unravel mGBP2 functions, we report Galectin-9 (Gal9) as a critical mGBP2 interaction partner engaged for immunity to T. gondii. Interestingly, Gal9 also accumulates and colocalizes with mGBP2 at the T. gondii PV. Furthermore, we could prove the requirement of Gal9 for growth control of T. gondii by CRISPR/Cas9 mediated gene editing. These discoveries clearly indicate that Gal9 is a crucial factor for the mGBP2-coordinated cell-autonomous host defense mechanism against T. gondii.
Collapse
Affiliation(s)
- Elisabeth Kravets
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- Center of Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Veronica Raba
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Mimura S, Morishita A, Oura K, Takuma K, Nakahara M, Tadokoro T, Fujita K, Tani J, Kobara H. Galectins and Liver Diseases. Int J Mol Sci 2025; 26:790. [PMID: 39859504 PMCID: PMC11766161 DOI: 10.3390/ijms26020790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Galectins are widely distributed throughout the animal kingdom, from marine sponges to mammals. Galectins are a family of soluble lectins that specifically recognize β-galactoside-containing glycans and are categorized into three subgroups based on the number and function of their carbohydrate recognition domains (CRDs). The interaction of galectins with specific ligands mediates a wide range of biological activities, depending on the cell type, tissue context, expression levels of individual galectin, and receptor involvement. Galectins affect various immune cell processes through both intracellular and extracellular mechanisms and play roles in processes, such as apoptosis, angiogenesis, and fibrosis. Their importance has increased in recent years because they are recognized as biomarkers, therapeutic agents, and drug targets, with many other applications in conditions such as cardiovascular diseases and cancer. However, little is known about the involvement of galectins in liver diseases. Here, we review the functions of various galectins and evaluate their roles in liver diseases.
Collapse
Affiliation(s)
- Shima Mimura
- Departments of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Takamatsu 761-0793, Kagawa Prefecture, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Aydın U, Karataş A, Artaş G, Öz B, Aydoğdu MS, Artaş H, Akkoç RF, Akar ZA, Koca SS. Exploring the role of immune biomarkers in idiopathic granulomatous mastitis: A clinical and pathological perspective. Hum Immunol 2025; 86:111222. [PMID: 39740302 DOI: 10.1016/j.humimm.2024.111222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Idiopathic granulomatous mastitis (IGM) is a chronic inflammatory disorder characterised by the formation of non-caseating granulomas in breast tissue, primarily affecting young women of childbearing age. The aetiology of IGM remains unclear, with potential factors including trauma, hormonal influences, and autoimmune responses. Recent studies suggest that immune dysregulation may play a critical role in IGM, highlighting the need for exploration of biomarkers involved in inflammation and immune modulation, particularly LL-37, galectin-3, IL-36, and TLR3. METHODS This study included 36 patients diagnosed with IGM and 37 healthy controls. Blood samples were collected from all participants, and serum levels of LL-37, IL-36α, galectin-3, and TLR3 were analyzed using enzyme-linked immunosorbent assay (ELISA). Immunohistochemical evaluations were conducted on breast tissue samples from 16 IGM patients and 10 controls who underwent mammoplasty. Clinical data, including laboratory tests and imaging results, were also collected and analyzed. Statistical analyses were performed using the IBM-SPSS-22.0 software, with significance set at p < 0.05. RESULTS Serum levels of LL-37, IL-36α, galectin-3, and TLR3 were significantly lower in IGM patients compared to healthy controls (p < 0.001 for all). Immunohistochemical analysis revealed reduced expression of LL-37 in IGM tissue samples, while galectin-3 levels were comparable between the IGM and control groups (p = 0.32). Clinical evaluations indicated significant improvements in inflammatory markers (CRP and ESR) and mass size over the treatment period. CONCLUSIONS The findings of this study suggest that LL-37, IL-36α, galectin-3, and TLR3 are implicated in the pathogenesis of IGM, with their serum levels being significantly diminished in affected patients. The observed reduction in LL-37 may contribute to the decline in IL-36α and TLR3 levels, indicating a potential role of these biomarkers in the inflammatory processes associated with IGM. Further research is warranted to elucidate the mechanisms underlying these alterations and their implications for the diagnosis and treatment of IGM.
Collapse
Affiliation(s)
- Umut Aydın
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Karataş
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Gökhan Artaş
- Department of Pathology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | - Burak Öz
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Mesude Seda Aydoğdu
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | - Hakan Artaş
- Department of Radiology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | - Ramazan Fazıl Akkoç
- Department of Anatomy, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Zeynel Abidin Akar
- Department of Rheumatology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Süleyman Serdar Koca
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
6
|
Yang X, Huang J, Zhang J, Li J, Tian Z. Prognostic Value of Serum Galectin-3 for Survival in Patients with Cardiac Light-Chain Amyloidosis. J Cardiovasc Dev Dis 2024; 11:202. [PMID: 39057622 PMCID: PMC11277163 DOI: 10.3390/jcdd11070202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Amyloid light-chain (AL) amyloidosis is a multisystem disorder, with cardiac amyloid infiltration being a prevalent manifestation. This study aimed to explore the prognostic value of galectin-3 (Gal-3), a soluble marker associated with fibrosis, inflammation, heart failure, and kidney injury, in patients with cardiac AL amyloidosis. METHODS A total of 60 patients who were diagnosed with cardiac AL amyloidosis from January 2015 to May 2018 were enrolled. The prognostic value of Gal-3 was assessed. Receiver operating characteristic (ROC) curves were used to evaluate the predictive accuracy of Gal-3. A Gal-3 cut-off value was identified to predict survival rates. RESULTS The ROC curves demonstrated a moderate predictive accuracy of Gal-3 for 0.5- and 5-year survival, with area under the curve (AUC) values of 0.722 and 0.788, respectively. A Gal-3 cut-off value of 15.154 ng/mL was found to predict survival. Kaplan-Meier survival analysis revealed a significant difference in mean overall survival between patients with Gal-3 levels below and above the established cut-off (69.2 months versus 42.1 months, respectively; p = 0.036). Multivariate analysis confirmed that Gal-3 > 15.154 ng/mL remained an independent predictor of survival (HR 2.451, 95% CI 1.017-5.910, p = 0.046). CONCLUSIONS This study suggests that Gal-3 holds independent prognostic value for survival in patients with cardiac AL amyloidosis. Gal-3 could potentially enhance the prognostic capabilities of the current soluble markers, thereby improving the management of cardiac AL amyloidosis. However, further validation in larger prospective studies is warranted.
Collapse
Affiliation(s)
- Xinglin Yang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
| | - Jin Huang
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
| | - Jinghong Zhang
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
| | - Zhuang Tian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
| |
Collapse
|
7
|
Luo S, Wu B, Li Q, Li W, Wang Z, Song Q, Han F. Identification of Galectin 9 and its antibacterial function in yellow drum (Nibea albiflora). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109044. [PMID: 37657557 DOI: 10.1016/j.fsi.2023.109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Galectins are a family of evolutionarily conserved lectins that contain carbohydrate recognition domains (CRDs) specifically recognizing β-galactoside. Galectin-9 plays a crucial role in various biological processes during pathogenic infections. In a previous study, galectin-9 was identified as a candidate gene for resistance to Vibrio harveyi disease in yellow drum using a genome-wide association study (GWAS) analysis. In this study, a galectin-9 gene was identified from Nibea albiflora and named YdGal-9. The mRNA transcripts of YdGal-9 were distributed in all the detected tissues and the highest level was found in the kidney. The subcellular localization of YdGal-9-EGFP proteins was observed in both nucleus and cytoplasm in the kidney cells of N. albiflora. The expression of YdGal-9 in the brain increased significantly after infection with Vibrio harveyi. The red blood cells from rabbits, Larimichthys crocea, and N. albiflora were agglutinated by the purified recombinant YdGal-9 proteins. The results of the agglutination activity of deletion mutants of YdGal-9 proved that the conserved sugar binding motifs (H-NPR and WG-EE-) were critical for YdGal-9's agglutination activity. In addition, YdGal-9 killed some gram-negative bacteria by inducing cell wall destruction including Pseudomonas plecoglossicida, Aeromonas hydrophila, Escherichia coli, V. parahemolyticus, V. harveyi, and V. alginolyticus. Taken together, these results suggested that the YdGal-9 protein of N. albiflora played a vital role in fighting bacterial infections.
Collapse
Affiliation(s)
- Shuai Luo
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, 350117, Fujian, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Baolan Wu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Qiaoying Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Qing Song
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, 350117, Fujian, China; Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, Fujian, China.
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
8
|
Zaborska B, Sikora-Frąc M, Smarż K, Pilichowska-Paszkiet E, Budaj A, Sitkiewicz D, Sygitowicz G. The Role of Galectin-3 in Heart Failure-The Diagnostic, Prognostic and Therapeutic Potential-Where Do We Stand? Int J Mol Sci 2023; 24:13111. [PMID: 37685918 PMCID: PMC10488150 DOI: 10.3390/ijms241713111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Heart failure (HF) is a clinical syndrome with high morbidity and mortality, and its prevalence is rapidly increasing. Galectin-3 (Gal-3) is an important factor in the pathophysiology of HF, mainly due to its role in cardiac fibrosis, inflammation, and ventricular remodeling. Fibrosis is a hallmark of cardiac remodeling, HF, and atrial fibrillation development. This review aims to explore the involvement of Gal-3 in HF and its role in the pathogenesis and clinical diagnostic and prognostic significance. We report data on Gal-3 structure and molecular mechanisms of biological function crucial for HF development. Over the last decade, numerous studies have shown an association between echocardiographic and CMR biomarkers in HF and Gal-3 serum concentration. We discuss facts and concerns about Gal-3's utility in acute and chronic HF with preserved and reduced ejection fraction for diagnosis, prognosis, and risk stratification. Finally, we present attempts to use Gal-3 as a therapeutic target in HF.
Collapse
Affiliation(s)
- Beata Zaborska
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, 04-073 Warsaw, Poland; (B.Z.); (M.S.-F.); (E.P.-P.); (A.B.)
| | - Małgorzata Sikora-Frąc
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, 04-073 Warsaw, Poland; (B.Z.); (M.S.-F.); (E.P.-P.); (A.B.)
| | - Krzysztof Smarż
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, 04-073 Warsaw, Poland; (B.Z.); (M.S.-F.); (E.P.-P.); (A.B.)
| | - Ewa Pilichowska-Paszkiet
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, 04-073 Warsaw, Poland; (B.Z.); (M.S.-F.); (E.P.-P.); (A.B.)
| | - Andrzej Budaj
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, 04-073 Warsaw, Poland; (B.Z.); (M.S.-F.); (E.P.-P.); (A.B.)
| | - Dariusz Sitkiewicz
- Department of Laboratory Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (D.S.); (G.S.)
| | - Grażyna Sygitowicz
- Department of Laboratory Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (D.S.); (G.S.)
| |
Collapse
|
9
|
Afacan B, Ilhan HA, Köse T, Emingil G. Gingival crevicular fluid galectin-3 and interleukin-1 beta levels in stage 3 periodontitis with grade B and C. Clin Oral Investig 2023:10.1007/s00784-023-04991-7. [PMID: 37017753 DOI: 10.1007/s00784-023-04991-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/28/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVES This study aims to evaluate GCF Galectin-3 and Interleukin-1 beta (IL-β) levels in different grades (B and C) of stage 3 periodontitis, concurrently, and also to investigate their discriminative efficiencies in periodontal diseases. MATERIALS AND METHODS A total of 80 systemically healthy and non-smoker individuals, 20 stage 3 grade C (S3GC) periodontitis 20 stage 3 grade B (S3GB) periodontitis, 20 gingivitis, and 20 periodontally healthy were enrolled. Clinical periodontal parameters were recorded and GCF Galectin-3 and IL-1β total amounts were measured by ELISA. Receiver operating characteristics curve was used for estimating the area under the curve (AUC). RESULTS Galectin-3 and IL-1β were detected in all participants. Both periodontitis groups had significantly higher GCF Galectin-3 total amounts than periodontally healthy controls (p <0.05). S3GC periodontitis group had also significantly higher GCF Galectin-3 levels than gingivitis group (p <0.05). GCF IL-1β levels in periodontitis groups were higher than gingivitis and periodontally healthy groups (p <0.05). Galectin-3 exhibited an AUC value of 0.89 with 95% sensitivity to discriminate S3GC periodontitis from periodontal health, an AUC value of 0.87 with 80% sensitivity to discriminate S3GC periodontitis versus gingivitis, while an AUC value of 0.85 with 95% sensitivity to discriminate S3GB periodontitis from healthy controls. CONCLUSIONS GCF Galectin-3 levels are involved in the pathogenesis of periodontal diseases. Galectin-3 showed excellent diagnostic performances to discriminate S3GB and S3GC periodontitis from periodontal health and gingivitis. CLINICAL RELEVANCE The present findings suggest that GCF Galectin-3 levels may be useful in the diagnosis of the periodontal diseases.
Collapse
Affiliation(s)
- Beral Afacan
- Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydın, Turkey.
| | - Harika Atmaca Ilhan
- Department of Biology, Section of Molecular Biology, School of Science, Celal Bayar University, Manisa, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, School of Medicine, Ege University, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| |
Collapse
|
10
|
Galectins: Their Network and Roles in Infection/Immunity/Tumor Growth Control 2021. Biomolecules 2022; 12:biom12091255. [PMID: 36139094 PMCID: PMC9496472 DOI: 10.3390/biom12091255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
|
11
|
Omran F, Kyrou I, Osman F, Lim VG, Randeva HS, Chatha K. Cardiovascular Biomarkers: Lessons of the Past and Prospects for the Future. Int J Mol Sci 2022; 23:5680. [PMID: 35628490 PMCID: PMC9143441 DOI: 10.3390/ijms23105680] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a major healthcare burden on the population worldwide. Early detection of this disease is important in prevention and treatment to minimise morbidity and mortality. Biomarkers are a critical tool to either diagnose, screen, or provide prognostic information for pathological conditions. This review discusses the historical cardiac biomarkers used to detect these conditions, discussing their application and their limitations. Identification of new biomarkers have since replaced these and are now in use in routine clinical practice, but still do not detect all disease. Future cardiac biomarkers are showing promise in early studies, but further studies are required to show their value in improving detection of CVD above the current biomarkers. Additionally, the analytical platforms that would allow them to be adopted in healthcare are yet to be established. There is also the need to identify whether these biomarkers can be used for diagnostic, prognostic, or screening purposes, which will impact their implementation in routine clinical practice.
Collapse
Affiliation(s)
- Farah Omran
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Clinical Sciences Research Laboratories, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Faizel Osman
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ven Gee Lim
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Harpal Singh Randeva
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Clinical Sciences Research Laboratories, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Kamaljit Chatha
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Biochemistry and Immunology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| |
Collapse
|
12
|
Evaluation of Galectin-3 and CD19 in Helicobacter pylori patients infected with stomach cancer. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Gubatan J, Holman DR, Puntasecca CJ, Polevoi D, Rubin SJS, Rogalla S. Antimicrobial peptides and the gut microbiome in inflammatory bowel disease. World J Gastroenterol 2021; 27:7402-7422. [PMID: 34887639 PMCID: PMC8613745 DOI: 10.3748/wjg.v27.i43.7402] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/13/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMP) are highly diverse and dynamic molecules that are expressed by specific intestinal epithelial cells, Paneth cells, as well as immune cells in the gastrointestinal (GI) tract. They play critical roles in maintaining tolerance to gut microbiota and protecting against enteric infections. Given that disruptions in tolerance to commensal microbiota and loss of barrier function play major roles in the pathogenesis of inflammatory bowel disease (IBD) and converge on the function of AMP, the significance of AMP as potential biomarkers and novel therapeutic targets in IBD have been increasingly recognized in recent years. In this frontier article, we discuss the function and mechanisms of AMP in the GI tract, examine the interaction of AMP with the gut microbiome, explore the role of AMP in the pathogenesis of IBD, and review translational applications of AMP in patients with IBD.
Collapse
Affiliation(s)
- John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Derek R Holman
- Department of Radiology, Molecular Imaging Program at Stanford , Stanford University, Stanford , CA 94305, United States
| | | | - Danielle Polevoi
- Stanford University School of Medicine, Stanford University, Stanford, CA 94063, United States
| | - Samuel JS Rubin
- Stanford University School of Medicine, Stanford University, Stanford, CA 94063, United States
| | - Stephan Rogalla
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| |
Collapse
|
14
|
Jofre BL, Eliçabe RJ, Silva JE, Pérez Sáez JM, Paez MD, Callegari E, Mariño KV, Di Genaro MS, Rabinovich GA, Davicino RC. Galectin-1 Cooperates with Yersinia Outer Protein (Yop) P to Thwart Protective Immunity by Repressing Nitric Oxide Production. Biomolecules 2021; 11:1636. [PMID: 34827634 PMCID: PMC8615707 DOI: 10.3390/biom11111636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Yersinia enterocolitica (Ye) inserts outer proteins (Yops) into cytoplasm to infect host cells. However, in spite of considerable progress, the mechanisms implicated in this process, including the association of Yops with host proteins, remain unclear. Here, we evaluated the functional role of Galectin-1 (Gal1), an endogenous β-galactoside-binding protein, in modulating Yop interactions with host cells. Our results showed that Gal1 binds to Yops in a carbohydrate-dependent manner. Interestingly, Gal1 binding to Yops protects these virulence factors from trypsin digestion. Given that early control of Ye infection involves activation of macrophages, we evaluated the role of Gal1 and YopP in the modulation of macrophage function. Although Gal1 and YopP did not influence production of superoxide anion and/or TNF by Ye-infected macrophages, they coordinately inhibited nitric oxide (NO) production. Notably, recombinant Gal1 (rGal1) did not rescue NO increase observed in Lgals1-/- macrophages infected with the YopP mutant Ye ∆yopP. Whereas NO induced apoptosis in macrophages, no significant differences in cell death were detected between Gal1-deficient macrophages infected with Ye ∆yopP, and WT macrophages infected with Ye wt. Strikingly, increased NO production was found in WT macrophages treated with MAPK inhibitors and infected with Ye wt. Finally, rGal1 administration did not reverse the protective effect in Peyer Patches (PPs) of Lgals1-/- mice infected with Ye ∆yopP. Our study reveals a cooperative role of YopP and endogenous Gal1 during Ye infection.
Collapse
Affiliation(s)
- Brenda Lucila Jofre
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Ricardo Javier Eliçabe
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Juan Eduardo Silva
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Juan Manuel Pérez Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires C1428ADN, Argentina; (J.M.P.S.); (G.A.R.)
| | - Maria Daniela Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 66544, USA; (M.D.P.); (E.C.)
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 66544, USA; (M.D.P.); (E.C.)
| | - Karina Valeria Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires C1428ADN, Argentina;
| | - María Silvia Di Genaro
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Gabriel Adrián Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires C1428ADN, Argentina; (J.M.P.S.); (G.A.R.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina
| | - Roberto Carlos Davicino
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
- Roberto Davicino, División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, San Luis CP5700, Argentina
| |
Collapse
|
15
|
Rahardja F, Prasetyo D, Shahib MN, Tjahjani S. The Influence of Lactobacillus Acidophilus on MUC1, GAL-3, IL-1β and IL-17 Gene Expression in BALB/c Mice Stomach. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background and Objective:
Lactobacillus acidophilus has been widely used for the management of gastrointestinal carcinoma owing to its immunomodulation effect; however, the role of L. acidophilus and its specific mechanism of action in the stomach is not fully comprehended. The present study evaluated the expression profile of MUC-1, GAL-3, IL -1β, and IL-17 in the L. acidophilus treated mice stomach.
Methods:
The study was conducted utilizing three groups of mice, 6 mice for each group, administered with different doses of L. acidophilus and a control group treated with normal saline. The results were analyzed with the Mann-Whitney Test.
Results:
The results demonstrated that L. acidophilus elevated IL-1β insignificantly and inhibited the expression of IL-17. The MUC-1 expression is influenced by L. acidophilus and inversely proportional to GAL-3 expression.
Conclusion:
Lactobacillus acidophilus plays a prominent role against inflammatory responses and has a potential in the treatment of gastrointestinal cancer.
Collapse
|
16
|
Oliveira RM, Teixeira TL, Rodrigues CC, da Silva AA, Borges BC, Brígido RTS, Teixeira SC, Dos Santos MA, Servato JPS, Santos DDO, Silva MJB, Goulart LR, Silva CV. Galectin-3 plays a protective role in Leishmania (Leishmania) amazonensis infection. Glycobiology 2021; 31:1378-1389. [PMID: 34192330 DOI: 10.1093/glycob/cwab062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 06/20/2021] [Indexed: 11/13/2022] Open
Abstract
Leishmania (L.) amazonensis is one of the species responsible for the development of cutaneous leishmaniasis in South America. After entering the vertebrate host, L. (L.) amazonensis invades mainly neutrophils, macrophages, and dendritic cells. Studies have shown that gal-3 acts as a pattern recognition receptor. However, the role of this protein in the context of L. (L.) amazonensis infection remains unclear. Here, we investigated the impact of gal-3 expression on experimental infection by L. (L.) amazonensis. Our data showed that gal-3 plays a role in controlling parasite invasion, replication and the formation of endocytic vesicles. Moreover, mice with gal-3 deficiency showed an exacerbated inflammatory response. Taken together, our data shed light to a critical role of gal-3 in the host response to infection by L. (L.) amazonensis.
Collapse
Affiliation(s)
- Rafael M Oliveira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38400-902, Brazil
| | - Thaise L Teixeira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38400-902, Brazil.,Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Cassiano C Rodrigues
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38400-902, Brazil
| | - Aline A da Silva
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38400-902, Brazil
| | - Bruna C Borges
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38400-902, Brazil.,Laboratório de Biomarcadores Tumorais e Osteoimunologia, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38400-902, Brazil
| | - Rebecca T S Brígido
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38400-902, Brazil
| | - Samuel C Teixeira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38400-902, Brazil
| | - Marlus A Dos Santos
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38400-902, Brazil
| | | | - Débora de O Santos
- Laboratório de Patologia Bucal, Faculdade de Odontologia, Universidade Federal de Uberlândia, Uberlândia 38405-320, Brazil
| | - Marcelo J B Silva
- Laboratório de Biomarcadores Tumorais e Osteoimunologia, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38400-902, Brazil
| | - Luiz R Goulart
- Laboratório de Nanobiotecnologia, Universidade Federal de Uberlândia, Uberlândia 38400-902, Brazil
| | - Claudio V Silva
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38400-902, Brazil
| |
Collapse
|
17
|
Tana FL, Guimarães ES, Cerqueira DM, Campos PC, Gomes MTR, Marinho FV, Oliveira SC. Galectin-3 regulates proinflammatory cytokine function and favours Brucella abortus chronic replication in macrophages and mice. Cell Microbiol 2021; 23:e13375. [PMID: 34169616 DOI: 10.1111/cmi.13375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/18/2023]
Abstract
In this study, we provide evidence that galectin-3 (Gal-3) plays an important role in Brucella abortus infection. Our results showed increased Gal-3 expression and secretion in B. abortus infected macrophages and mice. Additionally, our findings indicate that Gal-3 is dispensable for Brucella-containing vacuoles disruption, inflammasome activation and pyroptosis. On the other hand, we observed that Brucella-induced Gal-3 expression is crucial for induction of molecules associated to type I IFN signalling pathway, such as IFN-β: Interferon beta (IFN-β), C-X-C motif chemokine ligand 10 (CXCL10) and guanylate-binding proteins. Gal-3 KO macrophages showed reduced bacterial numbers compared to wild-type cells, suggesting that Gal-3 facilitates bacterial replication in vitro. Moreover, priming Gal-3 KO cells with IFN-β favoured B. abortus survival in macrophages. Additionally, we also observed that Gal-3 KO mice are more resistant to B. abortus infection and these animals showed elevated production of proinflammatory cytokines when compared to control mice. Finally, we observed an increased recruitment of macrophages, dendritic cells and neutrophils in spleens of Gal-3 KO mice compared to wild-type animals. In conclusion, this study demonstrated that Brucella-induced Gal-3 is detrimental to host and this molecule is implicated in inhibition of recruitment and activation of immune cells, which promotes B. abortus spread and aggravates the infection. TAKE AWAYS: Brucella abortus infection upregulates galectin-3 expression Galectin-3 regulates guanylate-binding proteins expression but is not required for Brucella-containing vacuole disruption Galectin-3 modulates proinflammatory cytokine production during bacterial infection Galectin-3 favours Brucella replication.
Collapse
Affiliation(s)
- Fernanda L Tana
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erika S Guimarães
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daiane M Cerqueira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Priscila C Campos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marco Túlio R Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fábio V Marinho
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, Brazil
| |
Collapse
|
18
|
Rezende CP, Brito PKMO, Da Silva TA, Pessoni AM, Ramalho LNZ, Almeida F. Influence of Galectin-3 on the Innate Immune Response during Experimental Cryptococcosis. J Fungi (Basel) 2021; 7:jof7060492. [PMID: 34203011 PMCID: PMC8234158 DOI: 10.3390/jof7060492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptococcus neoformans, the causative agent of cryptococcosis, is the primary fungal pathogen that affects the immunocompromised individuals. Galectin-3 (Gal-3) is an animal lectin involved in both innate and adaptive immune responses. The present study aimed to evaluate the influence of Gal-3 on the C. neoformans infection. We performed histopathological and gene profile analysis of the innate antifungal immunity markers in the lungs, spleen, and brain of the wild-type (WT) and Gal-3 knockout (KO) mice during cryptococcosis. These findings suggest that Gal-3 absence does not cause significant histopathological alterations in the analyzed tissues. The expression profile of the genes related to innate antifungal immunity showed that the presence of cryptococcosis in the WT and Gal-3 KO animals, compared to their respective controls, promoted the upregulation of the pattern recognition receptor (PRR) responsive to mannose/chitin (mrc1) and a gene involved in inflammation (ccr5), as well as the downregulation of the genes related to signal transduction (card9, fos, ikbkb, jun) and PRRs (cd209a, colec12, nptx1). The absence of Gal-3, in fungal infection, a positively modulated gene involved in phagocytosis (sftpd) and negatively genes involved in signal transduction (syk and myd88), proinflammatory cytokines il-1β and il-12b and cd209a receptor. Therefore, our results suggest that Gal-3 may play an essential role in the development of antifungal immune responses against cryptococcosis.
Collapse
Affiliation(s)
- Caroline Patini Rezende
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (C.P.R.); (A.M.P.)
| | - Patricia Kellen Martins Oliveira Brito
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (P.K.M.O.B.); (T.A.D.S.)
| | - Thiago Aparecido Da Silva
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (P.K.M.O.B.); (T.A.D.S.)
| | - Andre Moreira Pessoni
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (C.P.R.); (A.M.P.)
| | | | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (C.P.R.); (A.M.P.)
- Correspondence:
| |
Collapse
|
19
|
Galectin-3 in Critically Ill Patients with Sepsis and/or Trauma: A Good Predictor of Outcome or Not? SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2018-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Severe sepsis and/or trauma complicated with multiple organ dysfunction syndrome are leading causes of death in critically ill patients. The aim of this prospective, observational, single centre study was to assess the prognostic value of galectin-3 regarding outcome in critically ill patients with severe trauma and/or severe sepsis. The outcome measure was hospital mortality.
In total, 75 critically ill patients who were admitted to the intensive care unit of the tertiary university hospital were enrolled in a prospective observational study. Blood samples were collected upon fulfilling Sepsis-3 criteria and for a traumatized Injury Severity Score > 25 points.
Levels of galectin-3 were significantly higher in nonsurvivors on the day of enrolment – Day 1 (p<0.05). On Day 1, the area under the curve (AUC) for the galectin-3 for lethal outcome was 0.602. At a cut-off level of 262.82 ng/mL, the sensitivity was 53%, and the specificity was 69.7%, which was objectively determined by a Youden index of 0.20.
The discriminative power of galectin-3 in predicting outcome was statistically significant. Galectin-3 on Day 1 is a fairly good predictor of lethal outcome.
Collapse
|
20
|
Jeethy Ram T, Lekshmi A, Somanathan T, Sujathan K. Galectin-3: A factotum in carcinogenesis bestowing an archery for prevention. Tumour Biol 2021; 43:77-96. [PMID: 33998569 DOI: 10.3233/tub-200051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cancer metastasis and therapy resistance are the foremost hurdles in oncology at the moment. This review aims to pinpoint the functional aspects of a unique multifaceted glycosylated molecule in both intracellular and extracellular compartments of a cell namely galectin-3 along with its metastatic potential in different types of cancer. All materials reviewed here were collected through the search engines PubMed, Scopus, and Google scholar. Among the 15 galectins identified, the chimeric gal-3 plays an indispensable role in the differentiation, transformation, and multi-step process of tumor metastasis. It has been implicated in the molecular mechanisms that allow the cancer cells to survive in the intravascular milieu and promote tumor cell extravasation, ultimately leading to metastasis. Gal-3 has also been found to have a pivotal role in immune surveillance and pro-angiogenesis and several studies have pointed out the importance of gal-3 in establishing a resistant phenotype, particularly through the epithelial-mesenchymal transition process. Additionally, some recent findings suggest the use of gal-3 inhibitors in overcoming therapeutic resistance. All these reports suggest that the deregulation of these specific lectins at the cellular level could inhibit cancer progression and metastasis. A more systematic study of glycosylation in clinical samples along with the development of selective gal-3 antagonists inhibiting the activity of these molecules at the cellular level offers an innovative strategy for primary cancer prevention.
Collapse
Affiliation(s)
- T Jeethy Ram
- Division of Cancer Research, Regional Cancer Centre, Medical College, Trivandrum, Kerala, India
| | - Asha Lekshmi
- Division of Cancer Research, Regional Cancer Centre, Medical College, Trivandrum, Kerala, India
| | - Thara Somanathan
- Division of Pathology, Regional Cancer Centre, Medical College, Trivandrum, Kerala, India
| | - K Sujathan
- Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| |
Collapse
|
21
|
Exploration of Galectin Ligands Displayed on Gram-Negative Respiratory Bacterial Pathogens with Different Cell Surface Architectures. Biomolecules 2021; 11:biom11040595. [PMID: 33919637 PMCID: PMC8074145 DOI: 10.3390/biom11040595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
Galectins bind various pathogens through recognition of distinct carbohydrate structures. In this work, we examined the binding of four human galectins to the Gram-negative bacteria Klebsiella pneumoniae (Kpn) and non-typeable Haemophilus influenzae (NTHi), which display different surface glycans. In particular, Kpn cells are covered by a polysaccharide capsule and display an O-chain-containing lipopolysaccharide (LPS), whereas NTHi is not capsulated and its LPS, termed lipooligosacccharide (LOS), does not contain O-chain. Binding assays to microarray-printed bacteria revealed that galectins-3, -4, and -8, but not galectin-1, bind to Kpn and NTHi cells, and confocal microscopy attested binding to bacterial cells in suspension. The three galectins bound to array-printed Kpn LPS. Moreover, analysis of galectin binding to mutant Kpn cells evidenced that the O-chain is the docking point for galectins on wild type Kpn. Galectins-3, -4, and -8 also bound the NTHi LOS. Microarray-assisted comparison of the binding to full-length and truncated LOSs, as well as to wild type and mutant cells, supported LOS involvement in galectin binding to NTHi. However, deletion of the entire LOS oligosaccharide chain actually increased binding to NTHi cells, indicating the availability of other ligands on the bacterial surface, as similarly inferred for Kpn cells devoid of both O-chain and capsule. Altogether, the results illustrate galectins’ versatility for recognizing different bacterial structures, and point out the occurrence of so far overlooked galectin ligands on bacterial surfaces.
Collapse
|
22
|
Dong Z, Li Y, Liu X, Su L, Zhou S, Xiu Y. Molecular characterization, expression analysis and immune effect of Galectin-8 from Japanese flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2021; 111:59-68. [PMID: 33503473 DOI: 10.1016/j.fsi.2021.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 11/04/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Galectin-8 gene belongs to the agglutinin family, which can specifically recognize β-galactoside bonds and play essential roles in many biological processes. In this study, we researched the sequence characteristics and immune-related function of Galectin-8 gene in Japanese flounder Paralichthys olivaceus, named PoGalectin-8. The results showed that the open reading frame of PoGalectin-8 was 891 bp, which encoding a protein with 296 amino acid residues and containing typical HXNPR and WGXEE motifs in the N-terminal and C-terminal CRD domains. Sequence alignment showed that PoGalectin-8 was conserved in different aquatic animals and exhibited the highest similarity (95.27%) with Seriola dumerili. PoGalectin-8 expressed in all detected tissues and exhibited the highest expression level in spleen, followed by skin and kidney. After infected by Edwardsiella tarda, the expression of PoGalectin-8 was down-regulated in the spleen and skin tissues of P. olivaceus. Further to study its immune-related functions, the recombinant PoGalectin-8 (rPoGalectin-8) was expressed and purified. The rPoGalectin-8 can specifically bind to lipopolysaccharide and peptidoglycan, the main components of cell walls from Gram-negative and Gram-positive bacteria. Bacteria binding and the microbial agglutinating experiments showed that the rPoGalectin-8 could bind and agglutinate all examined Gram-positive and Gram-negative bacteria. This study implied that PoGalectin-8, as a pattern recognition receptor, may play important roles during immune responses against bacterial infection, which laid a foundation for further functional identification of Galectin-8 in aquatic animal immunity.
Collapse
Affiliation(s)
- Zhixiao Dong
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, Qingdao, 266104, China
| | - Yingrui Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaofei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Lin Su
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun Zhou
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
23
|
Velickovic M, Arsenijevic A, Acovic A, Arsenijevic D, Milovanovic J, Dimitrijevic J, Todorovic Z, Milovanovic M, Kanjevac T, Arsenijevic N. Galectin-3, Possible Role in Pathogenesis of Periodontal Diseases and Potential Therapeutic Target. Front Pharmacol 2021; 12:638258. [PMID: 33815121 PMCID: PMC8017193 DOI: 10.3389/fphar.2021.638258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Periodontal diseases are chronic inflammatory diseases that occur due to the imbalance between microbial communities in the oral cavity and the immune response of the host that lead to destruction of tooth supporting structures and finally to alveolar bone loss. Galectin-3 is a β-galactoside-binding lectin with important roles in numerous biological processes. By direct binding to microbes and modulation of their clearence, Galectin-3 can affect the composition of microbial community in the oral cavity. Galectin-3 also modulates the function of many immune cells in the gingiva and gingival sulcus and thus can affect immune homeostasis. Few clinical studies demonstrated increased expression of Galectin-3 in different forms of periodontal diseases. Therefore, the objective of this mini review is to discuss the possible effects of Galectin-3 on the process of immune homeostasis and the balance between oral microbial community and host response and to provide insights into the potential therapeutic targeting of Gal-3 in periodontal disease.
Collapse
Affiliation(s)
- Milica Velickovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Acovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Dimitrijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Zeljko Todorovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
24
|
Hong MH, Weng IC, Li FY, Lin WH, Liu FT. Intracellular galectins sense cytosolically exposed glycans as danger and mediate cellular responses. J Biomed Sci 2021; 28:16. [PMID: 33663512 PMCID: PMC7931364 DOI: 10.1186/s12929-021-00713-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/07/2021] [Indexed: 12/18/2022] Open
Abstract
Galectins are animal lectins that recognize carbohydrates and play important roles in maintaining cellular homeostasis. Recent studies have indicated that under a variety of challenges, intracellular galectins bind to host glycans displayed on damaged endocytic vesicles and accumulate around these damaged organelles. Accumulated galectins then engage cellular proteins and subsequently control cellular responses, such as autophagy. In this review, we have summarized the stimuli that lead to the accumulation of galectins, the molecular mechanisms of galectin accumulation, and galectin-mediated cellular responses, and elaborate on the differential regulatory effects among galectins.
Collapse
Affiliation(s)
- Ming-Hsiang Hong
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fang-Yen Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Han Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
25
|
Lin CY, Nozawa T, Minowa-Nozawa A, Toh H, Hikichi M, Iibushi J, Nakagawa I. Autophagy Receptor Tollip Facilitates Bacterial Autophagy by Recruiting Galectin-7 in Response to Group A Streptococcus Infection. Front Cell Infect Microbiol 2021; 10:583137. [PMID: 33425778 PMCID: PMC7786282 DOI: 10.3389/fcimb.2020.583137] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Bacterial autophagy—a type of macroautophagy that is also termed xenophagy—selectively targets intracellular bacteria such as group A Streptococcus (GAS), a ubiquitous pathogen that causes numerous serious diseases, including pharyngitis, skin infections, and invasive life-threatening infections. Although bacterial autophagy is known to eliminate invading bacteria via the action of autophagy receptors, the underlying mechanism remains unclear. Herein, we elucidated that Tollip functions as a bacterial-autophagy receptor in addition to participating involved in the intracellular immunity mechanism that defends against bacterial infection. Tollip was recruited to GAS-containing endosomal vacuoles prior to the escape of GAS into the cytosol; additionally, Tollip knockout disrupted the recruitment of other autophagy receptors, such as NBR1, TAX1BP1, and NDP52, to GAS-containing autophagosomes and led to prolonged intracellular survival of GAS. Furthermore, Tollip was found to be required for the recruitment of galectin-1 and -7 to GAS-containing autophagosomes, and immunoprecipitation results indicated that Tollip interacts with galectin-7. Lastly, our data also revealed that galectin-1 and -7 are involved in the restriction of GAS replication in cells. These results demonstrated that Tollip modulates bacterial autophagy by recruiting other autophagy receptors and galectins.
Collapse
Affiliation(s)
- Ching-Yu Lin
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuko Minowa-Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirotaka Toh
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miyako Hikichi
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junpei Iibushi
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Džopalić T, Kostić M, Kostić M, Marjanović G, Guzina J, Jurišić V, Božić Nedeljković B. Effects of galectin-1 on immunomodulatory properties of human monocyte-derived dendritic cells. Growth Factors 2020; 38:235-246. [PMID: 34223785 DOI: 10.1080/08977194.2021.1947267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our study aimed to evaluate the effects of Gal-1 in dose depending manner on maturation and immunomodulatory properties of monocyte-derived (Mo) DCs in-vitro. The effects were analyzed by monitoring their phenotypic characteristics, cytokine profile, and the ability to direct the immune response in the co-culture with allogeneic CD4+T cells. Gal-1 reduced the expression of CD80 and CD86 molecules on MoDCs compared to untreated MoDCs. Gal-1 at concentrations of 1 and 6 μg/mL significantly reduced IL-12 production, while the concentration of 3 μg/mL led to its significant increase. Gal-1 in all concentrations induced a significant increase in the production of IL-10. Treatment of MoDCs with 3 and 6 μg/mL of Gal-1 stimulated the production of IL-2 and IFN-γ in the co-culture with CD4+T lymphocytes. This study demonstrated a dual immunomodulatory effect of Gal-1 on MoDCs in terms of immune stimulation and immune suppression, depending on the applied concentration.
Collapse
Affiliation(s)
- Tanja Džopalić
- Department of Immunology, Medical Faculty, University of Niš, Niš, Serbia
| | - Miloš Kostić
- Department of Immunology, Medical Faculty, University of Niš, Niš, Serbia
| | - Milena Kostić
- Faculty of Biology, Institute for Physiology and Biochemistry "Ivan Djaja", University of Belgrade, Belgrade, Serbia
| | - Goran Marjanović
- Department of Immunology, Medical Faculty, University of Niš, Niš, Serbia
- Clinic for Hematology and Clinical Immunology, Clinical Center Niš, Niš, Serbia
| | - Jelena Guzina
- Faculty of Biology, Institute for Physiology and Biochemistry "Ivan Djaja", University of Belgrade, Belgrade, Serbia
| | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Božić Nedeljković
- Faculty of Biology, Institute for Physiology and Biochemistry "Ivan Djaja", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
27
|
Schubert KA, Xu Y, Shao F, Auerbuch V. The Yersinia Type III Secretion System as a Tool for Studying Cytosolic Innate Immune Surveillance. Annu Rev Microbiol 2020; 74:221-245. [PMID: 32660389 DOI: 10.1146/annurev-micro-020518-120221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial pathogens have evolved complex mechanisms to interface with host cells in order to evade host defenses and replicate. However, mammalian innate immune receptors detect the presence of molecules unique to the microbial world or sense the activity of virulence factors, activating antimicrobial and inflammatory pathways. We focus on how studies of the major virulence factor of one group of microbial pathogens, the type III secretion system (T3SS) of human pathogenic Yersinia, have shed light on these important innate immune responses. Yersinia are largely extracellular pathogens, yet they insert T3SS cargo into target host cells that modulate the activity of cytosolic innate immune receptors. This review covers both the host pathways that detect the Yersinia T3SS and the effector proteins used by Yersinia to manipulate innate immune signaling.
Collapse
Affiliation(s)
- Katherine Andrea Schubert
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
| | - Yue Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
| |
Collapse
|
28
|
Hara A, Niwa M, Kanayama T, Noguchi K, Niwa A, Matsuo M, Kuroda T, Hatano Y, Okada H, Tomita H. Galectin-3: A Potential Prognostic and Diagnostic Marker for Heart Disease and Detection of Early Stage Pathology. Biomolecules 2020; 10:biom10091277. [PMID: 32899694 PMCID: PMC7565392 DOI: 10.3390/biom10091277] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
The use of molecular biomarkers for the early detection of heart disease, before their onset of symptoms, is an attractive novel approach. Ideal molecular biomarkers, those that are both sensitive and specific to heart disease, are likely to provide a much earlier diagnosis, thereby providing better treatment outcomes. Galectin-3 is expressed by various immune cells, including mast cells, histiocytes and macrophages, and plays an important role in diverse physiological functions. Since galectin-3 is readily expressed on the cell surface, and is readily secreted by injured and inflammatory cells, it has been suggested that cardiac galectin-3 could be a marker for cardiac disorders such as cardiac inflammation and fibrosis, depending on the specific pathogenesis. Thus, galectin-3 may be a novel candidate biomarker for the diagnosis, analysis and prognosis of various cardiac diseases, including heart failure. The goals of heart disease treatment are to prevent acute onset and to predict their occurrence by using the ideal molecular biomarkers. In this review, we discuss and summarize recent developments of galectin-3 as a next-generation molecular biomarker of heart disease. Furthermore, we describe how galectin-3 may be useful as a diagnostic marker for detecting the early stages of various heart diseases, which may contribute to improved early therapeutic interventions.
Collapse
Affiliation(s)
- Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
- Correspondence: ; Tel.: +81-58-230-6225
| | - Masayuki Niwa
- Medical Education Development Center, Gifu University School of Medicine, Gifu 501-1194, Japan;
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
| | - Kei Noguchi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
| | - Mikiko Matsuo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
| | - Takahiro Kuroda
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
| | - Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
| |
Collapse
|
29
|
Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases. Biomolecules 2020; 10:biom10030389. [PMID: 32138174 PMCID: PMC7175224 DOI: 10.3390/biom10030389] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/11/2022] Open
Abstract
Galectin-3 is a β-galactoside-binding lectin which is important in numerous biological activities in various organs, including cell proliferation, apoptotic regulation, inflammation, fibrosis, and host defense. Galectin-3 is predominantly located in the cytoplasm and expressed on the cell surface, and then often secreted into biological fluids, like serum and urine. It is also released from injured cells and inflammatory cells under various pathological conditions. Many studies have revealed that galectin-3 plays an important role as a diagnostic or prognostic biomarker for certain types of heart disease, kidney disease, viral infection, autoimmune disease, neurodegenerative disorders, and tumor formation. In particular, it has been recognized that galectin-3 is extremely useful for detecting many of these diseases in their early stages. The purpose of this article is to review and summarize the recent literature focusing on the biomarker characteristics and long-term outcome predictions of galectin-3, in not only patients with various types of diseases, but associated animal models.
Collapse
|
30
|
Metazoan Soluble β-Galactoside-Binding Lectins, Galectins: Methods for Purification, Characterization of Their Carbohydrate-Binding Specificity, and Probing Their Ligands. Methods Mol Biol 2020; 2132:39-54. [PMID: 32306313 DOI: 10.1007/978-1-0716-0430-4_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Galectins are a family of soluble β-galactoside-binding proteins that share conserved carbohydrate recognition domain. Galectins are found in most multicellular organisms and exert various biological functions by binding to the surface glycoconjugates as lectins. In this chapter, we describe the general methods of purification of galectins, quality control of purified galectins, some example methods of evaluating their carbohydrate-binding activity, and use of galectin to search or detect galectin ligands as well as a series of precautions for the usage of galectins.
Collapse
|
31
|
Machala EA, McSharry BP, Rouse BT, Abendroth A, Slobedman B. Gal power: the diverse roles of galectins in regulating viral infections. J Gen Virol 2019; 100:333-349. [PMID: 30648945 DOI: 10.1099/jgv.0.001208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses, as a class of pathogenic microbe, remain a significant health burden globally. Viral infections result in significant morbidity and mortality annually and many remain in need of novel vaccine and anti-viral strategies. The development of effective novel anti-viral therapeutics, in particular, requires detailed understanding of the mechanism of viral infection, and the host response, including the innate and adaptive arms of the immune system. In recent years, the role of glycans and lectins in pathogen-host interactions has become an increasingly relevant issue. This review focuses on the interactions between a specific lectin family, galectins, and the broad range of viral infections in which they play a role. Discussed are the diverse activities that galectins play in interacting directly with virions or the cells they infect, to promote or inhibit viral infection. In addition we describe how galectin expression is regulated both transcriptionally and post-transcriptionally by viral infections. We also compare the contribution of known galectin-mediated immune modulation, across a range of innate and adaptive immune anti-viral responses, to the outcome of viral infections.
Collapse
Affiliation(s)
- Emily A Machala
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Brian P McSharry
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Barry T Rouse
- 2Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Allison Abendroth
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Barry Slobedman
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
32
|
Weinmann D, Kenn M, Schmidt S, Schmidt K, Walzer SM, Kubista B, Windhager R, Schreiner W, Toegel S, Gabius HJ. Galectin-8 induces functional disease markers in human osteoarthritis and cooperates with galectins-1 and -3. Cell Mol Life Sci 2018; 75:4187-4205. [PMID: 29934665 PMCID: PMC6182346 DOI: 10.1007/s00018-018-2856-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/24/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
The reading of glycan-encoded signals by tissue lectins is considered a major route of the flow of biological information in many (patho)physiological processes. The arising challenge for current research is to proceed from work on a distinct protein to family-wide testing of lectin function. Having previously identified homodimeric galectin-1 and chimera-type galectin-3 as molecular switches in osteoarthritis progression, we here provide proof-of-principle evidence for an intra-network cooperation of galectins with three types of modular architecture. We show that the presence of tandem-repeat-type galectin-8 significantly correlated with cartilage degeneration and that it is secreted by osteoarthritic chondrocytes. Glycan-inhibitable surface binding of galectin-8 to these cells increased gene transcription and the secretion of functional disease markers. The natural variant galectin-8 (F19Y) was less active than the prevalent form. Genome-wide array analysis revealed induction of a pro-degradative/inflammatory gene signature, largely under control of NF-κB signaling. This signature overlapped with respective gene-expression patterns elicited by galectins-1 and -3, but also presented supplementary features. Functional assays with mixtures of galectins that mimic the pathophysiological status unveiled cooperation between the three galectins. Our findings shape the novel concept to consider individual galectins as part of a so far not realized teamwork in osteoarthritis pathogenesis, with relevance beyond this disease.
Collapse
Affiliation(s)
- Daniela Weinmann
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Michael Kenn
- Center for Medical Statistics, Informatics and Intelligent Systems, Institute of Biosimulation and Bioinformatics, Medical University of Vienna, Vienna, Austria
| | - Sebastian Schmidt
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Katy Schmidt
- Center for Anatomy and Cell Biology, Department for Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Sonja M Walzer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Bernd Kubista
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wolfgang Schreiner
- Center for Medical Statistics, Informatics and Intelligent Systems, Institute of Biosimulation and Bioinformatics, Medical University of Vienna, Vienna, Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Ludwig Boltzmann Cluster for Arthritis and Rehabilitation, Vienna, Austria.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
33
|
Li FY, Weng IC, Lin CH, Kao MC, Wu MS, Chen HY, Liu FT. Helicobacter pylori induces intracellular galectin-8 aggregation around damaged lysosomes within gastric epithelial cells in a host O-glycan-dependent manner. Glycobiology 2018; 29:151-162. [DOI: 10.1093/glycob/cwy095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Abstract
Galectin-8, a beta-galactoside-binding lectin, is upregulated in the gastric tissues of rhesus macaques infected with Helicobacter pylori. In this study, we found that H. pylori infection triggers intracellular galectin-8 aggregation in human-derived AGS gastric epithelial cells, and that these aggregates colocalize with lysosomes. Notably, this aggregation is markedly reduced following the attenuation of host O-glycan processing. This indicates that H. pylori infection induces lysosomal damage, which in turn results in the accumulation of cytosolic galectin-8 around damaged lysosomes through the recognition of exposed vacuolar host O-glycans. H. pylori-induced galectin-8 aggregates also colocalize with autophagosomes, and galectin-8 ablation reduces the activation of autophagy by H. pylori. This suggests that galectin-8 aggregates may enhance autophagy activity in infected cells. We also observed that both autophagy and NDP52, an autophagy adapter, contribute to the augmentation of galectin-8 aggregation by H. pylori. Additionally, vacuolating cytotoxin A, a secreted H. pylori cytotoxin, may contribute to the increased galectin-8 aggregation and elevated autophagy response in infected cells. Collectively, these results suggest that H. pylori promotes intracellular galectin-8 aggregation, and that galectin-8 aggregation and autophagy may reciprocally regulate each other during infection.
Collapse
Affiliation(s)
- Fang-Yen Li
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, CA, USA
| |
Collapse
|
34
|
Stewart SE, Ashkenazi A, Williamson A, Rubinsztein DC, Moreau K. Transbilayer phospholipid movement facilitates the translocation of annexin across membranes. J Cell Sci 2018; 131:jcs217034. [PMID: 29930080 PMCID: PMC6080606 DOI: 10.1242/jcs.217034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/06/2018] [Indexed: 02/03/2023] Open
Abstract
Annexins are cytosolic phospholipid-binding proteins that can be found on the outer leaflet of the plasma membrane. The extracellular functions of annexin include modulating fibrinolysis activity and cell migration. Despite having well-described extracellular functions, the mechanism of annexin transport from the cytoplasmic inner leaflet to the extracellular outer leaflet of the plasma membrane remains unclear. Here, we show that the transbilayer movement of phospholipids facilitates the transport of annexins A2 and A5 across membranes in cells and in liposomes. We identified TMEM16F (also known as anoctamin-6, ANO6) as a lipid scramblase required for transport of these annexins to the outer leaflet of the plasma membrane. This work reveals a mechanism for annexin translocation across membranes which depends on plasma membrane phospholipid remodelling.
Collapse
Affiliation(s)
- Sarah E Stewart
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Avraham Ashkenazi
- University of Cambridge, Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Athena Williamson
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - David C Rubinsztein
- University of Cambridge, Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
- UK Dementia Research Institute, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - Kevin Moreau
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| |
Collapse
|
35
|
Glycosylation-dependent galectin-receptor interactions promote Chlamydia trachomatis infection. Proc Natl Acad Sci U S A 2018; 115:E6000-E6009. [PMID: 29891717 DOI: 10.1073/pnas.1802188115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chlamydia trachomatis (Ct) constitutes the most prevalent sexually transmitted bacterium worldwide. Chlamydial infections can lead to severe clinical sequelae including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility. As an obligate intracellular pathogen, Ct has evolved multiple strategies to promote adhesion and invasion of host cells, including those involving both bacterial and host glycans. Here, we show that galectin-1 (Gal1), an endogenous lectin widely expressed in female and male genital tracts, promotes Ct infection. Through glycosylation-dependent mechanisms involving recognition of bacterial glycoproteins and N-glycosylated host cell receptors, Gal1 enhanced Ct attachment to cervical epithelial cells. Exposure to Gal1, mainly in its dimeric form, facilitated bacterial entry and increased the number of infected cells by favoring Ct-Ct and Ct-host cell interactions. These effects were substantiated in vivo in mice lacking Gal1 or complex β1-6-branched N-glycans. Thus, disrupting Gal1-N-glycan interactions may limit the severity of chlamydial infection by inhibiting bacterial invasion of host cells.
Collapse
|
36
|
Sato S. Cytosolic Galectins and Their Release and Roles as Carbohydrate-Binding Proteins in Host–Pathogen Interaction. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1739.1se] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Sachiko Sato
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University
| |
Collapse
|
37
|
Weng IC, Chen HL, Lo TH, Lin WH, Chen HY, Hsu DK, Liu FT. Cytosolic galectin-3 and -8 regulate antibacterial autophagy through differential recognition of host glycans on damaged phagosomes. Glycobiology 2018; 28:392-405. [DOI: 10.1093/glycob/cwy017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/23/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hung-Lin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Han Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Han Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Daniel K Hsu
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA
| |
Collapse
|
38
|
Dissecting the Structure-Activity Relationship of Galectin-Ligand Interactions. Int J Mol Sci 2018; 19:ijms19020392. [PMID: 29382172 PMCID: PMC5855614 DOI: 10.3390/ijms19020392] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 02/08/2023] Open
Abstract
Galectins are β-galactoside-binding proteins. As carbohydrate-binding proteins, they participate in intracellular trafficking, cell adhesion, and cell-cell signaling. Accumulating evidence indicates that they play a pivotal role in numerous physiological and pathological activities, such as the regulation on cancer progression, inflammation, immune response, and bacterial and viral infections. Galectins have drawn much attention as targets for therapeutic interventions. Several molecules have been developed as galectin inhibitors. In particular, TD139, a thiodigalactoside derivative, is currently examined in clinical trials for the treatment of idiopathic pulmonary fibrosis. Herein, we provide an in-depth review on the development of galectin inhibitors, aiming at the dissection of the structure-activity relationship to demonstrate how inhibitors interact with galectin(s). We especially integrate the structural information established by X-ray crystallography with several biophysical methods to offer, not only in-depth understanding at the molecular level, but also insights to tackle the existing challenges.
Collapse
|
39
|
Boziki M, Polyzos SA, Deretzi G, Kazakos E, Katsinelos P, Doulberis M, Kotronis G, Giartza-Taxidou E, Laskaridis L, Tzivras D, Vardaka E, Kountouras C, Grigoriadis N, Thomann R, Kountouras J. A potential impact of Helicobacter pylori-related galectin-3 in neurodegeneration. Neurochem Int 2017; 113:137-151. [PMID: 29246761 DOI: 10.1016/j.neuint.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/03/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Neurodegeneration represents a component of the central nervous system (CNS) diseases pathogenesis, either as a disability primary source in the frame of prototype neurodegenerative disorders, or as a secondary effect, following inflammation, hypoxia or neurotoxicity. Galectins are members of the lectin superfamily, a group of endogenous glycan-binding proteins, able to interact with glycosylated receptors expressed by several immune cell types. Glycan-lectin interactions play critical roles in the living systems by involving and mediating a variety of biologically important normal and pathological processes, including cell-cell signaling shaping cell communication, proliferation and migration, immune responses and fertilization, host-pathogen interactions and diseases such as neurodegenerative disorders and tumors. This review focuses in the role of Galectin-3 in shaping responses of the immune system against microbial agents, and concretely, Helicobacter pylori (Hp), thereby potentiating effect of the microbe in areas distant from the ordinary site of colonization, like the CNS. We hereby postulate that gastrointestinal Hp alterations in terms of immune cell functional phenotype, cytokine and chemokine secretion, may trigger systemic responses, thereby conferring implications for remote processes susceptible in immunity disequilibrium, namely, the CNS inflammation and/or neurodegeneration.
Collapse
Affiliation(s)
- Marina Boziki
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece; Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A Polyzos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Georgia Deretzi
- Department of Neurology, Multiple Sclerosis Unit, Papageorgiou Hospital, Thessaloniki, Greece
| | - Evangelos Kazakos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Panagiotis Katsinelos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Michael Doulberis
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece; Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Georgios Kotronis
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Evaggelia Giartza-Taxidou
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Leonidas Laskaridis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitri Tzivras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Elisabeth Vardaka
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Constantinos Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Robert Thomann
- Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Jannis Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece.
| |
Collapse
|
40
|
Coers J. Sweet host revenge: Galectins and GBPs join forces at broken membranes. Cell Microbiol 2017; 19:10.1111/cmi.12793. [PMID: 28973783 PMCID: PMC5680119 DOI: 10.1111/cmi.12793] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022]
Abstract
Most bacterial pathogens enter and exit eukaryotic cells during their journey through the vertebrate host. In order to endure inside a eukaryotic cell, bacterial invaders commonly employ bacterial secretion systems to inject host cells with virulence factors that co-opt the host's membrane trafficking systems and thereby establish specialised pathogen-containing vacuoles (PVs) as intracellular niches permissive for microbial growth and survival. To defend against these microbial adversaries hiding inside PVs, host organisms including humans evolved an elaborate cell-intrinsic armoury of antimicrobial weapons that include noxious gases, antimicrobial peptides, degradative enzymes, and pore-forming proteins. This impressive defence machinery needs to be accurately delivered to PVs, in order to fight off vacuole-dwelling pathogens. Here, I discuss recent evidence that the presence of bacterial secretion systems at PVs and the associated destabilisation of PV membranes attract such antimicrobial delivery systems consisting of sugar-binding galectins as well as dynamin-like guanylate-binding proteins (GBPs). I will review recent advances in our understanding of intracellular immune recognition of PVs by galectins and GBPs, discuss how galectins and GBPs control host defence, and highlight important avenues of future research in this exciting area of cell-autonomous immunity.
Collapse
Affiliation(s)
- Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
41
|
Kamili NA, Arthur CM, Gerner-Smidt C, Tafesse E, Blenda A, Dias-Baruffi M, Stowell SR. Key regulators of galectin-glycan interactions. Proteomics 2017; 16:3111-3125. [PMID: 27582340 DOI: 10.1002/pmic.201600116] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 11/08/2022]
Abstract
Protein-ligand interactions serve as fundamental regulators of numerous biological processes. Among protein-ligand pairs, glycan binding proteins (GBPs) and the glycans they recognize represent unique and highly complex interactions implicated in a broad range of regulatory activities. With few exceptions, cell surface receptors and secreted proteins are heavily glycosylated. As these glycans often represent highly regulatable post-translational modifications, alterations in glycosylation can fundamentally impact GBP recognition. Among GBPs, galectins in particular appear to engage a diverse set of glycan determinants to impact a broad range of biological processes. In this review, we will explore factors that impact galectin activity, including the effect of glycan modification on galectin-glycan interactions.
Collapse
Affiliation(s)
- Nourine A Kamili
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christian Gerner-Smidt
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eden Tafesse
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Blenda
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biology, Erskine College, Due West, SC, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
42
|
Kalograiaki I, Campanero-Rhodes MA, Proverbio D, Euba B, Garmendia J, Aastrup T, Solís D. Bacterial Surface Glycans: Microarray and QCM Strategies for Glycophenotyping and Exploration of Recognition by Host Receptors. Methods Enzymol 2017; 598:37-70. [PMID: 29306443 DOI: 10.1016/bs.mie.2017.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacterial surfaces are decorated with a diversity of carbohydrate structures that play important roles in the bacteria-host relationships. They may offer protection against host defense mechanisms, elicit strong antigenic responses, or serve as ligands for host receptors, including lectins of the innate immune system. Binding by these lectins may trigger defense responses or, alternatively, promote attachment, thereby enhancing infection. The outcome will depend on the particular bacterial surface landscape, which may substantially differ among species and strains. In this chapter, we describe two novel methods for exploring interactions directly on the bacterial surface, based on the generation of bacterial microarrays and quartz crystal microbalance (QCM) sensor chips. Bacterial microarrays enable profiling of accessible carbohydrate structures and screening of their recognition by host receptors, also providing information on binding avidity, while the QCM approach allows determination of binding affinity and kinetics. In both cases, the chief element is the use of entire bacterial cells, so that recognition of the bacterial glycan epitopes is explored in their natural environment.
Collapse
Affiliation(s)
- Ioanna Kalograiaki
- Instituto de Química Física Rocasolano, CSIC, Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - María A Campanero-Rhodes
- Instituto de Química Física Rocasolano, CSIC, Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | - Begoña Euba
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Instituto de Agrobiotecnología, CSIC-UPNa-Gobierno Navarra, Mutilva, Spain
| | - Junkal Garmendia
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Instituto de Agrobiotecnología, CSIC-UPNa-Gobierno Navarra, Mutilva, Spain
| | | | - Dolores Solís
- Instituto de Química Física Rocasolano, CSIC, Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
43
|
Abstract
Group A streptococcus (GAS) is an important human pathogen that causes a wide variety of cutaneous and systemic infections. Although originally thought to be an extracellular bacterium, numerous studies have demonstrated that GAS can trigger internalization into nonimmune cells to escape from immune surveillance or antibiotic-mediated killing. Epithelial cells possess a defense mechanism involving autophagy-mediated targeting and killing of GAS within lysosome-fused autophagosomes. In endothelial cells, in contrast, we previously showed that autophagy is not sufficient for GAS killing. In the present study, we showed higher galectin-3 (Gal-3) expression and lower Gal-8 expression in endothelial cells than in epithelial cells. The recruitment of Gal-3 to GAS is higher and the recruitment of Gal-8 to GAS is lower in endothelial cells than in epithelial cells. We further showed that Gal-3 promotes GAS replication and diminishes the recruitment of Gal-8 and ubiquitin, the latter of which is a critical protein for autophagy sequestration. After knockdown of Gal-3 in endothelial cells, the colocalization of Gal-8, parkin, and ubiquitin-decorated GAS is significantly increased, as is the interaction of Gal-8 and parkin, an E3 ligase. Furthermore, inhibition of Gal-8 in epithelial cells attenuates recruitment of parkin; both Gal-8 and parkin contribute to ubiquitin recruitment and GAS elimination. Animal studies confirmed that Gal-3-knockout mice develop less-severe skin damage and that GAS replication can be detected only in the air pouch and not in organs and endothelial cells. These results demonstrate that Gal-3 inhibits ubiquitin recruitment by blocking Gal-8 and parkin recruitment, resulting in GAS replication in endothelial cells. In epithelial cells, GAS can be efficiently killed within the lysosome-fused autophaosome compartment. However, we previously showed that, in spite of LC-3 recruitment, the autophagic machinery is not sufficient for GAS killing in endothelial cells. In this report, we provide the first evidence that Gal-3, highly expressed in endothelial cells, blocks the tagging of ubiquitin to GAS by inhibiting recruitment of Gal-8 and parkin, leading to an enhancement of GAS replication. We also provide the first demonstration that Gal-8 can interact with parkin, the critical E3 ligase, for resistance to intracellular bacteria by facilitating the decoration of bacteria with ubiquitin chains. Our findings reveal that differential levels of Gal-3 and Gal-8 expression and recruitment to GAS between epithelial cells and endothelial cells may contribute to the different outcomes of GAS elimination or survival and growth of GAS in these two types of cells.
Collapse
|
44
|
Davicino RC, Méndez-Huergo SP, Eliçabe RJ, Stupirski JC, Autenrieth I, Di Genaro MS, Rabinovich GA. Galectin-1–Driven Tolerogenic Programs AggravateYersinia enterocoliticaInfection by Repressing Antibacterial Immunity. THE JOURNAL OF IMMUNOLOGY 2017; 199:1382-1392. [DOI: 10.4049/jimmunol.1700579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
|
45
|
The Many Roles of Galectin-3, a Multifaceted Molecule, in Innate Immune Responses against Pathogens. Mediators Inflamm 2017; 2017:9247574. [PMID: 28607536 PMCID: PMC5457773 DOI: 10.1155/2017/9247574] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/08/2017] [Accepted: 04/18/2017] [Indexed: 01/06/2023] Open
Abstract
Galectins are a group of evolutionarily conserved proteins with the ability to bind β-galactosides through characteristic carbohydrate-recognition domains (CRD). Galectin-3 is structurally unique among all galectins as it contains a C-terminal CRD linked to an N-terminal protein-binding domain, being the only chimeric galectin. Galectin-3 participates in many functions, both intra- and extracellularly. Among them, a prominent role for Galectin-3 in inflammation has been recognized. Galectin-3 has also been shown to directly bind to pathogens and to have various effects on the functions of the cells of the innate immune system. Thanks to these two properties, Galectin-3 participates in several ways in the innate immune response against invading pathogens. Galectin-3 has been proposed to function not only as a pattern-recognition receptor (PRR) but also as a danger-associated molecular pattern (DAMP). In this review, we analyze the various roles that have been assigned to Galectin-3, both as a PRR and as a DAMP, in the context of immune responses against pathogenic microorganisms.
Collapse
|
46
|
Recognition of microbial glycans by soluble human lectins. Curr Opin Struct Biol 2017; 44:168-178. [PMID: 28482337 DOI: 10.1016/j.sbi.2017.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023]
Abstract
Human innate immune lectins that recognize microbial glycans can conduct microbial surveillance and thereby help prevent infection. Structural analysis of soluble lectins has provided invaluable insight into how these proteins recognize their cognate carbohydrate ligands and how this recognition gives rise to biological function. In this opinion, we cover the structural features of lectins that allow them to mediate microbial recognition, highlighting examples from the collectin, Reg protein, galectin, pentraxin, ficolin and intelectin families. These analyses reveal how some lectins (e.g., human intelectin-1) can recognize glycan epitopes that are remarkably diverse, yet still differentiate between mammalian and microbial glycans. We additionally discuss strategies to identify lectins that recognize microbial glycans and highlight tools that facilitate these discovery efforts.
Collapse
|
47
|
Johswich K. Innate immune recognition and inflammation in Neisseria meningitidis infection. Pathog Dis 2017; 75:3059204. [PMID: 28334203 DOI: 10.1093/femspd/ftx022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/23/2017] [Indexed: 01/01/2023] Open
Abstract
Neisseria meningitidis (Nme) can cause meningitis and sepsis, diseases which are characterised by an overwhelming inflammatory response. Inflammation is triggered by host pattern recognition receptors (PRRs) which are activated by pathogen-associated molecular patterns (PAMPs). Nme contains multiple PAMPs including lipooligosaccharide, peptidoglycan, proteins and metabolites. Various classes of PRRs including Toll-like receptors, NOD-like receptors, C-type lectins, scavenger receptors, pentraxins and others are expressed by the host to respond to any given microbe. While Toll-like receptors and NOD-like receptors are pivotal in triggering inflammation, other PRRs act as modulators of inflammation or aid in functional antimicrobial responses such as phagocytosis or complement activation. This review aims to give an overview of the various Nme PAMPs reported to date, the PRRs they activate and their implications during the inflammatory response to infection.
Collapse
|
48
|
Dion J, Deshayes F, Storozhylova N, Advedissian T, Lambert A, Viguier M, Tellier C, Dussouy C, Poirier F, Grandjean C. Lactosamine-Based Derivatives as Tools to Delineate the Biological Functions of Galectins: Application to Skin Tissue Repair. Chembiochem 2017; 18:782-789. [DOI: 10.1002/cbic.201600673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Johann Dion
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2 chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Frédérique Deshayes
- Université Paris Diderot-Paris 7 Sorbonne Paris Cité; Institut Jacques Monod; UMR CNRS 7592; 15 rue Hélène Brion 75205 Paris Cedex 13 France
| | - Nataliya Storozhylova
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2 chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Tamara Advedissian
- Université Paris Diderot-Paris 7 Sorbonne Paris Cité; Institut Jacques Monod; UMR CNRS 7592; 15 rue Hélène Brion 75205 Paris Cedex 13 France
| | - Annie Lambert
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2 chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Mireille Viguier
- Université Paris Diderot-Paris 7 Sorbonne Paris Cité; Institut Jacques Monod; UMR CNRS 7592; 15 rue Hélène Brion 75205 Paris Cedex 13 France
| | - Charles Tellier
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2 chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Christophe Dussouy
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2 chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Françoise Poirier
- Université Paris Diderot-Paris 7 Sorbonne Paris Cité; Institut Jacques Monod; UMR CNRS 7592; 15 rue Hélène Brion 75205 Paris Cedex 13 France
| | - Cyrille Grandjean
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2 chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| |
Collapse
|
49
|
Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proc Natl Acad Sci U S A 2017; 114:E1698-E1706. [PMID: 28193861 DOI: 10.1073/pnas.1615771114] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many invasive bacteria establish pathogen-containing vacuoles (PVs) as intracellular niches for microbial growth. Immunity to these infections is dependent on the ability of host cells to recognize PVs as targets for host defense. The delivery of several host defense proteins to PVs is controlled by IFN-inducible guanylate binding proteins (GBPs), which themselves dock to PVs through poorly characterized mechanisms. Here, we demonstrate that GBPs detect the presence of bacterial protein secretion systems as "patterns of pathogenesis" associated with PVs. We report that the delivery of GBP2 to Legionella-containing vacuoles is dependent on the bacterial Dot/Icm secretion system, whereas the delivery of GBP2 to Yersinia-containing vacuoles (YCVs) requires hypersecretion of Yersinia translocon proteins. We show that the presence of bacterial secretion systems directs cytosolic carbohydrate-binding protein Galectin-3 to PVs and that the delivery of GBP1 and GBP2 to Legionella-containing vacuoles or YCVs is substantially diminished in Galectin-3-deficient cells. Our results illustrate that insertion of bacterial secretion systems into PV membranes stimulates Galectin-3-dependent recruitment of antimicrobial GBPs to PVs as part of a coordinated host defense program.
Collapse
|
50
|
Nishiumi F, Ogawa M, Nakura Y, Hamada Y, Nakayama M, Mitobe J, Hiraide A, Sakai N, Takeuchi M, Yoshimori T, Yanagihara I. Intracellular fate of Ureaplasma parvum entrapped by host cellular autophagy. Microbiologyopen 2017; 6. [PMID: 28088841 PMCID: PMC5458467 DOI: 10.1002/mbo3.441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Genital mycoplasmas, including Ureaplasma spp., are among the smallest human pathogenic bacteria and are associated with preterm birth. Electron microscopic observation of U. parvum showed that these prokaryotes have a regular, spherical shape with a mean diameter of 146 nm. U. parvum was internalized into HeLa cells by clathrin‐mediated endocytosis and survived for at least 14 days around the perinuclear region. Intracellular U. parvum reached endosomes in HeLa cells labeled with EEA1, Rab7, and LAMP‐1 within 1 to 3 hr. After 3 hr of infection, U. parvum induced the cytosolic accumulation of galectin‐3 and was subsequently entrapped by the autophagy marker LC3. However, when using atg7−/−MEF cells, autophagy was inadequate for the complete elimination of U. parvum in HeLa cells. U. parvum also colocalized with the recycling endosome marker Rab11. Furthermore, the exosomes purified from infected HeLa cell culture medium included U. parvum. In these purified exosomes ureaplasma lipoprotein multiple banded antigen, host cellular annexin A2, CD9, and CD63 were detected. This research has successfully shown that Ureaplasma spp. utilize the host cellular membrane compartments possibly to evade the host immune system.
Collapse
Affiliation(s)
- Fumiko Nishiumi
- Department of Developmental Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Michinaga Ogawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukiko Nakura
- Department of Developmental Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Yusuke Hamada
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Nakayama
- Department of Pathology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Jiro Mitobe
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsushi Hiraide
- Critical Care Medical Center, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Norio Sakai
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makoto Takeuchi
- Department of Pathology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| |
Collapse
|